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Abstract . The nonlinear stability of the equilibrium orbits corre-
sponding to a potential function A/r + 2?/r2 (r = distance between 
bodies, A and B = real parameters) is being investigated. The 
method uses a combination of the block-diagonalization technique 
with the reduction procedure. The test points out certain nonlin-
early stable equilibria, and is irrelevant for the remaining equilibria. 
The latter ones are treated via linearization. With a single exception 
(which shows linear stability), all such cases prove linear instability. 
The nonlinearly stable equilibria remain stable under any perturba-
tion which preserves the conserved momentum. 
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1. I N T R O D U C T I O N 

The orbital stability of heavenly bodies always constituted one of 
the main topics of celestial mechanics (and of astronomy, in general). 
The objects on which the investigations are focused are especially 
na tura l and artificial satellites, planetary rings, asteroids,comets, bi-
nary stars, and stellar satellites (from planets to particles in sur-
rounding disks). 

In this paper we shall deal with the nonlinear stability of the 
equilibria of the Manev-type two-body problem. Such problems are 
associated to a potential of the form A/r + B/r2, where r is the 
distance between the bodies, while A and B are real parameters. 
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The Manev-type problems model many concrete physical and as-
tronomical situations; for a survey of such cases, see Mioc and Stoica 
(1995c, 1997), Delgado et al. (1996), Diacu et al. (1999), and the 
references therein. This is the reason for which the recent interest 
in Manev's field is "monotonically increasing". The contributions 
of Lacomba et al. (1991), Casasayas et al. (1993), Diacu (1993, 
1996), Diacu et al. (1995, 1999), Mioc and Stoica (1995a,b,c, 1996, 
1997), Stoica and Mioc (1996, 1997) used modern mathematical re-
sults (like KAM theory, Melnikov method, etc.) as well as classical 
techniques, or went into the physical and astronomical significance 
of the model. From the mathematical standpoint, the Manev-type 
law opens a new research field. Up to now it has provided surpris-
ing results concerning the dynamics of particles, which disagree with 
the classical ones (when the motion neighbors singularities), or en-
rich them by new types of motion. Last, but not least, the genuine 
Manev model seems to build a bridge between classical mechanics 
and general relativity (see Diacu 1996; Diacu et al. 1999). 

In the study of the nonlinear stability of the equilibria, a very ef-
ficient tool is provided by a combination of the block-diagonalization 
method proposed by Marsden et al. (1989) - and developed by Mad-
docks (1991) and Simo et al. (1991) - with the classical reduction 
procedure. This technique, particularized by Zombro and Holmes 
(1993) to systems with a finite number of degrees of freedom and 
with a single rotational symmetry, was applied, for instance, to the 
study of the relative equilibrium configurations (steadily rotating 
states) in the (n- f l ) -body problem; see, e.g. Elmabsout (1988, 1990, 
1994, 1996). 

We use this technique to reduce the Hamiltonian of the prob-
lem. The (relative and relative rest) equilibria of the corresponding 
amended potential lie in a fixed plane. 

Considering the equilibria previously pointed out by Stoica and 
Mioc (1996), Mioc and Stoica (1997), or Diacu et al. (1999), for the 
whole interplay between field parameters, level of energy, and angu-
lar momentum, we tackle the Liapunov nonlinear stability of these 
equilibria. We find nonlinearly stable cases, which remain stable for 
the whole class of perturbations that do not affect the conserved 
angular momentum. We also find situations in which the nonlinear 
stability test (Zombro and Holmes 1993) is inconclusive. Applying 
the classical linearization method to these cases, we conclude that 
all corresponding equilibrium orbits (with one exception) are linearly 
unstable. 
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Of course, every kind of relative equilibrium or relative rest equi-
librium is interpreted in terms of real motion. 

2. AMENDED POTENTIAL 

We fix the origin of the coordinates in the field-generating body 
and study the relative motion of the other body with respect to it. 
The corresponding equations of motion are 

q = 3 f f ( q , p ) / d p , 
p = - 3 F ( q , p ) / 0 q , (1) 

where q = (91,92,93) £ R 3 \ { (0 ,0 ,0 )} is the configuration vector, 
while p = (jp\ 1P2, Pz) € R 3 is the momentum vector. The class of 
Hamiltonians we deal with has the form (in suitably chosen units): 

H(q , P ) = ^ - ^ - eV ^ q j + q l 93) , (2) 

in which A € R , and £ is a small parameter. It is needless to say 
that the first two terms in the right-hand side of (2) describe the 
unperturbed problem, whereas the third term represents the pertur-
bation. 

Let us pass to cylindrical coordinates (r, 8, z) and corresponding 
momenta (Pr,P8,Pz) via the transformations 

(91,92,93) = (rcos0,rsm8,z), 

(Pi, P2, P3) = (Pr cos 6 — — sin 6, pr sin 6 + — cos 6, pz ) . (3) \ r r / 

Observe that , under this change of variables, the motion equa-
tions preserve their Hamiltonian character (however, in the general 
case, the Hamiltonian character is sacrificed). Applying (3) to (2), 
the latter one becomes 

TT 1 ( 2 2 Pe\ A B 

H = 2 [Pr +P; + ^ ) - ( r 2 +,2)1/2 " ^ 2 ' (4) 

where we kept the notation H for the new Hamiltonian depending 
on the variables r, z, 6, pT, pz, p$. 

This Hamiltonian has the property (see, e.g., Delgado et al. 
1996) 
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H = h/2 : constant, (5) 

which provides the first integral of energy, h being the energy con-
stant. 

Also notice that H does not depend on 8. This means that the 
momentum conjugate to 6 is conserved. Actually, this is nothing but 
the conservation of the angular momentum (with the corresponding 
first integral). Therefore we may apply the reduction, confining the 
Hamiltonian to the level set C := p$ = constant. 

According to Zombro & Holmes (1993), the amended potential 
of (2) will have the expression 

W = (6) 

where we kept the same notation V for the new function of r and 
z. Taking into account the estimates for B in different cases (e.g. 
Diacu et al. 1995; Mioc & Stoica 1995c), we may identify eF( r , z) = 
B/(r2 + z2), so that (6) becomes 

^ ( 7 ) 
2 r 2 ( r 2 + z 2 y / 2 r2 + z2 

By (4), (5), and (7), the integral of energy acquires the expres-
sion 

2 2 C 2 2 A 2 B , f o . 
+ ( r 2 + , 2 ) 1 / 2 - = h• (8) 

Lastly, we provide the relative motion equations in the more 
explicit form 

r = pr, 

i =Pz, 
rz 

. _ Ar 2 Br 
P r ~ ~ ( r2 + ¿2)3/2 ~ ( r2 + ¿2)2 + r3 ' t 9 ) 

Az 2 Bz 
Pz = ( r 2 + ¿ 2 ) 3 / 2 ( r 2 + , 2 ) 2 ' 

P6 ' 0. 



Nonlinear stability of equilibria 415 

3. EQUILIBRIA OF THE PROBLEM 

The equilibria of the Manev-type two-body problem correspond 
to 

6 = constant, (10) 
Po = C 

(which is obvious, taking into account the angular momentum con-
servation) and 

Ar 2 Br C2 n 

( r 2 + 2 2 ) 3 / 2 ( r 2 + ^ 2 ) 2 r 

Az 2 Bz 
+ T I F T T ^ = (12) (r2 + ^2)3/2 (r2 + z 2y 

Pr= 0 = P z . (13) 
The relations (11) and (12) derive from (9) and (10), observing the 
condition for equilibrium. As to (13), it is trivial. 

Definition 3.1. We shall call relative equilibria the solutions of 
(9) which fulfil (10)-(13) with C ^ 0. 

Definition 3.2. We shall call relative rest equilibria the solu-
tions of (9) which fulfil (10)-(13) with C = 0. 

Remark 3.3. The relative equilibria constitute steadily rotat-
ing states of the "satellite" body with respect to the central body. 

Remark 3.4. The relative rest equilibria represent rest of the 
"satellite" body with respect to the central body. 

Denote 
R2:=r2+z2. (14) 

We shall distinguish two situations: z = 0 (R = r) and z ^ 0 
(R > r), which will separately be analyzed in Sections 5 and 6, 
respectively. 

Remark 3.5. The above defined quantity R is nothing but 
the Euclidean norm of the radius vector of the "satellite" body with 
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respect to the central body. In other words, it is the distance between 
the two bodies. 

Proposition 3.6. At equilibria, for 2 / 0 the "satellite" body 
does not rotate around the central body ( C = 0 ). 

Proof. Multiplying the fourth and the fifth equations (10) by 
—z and r, respectively, then adding the results together, it follows 
immediately that C = 0. 

Corollary 3.7. At equilibria, for z = 0 , the energy level is 

h = A2/(2B). (15) 

Proof. Taking into account (8), (13), (14), and Proposition 3.6, 
the relation (15) follows immediately. 

Remark 3.8. It is clear from Proposition 3.6 that for z ^ 0 
the critical points are relative rest equilibria. In physical terms, the 
"satellite" body is at rest with respect to the central body. 

Theorem 3.9. Regardless to the angular momentum value, the 
equilibria of the Manev-type two-body problem are located at 

R = —A/h. (16) 

Proof. By (8), (13), and (14), we have 

C2 2 A 2 B , 
( 1 7 ) 

On the other hand, the fourth equation (9), written for equilibria, 
provides (taking into account (14)): 

C2 Ar 2 Br n 

7 3 " " " * r = a <18> 

Eliminating C between (17) and (18), we obtain 

hR4 + AR3 + (AR + 2 B)z2 = 0. (19) 
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For z = 0 (which implies R — r), formula (16) follows immedi-
ately. For z ^ 0, using the fifth equation (9) written for equilibrium, 
we get 

R = -2B/A. (20) 

Resorting to (15), one easily obtains (16). The theorem is proved. 

4. THE NONLINEAR STABILITY T E S T 

Taking into account the results presented in Section 3, we are 
in the position to apply the algorithm described by Zombro and 
Holmes (1993). This technique allows one to formulate conclusions 
about the nonlinear stability of the equilibria via the examination of 
the positive definiteness of the matrix 

D2W\ := le 
d2W/dr2 d2W/drdz 

d2W/drdz d 2w/dz2 
(21) 

where the subscript "e" fixes the respective values at equilibrium 
(.R = Re, provided by (16), r — re, z = ze). 

The nonlinear stability is entailed by the conditions 

Dx >0, D2> 0, (22) 

where 

D2 : = d e t ( D 2 W | ) . (23) 
dr2 

If both conditions (22) are fulfilled, the respective equilibrium is 
nonlinearly stable. Else, one can say nothing about the nonlinear 
stability. In such cases, when the test is inconclusive, one must 
resort to linearization. 

5. STABILITY OF EQUILIBRIA FOR z = 0 

For z — 0 we have R = r. Checking whether the conditions (22) 
are fulfilled or not, we can state 

P r o p o s i t i o n 5 . 1 . If z = 0 , the following implications hold 

h < 0 Dx > 0, D2> 0, 

h > 0 Di < 0, D2 < 0, (24) 
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or, equivalently, 

C2 > 2B = » Di > 0, D2 > 0, 
C2 < 2B Di < 0, D2 < 0. (25) 

Proof. By (7), (21), and (23), we have at equilibrium 

-2A + 
3(C2 - 2B) 

D2 = — -2A2 + 
A(3C2 - 1 0 B ) 6B(C2 - 2B) 

+ 

(26) 

(27) 

The fourth equation (9), written for equilibrium (r = r e , z = 0), 
provides 

r e = ( C 2 — 2B)/A. (28) 

Combining (16) (wherei2e = r e ) with (28), and using (26) and (27), 
we obtain directly 

h = -A2/(C2 -2B)- (29) 

£>i = -h3/A2 = A4/(C2 - 2Bf-
D2 = -C2h7/A6 = C2ASI(C2 - 2B)7. 

(30) 

(31) 

Implications (24) and (25) follow immediately. The proposition is 
proved. 

This proposition implies immediately 

C o r o l l a r y 5 . 2 . The equilibria for 2 = 0 are nonlinearly stable 
only if h < 0 or C2 > 2B. 

Now, let us survey the equilibria of the Manev-type two-body 
problem for the whole interplay among the field parameters (A and 
B), energy level (h) and angular momentum (C). Recall that we are 
in the case z = 0 (R = r). 

P r o p o s i t i o n 5 . 3 . If z = 0 , the equilibria of the Manev-type 
two-body problem occur for 

( i) B > 0, A > 0 , h < 0, C = ±y/2B - A2/h\ 

(ii) B > 0, A = 0 , h = 0 , C = ±y/2B-
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(iii) B>0,A<0,h = A2/{2B),C = 0; 
(iv) B > 0, A < 0, h > A2/{2B), C = ±y/2B-A2 jh\ 
(v) B = 0, A > 0, h < 0, C = ±A/\f-h\ 
(vi) B = 0, A = 0, h = 0, C = 0; 
(vii) B <0,A>0,h> A2/(2B), C = 0; 
(viii) B < 0, A > 0, A2/(2B) <h<0,C = ±y/2B - A2 /h. 

P r o o f . The analysis performed by Stoica and Mioc (1996), Mioc 
and Stoica (1997), or Diacu et al. (1999), points out the fact that 
the only equilibria of the problem take place for the combinations 
(i)-(viii). 

Taking into account Proposition 5.3 and Corollary 5.2, we can 
state 

T h e o r e m 5 . 4 For z = 0 , the equilibria corresponding to the 
cases (i), (v), (vii), and (viii) are nonlinearly stable. 

As regards the remaining cases, the nonlinear stability test is 
inconclusive. In terms of the conditions (22), this can be expressed 
as 

Proposi t ion 5 .5 . The cases in which the conditions (22) are 
not fulfilled, namely (ii), (iii), (iv), and (vi), imply respectively: 

Di =0,D2= 0; £>i < 0, D2 < 0; £>i < 0 , D 2 > 0; Dx = 0, D2 = 0. 

Proof . These results are immediate by either direct calculation 
or using Proposition 5.1. 

In such cases we can say nothing about the nonlinear stability, 
therefore we have to resort to linearization. Starting from (9) with 
the equations for 6 and pe discarded, the linearized system near 
equilibria reads 

Q = Pq, 
z =Pz, 

"2 A 3(C2 — 2B) 
Pe = (32)' 
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A 2 B 

where g = r — re. Recalling that z = 0, and using (26), the system 
(32) reduces to 

e = pe, 

pe = -Dig, (33) 

with the characteristic equation 

A2 + Di = 0. (34) 

On this basis we can state 

T h e o r e m 5.6. For z = 0 , the equilibria corresponding to the 
cases (ii), (Hi), (iv), and (vi) are linearly unstable. 

Proof . By virtue of Proposition 5.5, equation (34) yields A2 = 0 
for the cases (ii) and (vi), that means degenerate equilibria, which 
are linearly unstable. Within the same framework, A2 > 0 for the 
cases (iii) and (iv), which means that at least one root has positive 
real part , hence these equilibria are linearly unstable, too. 

To end this section, let us interpret the equilibria for z = 0 in 
terms of real motion. First, the following result is to be pointed out: 

Propos i t ion 5.7. The cases (i), (ii), (iv), (v), and (viii) are 
relative equilibria. The remaining cases are relative rest equilibria. 

Proof . Taking into account Definitions 3.1 and 3.2, as well as 
Proposition 5.3, the proof is obvious. 

Finally, we state 

T h e o r e m 5.8. In terms of real motion, the equilibria of the 
Manev-type two-body problem for z = 0 correspond to: 

(i) stable circular motion at distance (C2 — 2 B ) / A ] 
(ii) unstable circular motion at any distance; 
(iii) unstable rest at distance —2B/A\ 
(iv) unstable circular motion at distance (C2 — 2B) /A] 
(v) stable circular motion at distance C2/A; 
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(vi) unstable rest at any distance; 
(vii) stable rest at distance —2B/A', 
(viii) stable circular motion at distance (C2 — 2B)/A, 

where (i)-(viii) denote the cases pointed out by Proposition 5.3. 

Proof. As regards the stability of the motion, it is easy to see 
by the linearized system that the cases (i), (v), (vii), and (viii) are 
centers, (iii) and (iv) are saddles, whereas (ii) and (vi) are degenerate 
equilibria. The nature of the motion (steady rotation or rest) is 
specified by Proposition 5.7. 

As to the distance of the equilibria, it can be determined from 
Theorem 3.9, as well as from the relations (28) and (29) (see also 
Stoica and Mioc 1996; Mioc and Stoica 1997; Diacu et al. 1999). 
This completes the proof. 

6. STABILITY OF EQUILIBRIA FOR z ^ O 

First we identify the combinations (A, B, h) for which there are 
equilibria. The angular momentum is not to be considered, because 
z / 0 implies C = 0 (see Proposition 3.6). 

Proposition 6.1. If z ^ 0 , the equilibria of the Manev-type 
two-body problem occur for: 

(iii) B > 0, A < 0, h = A2/(2B); 
(vi) B = 0, A = 0, h = 0; 
(vii) B < 0, A > 0, h = A2/{2B). 

Proof. Taking into account Theorem 3.9 and the formula (20), 
the proof is immediate. 

Remark 6.2. The numbering in Proposition 6.1 was chosen to 
agree with Proposition 5.3. 

All these critical points are relative rest equilibria (see Remark 
3.8). Applying the nonlinear stability test, we get 

Theorem 6.3. If z ^ 0 , the conditions for nonlinear stability 
are not fulfilled. 

Proof. Taking into account (7), (21), and (23), we obtain by 
straightforward calculation 
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Di = - 2 Br2JR6
e, D2 = 0. (35) 

By virtue of (22), the theorem is proved. 

As previously, we must resort to linearization. The system (9) 
linearized in the neighborhood of equilibria, with the equation for 9 
and pg dropped, has the form 

Q = Pr, 

C = Pz, 

Pr = 

Pz = 

A 2 B / 3 A SB 

e 
8B ' 3 A 

R5. + R* 2 + 

Y3 A 8B\ 

A 2B (%A 8B\ 2 

Rl R\ Rl R\) 

(36) 

c, 
c, 

where Q — r — r e and £ = z — zt. Taking into account (20), the 
characteristic equation reads 

A ' ( A > - s ^ ) = 0 . (37) 

All these results lead to 

T h e o r e m 6.4. For z ^ 0 , the equilibria corresponding to the 
cases (Hi) and (vi) are linearly unstable, while the case (vii) is lin-
early stable. 

To end, we state 

T h e o r e m 6.5. In terms of real motion, the equilibria of the 
Manev-type two-body problem for z ^ 0 correspond to: 

(iii) unstable rest at distance —2BjA\ 
(vi) unstable rest at any distance; 
(vii) linearly stable rest at distance —2B/A. 

P r o o f . Taking into account the results presented in this section, 
as well as formula (20), the proof is immediate. 
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7. CONCLUDING REMARKS 

Summarizing, the Manev-type two-body problem admits eight 
classes of equilibria for z — 0, and three classes of equilibria for 
z ^ O.The classes (i), (ii), (iv), (v), and (viii) represent relative 
equilibria (steadily rotating states). They occur only for 2 = 0. The 
classes (iii), (vi) and (vii) are relative rest equilibria, regardless to 
the value of z. 

For 2 = 0, the classes of equilibria (i), (v), (vii), and (viii) are 
nonlinearly stable, while (ii), (iii), (iv), and (vi) are linearly unstable. 
For 2 0, the classes (iii) and (vi) are linearly unstable, whereas the 
class (vii) is linearly stable. 

An important result concerning the classes of equilibria (i), (v), 
(vii), and (viii) for 2 = 0 can be stated as 

Theorem 7.1. The nonlinearly stable equilibria for z = 0 re-
main stable under the influence of every perturbation which does not 
affect the conserved angular momentum. 

Proof. Zombro and Holmes (1993) showed that the nonlinearly 
stable equilibrium orbits of the problem remain stable under pertur-
bations of this kind. 

To end, we have to emphasize that the perturbations that ob-
serve the conditions of Theorem 7.1, namely those which let the equi-
librium orbits be nonlinearly stable, may have any nature. This fact 
makes the class of concrete astronomical situations corresponding to 
this model considerably more rich. 
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