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Abstract. The main features of the temperature correction methods, sug-
gested and used in modeling of plane-parallel stellar atmospheres, are discussed.
The main features of the new method are described. Derivation of the for-
mulae for a version of the Unséld-Lucy method, used by us in the SMART
(Stellar Model Atmospheres and Radiative Transport) software for modeling
stellar atmospheres, is presented. The method is based on a correction of the
model temperature distribution based on minimizing differences of flux from
its accepted constant value and on the requirement of the lack of its gradient,
meaning that local source and sink terms of radiation must be equal. The fi-
nal relative flux constancy obtainable by the method with the SMART code
turned out to have the precision of the order of 0.5 %. Some of the rapidly con-
verging iteration steps can be useful before starting the high-precision model
correction. The corrections of both the flux value and of its gradient, like
in Unsold-Lucy method, are unavoidably needed to obtain high-precision flux
constancy. A new temperature correction method to obtain high-precision flux
constancy for plane-parallel LTE model stellar atmospheres is proposed and
studied. The non-linear optimization is carried out by the least squares, in
which the Levenberg-Marquardt correction method and thereafter additional
correction by the Broyden iteration loop were applied. Small finite differences
of temperature (67/T = 10~3) are used in the computations. A single Jacobian
step appears to be mostly sufficient to get flux constancy of the order 10~2 %.
The dual numbers and their generalization — the dual complex numbers (the
duplex numbers) — enable automatically to get the derivatives in the nilpotent
part of the dual numbers. A version of the SMART software is in the stage
of refactorization to dual and duplex numbers, what enables to get rid of the
finite differences, as an additional source of lowering precision of the computed
results.

Key words: stars: atmospheres — stars: early-type — stars: fundamental
parameters

1. A GLANCE AT MILESTONES OF TEMPERATURE CORRECTION
METHODS OF MODEL STELLAR ATMOSPHERES

About six decades ago A. Unsold in his pioneering paper (Unsold 1951) and
in his excellent monograph (Unsold 1955) proposed the first version of formula
for the temperature correction in the plane-parallel model stellar atmosphere. He
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elaborated a method for the correction of the grey model stellar atmospheres. This
method is very simple and it was well solvable without computers, and no integra-
tion over the frequencies has been needed. The method improves the temperature
distribution using the modeled radiative flux departures from its planned constant
value for stationary (time-independent) stellar atmospheres with premeditated ef-
fective temperature and pure radiative energy transfer, i.e., without any convective
energy transfer in star.

Unsold introduced three correction terms of different nature. The first of them
is the requirement that the total emergent flux must correspond to the assumed
effective temperature of the black body. This is a boundary condition for the
problem of the radiative energy transfer. It can be ignored, what only somewhat
slows down the convergence of iterations.

The second requirement is that in each layer of stellar atmosphere the condition
must be hold that the source and the sink terms are equal, i.e., the local flux
gradient everywhere in stellar atmosphere equals to zero.

The third requirement is that the model-computed radiative pressure gradient
throughout the atmosphere must correspond to the premeditated total flux. This
is the integral aspect of the flux constancy.

Thereafter during decades different attempts have been made to modify this
iterative model atmosphere correction scheme in order to get higher precision or to
diminish the time consumption in essentially more complicated cases of the non-
gray model atmosphere computations, which demand pan-spectral integrations
and more complicated algorithms.

A step forward in the theory was made by taking into account that in the model
iteration steps the ratios of the Eddington moments and the ratios of differently
averaged opacity coefficients stay almost unchanged (Lucy 1964). Corresponding
improved method of the iterative model correction is referred to as the Unsold-
Lucy method. It has been successfully used in somewhat different forms in widely
used stellar model atmosphere codes.

A very important role in the history of stellar atmospheres modeling has played
the Kurucz program ATLAS (Kurucz 1970). In the PhD thesis the formulae used
and the methods applied in the software have been described in detail and the
software has been ab initio publicly available. The most important modernized
versions of ATLAS are ATLAS9 (Castelli & Kurucz 2003), where the opacity dis-
tribution function (ODF) has been used, and ATLAS12, where a version of the
opacity sampling (OS) has been used for the contribution of spectral lines. A short
user manual of ATLLAS12 and its comparison with ATLAS9 has been published by
Castelli (2005). The more detailed user’s guide instructions of ATLAS12 are given
at the Kurucz website (http://kurucz.harvard.edu). The method of model tem-
perature correction by Kurucz is an original version related to the Unsold method.
In recent paper by Kirby (2011) a grid of ATLAS9 model stellar atmospheres has
been computed for stars having 3500 < Tog <8000 K, i.e. for stars having con-
vective zone in the lower layers of their atmospheres. It has been mentioned that
after 30 iterations infrequently differences in flux reached 1% and in its gradient
source and sink terms 10 %.

A promising step was the proposal of the method of complete linearization by
Mihalas & Auer (1969). The method can be considered as a generalized Newton-
Raphson method. Its drawback is that it demands to find derivatives relative to all
model variable values, what results in obtaining a bulky system of linear formulae



A correction method of temperatures in stellar model atmospheres 147

to be solved in order to obtain the corrections. This also makes the computer codes
much more complicated. A good review of the formulae, needed in this method,
was given by Sakhibullin (1997).

The method of complete linearization has been used for the iterative correction
of model stellar atmospheres in the MARCS code, planned primarily for computing
model atmospheres for relatively cool stars. A detailed summary of the methods
used in the MARCS code and the milestones of its development was described by
Gustafsson et al. (2008). In this code the process of iteration is terminated, if the
corrections of flux and its gradient for all model layers are less than 1.5 %.

The Tiibingen version of computing model stellar atmospheres, TMAP, has
been composed by Werner and Rauch primarily for NLUTE modeling but in it a
version of the Uns6ld-Lucy method for iterative correction of the plane-parallel
atmospheres is also enabled. The process of iteration is terminated, if the relative
temperature corrections for all model layers are less than 1075, or 100 iterations
have been made. The result seems promising for high-precision modeling, but
the small temperature corrections can correspond to essentially lower precision of
the flux and its gradient. The final version of the TMAP package is accessible!.
The classical stellar atmosphere problem of computing precise model stellar atmo-
spheres and their numerical implementations, based on the PRO2 software, have
been formulated and analyzed in detail by Werner & Dreizler (1999).

A software TLUSTY for computation of model stellar atmospheres was elabo-
rated by Hubeny and thereafter updated and essentially improved in collaboration
with colleagues, especially with Lanz. In this package the hybrid method of the
complete linearization and accelerated lambda iteration has been applied to solve
all basic equations. The process of iteration is conventionally terminated, if the
relative corrections for all model layers are less than 0.1 %. The user’s guide com-
posed by Hubeny and Lanz for the last version of TLUSTY package is accessible?.

A very sophisticated computer code for modeling of stellar atmospheres is
PHOENIX (Hauschildt et al. 2003), which enables both the spherical and plane-
parallel modeling. In it a version of the Unsold-Lucy temperature correction
method was used and tested. It was concluded that in addition to the low memory
requirements and low time consumption the Uns6ld-Lucy method is more stable
than the method of complete linearization. This computer code with large and
detailed input physics and wide field of application has been oriented to parallel
computations on supercomputers. In it mostly the scheme of nested iterations is
used, which reduces the high-dimensional linearization problem to sets of smaller
dimensional iterations. A special item is the method of the temperature correction.

All the codes described above are written in different revisions of Fortran and
most of the programs are only partially accessible to astrophysical community.

2. STRATEGY OF HIGH-PRECISION MODELING OF STELLAR
ATMOSPHERES BY SMART

Presently the time consumption even on usual personal computers is not a
crucial problem, but simplicity of the formulae used and of the software will always
remain welcomed in order to get a better understanding of physical processes and
laws governing the model atmospheres.

! http://astro.uni-tuebingen.de/~rauch/
2 http://tlusty.gsfc.nasa.gov
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By our SMART (Stellar Model Atmospheres and Radiative Transport) software
computations we established, that the Unsold-Lucy method does not give high-
precision constancy of the flux, what is needed to be sure that the method is self-
consistent. Further we describe a version of the Unsold-Lucy method which has
been currently used by us to compute a grid of hot model stellar atmospheres. We
concluded that the method gives a good accuracy (about 0.5 % in the radiative flux
constancy), but it does not converge to high-precision results. In addition, as usual,
a damping factor about 0.5-0.7 must be used in order to avoid overcorrection,
giving slowly damping oscillatory iterative steps.

Our high-precision correction method is a version of the non-linear optimization
procedure, based on the least-squares cost function relative to both the radiative
flux and its gradient. In this aspect there is an analogy with the Unsold-Lucy
method. The Jacobian is obtained by the Levenberg-Marquardt method (also
known as the damped Newton’s method), where in addition to the cost function
a quadratic penalty term has been added. The Levenberg-Marquardt method
belongs to the class of nonlinear optimization methods. Using the 0.1 % variations
for the temperature values subsequently in each atmospheric layer, we have used
the method of finite differences for computing the derivatives. As a rule, single
Jacobian cycle gives the high flux constancy to about 1072 %.

Using the finite difference method does not sophisticate the computer code as
in the case of complete linearization method. Happily we realized that the finite
difference method can be replaced by a tricky refactorization of the software. Such
perspective is opened when we take into use the dual numbers which similarly to
complex numbers consist of two components, the real component and the so-called
infinitesimal component. Differently from the complex numbers, the real and
the infinitesimal parts in computations avoid mixing. Nilpotency of infinitesimal
parts generates important property of these numbers that they enable to obtain
automatically exact values of the derivatives, corresponding to the used algorithms,
in the infinitesimal parts of dual numbers.

If the used algorithms contain the complex numbers, as in the case of the ab-
sorption coefficient expressed via the complex number special functions (Sapar &
Poolamée 2012), there appears inevitable necessity to generalize the dual numbers
also for the case of complex number algorithms. A Fortran module with corre-
sponding data types, overloaded operators and functions has been composed. The
dual complex numbers we call the duplex numbers.

At present we are preparing to apply for computations the Levenberg-Marquardt
method by the use of the duplex numbers, refactorizing a version of the SMART
software.

3. A VERSION OF THE TRADITIONAL TEMPERATURE CORRECTION

In order to obtain a vision about the temperature correction method used in our
Fortran90/95 code SMART, we present here the last version of the Unsold-Lucy
method used.

The equation of the radiative transfer for plane-parallel stellar atmospheres has
the form

dl,

1 o KuSy, — ku1,. (1)

In this equation the opacity coefficient x, incorporates the first order radiative
processes — absorption and emission, which are monochromatic in radiative trans-
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fer, but also the scattering as the second order radiative process, according to the
classification of Feynman diagrams. The absorption and emission processes are
easily thermalized (the LTE approximation), and this is taken into account in the
Einstein spontaneous and induced transition coefficients. The scattering takes into
account the non-thermalized processes. Thus, we can write

Ky = O, + 0y (2)
The source function S, is given by
kS, = a, B, + oy . (3)

In this equation and further, integration is carried out over the primed indices and
corresponding polar angles. From Equation (1) in this way for the first Eddington
moment, H, being the Eddington radiation flux, we obtain

dH

Here the terms with the isotropic scattering coefficient have cancelled.
For the second Eddington moment K we obtain

dK
ar = IQHH. (5)

Physical meaning of the Eddington moments and the corresponding absorption
and opacity coefficients should be familiar without any additional explication.

The equation of hydrostatic equilibrium for the stellar matter in the simplest
way can be written in the form

P
@_y ©)
where m is the mass column density. Further, the total pressure is given by
P=P,+ 47”(K — K%) + Py, where Py, corresponds to microturbulence.

The strategy of further study starts from the due choice of the optical depth.
Usually the Rosseland mean absorption coefficient has been used for the definition
of the mean optical depth. It has the advantage that it can be computed also
without modeling of stellar atmosphere. In this aspect it can be treated as a local
characteristic. The same advantage is in computation of the Planck mean absorp-
tion coefficient xp, which has been used by some investigators for the definition
of optical depth. However, both of them have the drawback that they are not
connected directly and simply to the radiation field in stellar atmosphere. The
best method for model atmosphere correction is to specify the optical depth 7 as
the flux opacity, namely by kgydr = —dr, giving simply

dK
== (™)

This equation for the radiation field by its meaning and form is very similar to the
Equation (6) of hydrostatic equilibrium for stellar matter.
Equation (4) can now be written in the form
dH

g ap
—=—J-—=B. 8
dr Ry Ry ( )

dm
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Introducing the notations
g

k; = - and ky = e (9)

we obtain .
— =k;J — kB. 10
dr J b ( )
Similarly to the ratios of the Eddington moments, the ratios k; and k; can be
considered as constants in the temperature correction steps of flux iteration loop.
Thus, we discard the corresponding relatively small corrections compared to the
corrections of the radiation field. This decelerates somewhat the process of con-
vergence but simplifies the software.
If the microturbulence is ignored, then we can carry out integration of Equation
(6), obtaining

4
Pg—i—%(K—KO) = gm. (11)

This equation specifies the connection between the gas pressure and the radiation
field in stellar atmospheres. In this formula K° is the boundary value of K corre-

sponding to the emergent flux. Further, from (10) it follows that for correct value
of H holds

K=K+ Hr (12)
Now we obtain
47
P, + ?HT = gm. (13)

The computed deviations A, defined for the Eddington moments J, H and K
by stereotype AY =Y — Y., where Y, corresponds to the needed value of the
quantity, we must compensate by AB. The values of arguments m and 7 we treat
as the correct ones. Thus, from Equation (7) it follows that

dAK

dr

= AH (14)

and from (10) we obtain

dAH d(H-H,) dH

= — =k;AJ — kAB. 1
dr dr dr AT =k (15)
Further, from (11) it follows that
4
P, + AP, + (K + AK — K° — AK°) = gm. (16)
c

For the reduction of all corrections to AH, we introduce a given function ~ for
the next iteration step and x as a known number by

J=3K and JO =2xH". (17)

This assumption is due to the circumstance that the ratios of Eddington moments
are almost constant for each single step of the model correction loop. The quantity
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~ has been chosen so that in deep layers of a model atmosphere it tends to unity.
The quantity x has been chosen so that it is unity for black body emergent flux.
Thus, we obtain

AJ = 37AK and AJY = 2yAHC. (18)
Now we can write
370 AK? = 2yAH" (19)
and from (12) it follows that
AK = AK° + / AHdr. (20)

0

To obtain dH/dr = 0, we make in Equation (8) corrections to J and B, obtaining
kjJ — kyB = —3vk;AK + kyAB. (21)

Thus, replacing AK into this expression, we get finally for the temperature cor-
rection equation

kyAB = ka‘jAHO + k']J —kyB + 3’}/]6]‘ /AHdT (22)
where f = xv/70. Using the notation Ri = k;/kp, we obtain

B+AB=R] (2 FAH +J + 3y / AHdT). (23)

Taking the column density m as argument, the integral expression can be written
in the form
AH
/ AHdr / FECHE i, (24)

The simplest way to find the integral is to use instead of the argument 7 the
atmospheric layer number n. Thus, using (12) we obtain

/AHdT—/d—KA—Hdn (25)

dn

This expression is preferred because its computation is simpler, it does not contain
explicitly any absorption coefficient and depends only on the radiation field. In the
given formulae all corrections were made, tacitly assuming validity of the condition
of local thermodynamical equilibrium (LTE).

After each iteration step, the electron density has been also corrected using AP,
from (16) and thereafter the corrected electron pressure from Saha equations.
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As it is evident both from general ideas and model computations, the correction
due to the emergent flux AH® and due to the presence of flux gradient diminish
quite rapidly inside the model atmosphere, but the integral flux contribution gives
essential correction.

The given approach to the iterative correction loop of the model stellar atmo-
sphere was used in our computations by Fortran 90/95 software SMART, using a
parallel-processing controlled by the python script, on a small local PC network.
Initial rapid convergence of crude initial model, giving a relative error of the order
10 %, has slowed down to the final plateau with a relative precision typically of the
order of 0.1 % at about 100 iteration loop steps and giving unremovable zigzags at
large optical depths (see Figure 1). This demonstrates that there are only small
deviations from the self-consistency.

Different possibilities and some results obtained by our SMART software have
been described in our former papers (Sapar & Poolamée 2003; Aret & Sapar 2002).
General characteristics of the software and different results obtained with it have
been reported in papers by Sapar et al. (2007a,b, 2008, 2009) and Aret et al.
(2008).

Some of the rapidly converging iteration steps with the Unséld-Lucy method
can be useful to apply before starting with the high-precision model correction
method which we propose.

4. APPLICATION OF THE LEAST SQUARES METHOD FOR
HIGH-PRECISION MODELING OF STELLAR ATMOSPHERES

From numerous model atmoshere computations we concluded that the tradi-
tional iteration loop for finding the corrected temperature distribution values of a
model stellar atmosphere does not give the desired high-precision final constancy
of the flux. Thus, it is important to elaborate a method which ensures a high-
precision flux constancy in the best fit self-consistent manner.

Similarly to the Unséld-Lucy method, by experimentation we have concluded
that the method must take into account not only the flux constancy, but also the
requirement of local equality of the absorbed and emitted radiation. This means
that the method must explicitly incorporate the requirement that the derivative of
the flux (10) must be zero everywhere. Studying the Unsold-Lucy method it has
been found that this is essential in order to get adequate centers of strong spectral
lines and to get adequate profiles for spectral lines, formed in the uppermost layers
of stellar atmospheres. This is an evidence of the requirement that the gradient of
the flux must be zero everywhere.

A promising method to get a high-precision flux constancy of model stellar
atmospheres is to apply a method of non-linear optimization, namely the method
of least squares. To our knowledge, this method has hitherto not been applied
to the problem. For compactness of equations we further denote the atmospheric
quasi-vectorial (single index) variables by boldface letters and similar quasi-tensors
by additional cap above them.

For the present problem we specify the reduced residual r by

ki

I‘=f—17 f:(H/Heff7D), Dl_ﬁl

(26)

Here H.g is the value of the Eddington flux (black-body radiative flux per stera-
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dian), corresponding to the effective temperature of the model stellar atmosphere,
H = H(T) is the computed quasi-vector of the Eddington flux of the model stellar
atmosphere, corresponding to the layers ¢ in the atmosphere and D shows the
deviation of the sink/source ratio of the local radiation field in the stellar atmo-
sphere. The model correction quasi-vector AT (the thermal shift vector) is to be
found relative to the previous step temperature distribution by

T =T+ AT. (27)
The initial cost function S in the local minimum we define in the usual form:
1
= 51‘2. (28)

As is seen, S is in fact a y2-expression for our problem. The presence of the factor
1/2 simplifies somewhat the formulae.

In search of the local minimum point, as the first step we find the gradient of
S, which can be written in the form

VS = g—i =rVf =rJ, (29)
where the matrix components of the 2N x N dimensional Jacobian, J , are defined
by

ofi  +
Vifi= T, Jij. (30)

The Jacobian J is needed for finding the least local value of the cost function S.

The component values of the Jacobian are to be numerically computed by the
SMART software in the loop steps over all N atmospheric layers j, successively
changing in each model step (by a small rate ) only corresponding single temper-
ature value by T; := T;(1 4 ¢). We have accepted ¢ = 0.001.

The next task is to find in an optimum way the thermal shift vector AT.
In order to obtain from S the next approximation S*, the corrected residual is
obtained in the form

rt =r(T+AT) =r(T) + JAT, (31)
where AT is the thermal shift vector. The corresponding S* takes the form

1
St = 5(r+)2. (32)
The gradient of S™ is

VSt =rt]. (33)

To minimize ST, its gradient expression is set to zero, obtaining the Gauss-
Newton minimizer of shift vector AT as the solution of the obtained linear system
of equations

rtJ =rJ + HAT = 0. (34)

Here the quadratic N x N Hessian matrix has the form

H=J7]. (35)
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The matrices with superscript 7', say as JT here, means the transposition of its
columns and lines.

The Levenberg-Marquardt method (Levenberg 1944; Marquardt 1963), which
we use, starts by adding to the cost function a Lagrangian penalty term in the
form

S— %rQ + %V(AT)Q, (36)
where « is a small positive number (the penalty rate or the damping term), the
numerical value of which is usually accommodated by a corresponding software
procedure. From this cost function one obtains the equation for finding the shift
vector in the form . )

HAT +rJ + AT = 0. (37)

This system of equations with additional damping term enables in different ways
to find the next recurrent steps to minimize the cost function. An efficient method
to minimize S is the Broyden’s method, which can be treated as a generalized
Newton secant method for finding recurrently the corrections to the solution of
the Levenberg-Marquardt system of equations.

The Broyden method starts from solving the Levenberg-Marquardt equation
with the computed initial temperatures Ty = T, the initial residual rq = r values
and the corresponding computed matrices HO = H Jo =J.

Instead of starting a new Levenberg-Marquardt iteration loop for computing
the new values of Jacobian and Hessian, the Broyden method starts from correcting
the value of Jacobian in each single iteration step, finding also all the quantities,
which are needed for the next iteration step. The Broyden loop starts at k£ = 0.

In each step of the Broyden loop first the temperature shift for the step, t =
ATy, is found from the system of linear equations

I:Ikt+rkjk+’}/t:0 s I:Ik:jgjk (38)

Thereafter the corrected temperature Ty41 = T+t is found and used to compute
by SMART the corresponding residual ry .
Broyden’s rank one recurrent updating (Broyden 1965) is given by a simple
formula . R
Jir1 =Jr + Ug XtT, (39)

where x means direct product of vectors and

1

U
kTRt

(I‘]ﬁq — I — Jkt) (40)

At last we find also the new Hessian by I:IkH =J Z —s-lj k+1. LThereafter the following
Broyden iteration step is to be started by substitution k := k + 1.

An important feature of the Broyden loop is that for N arguments (in the
present case the number of atmospheric layer points) it gives excellent fit in N
iteration steps. For the present least squares expression this means that the Broy-
den method gives in IV iteration steps very high flux constancy in the model stellar
atmospheres. The model computations carried out showed that the flux constancy
obtained is of the order of 1072 %. The precision of the local ratio of emitted and
absorbed radiation energy is of the same order. Application of the method has
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Model layer number n

Fig.1. A typical picture of the final relative precision of the radiative flux obtained
using the Unsold-Lucy correction method (in %). As argument values in all Figures the
model layers, numerated starting from outside, are given. Model parameters: Teg =
10750 K, log g = 4. The legend inside the frame gives the iteration numbers.

shown that if we start from the former Kurucz model atmospheres, which give low
flux constancy for our model atmospheres, then high precision has been obtained
by the initial Jacobian with following no more than N steps of Broyden rank one
updating, each giving a new Jacobian and corresponding Hessian for the next it-
erative step of the temperature corrections by the Levenberg-Marquardt method.
The Fortran90/95 software SMART has been controlled by Python script organiz-
ing the parallel-processing tasks to slaves and master using the local PC network.
The integrated Levenberg-Marquardt part is implemented in C++ using in it the
code from Lourakis (2004), which has been slightly modified by us.

In Figure 1 we present a typical picture of the final precision of the radiative
flux, obtained by us using the Unsold-Lucy method of its iterative correction.
In Figure 2 we demonstrate how effectively the first Levenberg-Marquardt least
squares step improves the flux constancy of a model atmosphere. In Figure 3
we show its improvement in the consequent Broyden loop steps. Figure 4 shows
typical final curves of the flux constancy when the Levenberg-Marquardt method
+ Broyden loop has been applied. Notice that in the deeper atmospheric layers
at all model effective temperatures the flux has very high precision. However, the
ratio of the absorbed and emitted radiation (Figure 5) shows a small excess in
deep layers and a small deficiency in outer layers from which the emergent flux
escapes.
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Fig. 2. The relative initial stellar model atmosphere flux (solid line) and its consequent
iterative improvement by the Broyden loop steps (in %). The first correction is obtained
using the Jacobian, computed by the Levenberg-Marquardt method and improving it by
iterations of the Broyden loop. The model parameters: Teg = 16000 K, logg = 4.
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Fig. 3. Zoomed Figure 2, from where the initial model atmosphere flux has been
removed. The deviations (in %) of the stellar model atmosphere flux, obtained using
the Jacobian computed by the first cycle of the Levenberg-Marquardt method (solid
line) and in its consequent iterative improvement by the Broyden loop steps. The model

parameters: Teg = 16000 K, log g = 4.
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Fig.4. The final high-precision constancy of the model stellar atmosphere flux (in
%), obtained computing the Jacobian by Levenberg-Marquardt method and thereafter
improving it by iterations of the Broyden loop. In the models log g = 4 and in the legend
— the effective temperatures.
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Fig.5. The final high-precision local ratio of the absorbed and radiated radiative
flux (in %). The result is obtained computing the Jacobian by the Levenberg-Marquardt
method and thereafter improving it by iterations of the Broyden loop. In the models
log g = 4 and in the legend — the effective temperatures.
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5. CONCLUSIONS

The iterative correction of the temperature distribution in stellar atmospheres
by different versions of the Uns6ld-Lucy method has very low memory requirement,
but the iterative procedure of its application converges to flux constancy with
insufficient precision. This method has been applied hitherto in several software
packages for stellar model corrections.

The other method is a complete linearization which, when analytically ap-
plied, demands essential additional subroutines, makes the software much more
complicated and generates bulky systems of linear equations for the determina-
tion of the corrections. This method can be treated as a version of the generalized
Newton-Raphson method of iterative improvement of the temperature and pres-
sure distribution in stellar atmospheres.

We conclude that for correcting of the plane-parallel model stellar atmospheres
the Levenberg-Marquardt method, belonging to the domain of the nonlinear opti-
mization, applied together with the Broyden iteration loop, is an effective method
to obtain the high-precision flux constancy, which is about two orders of magnitude
superior relative to the traditional Unso6ld-Lucy method, and the time consumption
for both methods is comparable. Usually one Jacobian step is sufficient to get the
relative flux constancy of the order 1072 %. This means that the method is highly
self-consistent. The results are visualized in Figures 1-5. A parallel-processing
by the Python script has been used in the SMART software by suitably divid-
ing the total spectral interval used in the modeling. We are busy to refactorize
the SMART software for applying the dual numbers in the Levenberg-Marquardt
method thus avoiding the possible loss of precision due to finite differences.

As a concluding remark it deserves to mention that similar methods have been
used by other authors for study of somewhat different problems. For instance, the
Jacobian and Broyden algorithm as additional accelerating method in the non-LTE
radiation transfer computations by ALI (Approximate Lambda Iteration) have
been used by Koesterke et al. (1992). Similarly, using the linearized perturbation
method for the temperature-correction of non-LTE modeling of stellar atmospheres
and applying the ALI method for radiation transfer, Werner et al. (2003) have
studied the iterative correction of model stellar atmospheres, describing in detail
the derivation of the sophisticated formulae used.
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