10.1515/astro-2017-0126

Baltic Astronomy, vol. 25, 247-253, 2016

PHASE-SPACE MODEL OF A COLLISIONLESS STELLAR
CYLINDER EMBEDDED IN A ROTATING HALO

B. P. Kondratyev? and E. N. Kireeva'

L Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University,
13 Universitetskij prospect, 119992, Russia

2 Central (Pulkovo) Astronomical Observatory of the Russian Academy of
Sciences, St. Petersburg, Russia

Received: 2016 September 27; accepted: 2016 October 17

Abstract. The phase-space model of a stellar cylindrical bar embedded in a
rotating triaxial halo is constructed. The equations of motion of an individual
star in the bar are derived and solved. The model has three integrals of motion
and the condition of the cylinder boundary conservation is derived. The model is
found to represent a four-dimensional ellipsoid in six-dimensional phase space.
The phase-space distribution function of stars is derived, which depends on
isolating integrals of motion. The centroid velocity field describes longitudinal
shear averaged flows in the cylinder. Two non-zero components of the velocity
dispersion tensor depend quadratically on coordinates and vanish at the surface
of the cylindrical bar.
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1. INTRODUCTION

Recent observations have shown that the world of galaxies is very diverse and
some galaxies do not fit into the standard classification. In particular, some of
them exhibit straight-line structures of stellar nature, which penetrate the main
body of the galaxy. Direct references to galaxies with radial internal structures
can be found in the book by Vorontsov-Velyaminov (1978). Galaxies with such
elongated internal structures are of greatest interest in terms of both dynamics
and stability.

So far, however, the construction of models of galaxies with such peculiar
structures has received little attention. The well-known models of collisionless
cylinders (see, e.g., Freeman 1966) do not exhaust the problem.

In this paper we formulate and solve the problem of constructing the phase-
space model of triaxial galaxy with a cylindrical bar. We model this structure by
an elliptical cylinder extending along the longest equatorial axis of the rotating
outer halo. In Section 2 we formulate the problem. In Section 3 we solve the
equations of motion of a star and derive three integrals of motion. The motion of
stars inside the cylinder are investigated in Section 4. In Section 5 we derive the
phase-space distribution function of the model and in Section 6 we determine the
main characteristics of the model.
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Fig.1. Collisionless cylinder embedded in a rotating stellar halo. The arrows show
the velocity field of shear flow centroids.

2. FORMULATION OF THE PROBLEM

Consider a model of a galaxy consisting of two components: a homogeneous
ellipsoidal triaxial halo (with density pp) with semiaxes a3 > as > ag rotating
about the Ox3 axis at angular velocity 2 and a uniform elliptic cylinder (with
density p.) embedded into it and with boundary surface

2 2
Ty | *3 _
2Tp=h M

whose symmetry axis coincides with the major axis of the halo (see Fig. 1). The
potential of the homogeneous ellipsoidal halo at an inner point is given by the
formula

YH = I — All‘% — AQI’% — Agl’g s (2)

where the coefficients are equal to

i ds
Ai = )
apmoraans |
> ds
I = -
wGpuaiaszas . Al (3)
A%s) = (af +s)(a3 +s)(af +5).

Let us discuss another important issue. First of all, our model, just like any
other, provides a simplified description of the object. Clearly, the bar should
lie within the halo, and its transverse dimensions should be small compared to
the length. The model may be suitable for theoretical studies of the stability
of a warped bar, however, for it to be applicable to specific galaxy problems a
simulation object with the appropriate internal structure should be chosen.

The internal potential of the cylinder is given by the formula

¢e = const — axs — B3, (4)
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where the coefficients of the potential can be expressed in terms of the ratios of
the cylinder semiaxes and are equal to

2b 2a
=1Gp.——; B=1Gp.——. 5
a=nGp.— f=nGpe—— (5)
A point inside the cylinder is subject to the combined gravitational field of the
outer halo and the field of the cylinder
We now consider a version of the model with the limit value of angular velocity

02 =24, (6)

where the components of the gravitational force produced by the halo are com-
pletely balanced by the centrifugal force along the Oz, axis. In this case (equation
(6)) the cylinder model has a preferred axis line (see Kondratyev 1989, 2003 to
read more about the preferred line).

3. EQUATIONS OF MOTION OF A STAR AND THEIR SOLUTION.
FIRST INTEGRALS OF MOTION

In the Cartesian coordinate system Oxixox3 the equations of motion of indi-
vidual stars inside the cylinder have the form

o= 20,
Ty = [QQ — Q(Ag + Oz)] T9 — 207, (7)

This set of equations has three first integrals:

T .
xy = xg_ﬁzo, or Iy = 2y — 2033 ®)
I, = 2%+ [2(A2 +a)+ 392] 73 ©)
I3 = 1"32 + 2(A3 + B)x§ : (10)

For stars that do not escape from the cylinder along axis Ox; by inertia, the
constant of integration z9 in linear integral (8) should be set to zero.
It is easy to show that equations of motion (7) have the solutions

x1(t) = Cosin(wat + &) + C1,
x9(t) = Cscos(wat + £3), (11)
z3(t) = C5cos(wst + e3),

where C, Cs, C5 are integration constants and the squared oscillation frequencies
are equal to

ws = 3Q% +2(As + a),

w3 =245+ 5). "2
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Given equations (12), the integrals of motion can be written in the following
concise form:

Il = 1:1 - 29.732 ; (13)
I, = 2%+ wick; (14)
Iy = 23°+wir3. (15)

4. THE MOTION OF A STAR IN THE CYLINDER

We eliminate time ¢ from the first and second expressions in (11) to obtain the
equation of the ellipse

(x1 — C1)?

(=)

+ a3 = Cj. (16)

27
Thus, in the projection onto the Oz1z2 plane the star describes in time T' = —
w2
an ellipse with semiaxes
20
a’l = 702; a’2 = CQ (17)
w2
and the center shifted by Cy along the Oz; axis. It can be shown that
2Q)
— <1 (18)
w2

Hence the ellipse is elongated along the Ozs axis and its oblateness is equal to

20
=1- = 1
e=1-2 (19)

Stars move along ellipse (16) in the clockwise direction, i.e. opposite to the overall
rotation of the cylinder and the halo. Such a motion is called retrograde.

The star simultaneously moves along the ellipse and undergoes oscillations
(parallel to the rotation axis Oz3) with frequency ws. With time the star’s trajec-
tory densely fills the surface of the elliptical cylinder with cross-section (16) and
height 2C'5. The oscillation frequencies we and ws are generally incommensurable
and therefore in the plane Oxox3 the star’s trajectory densely fills a rectangle with
sides 2C3 and 2C5 (Fig. 2).

It is important to emphasize that this rectangle should not extend beyond the
boundary of the elliptical cross-section of the cylindrical bar because the particle
should not leave it. To ensure this the rectangle has to be inscribed in the ellipse,
and constants Cy and C3 should satisfy the equation

c; G
St =L (20)
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Fig. 2. A rectangle with the sides 2C> and 2C35 inscribed in the elliptic cross-section
of the bar.

So, to preserve the boundaries of the bar the constants Cy and C3 should satisfy
equation (20) of cylindrical cross-section.

5. PHASE-SPACE DISTRIBUTION FUNCTION IN THE CYLINDRICAL
BAR

According to the Jeans theorem (Ogorodnikov 1958), the phase-space density
in a self-consistent model should depend only on the single-valued first integrals of
motion. The cylinder model has three such integrals (see formulas (8-10) or (13-15)
in Ogorodnikov 1958). Obviously, the linear integral has special properties and
can be included in the phase density separately from the two quadratic integrals.
Therefore, the phase-space density of the cylindrical bar of the model should have
the form

[(x2, w3, 29, 23) = f(I1, I2, I3) = Co(xy — 2Qa2) - 6 [Q(11, I3) — 1], (21)
where ¢ is the Dirac delta function, and
QI I3) = koly + k313 (22)

with some constants ko and k3. The constants ko and k3 can be determined from
contact conditions (20) and integrals Iy and I3 given by equations (14) and (15),
and as a result we obtain the following important formula:

1:22 1:32 fE% x%

I, I3) = — — 4+ = 2
Q( 2 3) 208+20'(3)+a2+b2 (3)

Here, 03 and 0§ denote the components of central velocity dispersion of stars in
the cylinder.

Note that in the six-dimensional phase space (1,22, T3, 21, 22, 2'3) our model
occupies a four-dimensional ellipsoid

Qlz,I3) = 1. (24)

Therefore the cylinder model constructed belongs to the class of twice degenerate
ellipsoidal models in phase space.
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The coefficient C' in phase-space density formula (21) can be determined from
normalization condition, and hence it is necessary to calculate the integral

3332 x2 3 .
Pc = C///5x1—29$25 27+7+b72— d°T . (25)

For this purpose it is convenient to pass to polar coordinates in the plane of random
velocities 25 and 7'3:

Ty = /2097 - cos O,
(26)
T3 = 1/209r - sin ©.
The constant C' can then be easily found to be equal to
c=_"re (27)

271'\/0’80'?(3 ’

As aresult, in complete phase-space the distribution function of the model acquires
the form

2 2

24l (2
ao+ 2+ (28)

f($27x3,x'2,353) = L(S("El - 29‘7’.2) -0 2 O + b2

2m\/ 090

2

6. VELOCITY CENTROID AND VELOCITY DISPERSION TENSOR

The mean internal velocity field ﬁ(acl,xz,xg) is by definition equal to the
averaged field of stellar velocities

u; = i///:éifd%. (29)

We use the phase-space density function f from equation (28) to find that

up = 2Qx, . (30)
The other two components of the velocity field are equal to zero,

ug =u3 =0. (31)

Thus, in the model cylinder there are average shear flows subject to equation (30):
at zo > 0 and zo < 0 these flows are directed rightward and leftward along the
cylinder, respectively (see Fig. 1). Apparently, these currents do not coincide with
trajectories of individual stars because nonzero velocity dispersion components in
the cylinder result in nonzero velocity dispersion components along the Oz and
Oz axes. We note that, although the shear flows found lead to loss of stars from
the cylinder, the rate of this loss can be neglected because of the smallness of the
b/ay ratio. In other words, the formal existence of the said shear flows does not
break the condition of self-consistency of the model.
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We determine the velocity dispersion components using a standard scheme,
that is, by performing the following integration:

7 = o [[[ = v - we. (32)

Obviously, in view of the above ellipsoidal phase-space density formula (28), all
nondiagonal matrix elements o;; (i # j) of the velocity dispersion tensor are equal
to zero. Furthermore, the elements on the main diagonal of this matrix are equal
to

o11 =0,
2 2
LTy T3
022203( _ﬁ_lj)v (33)
2
T T
033 = 03( —%—b—g”)

The components 022 and o33 reach maximum on the symmetry axis and vanish at
the cylinder surface (1).

7. CONCLUSION

We constructed a phase-space model of a galaxy consisting of a rotating tri-
axial halo with a cylindrical stellar bar inside it. We established that this model
has the form of a four-dimensional ellipsoid in the six-dimensional phase space. It
is twice degenerate, and its phase-space distribution function involves the product
of two Dirac delta functions, whose arguments are the first isolating integrals of
motion. The full classification of multidimensional ellipsoidal phase-space distri-
bution functions was developed by Kondratyev (1996, 2003).

There are shear flows inside the bar. Obviously, the model parameters can be
chosen so as to ensure that the mass-loss rate of the model due to the centroid
motion considered is very small. However, the escape of stars from the radial
structure is still possible in principle. Hence the inner cylinder may be the source
of weak spiral structure in the galaxy. The same results are often obtained in
numerical N-body simulations.

It is also of interest to investigate the stability of the model cylinder and we
plan to perform such a study in our forthcoming paper.
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