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ON CLUSTER ROTATION IN THE GALACTIC TIDAL FIELD

Leonid P. Ossipkov

Department of Space Technologies and Applied Astrodynamics,
Saint Petersburg State University, 35 Universitetskij pr., Staryj Peterhof,
St. Petersburg 198504, Russia; leonidosipkow@yahoo.com

Received: 2014 November 13; accepted: 2014 November 24

Abstract. The dynamics of a rotating star cluster moving along a circular
orbit in the axisymmetrical steady Galaxy is considered. The generalized tensor
virial theorem allows to estimate its rotation speed. Conditions for direct and
retrograde rotation in the galactic plane are found.

Key words: stellar dynamics – methods: analytical – globular clusters: gen-
eral – open clusters and associations: general

1. INTRODUCTION

The dynamics of real star clusters in the Galaxy is governed by many factors
(e.g., Spitzer 1987). Following the classical study by Bok (1934), we will analyze
only two of them, namely, the self-gravitation of a cluster and the tidal force of
the Galaxy. Earlier, such a model was studied by many authors who considered
dynamics of a protoplanetary cloud or atmospheres of comets moving along a
circular or elliptic orbit (Roche 1859; Callandreau 1892, 1902; Picart 1904; Lowell
1911, 1912; Fessenkov 1951). Most of these works were critically reviewed by Rein
(1936a).

Bok (1934) considered a cluster on a circular orbit in the steady axisymmetric
galactic field. He found that star orbits are finite if the cluster density

ϱ > ϱ∗ = κ2
R

/
(βπG), (1)

where G is the gravitational constant, κ2
R = 4A(A−B), A, B being Oort’s dynamic

coefficients, and β depends on the cluster shape and is equal to 4/3 for spherical
systems and 0.2 for disks (e.g., Chandrasekhar 1942; Ogorodnikov 1965).

Bok (1934), Rein (1936b) and Cimino (1956) discussed the Hill stability for
stars of a cluster. A steady cluster can be stable only if its diameter is smaller than
the minimal size of Hill’s critical surface. Then the critical density of a cluster can
be estimated (Nezhinsky & Ossipkov 1987; Ossipkov et al. 1997; Ossipkov 2006).
It is larger by almost an order of magnitude than that according to condition (1).

Mineur (1939) found a series of triaxial homogeneous ellipsoids with an iso-
tropic velocity distribution in equilibrium under the joint action of self-gravitation
and tides. He established that such ellipsoids could exist only if the inequality (1)
was fulfilled with β = β(κR/κz), where κz = C is the frequency of small vertical
star oscillations in the Galaxy (Kuzmin’s parameter). Mineur gave a table of
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this function. In the solar neighborhood, it is β ≈ 4.2. Mayot (1945) applied
the classical theory of equilibrium figures to Mineur ellipsoids. Kondratiev (2001)
developed a similar theory to find the equilibrium shape of globules. The theory
was generalized by Kondratiev & Trubitsina (2010) for ellipsoids with internal
flows.

Van Wijk (1949) and Kuzmin (1963) applied the tensor virial theorem to study
the problem and tried to generalize Mineur’s analysis for non-homogeneous ellip-
soidal clusters with an isotropic velocity distributions. Lee & Rood (1969) found
a generalization of the virial theorem for a cluster that rotated and moved in the
tidal field. Ossipkov (2006) considered an equilibrium of triaxial non-rotating clus-
ters with anisotropic velocity distribution. Small virial oscillations of gravitating
systems in the tidal galactic field were studied by him in other works (Ossipkov
1993, 2001). His analysis was based on equations of gross-dynamics for gravitating
stellar systems (Ossipkov 1985, 2000, 2004). In the present paper, we generalize
this theory for rotating clusters.

2. THE BOK PROBLEM

At first, we recall equations of star motion for a cluster moving with an angular
velocity Ω at the distance R0 from the galactic center. Let x = (x, y, z) be a
rotating frame of reference, its axis x being directed to the galactic anticenter.
Then:

ẍ+ 2Ω× ẋ+Ω×Ω× (R0 + x) = ∇(Φc +Φg). (2)

Here R0 = (R0, 0, 0), Ω = (0, 0,Ω), Φc(x, t) is the (positive) potential of the
cluster, Φg(R, z) is the (positive) galactic potential. We set

Φg(R, z) = Φ0 + k1(R−R0) + k2(R−R0)
2 + k3z

2 (3)

(the tidal approximation). It is evident that k1 = −Ω2R0. Here 4k2 = κ2
R −

Ω2, 2k3 = κ2
z in the solar neighborhood. The author suggested to call κR the

‘tidal increment’ (Ossipkov 2003). Maybe, it would be more correct to call it the
‘centrifugal increment’. Recall that Ω ≈ 27km·s−1 ·kpc−1, κR ≈ 42 km ·s−1 ·kpc−1,
κz ≈ 85 km · s−1 · kpc−1. Then:

ẍ− 2Ωvy = ∂Φc

/
∂x+ κ2

Rx , (4)

ÿ + 2Ωvx = ∂Φc

/
∂y , (5)

z̈ = ∂Φc

/
∂z − κ2

zz (6)

(e.g., Ogorodnikov 1965; Ossipkov 2007; Buliga & Ossipkov 2011; Proskurin &
Ossipkov 2013).

The problem of studying these equations is known as the Bok problem (Bok
1934; Rein 1936b; Ossipkov 2007; Davydenko 2013).

x(t) ≡ 0 is an evident equilibrium solution of Eqs (4)–(6). To study its stability,
one must set

Φc(x) = Φc(0)−
1

2
(a2x2 + b2y2 + c2z2) + · · ·

and analyse variational equations:

ẍ− 2Ωvy = (κ2
R − a2)x,
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ÿ + 2Ωvx = −b2y,

z̈ = −(κ2
z + c2)z.

Substituting x = Ceiλt yields a characteristic equation (Ossipkov 2007):

p2 − [a2 + b2 + 4Ω2 − κ2
R] p− b2(a2 − κ2

R) = 0, p = λ2.

We conclude that the necessary condition for the stability of the trivial solution
of Eqs. (4)–(6) has the following form:

a2 > κ2
R. (7)

The central density of the cluster is ϱ(0) = (a2+b2+c2)/4πG. Hence the condition
(7) can be rewritten as follows:

ϱ(0) > ϱc =
κ2
R

4πG
(1 + sy + sz),

with sy = b2/a2, sz = c2/a2. For spherical clusters,

ϱc =
3

4πG
κ2
R.

For homogeneous models, the critical density ϱc coincides with that found by Bok
(1934). However, this stability analysis is not self-consistent.

3. GROSS-DYNAMIC EQUATIONS

To find self-consistent conditions for the existence of a steady cluster, we will
work with gross-dynamic equations. Gross-dynamics is a branch of galactic dy-
namics dealing with integral parameters of stellar systems as a whole, such as the
inertia moment, potential energy and so on (Kuzmin 1965). Generally, there ex-
ists a hierarchy of gross-dynamic equations (Chandrasekhar & Lee 1968; Ossipkov
1985; Ossipkov 2014). To derive it, we start with a collisionless kinetic equation
for the distribution function f(x,v, t):

∂f

∂t
+

∂f

∂x
v +

∂f

∂v
ẍ = 0,

substitute the equations of motion (4)–(6), multiply it by
3∏

i=1

xki
i vlii and integrate

over the phase space. For any function g(x,v, t), we denote

⟨g⟩ =
∫

g(x,v, t) f(x,v, t) d3x d3v
/
M,

where M =
∫
f(x,v, t) d3x d3v is the cluster mass. We introduce the following

tensors: Iij = M⟨xixj⟩, Lij = M⟨xivj⟩, Kij = M⟨vivj⟩, Wij = M
⟨
xi∂Φc/∂xj

⟩
.

Here Iij is the inertia tensor; Kij , the kinetic energy tensor; Wij , the potential
energy tensor; and Lij can be called the angular momentum tensor. If V(x) =
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(Vi) = (
∫
vif d3v)/ϱ is the streaming velocity, then Lij =

∫
ϱ(x)xiVj(x) d

3x,
where ϱ(x) is the density.

The following equations can be easily found (Ossipkov 2001, 2014):

d

dt
Iij = Lij + Lji, (8)

and
d

dt
Lix = Kix +Wix + κ2

RIix + 2ΩLiy, (9)

d

dt
Liy = Kiy +Wiy − 2ΩLix, (10)

d

dt
Liz = Kiz +Wiz − κ2

zIiz (11)

(the generalized Lagrange-Jacobi equations).
It follows from Eq. (8) that the angular momentum tensor is antisymmetrical

for steady systems, Lij = −Lji. If dLij

/
d t ≡ 0, then Eqs (9)–(11) will be

equations of the tensor virial theorem for a cluster in a tidal field.

4. NON-ROTATING STELLAR CLUSTER

At first, we will consider the simplest case of a non-rotating cluster (Ossipkov
2006). The streaming velocity is V(x) ≡ 0, hence then angular momentum tensor
vanishes, Lij ≡ 0. An elementary analysis of Eqs (9–11) yields the following.

Theorem 1. The inertia tensor is diagonal for a cluster in relative equilibrium
without streaming motions, principal inertia axes coinciding with the x, y, z axes,
i.e. Ixy = Ixz = Iyz ≡ 0.

Now we will suppose (!) that the potential energy tensor is also diagonal,
Wij ≡ 0, i ̸= j. Then it follows from the tensor virial theorem that the kinetic
energy tensor is also diagonal. The latter means that principal axes of the velocity
ellipsoid (averaged over the cluster) coincide with principal inertia axes.

Denote
τ2x = Ixx

/
(−Wxx). (12)

It is evident that τx (and τz defined below) are close to the crossing time.
Theorem 2 (Ossipkov 2006). An inequality

κ2
Rτ

2
x ≤ 1 (13)

is a general necessary condition for the existence of a cluster in relative equlibrium
without streaming motions.

For homogeneous clusters, the inequality (13) is reduced to Bok’s condition
(1).

5. ROTATION AROUND THE z AXIS

Now we consider a cluster in rigid rotation in the galactic plane. Then, the
components of the streaming velocity are Vx = −ny, Vy = nx, Vz ≡ 0, n being
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the angular velocity. n > 0 means direct rotation of the cluster, and retrograde
rotation will occur for n < 0. Then:

Lxy = nIxx, Lyx = −nIyy,

and we conclude that Ixx = Iyy = I∥ for steady systems (as for an axisymmetric
cluster). We see that

Kxx = Mσ2
x + n2I∥, Kyy = Mσ2

y + n2I∥, Kzz = Mσ2
z ,

where σ2
x, σ

2
y, σ

2
z are dispersions of residual velocities, and

Lxx = −nIxy ≡ 0, Lyy = nIxy ≡ 0, Lzz ≡ 0.

Principal axes of the mean residual velocity ellipsoid coincide with the coordinate
axes.

The tensor virial equations can be written as follows:

Mσ2
x = −W∥ − (κ2

R − ω)I∥, (14)

Mσ2
y = −W∥ + ωI∥, (15)

Mσ2
z = −Wzz + κ2

zIzz. (16)

Here ω = −(n2 + 2Ωn), and we again supposed that Wxx = Wyy = W∥. Divide
Eqs (14), (16) by Eq. (15). Then:

σ2
x

σ2
y

=
1 + (ω − κ2

R)τ
2
x

1 + ωτ2x
,

σ2
z

σ2
y

= εyz
1 + κ2

zτ
2
z

1 + ωτ2x
. (17)

Here τ2z = Izz
/
(−Wzz), εyz = (−W∥)

/
(−Wzz). The following theorem follows

immediately from Eq. (17).
Theorem 3. Inequalities 1 + (ω − κ2

R)τ
2
x > 0, 1 + ωτ2x > 0 are necessary

conditions for existence of a steady cluster with rigid rotation in the xy plane.

Denote n1,2 = −Ω ±
√

Ω2 + τ−2
x . An elementary analysis of the second in-

equality (that is weaker) yields the following. If n < n2 < 0 or n > n1 > 0,
then no equilibrium solution is possible; if n ∈ (n2, 0), then retrograde rotation is
possible; if n ∈ (0, n1), then the rotation is direct.

Denote

ϱe =
1

πGτ2x
, ϱ0 =

κ2
R

πG
.

ϱe can be considered as an effective density of the cluster. An analysis of the first
inequality of Theorem 3 leads to the following assertions.

Theorem 4. If ϱe < ϱ0, then steady models rotating in the z = 0 plane are
possible, rotation is retrograde, and

n ∈
[
−Ω−

√
Ω2 − κ2

R + τ−2
x , Ω+

√
Ω2 − κ2

R + τ−2
x

]
.
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Theorem 5. If ϱe > ϱ0, that is the inequality (13) is fulfilled, then both direct
and retrograde steady rotations are possible, and the angular velocity

n ∈
[
−Ω−

√
Ω2 + κ2

R − τ−2
x , Ω+

√
Ω2 + κ2

R − τ−2
x

]
.

6. STEADY ROTATION AROUND THE y AND x AXES

If a cluster rotates in the xz plane, then Vx = −nz, Vz = nx, Lxx = nIxx,
Lzz = −Izz, Ixx = Izz. It can be easily found that:

Kxx −mσ2
x + n2Izz, Kyy = Mσ2

y, Kzz = Mσ2
z + n2Ixx.

Suppose that Wxx = Wzz. The tensor virial theorem yields the following.
Theorem 6. If ωzτ

2
z < 1, where ωz = n2 − κ2

z, then steady rotation in the xz
plane is possible, and the squared angular velocity is:

n2 =
1

τ2z

[
1 + τ2z κ

2
z +

Mσ2
z

−Wzz

]
.

If a cluster rotates around the x axis, Vy = −nz, Vz = ny. In this case,
Iyy = Izz, Kxx = Mσ2

x, Kyy = Mσ2
y + n2Izz, Kzz = Mσ2

z + n2Iyy.

Theorem 7. If κ2
Rτ

2
x < 1, n2τ2z < 1, then rotation in the xy plane is possible,

and the squared angular velocity is:

n2 = −M
σ2
y

Izz
+

1

τ2z
.

7. CONCLUSIONS

It follows from the above analysis that the spin rotation of not very dense
clusters must be retrograde. It is in accordance with the fact that most stars on
direct orbits escape from clusters, especially at their periphery (e.g., Davydenko
2013). Probably, this remains valid for clusters whose orbits are not circular. We
assumed that rotation was rigid, but this is not necessary, and n can be considered
as an effective angular velocity.

Unfortunately, we could not find reliable observational data on internal kine-
matics of open clusters to check the prediction of the theory.
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