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Abstract.

I have investigated the value of the contribution of small telescopes
to the success of a whole WET run. To this end, I have applied dif-
ferent data weighting schemes to two extreme WET test data sets. I
find that weights proportional to the inverse local scatter in the light
curves produce Fourier Transforms of best signal-to-noise. Weighting
data stronger than their inverse scatter does not yield optimal results
because of the reduction of the effective number of data points.

The contribution of the small telescopes to the combined WET
results was found to be very important. They do not only improve the
spectral window, but they can reduce the noise in the total FT by more
than their light gathering power would imply. Some suggestions for the
optimal use of small telescopes in the WET are given.
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1. INTRODUCTION

As we all know, the Whole Earth Telescope (still) is a unique
astronomical instrument. Although several other global telescope
networks exist, the WET regularly achieves the best coverage of the
light curves of its targets. This is mainly caused by three typical
features of the WET, beginning with the control of a run through
the headquarters providing maximum motivation for the observer.
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In addition, both large and small telescopes are involved, maximiz-
ing the probability of obtaining data. Finally, the observations are
pushed to the limits, i.e. measurements are taken at considerably
higher air mass than the standard photometrist would accept. In
their description of the WET as an instrument, Nather et al. (1990)
state, “Poor data, in this context, are far better than no data at
all.”.

However, there may be cases where data have such poor quality
that they may actually compromise the astrophysical analyses to be
obtained from the total WET run. An example is shown in Fig. 1.

This figure contains data from WET run XCov12 on the pulsat-
ing DB white dwarf PG 13514489 that was sometimes observed by
two telescopes at the same time. The left panels show a part of the
light curve, the amplitude spectrum and a prewhitened amplitude
spectrum from the larger of the two telescopes, whereas the panels
on the right-hand side show the same for the small telescope data.
The single lowest panel contains the combined amplitude spectrum
of both prewhitened data sets. The prewhitened amplitude spec-
trum of the large-telescope data shows the presence of a number of
additional significant peaks that are lost in the noise of the run from
the small telescope. Even when combining the two runs, the addi-
tional signals cannot be detected. The data from the small telescope
degrade the total result.

The question now is: how can the two runs be combined to give
an optimal overall result, or more generally, how can we obtain the
maximum possible astrophysical information out of WET measure-
ments? Should small telescope data be disregarded?

I am aware that there is no straightforward answer to these
questions, and that many researchers will have controversial opinions
on this topic. However, as the organizers of this workshop asked me
for a discussion of this subject, I will do my best trying to find a
good way to add the contributions of large and small telescopes in
the WET network to an optimal result. My aim here is not to satisfy
the statistician, but to assist the astrophysicist in obtaining results
of the best signal-to-noise (S/N) for the analyses to follow.

The remainder of the paper is organized as follows: in Section 2,
I will re-discuss previous work in this direction which will (hope-
fully) make it clear that the assessment of the relative values of large
and small telescope data is inseparable from the problem of weight-
ing data. Section 3 will then briefly introduce different weighting
schemes. In Section 4, I describe two test data sets to which these
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Fig. 1. Upper row: a part of overlapping light curves of PG 13514489
from a large (left) and a small (right) telescope. Second row: Fourier
amplitude spectra of the total overlap, left: large telescope, right: small
telescope. Third row: amplitude spectra of the same data prewhitened
by the dominant frequency and its first two harmonics. Lowest panel:
amplitude spectrum of the combined residuals from both telescopes.
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schemes will be applied, and in Section 5 the different schemes will
be evaluated. The results will be discussed and be used to assess the
value of the contribution of small telescopes to the WET in Section 6.
Section 7 finally presents the conclusions of this study.

Finally, I would like to point out that parts of the discussion
may be too technical for some readers. Consequently, I have tried to
write this paper in a way that will allow the reader to skip over to
the next section with a minimum loss of essential information.

2. PREVIOUS WORK/SETTING THE STAGE

The subject of the present paper has already been discussed
in the past, although in a more limited context. Moskalik (1993)
examined how to add overlapping measurements from two telescopes
to optimize the light gathering power of the WET. He examined two
simultaneous runs on the DAV GD 154 from the McDonald 2.1m
and 0.9 m telescopes and came to the following conclusions:

e Co-addition of data from two similar-sized telescopes gives the
largest increase in S/N.

e Data from a very small telescope added to data from a large
telescope do not result in much improvement; in fact, the com-
bined data can be worse than the ones from the large telescope
alone (cf. Fig.1).

e Overlapping data thus need to be weighted.

e The weights should be proportional to the average net count
rate for the target star (thus about inversely proportional to
telescope aperture squared).

e It follows that non-overlapping runs should also be weighted.

However, some of these conclusions may be challenged. Firstly, it
should be noted that Moskalik (1993) only considered photon statis-
tics as a noise source. Although this is the main source of noise in
typical WET data, the effects of scintillation, poor observing condi-
tions (clouds), equipment and observer problems etc. can often be
significant. Thus the weight of the data should be inversely propor-
tional to the intrinsic scatter of the data and be measured directly.

Secondly, the suggested weighting procedure disregards the con-
tribution of sky background to the error budget; the latter is espe-
cially important for small telescopes that generally have to use larger
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apertures on the sky. Another point (that was outside the scope of
Moskalik’s work) is that weighting data also affects the spectral win-
dow function. I illustrate this in Fig. 2.
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Fig. 2. Upper left: spectral window of a simulated 8-day unweighted
data set with 100% coverage, coming from two 2-m telescopes from op-
posite sides of the globe plus two 1-m telescopes from opposite sides of
the globe, 90°away from the larger telescopes; each telescope observes for
6 hours every night. Upper right: spectral window of the same data set
weighted according to Moskalik (1993). Lower left: unweighted amplitude
spectrum of a data set of random noise with the same temporal distribu-
tion. Lower right: weighted amplitude spectrum of the same data set.

We learn several things from Fig. 2. Firstly, if weights are ap-
plied to the measurements, the data of better quality begin to dom-
inate the combined data set (desirable because we want to suppress
noise), but this modifies the spectral window, usually to the worse.
The aliases creep back. Secondly, the white noise level increases in
this example!, because the effective number of data points in the
time series is reduced.

Consequently, several effects play against each other if one uses
statistical weights for frequency analysis of multisite observations.
The decrease in noise is offset by a poorer spectral window function
and by the effective removal of data points. Hence the most ap-
propriate weights depend on the structure and distribution of each

LOf course, it would decrease as desired if the small telescope data had 4 times
higher scatter than the ones from the large telescope.
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different campaign’s data and can in practice not be theoretically
predicted!

At this point it is important to note that a given telescope’s
contribution to the overall data set can by evaluated by finding the
weights that result in the combined FT of highest S/N. The aver-
age weight of the data from this telescope in relation to some other
parameter (like telescope aperture squared or inverse variance) can
then be compared to the same analysis for all the telescopes in the
run. Such a comparison will tell if it is useful to have small telescopes
in the WET (and up to what point this would be).

2.1. A little excursion: do we want to merge overlapping data?

As we have already seen, weighting affects the spectral window
of a given data set. If overlapping data from different sites exist, an-
other weighting effect appears: the overlap has double weight. Ob-
viously, this also modifies the spectral window. A practical example
is shown in Fig. 3.

As overlaps mostly occur at longitudes where the multisite cov-
erage is best, even higher weight in the combined FT is given to those
data from the corresponding part of the globe. Thus the aliasing
problem becomes worse although there is more data! Hence overlap-
ping data should be merged before a frequency analysis, regardless
if weighted or unweighted data are used for it.

2.2. Should we use weights at all?

Even despite the example in Fig. 1, where I have demonstrated
how simple co-adding of data of good and bad quality may hide
some signals present in the light curves, the reader may still wonder
if weighting will be useful in practice. A comparison of a weighted
and an unweighted amplitude spectrum is therefore shown in Fig. 4.

The weighted amplitude spectrum in the lower panel of this
figure represents a dramatic improvement over the unweighted one.
The noise level drops to about 40% of that of the unweighted FT and
many more signals are now obvious in the data. Hence, weighting is
expected to be useful for at least some data sets.

3. WEIGHTING SCHEMES

Having shown that weighting can be of advantage, it is time
to look into different possibilities for assigning weights. Besides us-
ing the unweighted data as a reference, I have tested three different
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Fig. 3. Upper panel: the spectral window of a subset of the on-line
reduced XCov22 data of PG 1456+103. The daily alias has a strength of
57% of the central peak. Lower panel: spectral window of the same data

set, but with overlaps merged. The daily alias is reduced to 48% of the
amplitude of the central peak.

schemes to determine statistical weights for the data points in a time
series. All of them are (as justified before) based on an estimate of
the variance in a given light curve. The schemes will be introduced
in what follows; all of them have some advantages and problems.
There is no perfect weighting scheme.

3.1. Fourier noise weighting

This method uses the white noise level in a Fourier spectrum
as a measure of data quality and has been applied to WET data
by Dind et al. (2003). The inverse of the average noise level in a
frequency region without a stellar signal is computed for each light
curve obtained during an observing campaign and is used as the basis
for the weights of the corresponding run.

The advantage of this method is its simplicity. Potential short-
comings are that a frequency region without intrinsic FT peaks must
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Fig. 4. Upper panel: unweighted residual amplitude spectrum of a
subset of the XCov12 data of PG 13514-489. Some of the strongest signals

have previously been prewhitened, but the 3" harmonic of the strongest
mode has been left in for reference and is indicated. Lower panel: the
amplitude spectrum of the same data set, but weighted with the inverse
variance of the individual runs.

be known a priori, that the frequency dependence of the noise is dis-
regarded, that small stretches of poorer data quality (e.g.during a
cloud break, twilight, observations at high air mass) will produce
lower weights also for the best parts of the same run, and that the
method cannot be well applied to very short runs or to runs with
large gaps.

It must also be kept in mind that the noise level in an amplitude
spectrum depends on the number of measurements. Consequently,
the inverse of the F'T noise must be divided by the square root of
the number of data points in the corresponding run to obtain the
correct weight. Therefore, this method is very similar to using the
inverse variance of the run-by-run light curve residuals as weights.
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3.2. Sigma-cutoff weighting

This scheme recently became prominent in the analysis of § Scuti
star observations, e.g.see Breger et al.(2002) or Rodriguez et al.
(2003). After the frequency analysis of the unweighted data is com-
pleted, a synthetic light curve computed from the detected pulsa-
tional signals is subtracted from the data; some people remove re-
maining trends in addition. The residuals are assumed to consist of
noise only and their mean standard deviation & is computed. The
individual data points are now weighted according to:

where the w; are the individual weights, o; is the rms residual of the
i" data point and K and x are free parameters. These parameters
are either chosen ad hoc or according to experience. For instance,
Breger et al. (2002) used K = 1.5,z = 2.0 and Rodriguez et al. (2003)
chose K =1.0,x2 = 2.0.

Positive aspects of this method are that it has some sensitivity
to varying observing conditions, that outlying data points are effec-
tively taken into account and that it can be applied even to very short
runs. On the other hand, the method gives full weight to poor data
that just happen to lie within the specified limits, the assignment of
the weights is somewhat tedious and most importantly it depends on
a predetermined solution and it may be affected by intrinsic resid-
ual variations if these are not filtered out. The interested reader is
referred to Rodriguez et al. (2003) for a more detailed discussion of
this method.

3.3. Light curve variance weighting

The last scheme to be tested starts by determining the intrinsic
scatter in the light curves by calculating the point-to-point intensity
differences of consecutive data points. Such high-pass filtering also
removes the intrinsic variability (if the light curve is properly sam-
pled). The time series of the point-to-point scatter is then boxcar-
smoothed over a selectable time interval and the inverse of resulting
function then gives the weight per point. I thought that this method
was my idea until I learned it is merely a small improvement over
a scheme by Michael Viskum (Aarhus University) that was applied
e.g. by Arentoft et al. (1998).

Changes in the observing conditions are best taken into account
with this method. It is simple because it can be used directly on the
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observed light curves and it treats inhomogeneous data sets properly.
Its main disadvantage is that single outlying data points? give longer
stretches of the light curve lower weight. In addition, data gaps
in which significant light variations have occurred (e.g. even sky
measurements!) will affect the weights and very short runs may be
given somewhat incorrect weights.

4. TEST DATA SETS

I have used two different data sets on pulsating DB white dwarf
stars to examine the effects of weighting, the efficiency of the three
weighting schemes, and of the contribution of small telescope data
to the overall result.

The first one is a subset of the XCov12 observations of PG
1351+4-489. The star is rather faint (B = 16.4) and was observed with
telescopes between 0.6 and 2.5 metres aperture. The second test data
set is on EC 20058-5234 from XCov15, a brighter star (V' = 15.5)
observed with telescopes between 1.0 and 1.6 metres aperture. The
light curve residuals after subtracting a number of known pulsational
signals are shown in Fig. 5 to illustrate data quality and homogeneity.

The reason for the choice of just these two data sets is clear: they
are intended to be extreme examples of WET data sets in terms of
homogeneity. The scatter of the poorest run on PG 1351 is almost
eight times higher than the scatter of the best run; the poorest run
on EC 20058 has 2.4 times the scatter of the best run. With these
two data sets the applicability of different weighting schemes and
the effects of using large and small telescopes can thus be tested
comprehensively.

I stress that I refrain from using simulations in such tests. Real

data have real noise and a real temporal distribution; all this is
irreplaceable here.

5. THE TEST

Before applying the three different weighting schemes to the
test data, the basic idea of the experiment needs to be outlined.
As stated above, the maximum amount of astrophysical information

2However, these are often a product of poor data reduction and should hence

77'

be re-examined rather than being “weighted away”!
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Fig. 5. Upper panel: the residual PG 1351 data. Note the excellent-
quality data near days 2—5 just after the light curves with largest scatter.
Lower panel: the residual EC 20058 data.

should be extracted from the data. In most cases, this problem
translates into detecting the maximum possible number of intrinsic
frequencies present in the light curves. This means that the S/N of
the intrinsic signals in the F'T should be maximized.

To this end, I performed frequency analyses of the test data sets
and prewhitened a number of the strongest signals. I did however
leave some variations I believe to be intrinsic (because they are com-
bination frequencies) that are close to the limits of detectability in
the data. These are the signals that should reach the highest possible
S/N by application of the different weighting schemes.

To determine the S/N ratio I have used the method proposed
by Breger et al. (1993). It calculates the noise level as the average
amplitude in an oversampled (Af = 1/20AT, where Af is the sam-
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pling interval in the spectrum and AT is the length of the data set)
amplitude spectrum centered on the suspected frequency. The ratio
of the amplitude of the signal under consideration to the local mean
noise level is calculated and defines its S/N.

It should be pointed out that any other false alarm criterion
etc. could be used instead. My choice of this criterion is based on
my extensive experience with it, its simplicity and because it works
directly on signal and noise amplitudes and can therefore be eas-
ily visualized. For the reader inexperienced with this criterion it
will be useful to know that a noticeable, but not particularly strong
noise peak usually has a S/N of about 3, a combination peak to be
accepted as intrinsic must satisfy S/N > 3.5 and an independent
frequency must exceed S/N = 4.0 to be judged intrinsic. So far, no
signal ever detected with this criterion (if applied properly) had to
be rejected later.

In any case, we are now in a position to calculate the S/N of the
test signals left in the data and to use them to evaluate the efficiency
of the different weighting methods. A frequency interval of 10 c¢/d
was chosen to determine the noise level around the signals of interest,
but the actual choice of the size of this interval is not important here.

5.1. Unweighted data

The two test signals left in the PG 1351 light curve residuals
reached an average S/N of 3.68 and would thus be marginally ac-
ceptable as combination frequency signals. I used four test signals
in the EC 20058 data that reached an average S/N of 4.74, a clear
detection.

5.2. Fourier noise weighting

I then proceeded with the data weighted according to Section 3.1.
However, as it is unclear (because of the interplay of noise decrease,
effective removal of data points and spectral window) whether the
normalized inverse F'T noise itself would result in the optimal weight,
I used several different power laws (w, = w}, z being a free parame-
ter) to look for an optimal result.

The best average S/N for the signals in the PG 1351 data
((S/N)max = 4.25) was obtained for z = 0.8. The same test ap-
plied to the EC 20058 test data gave a maximum S/N of 4.82 for
x = 0.7. As expected, the weighting of the data yields a substantial
improvement in the results for PG 1351 compared to the unweighted
data, whereas the increase in S/N for the EC 20058 data is only
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marginal.

5.3. Sigma-cutoff weighting

As demonstrated in Sect. 3.2, this weighting scheme has two free
parameters, the bandwidth K& containing only data points of unit
weight, and the exponent x by which the weight of the data points
outside this region decreases. I attempted to find the optimal values
for K and z that will result in best S/N for the test signals.

For the PG 1351 data, a maximum average S/N of 4.30 was
achieved for K = 0.3,z = 1.0. The best average S/N of the four
test signals in the EC 20058 light curves was 4.86 for K = 14,2 =
0.85. These results are similar than those for the previous weighting
scheme, but give slightly higher significance.

5.4. Light curve variance weighting

This weighting method also has two free parameters to be ad-
justed. The first is the width W of the boxcar used to smooth the
point-to-point scatter of the light curves and the second is again the
exponent x specifying the decrease of the weight according to the
data variance estimate. If the parameter W approaches the length
of a run, this method would be very similar to FT noise weight-
ing. We note that ¥ must not be too small (at least the size of the
mean variability period) because it will then give very high weight
to only a few data points and will hence modify the spectral window
extremely.

Optimal results with this method were: (S/N)yax = 4.39 for
W = 15min and x = 0.85 applied to the PG 1351 light curves, as
well as (S/N)max = 4.91 for the EC 20058 data with W = 4 min and
x = 0.72. Again, we see a small improvement over the outcome of
the previous weighting strategies.

6. DISCUSSION

A summary of the results of the previous section is given in
Table 1. The best S/N that could be achieved and the parameter
x, the exponent of the power law used to weight the poorer-quality
data are quoted. The other free parameters for some of the methods
tested depend on the individual structures of the data sets and are
of no further importance.
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Table 1. Comparison of the different weighting schemes.

Data set PG 13514489  EC 20058-5234
(S/N)max X (S/N)max X

No weights 3.68 4.74

FT noise weight 4.25 0.8 4.82 0.7

Sigma-cutoff weight 4.30 1.0 4.86 0.85

Light curve scatter weight 4.39 0.85 4.91 0.72

The best results are achieved by weighting according to the in-
verse local data variance in the light curves; this method is there-
fore recommended. However, the improvement relative to the other
weighting schemes is not particularly dramatic.

One result which is at first glance somewhat surprising are the
low values of x which resulted very consistently. They indicate that
the weights of the data points should decrease not as steeply as their
inverse variance. In particular, the value of x = 2 which offhandedly
seems a logical choice (also implied by the work of Moskalik 1993)
and is often employed in the literature as well (see Sect.3.2) turns
out not to be favourable!

The reason is that high values of z disregard too many data
points which would be needed to suppress the noise in the FT. We
have investigated this idea by determining the optimal S/N of the
two signals for the PG 1351 data for = 1.5 (which would be 4.24).
In this case, the optimal K increases from 0.3 (for z = 1) to 0.45, i.e.
more data points are now needed to have unit weight to give best
S/N in the combined amplitude spectrum.

Now we can return to the original question examined in this
work: how useful are the contributions of the small telescopes for the
astrophysical outcome of a whole WET run? The answer is already
indicated in Table 1 and is presented in Fig.6, where we examine
the mean weight of each telescope’s contribution to the whole run
determined from the best weighting method and its corresponding
optimal parameters.

Examining the result for the EC 20058 test data set first, it is
found that the smaller telescopes contribute more to the total S/N
than their measurement accuracy would imply. These telescopes are
therefore quite valuable. One may also suspect that the telescope
generating the data of the highest scatter has some problems, but it
does not. As a matter of fact, it is just the excellent performance of
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Fig. 6. Upper panel: mean weight of the data from the different
telescopes used to observe EC 20058 versus rms scatter of the light curve.
The full line corresponds to a weight inversely proportional to the rms
scatter of the data; the dotted line indicates weighting with the sqaure of
the inverse variance. Lower panel: same as above, but for PG 1351.

the other 1.0m telescope in the campaign that creates this impres-
sion.

Turning to PG 1351, it is clear that this data set is dominated
by the by far largest telescope. But even here, the smaller telescopes
contribute more to the total result than their apertures would sug-
gest. There is one notable exception, however: one of the two 1.0-m
telescopes actually produced worse data than the 0.6m telescope?.
We summarize that in both cases the contribution of the smaller
telescopes to the overall result was more valuable than expected.

For reasons of completeness, we finally examine how the spec-
tral windows of the two test data sets are changed by the weighting

3The probable reason is a photometer aperture that was too large.
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procedure. We show a comparison of the unweighted window and
that of optimally weighted data in Fig. 7.
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Fig. 7. Upper panel: spectral window of the EC 20058 test data
set. The unweighted window is shown at negative frequencies, whereas
the weighted window extends over the positive frequencies. Lower panel:
same for the PG 1351 test data.

This figure has no surprises to offer. The spectral window for
EC 20058 remains almost unaffected except for somewhat stronger
sidelobe structures. The window for PG 1351 shows more notable
differences between weighted and unweighted data. Besides the in-
creased amplitude of the daily alias, the window peaks also become
wider as the data set is weighted in favour of the four nights of very
good data from the large telescope. Consequently, weighting may
not only affect the alias structure, but also our ability to resolve
closely spaced frequencies.



Small and large telescope data and weighting 269

7. CONCLUSIONS

To evaluate the contribution of small telescopes to the astro-
physical results to be obtained by the WET, their weight in the
overall solution was examined. To this end, different weighting meth-
ods were applied to two WET data sets and tested at the same time.
Unsurprisingly, weighting most efficiently reduces the noise for qual-
itatively inhomogeneous data sets. It appears that weighting pro-
portional to the inverse local scatter in the data gives best results.
Interestingly, weighting by a function steeper than the inverse vari-
ance was not found to be optimal because it reduces the effective
number of data points.

Consequently, the small telescopes were found to be very impor-
tant for the success of a WET run. Not only do they improve the
spectral window, they also contribute more to the noise reduction in
the combined FT than naively expected. On the other hand, there
is not much point in filling a few gaps with noisy data. To be more
specific, measurements with a scatter about 3-4 times higher than
that of the best data in a given run will no longer reduce the noise
level in a combined FT considerably. Such telescope time may be
better spent on an alternate target.

We consider the small telescopes an asset for the WET. It must
also be kept in mind that in most cases longer allocations of time
are possible on small telescopes, i.e. they make up for their generally
poorer data quality by providing larger data quantities.

These conclusions may also be useful for the planning of future
WET runs, in particular with the increased use of CCDs. Tele-
scope size then becomes less important for data quality, but the
latter should (in an ideal world) be well known before asking for
telescope time and a particular instrument. Permanent monitoring
of data quality (e.g. by simple estimates of the point-to-point scatter)
at headquarters will also help in scheduling a run on the fly. Ideally,
a WET run should produce data of the most homogeneous qual-
ity possible. This would also make procedures like data weighting
superfluous.
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