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Abstract. The nonlinear stability of the equilibrium orbits corre-
sponding to a potential function A/r + B/r? (r = distance between
bodies, A and B = real parameters) is being investigated. The
method uses a combination of the block-diagonalization technique
with the reduction procedure. The test points out certain nonlin-
early stable equilibria, and is irrelevant for the remaining equilibria.
The latter ones are treated via linearization. With a single exception
(which shows linear stability), all such cases prove linear instability.
The nonlinearly stable equilibria remain stable under any perturba-
tion which preserves the conserved momentum.
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1. INTRODUCTION

The orbital stability of heavenly bodies always constituted one of
the main topics of celestial mechanics (and of astronomy, in general).
The objects on which the investigations are focused are especially
natural and artificial satellites, planetary rings, asteroids,comets, bi-
nary stars, and stellar satellites (from planets to particles in sur-
rounding disks).

In this paper we shall deal with the nonlinear stability of the
equilibria of the Manev-type two-body problem. Such problems are
associated to a potential of the form A/r + B/r?, where r is the
distance between the bodies, while A and B are real parameters.
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The Manev-type problems model many concrete physical and as-
tronomical situations; for a survey of such cases, see Mioc and Stoica
(1995¢, 1997), Delgado et al. (1996), Diacu et al. (1999), and the
references therein. This is the reason for which the recent interest
in Manev’s field is "monotonically increasing”. The contributions
of Lacomba et al. (1991), Casasayas et al. (1993), Diacu (1993,
1996), Diacu et al. (1995, 1999), Mioc and Stoica (1995a,b,c, 1996,
1997), Stoica and Mioc (1996, 1997) used modern mathematical re-
sults (like KAM theory, Melnikov method, etc.) as well as classical
techniques, or went into the physical and astronomical significance
of the model. From the mathematical standpoint, the Manev-type
law opens a new research field. Up to now it has provided surpris-
ing results concerning the dynamics of particles, which disagree with
the classical ones (when the motion neighbors singularities), or en-
rich them by new types of motion. Last, but not least, the genuine
Manev model seems to build a bridge between classical mechanics
and general relativity (see Diacu 1996; Diacu et al. 1999).

In the study of the nonlinear stability of the equilibria, a very ef-
ficient tool is provided by a combination of the block-diagonalization
method proposed by Marsden et al. (1989) - and developed by Mad-
docks (1991) and Simé et al. (1991) - with the classical reduction
procedure. This technique, particularized by Zombro and Holmes
(1993) to systems with a finite number of degrees of freedom and
with a single rotational symmetry, was applied, for instance, to the
study of the relative equilibrium configurations (steadily rotating
states) in the (n+1)-body problem; see, e.g. Elmabsout (1988, 1990,
1994, 1996).

We use this technique to reduce the Hamiltonian of the prob-
lem. The (relative and relative rest) equilibria of the corresponding
amended potential lie in a fixed plane.

Considering the equilibria previously pointed out by Stoica and
Mioc (1996), Mioc and Stoica (1997), or Diacu et al. (1999), for the
whole interplay between field parameters, level of energy, and angu-
lar momentum, we tackle the Liapunov nonlinear stability of these
equilibria. We find nonlinearly stable cases, which remain stable for
the whole class of perturbations that do not affect the conserved
angular momentum. We also find situations in which the nonlinear
stability test (Zombro and Holmes 1993) is inconclusive. Applying
the classical linearization method to these cases, we conclude that
all corresponding equilibrium orbits (with one exception) are linearly
unstable.
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Of course, every kind of relative equilibrium or relative rest equi-
librium is interpreted in terms of real motion.

2. AMENDED POTENTIAL

We fix the origin of the coordinates in the field-generating body
and study the relative motion of the other body with respect to it.
The corresponding equations of motion are

q = 0H(q,p)/0p,
p = —0H(q,p)/dq, (1)

where q = (g1,92,93) € R3\{(0,0,0)} is the configuration vector,
while p = (p1,p2,p3) € R3 is the momentum vector. The class of
Hamiltonians we deal with has the form (in suitably chosen units):

2
A
H(q,p)=%—a—eV(\/qHﬁ,qs), (2)

in which A € R, and ¢ is a small parameter. It is needless to say
that the first two terms in the right-hand side of (2) describe the
unperturbed problem, whereas the third term represents the pertur-
bation.

Let us pass to cylindrical coordinates (r, 8, z) and corresponding
momenta (pr, pg, p;) via the transformations

(91,‘12,93) = (T COSG,TSinB,Z),
De . . De
(p1,p2,p3) = (pr cosf — — sinf, p,siné + — cos b, pz) . (3)
Observe that, under this change of variables, the motion equa-
tions preserve their Hamiltonian character (however, in the general

case, the Hamiltonian character is sacrificed). Applying (3) to (2),
the latter one becomes

17, 2, Pb A B
= = 20 - 4
H 5 (Pr +p; + r2 (r2 +22)1/2 r2 4 22’ (4)

where we kept the notation H for the new Hamiltonian depending
on the variables r, z, 8, p,, p., ps.

This Hamiltonian has the property (see, e.g., Delgado et al.
1996)
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H = h/2 = constant, (5)

which provides the first integral of energy, h being the energy con-
stant.

Also notice that H does not depend on 6. This means that the
momentum conjugate to € is conserved. Actually, this is nothing but
the conservation of the angular momentum (with the corresponding
first integral). Therefore we may apply the reduction, confining the
Hamiltonian to the level set C := py = constant.

According to Zombro & Holmes (1993), the amended potential
of (2) will have the expression

C? A

W= 212 (r2 + 22)1/2

—eV(r, 2), (6)

where we kept the same notation V for the new function of r and
z. Taking into account the estimates for B in different cases (e.g.
Diacu et al. 1995; Mioc & Stoica 1995c), we may identify eV (r,z) =
B/(r? + 2%), so that (6) becomes

_c? A B )
92 (r2 4 22)1/2  r2 4 52"

By (4), (5), and (7), the integral of energy acquires the expres-
sion
C? 24 2B
2 ,.,2, %Y _ _
vt ey Ay ©
Lastly, we provide the relative motion equations in the more
explicit form

r = Pr,

2 = Pz,

0= I:——g;

. Ar 2Br C?

Dr = —(7‘2 T 2’2)3/2 - (7‘2 T 22)2 + ?5_, (9)
Az 2Bz

P== T2 1202 T (72 1 22)2
o =0.
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3. EQUILIBRIA OF THE PROBLEM

The equilibria of the Manev-type two-body problem correspond
to

6 = constant, (10)
pe=C

(which is obvious, taking into account the angular momentum con-
servation) and

Ar 2Br C?
21,202 T (2 2~ 3 =0 (11)
(r? + 22) (r? + 22) T
Az 2Bz
(r2 + z2)3/2 + (r2 + 22)2 =0, (12)
pr=0=p,. (13)

The relations (11) and (12) derive from (9) and (10), observing the
condition for equilibrium. As to (13), it is trivial.

Definition 3.1. We shall call relative equilibria the solutions of
(9) which fulfil (10)-(13) with C # 0.

Definition 3.2. We shall call relative rest equilibria the solu-
tions of (9) which fulfil (10)-(13) with C = 0.

Remark 3.3. The relative equilibria constitute steadily rotat-
ing states of the ”satellite” body with respect to the central body.

Remark 3.4. The relative rest equilibria represent rest of the
"satellite” body with respect to the central body.

Denote
R? =% 4 22, (14)

We shall distinguish two situations: z = 0 (R = r) and z # 0
(R > r), which will separately be analyzed in Sections 5 and 6,
respectively.

Remark 3.5. The above defined quantity R is nothing but
the Euclidean norm of the radius vector of the ”satellite” body with
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respect to the central body. In other words, it is the distance between
the two bodies.

Proposition 3.6. At equilibria, for z # 0 the "satellite” body
does not rotate around the central body ( C =0 ).

Proof. Multiplying the fourth and the fifth equations (10) by
—z and r, respectively, then adding the results together, it follows

immediately that C' = 0.

Corollary 3.7. At equilibria, for z =0, the energy level s
h = A?/(2B). (15)
Proof. Taking into account (8), (13), (14), and Proposition 3.6,
the relation (15) follows immediately.
Remark 3.8. It is clear from Proposition 3.6 that for z # 0
the critical points are relative rest equilibria. In physical terms, the

"satellite” body is at rest with respect to the central body.

Theorem 3.9. Regardless to the angular momentum value, the
equilibria of the Manev-type two-body problem are located at

R=—A/h. (16)

Proof. By (8), (13), and (14), we have

————— = h. (17)

On the other hand, the fourth equation (9), written for equilibria,
provides (taking into account (14)):

Z_ 42T, (18)

Eliminating C' between (17) and (18), we obtain

hR* + AR® + (AR +2B)z* = 0. (19)
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For z = 0 (which implies R = r), formula (16) follows immedi-
ately. For z # 0, using the fifth equation (9) written for equilibrium,
we get

R =-2B/A. (20)

Resorting to (15), one easily obtains (16). The theorem is proved.

4. THE NONLINEAR STABILITY TEST

Taking into account the results presented in Section 3, we are
in the position to apply the algorithm described by Zombro and
Holmes (1993). This technique allows one to formulate conclusions
about the nonlinear stability of the equilibria via the examination of
the positive definiteness of the matrix

pe [ PW/Or 82W/0rd:
DW= | gwjoro: o*wyos? | (21)

where the subscript ”e” fixes the respective values at equilibrium

(R = R, provided by (16), 7 = 1, z = z¢).

The nonlinear stability is entailed by the conditions

D, >0, D; >0, (22)
where o
Dy:= —| ,  Dpi=det (D*W],). (23)

e

If both conditions (22) are fulfilled, the respective equilibrium is
nonlinearly stable. Else, one can say nothing about the nonlinear
stability. In such cases, when the test is inconclusive, one must
resort to linearization.

5. STABILITY OF EQUILIBRIA FOR 2z =0

For z = 0 we have R = r. Checking whether the conditions (22)
are fulfilled or not, we can state

Proposition 5.1. If z =0, the following implications hold

h<0= D; >0, D; >0,
h20:>D1S0,D250, (24)
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or, equivalently,

C?*>2B = D, >0, D; >0,
C*<2B=> D, <0, D, <0. (25)

Proof. By (7), (21), and (23), we have at equilibrium

1 3(C? - 2B
D, =— [—2A + —(—)] , (26)
T Te
1 A(3C? -10B) 6B(C?-2B
D2=r—6[—2A2+ ( . )+ ( = )]. (27)

The fourth equation (9), written for equilibrium (r = r., 2 = 0),
provides

re = (C* — 2B)/A. (28)
Combining (16) (whereR, = r.) with (28), and using (26) and (27),
we obtain directly

h=—A%/(C* —2B); (29)
D; = —h%/A% = A*/(C? — 2B)?; (30)
D, = —C?*h" /A% = C?A%/(C* - 2B)". (31)

Implications (24) and (25) follow immediately. The proposition is
proved.

This proposition implies immediately

Corollary 5.2. The equilibria for z = 0 are nonlinearly stable
only if h <0 or C* > 2B.

Now, let us survey the equilibria of the Manev-type two-body
problem for the whole interplay among the field parameters (A and
B), energy level (h) and angular momentum (C). Recall that we are
in the case z =0 (R=r).

Proposition 5.3. If z = 0, the equilibria of the Manev-type
two-body problem occur for

(i) B>0,A>0,h<0,C=+,2B— A%/k;
(i) B>0,4A=0,h=0,C = +V2B;
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(iii) B>0, A<0, h=A%/(2B), C =0;

(iv) B>0,A<0, k> A%/(2B), C = /2B — A%]k;

(v) B=0,A>0,h<0,C=+A4/V-h;

(vi) B=0,A=0,h=0,C =0;

(vii) B<0,A>0,h> A%/(2B), C = 0;

(viii) B< 0, A >0, A2/(2B) < h < 0,C = £+/2B — A?/h.

Proof. The analysis performed by Stoica and Mioc (1996), Mioc
and Stoica (1997), or Diacu et al. (1999), points out the fact that
the only equilibria of the problem take place for the combinations

(i)-(viii).

Taking into account Proposition 5.3 and Corollary 5.2, we can
state

Theorem 5.4 For z = 0, the equilibria corresponding to the
cases (1), (v), (vir), and (viii) are nonlinearly stable.

As regards the remaining cases, the nonlinear stability test is
inconclusive. In terms of the conditions (22), this can be expressed
as

Proposition 5.5. The cases in which the conditions (22) are
not fulfilled, namely (1), (11), (v), and (vi), imply respectively:

D, =0,D2 :0; D, <0,D2 <0 D, <0,D2 > 0; Dy =0,D2=0.

Proof. These results are immediate by either direct calculation
or using Proposition 5.1.

In such cases we can say nothing about the nonlinear stability,
therefore we have to resort to linearization. Starting from (9) with
the equations for € and py discarded, the linearized system near
equilibria reads

énga
Z = pg,
_ 24 3(02—23)

3 4
Te Te

0, (32)f
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. A 2B
Pz = —Fé' - ?é— ’

where p = r — r.. Recalling that z = 0, and using (26), the system
(32) reduces to

0 = Py,
i’g = _Dl 2, (33)
with the characteristic equation
M4+ D=0 (34)

On this basis we can state

Theorem 5.6. For z = 0, the equilibria corresponding to the
cases (1), (i), (), and (vi) are linearly unstable.

Proof. By virtue of Proposition 5.5, equation (34) yields A% = 0
for the cases (ii) and (vi), that means degenerate equilibria, which
are linearly unstable. Within the same framework, A2 > 0 for the
cases (iil) and (iv), which means that at least one root has positive
real part, hence these equilibria are linearly unstable, too.

To end this section, let us interpret the equilibria for z = 0 in
terms of real motion. First, the following result is to be pointed out:

Proposition 5.7. The cases (i), (i), (1), (v), and (viii) are

relative equilibria. The remaining cases are relative rest equilibria.

Proof. Taking into account Definitions 3.1 and 3.2, as well as
Proposition 5.3, the proof is obvious.

Finally, we state

Theorem 5.8. In terms of real motion, the equilibria of the
Manev-type two-body problem for z = 0 correspond to:

(i) stable circular motion at distance (C? — 2B)/A4;

(i1) unstable circular motion at any distance;

(iil) unstable rest at distance —2B /A,

(iv) unstable circular motion at distance (C* — 2B)/A;

(v) stable circular motion at distance C?/A;
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(vi) unstable rest at any distance;

(viil) stable rest at distance —2B/A,;

(vii1) stable circular motion at distance (C? — 2B)/A,
where (1)-(viii) denote the cases pointed out by Proposition 5.9.

Proof. As regards the stability of the motion, it is easy to see
by the linearized system that the cases (i), (v), (vii), and (viil) are
centers, (iii) and (iv) are saddles, whereas (ii) and (vi) are degenerate
equilibria. The nature of the motion (steady rotation or rest) is
specified by Proposition 5.7.

As to the distance of the equilibria, it can be determined from
Theorem 3.9, as well as from the relations (28) and (29) (see also
Stoica and Mioc 1996; Mioc and Stoica 1997; Diacu et al. 1999).
This completes the proof.

6. STABILITY OF EQUILIBRIA FOR z # 0

First we identify the combinations (A, B, h) for which there are
equilibria. The angular momentum is not to be considered, because
z # 0 implies C' = 0 (see Proposition 3.6).

Proposition 6.1. If z # 0, the equilibria of the Manev-type
two-body problem occur for:

(ii) B>0, A<0, h= A?/(2B);

(vi) B=0,A=0,h=0;

(vii) B <0, A>0, h=A%/(2B).

Proof. Taking into account Theorem 3.9 and the formula (20),
the proof is immediate.

Remark 6.2. The numbering in Proposition 6.1 was chosen to
agree with Proposition 5.3.

All these critical points are relative rest equilibria (see Remark
3.8). Applying the nonlinear stability test, we get

Theorem 6.3. If z # 0, the conditions for nonlinear stability
are not fulfilled.

Proof. Taking into account (7), (21), and (23), we obtain by
straightforward calculation
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Dy, = —-2Br%/RS, D, =0. (35)

By virtue of (22), the theorem is proved.

As previously, we must resort to linearization. The system (9)
linearized in the neighborhood of equilibria, with the equation for 6
and pg dropped, has the form

0 = pr,
¢ =Pz (36)

. [ A 2B 3A 8B\ , 3A 8B

b= mw tatw) et |(m tE) ©
. 3A 8B A 2B 34 8B\ ,
Pz = R_2+—R_‘2 TeZe| 0+ —EE—E%— R—2+R_§ ze | G

where ¢ = r — r, and ( = z — z.. Taking into account (20), the
characteristic equation reads

Al
2 { \2 _
A (A - —833) ~ 0. (37)

All these results lead to

Theorem 6.4. For z # 0, the equilibria corresponding to the
cases (iii) and (vi) are linearly unstable, while the case (vii) is lin-
early stable.

To end, we state

Theorem 6.5. In terms of real motion, the equilibria of the
Manev-type two-body problem for z # 0 correspond to:

(ii1) unstable rest at distance —2B/A;

(vi) unstable rest at any distance;

(vii) linearly stable rest at distance —2B/A.

Proof. Taking into account the results presented in this section,
as well as formula (20), the proof is immediate.
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7. CONCLUDING REMARKS

Summarizing, the Manev-type two-body problem admits eight
classes of equilibria for z = 0, and three classes of equilibria for
z # 0.The classes (i), (ii), (iv), (v), and (viil) represent relative
equilibria (steadily rotating states). They occur only for z = 0. The
classes (iii), (vi) and (vii) are relative rest equilibria, regardless to
the value of z.

For z = 0, the classes of equilibria (i), (v), (vii), and (viii) are
nonlinearly stable, while (i), (iii), (iv), and (vi) are linearly unstable.
For z # 0, the classes (iii) and (vi) are linearly unstable, whereas the
class (vii) is linearly stable.

An important result concerning the classes of equilibria (i), (v),
(vii), and (viii) for z = 0 can be stated as

Theorem 7.1. The nonlinearly stable equilibria for z = 0 re-
main stable under the influence of every perturbation which does not
affect the conserved angular momentum.

Proof. Zombro and Holmes (1993) showed that the nonlinearly
stable equilibrium orbits of the problem remain stable under pertur-
bations of this kind.

To end, we have to emphasize that the perturbations that ob-
serve the conditions of Theorem 7.1, namely those which let the equi-
librium orbits be nonlinearly stable, may have any nature. This fact
makes the class of concrete astronomical situations corresponding to
this model considerably more rich.
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