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Abstract. In this paper the problem of the tidal potential of a homogeneous
gravitating torus with an elliptical cross-section sleeve is solved. In particular,
the potentials in analytical form in the vicinity of the center of the torus and
its external region are found. This torus can serve as a gravitational model of
the Kuiper belt.
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1. INTRODUCTION
In various problems of celestial mechanics and dynamical astronomy a knowledge of
the gravitational potential of the bodies of different form and concentration of the
substance is often required. The potential theory has many striking applications
in dynamics of stellar systems (see an example in the paper by Kondratyev et al.
2015a).

A special class of bodies exists that form ring- and torus-shaped figures and
regions often met in the Solar system and in galaxies. However, because of com-
plexity of a problem, the potential of a homogeneous circular torus has received
much attention only recently; the potential on the axis of symmetry was found in
the monograph by Kondratyev (2003), and the potential of the torus in all space
was given in the book by Kondratyev (2007). Subsequently, the potential of a
circular torus was studied extensively in the works by Kondratyev et al. (2009,
2012), Kondratyev (2010) and Kondratyev & Trubitsyna (2010).

In cylindrical coordinates a circular torus is limited to the surface

(r −R0)
2 + x2

3 = r2
0, (1)

where R0 is the radius of centerline of the torus, and r0 is the radius of the
meridional section of the torus sleeve. Such a torus is formed by rotating the
circle (1) with radius r0 about the axis Ox3. Let us fill the shell of the torus (1)
with gravitating substance (or insulator with homogeneous distribution of static
electric charge). Then the spatial potential of a homogeneous torus with a circular
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cross section of the sleeve is given by the following equation (Kondratyev 2007):
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where K (k) , E (k) and Π [n, k] are the complete elliptical integrals of the first,
second, and third kind, respectively, and
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Note that the same formula (2) represents the potential at any point of space (both
inside and outside the torus).

However, besides the torus with a circular cross-section of the sleeve, in practice
often meets the more general case of torus with an elliptical section of the sleeve.
From a mathematical point of view the problem of the potential of the torus with
an elliptical cross-section of the sleeve is even more difficult than in the case of
torus with a circular cross-section. However, sometimes it is enough to know the
potential of this torus only in the tidal approximation. This problem is solved in
this paper.

2. STATEMENT AND SOLUTION OF THE PROBLEM

Let us consider a circular torus with an elliptical section of the sleeve. The
equation of a surface of such a torus is

(r −R0)
2

a2
1

+
x2

3

a2
3

= 1, (4)

where a1 and a3 are semiaxes of an ellipse in the meridional section of the sleeve
of the torus. It is formed by rotating an ellipse around a straight line, which is
located outside the ellipse and is parallel to the axis Ox3.

The mass of the torus with the density ρ is

M = 2π2a1a3R0 ρ. (5)
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Fig. 1. Circular torus with an elliptical cross-section of the sleeve.

In a general view, the potential of the torus in the point (x1, x2 , x3) is given by
the integral

ϕ (x1, x2, x3) = Gρ

∫∫∫

V

dx′1 dx′2 dx′3√
(x1 − x′1)

2 + (x2 − x′2)
2 + (x3 − x′3)

2
. (6)

The integrand in (6) is the distance between the test point and the point of inte-
gration (x′1, x′2 , x′3),

D =
√

(x1 − x′1)
2 + (x2 − x′2)

2 + (x3 − x′3)
2
, (7)

which is represented in the form
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√
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3 . (8)

At this stage there are two versions of this problem.

2.1. The case of the interior sampling point
In this case, the sampling point is near the center of the torus and its coordi-

nates xi satisfy the inequalities
xi ¿ x′i . (9)

Then the inverse distance 1/D can be represented by a series in powers xi; then,
up to the quadratic terms, we have

1
D

=
1√

x′ 21 + x′ 22 + x′ 23
+

x1x
′
1 + x2x

′
2 + x3x

′
3

(x′ 21 + x′ 22 + x′ 23 )3/2
+

+
3(x1x

′
1 + x2x

′
2 + x3x

′
3)

2 − (
x2

1 + x2
2 + x2

3

) (
x′ 21 + x′ 22 + x′ 23

)

2(x′ 21 + x′ 22 + x′ 23 )5/2
.

(10)



The tidal potential of a homogeneous torus 341

It should be noted that, due to the symmetry of the torus, while integrating the
coordinates of the attracting point x′i in the expression (10) disappear all members,
odd relative to (x′1, x′2 , x′3).

To solve this problem, we exclude in (10) the main (first from right) member.
Then the desired potential is equal to
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As a result, we find that the inner tidal potential of the torus is expressed in the
analytical form by the formula
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(12)
This potential is a quadratic function of the coordinates of the trial point, and

the dimensionless coefficients A, B,C are
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(13)

The integration in (13) is held on the torus volume V (it is more convenient to do
the integration at first on dx′3, and then on dx′2 and dx′1).

The formula of the tidal potential (12) is suitable for any homogeneous body
with three planes of symmetry. In the case of the torus, which holds the azimuthal
symmetry A = B, the expression for the potential (12) is even more simplified and
takes the following form:

ϕ (x) =
Gρ

2
(A− C)

(
x2

1 + x2
2 − 2x2

3

)
. (14)

To calculate the coefficients of the potential we introduce polar coordinates (r, θ).
Omitting strokes, we have the expressions given in (15).
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A = B =
∫∫∫

V

r2cos2θ · r dr dx3 dθ

(r2 + x2
3)

5/2
=

= 2π

R0+a1∫

R0−a1

r3dr

a3

√
1− (r−R0)2

a2
1∫

0

dx3

(r2 + x2
3)

5/2
=

= 2πa3

R 0+a 1∫

R 0−a 1

dr

r




√
1− (r−R0)

2

a2
1√

r2 + a2
3

(r−R0)
2

a2
1

− a2
3

3

(
1− (r−R0)

2

a2
1

)3/2

(
r2 + a2

3
(r−R0)

2

a2
1

)3/2


 .

(15)

Denoting here for the sake of brevity

x =
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a1
, r = a1x + R0, dr = a1 dx, (16)

we find
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Thus, the required coefficients A,B, C of the tidal potential inside the torus are
the following:

A = B = 2πa1a3
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We notice that the specified coefficients A,B, C are expressed through standard
elliptic integrals of the third kind. At the same time, they can be found also by
numerical method. Thus, the desired tidal potential inside the hole of the torus is
given by (14).
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2.2. The case of a distant outer point
If

xi À x′i , (19)

then the expansion 1/D has the following form:
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As in the first case, the problem now is simplified by the fact that after inte-
gration in the expression (20) disappear all terms regarding odd (x′1, x′2, x′3) .

The tidal potential of the torus in this case is
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or,
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In (22) we introduced the moments of inertia of the body with three planes of
symmetry:

J1 = ρ
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The formula for the tidal potential (22) fits for any homogeneous body with three
planes of symmetry. In the case of torus J1 = J2, the expression (22) simplifies to
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The moments of inertia of the torus are

J1 = J2 =
1
2
M

(
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3
4
a2
1

)
, J3 =

1
4
M · a2

3, (25)

where the mass of torus is given by Eq. (5).

3. DISCUSSION

The knowledge of the potential of the torus with an elliptic cross section of
the sleeve is of great practical and theoretical value. For example, such a torus
can serve as a gravitational model of the Kuiper belt. Indeed, the Kuiper belt has
the shape of torus with an elliptical cross section of the sleeve. With the help of
the tidal potential of the Kuiper Belt, we can study the motion and evolution of
asteroids and dwarf planets.

Note, also, that in the paper by Kondratyev et al. (2015b) the formula for
tidal gravity in a torus of dark matter was used to study the limiting oblateness
of elliptical galaxies.

The final form of the potential coefficients A,B, C will be obtained in the
following work.
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