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Abstract. Objective determination of a star formation history from 
a colour-magnitude diagram, independently of assumed parametric 
descriptions, is a requirement if Gaia is to determine the evolution-
ary history of the Galaxy. We introduce a new method for solving 
maximum likelihood problems through variational calculus, and ap-
ply it to the case of recovering an unknown star formation history, 
SFR(t), from a resulting HR diagram. This approach allows a to-
tally non-parametric solution which has the advantage of requiring 
no initial assumptions on the SFR(t). 
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1. INTRODUCTION 

A primary scientific requirement of the Gaia mission is determi-
nation of the star formation histories, as described by the temporal 
evolution of the star formation rate, SFR(t), and the cumulative 
numbers of stars formed, of the bulge, inner disk, solar neighbour-
hood, outer disk and halo of the Milky Way. In practise, uncer-
tainties in the theories of stellar formation and evolution, as well 
as degeneracy in a stars' observational parameters between age and 
metallicity, not to mention observational errors and unknown dis-
tance and reddening corrections, make inferring SFR(t) for mixed 
stellar populations difficult. Even assuming a known stellar initial 
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mass function ( I M F ) and metallicity, a given set of isochrones and 
no distance or reddening uncertainties, recovering the SFR (t) which 
gave rise to a given HR diagram is not trivial. 

The increasing application of HST studies which resolve the stel-
lar populations of nearby systems has initiated quantitative investi-
gation of the SFR (t) in these systems through comparison of the 
observed HR diagram with synthetic ones e.g. Chiosi et al. (1989), 
Aparicio et al. (1990) and Mould et al. (1997) using Magellanic and 
local clusters, and Mighell & Butcher (1992), Smecker-Hane et al. 
(1994), Tolstoy (1995), Aparicio & Gallart (1995) and Mighell (1997) 
using dSph companions to the Milky Way. The framework within 
which this problem is generally faced is to construct a statistical es-
timator of how closely a synthetic HR diagram constructed from an 
assumed SFR (t) resembles the observed one, and then to select the 
SFR(t), from amongst a set of plausible ones, which maximizes the 
value of this estimator (e.g. Tolstoy & Saha 1996). The most rigor-
ous estimator is probably the likelihood, as defined through Bayes's 
theorem. In practice this states that one should look for the model 
which maximizes the probability of the observed data set having 
arisen from it. In comparing two or more candidate models through 
the likelihood one takes into account the position of each star in 
the observed HR diagram, there being no necessity to smooth the 
data into a continuous distribution, or to include only specific fea-
tures of the HR diagram, such that all the available information 
contributes to the comparison. The robustness of the approach is 
undermined by the degree of subjectivity associated with defining 
the set of plausible models one is going to consider. Further, as none 
of the statistical estimators has an absolute normalization, in the 
end one is left with that model, of the ones one started by propos-
ing, which best reproduces the data, which might not necessarily be 
a "good" approximation to the true SFR(t). The likelihood of the 
data having arisen from a particular model can only be calculated if 
one has the data, the errors, and the particular model fully specified. 
This last condition has led to the almost exclusive use of parametric 
SFR(tys. 

However, in real stellar systems, one expects a complex SFR(t), 
where the aim of a particular parameterization is to reject a particu-
lar astrophysical model and favour another. If it is the precise form 
of the SFR (t) which serves as a constraint on a theory (e.g. a col-
lection of randomly located bursts as fragments accrete or a more 
uniform function as gas cools, for the build up of the Galaxy), one 
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must consider the most general SFR(t). The less one assumes a 
priori about the SFR(t) one is solving for, the more objective the 
inference will be. 

A first attempt at solving for SFR (t) non parametrically is to 
break the star formation history into a series of bursts, and to solve 
for the amplitude of each one e.g. Dolphin (1997). Other variants of 
this approach are possible, for example Hurley-Keller et al. (1998) 
who parameterize the SFR (t) of the Carina dwarf as consisting of 3 
bursts, and solve for the positions, durations and amplitudes of each. 
In principle, as the number of bursts considered tends to infinity, the 
full SFR(t) is recovered. The difficulty in increasing the number 
of bursts considerably lies in that each extra burst increases the di-
mension of the parameter space by at least one. As the likelihood 
hyper-surface will in general be quite complex, the only reliable way 
of finding the absolute maximum is to evaluate the likelihood func-
tion over the entire parameter space. This last procedure is clearly 
not a practical approach, as calculating the likelihood of a complete 
set of thousands of observed stars for even one single model is a 
lengthy procedure, let alone throughout a 100 or more dimensional 
space. 

Further, methods which consider a large parameter space often 
do not use a full likelihood analysis, but simpler statistical estima-
tors such as luminosity functions (Aparicio & Gallart 1995, Mighell 
1997). In this last approach the HR diagram is divided into cells and 
the numbers of stars in each used as independent variables to con-
struct a statistical estimator. The resulting statistic is not strictly 
rigorous as the numbers of stars in different cells are in fact corre-
lated through the underlying IMF and SFR(t). Presently, methods 
of comparing simulated HR diagrams with observations can be clas-
sified according to the statistical criterion used in the comparison. 
A few examples of the variety in these categories are Tolstoy (1995) 
and Mould et al. (1997) who use full maximum likelihood statistics, 
Dolphin (1997) and Ng (1998) who use chi-squared statistics, and 
Aparicio et al. (1997) and Hurley-Keller et al. (1998) who break 
the HR diagrams into luminosity functions before constructing the 
statistical estimator. 

Since Gaia and the Milky Way evaluation require a more general 
approach, we (Hernandez, Valls-Gabaud & Gilmore 1999 MNRAS 
in press; Hernandez, Gilmore & Valls-Gabaud 1999, MNRAS sub-
mitted) developed a variational calculus method of solving directly 
for the maximum likelihood SFR(t), which does not require any 
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assumptions on the function one is trying to recover, or to evaluate 
the likelihood of any of the SFR( tys being considered (all continu-
ous functions of time). We construct an integro-differential equation 
which is iterated to find a SFR (t) which yields a vanishing first vari-
ation for the likelihood. At each iteration the SFR (t) is solved with 
an arbitrary time resolution. Conveniently, computation times scale 
only linearly with this time resolution. This allows a very fine recon-
struction of the SFR(t), which would be prohibitively expensive in 
a parametric decomposition of the SFR(t). 

Full details of the model, the extensive tests and calibrations, 
and its application to new HST data for the galactic dSph satel-
lites, are presented in the references noted (Hernandez et al. 1999a, 
1999b). In this note I summarize the method and its validity. I 
then simulate Gaia observations of an old metal-poor stellar popula-
tion, a young metal rich population, and a mixed population. These 
simulations show that Gaia data can indeed meet the scientific goal 
required, quantify the metallicity accuracy needed, and quantify the 
photometric precision required by Gaia at faint magnitudes. 

2. DERIVING STAR FORMATION HISTORIES 

Our goal is to recover the star formation history which gave rise 
to an observed population of stars, described by SFR(t), the star 
formation rate as a function of time. As we want our method to 
be of a very general applicability, we shall assume absolutely noth-
ing about the SFR(t) we are trying to recover, beyond that it be 
a continuous function of time. It is important not to impose any a 
priori parameterization on SFR(t), since it is precisely the form of 
this function that we are trying to recover from the data: SFR(t) 
will be fixed entirely by the data. One obvious constraint will be the 
total number of stars produced, which furnishes a normalization con-
dition on SFR(t), over the range of masses over which stars can be 
observed. Obtaining the faint end slope of the initial mass function 
is an entirely different problem which we shall not address. Here we 
will be concerned only with that fraction of the total star formation 
which produced stars still readily visible today. It is this that we are 
calling the SFR(t). We note that this requires an accurate determi-
nation of the local Gaia completeness limit, but does not imply that 
this completeness limit have a value near unity. 

The final observed HR diagrams as a function of place are the 
result of the star formation histories in those places, later dynamical 
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evolution, and also of the relevant initial mass function, the metal-
licity and the stellar evolutionary processes. As we see later, it is 
essential that the IMF near the turnoff, and the star by star metal-
licity, be independently known. It is this requirement which is the 
primary science case for Gaia to determine stellar metallicity, and 
which constrains the requisite photometric performance. [Note that 
there are other astrophysical systems for which this essentially holds, 
and for which only the star formation history is poorly known. Ex-
amples of such systems are some of the dwarf spheroidal companions 
to our Galaxy, whose star formation histories we have derived.] 

Further, we are only interested in the stars which end up in the 
observations at the distance of the galactic center, and the stellar 
edge of the disk. This determines the mass regime over which the 
initial mass function needs to be well established. Theoretical studies 
of stellar isochrones have advanced significantly over the last decade, 
and now there seems to be little uncertainty in the physical properties 
of stars over the mass range 0.6-3 solar masses, during all but the 
shortest lived periods. Here we are using the latest Padova isochrones 
(Fagotto et al. 1994, Girardi et al. 1996), including most stages of 
stellar evolution up to the RGB phase. Our detailed inferences will 
depend on the precise details of the isochrones we use. Our aim here 
is not to insist upon any particular age calibration, but basically to 
prove the method. Any and all isochrones can be used. 

2.1. The method 

Having a fixed set of observations A = (Ai , . . . , An), which we are 
assuming resulted from a model which belongs to a certain known 
set of models B = Bi,... we want to find the model which has the 
highest probability of resulting in the observed data set, A. That is, 
we wish to identify the model which maximizes P(ABi), the joint 
probability of A occurring for a given model B¿. From the definition 
of conditional probabilities, 

P(ABi) = P(A\Bi) • P(Bi) = P(Bi\A) • P(A) (1) 

where P(A\Bi) is the conditional probability of observing A given 
a fixed model B{ occurred, P(B{\A) is the conditional probability 
of model Bi given the observed data A, and P(A), P(B{) are the 
independent probabilities of A and Bi, respectively. Further, if the 
Bis are exclusive and exhaustive, 



208 G. Gilmore 

P{A) = Jp(A\Bi) • P(Bi) = 1/C (2 ) 

where C is a constant, so that equation (1) becomes: 

P(Bi\A) = C • P(A\Bi) • P(Bi) (3 ) 

which is Bayes' theorem. P ( B i ) is called the prior distribution, and 
defines what is known about model B{ without any knowledge of the 
data. As we want to maximize the relevance of the data in our infer-
ence, we can take the hypothesis of equal prior probabilities, finding 
the maximum likelihood model under this assumption is hence sim-
plified to finding the model B{ for which P(A\B{) is maximized. Our 
set of models from which the optimum SFR ( t ) is to be chosen in-
cludes all continuous, twice differentiable functions of time such that 
the total number of stars formed does not conflict with the observed 
HR diagram. 

In order to find the SFR (t) which maximizes the probability of 
the observed HR diagram resulting from it, we first have to introduce 
a statistical model to calculate the probability of the data resulting 
from a given SFR(t). Take one particular star, having an observed 
luminosity and colour, /¿,Cj, and an intrinsic luminosity and colour 
Li ,Ci , which will usually differ due to observational errors, where the 
index 1 < i < n distinguishes between the n observed stars making 
up the HR diagram. The probability of this observed point being a 
star belonging to a particular isochrone C(L]tj), i.e., being part of 
the stars formed by SFR(tj) will be given by: 

In Eq. (4) cr(/,) denotes the observational error in the measure-
ment of the colour of the ¿th observed star, which is a function of the 
luminosity of this star, and which we are assuming follows a Gaus-
sian distribution. In real data, the errors in the luminosity are much 
smaller than in the colour determination, which comes from subtract-
ing two observed quantities. For simplicity, we only consider errors 
in the colour, which increase with decreasing luminosity, in a way 
determined by the particular observation. In this case Li = /, which 
we adopt throughout, the generalization to an error ellipsoid being 
trivial. C ( L i ] t j ) is the colour the observed star having luminosity /,• 
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would have if it had actually formed at t = tj. p(Li]tj) is the density 
of stars along the isochrone C(L; tj) around the luminosity of the ob-
served star, for an isochrone containing a unit total mass of stars. 
Therefore, for stars in their main sequence phase, p(L\tj) is actu-
ally the initial mass function expressed in terms of the luminosity 
of the stars. Further along the isochrone it contains the initial mass 
function convolved with the appropriate evolutionary track. Finally, 
SFR(tj) indicates the total mass of stars contained in the isochrone 
in question, and is the only quantity in Eq. (4) which we ignore, 
given an observational HR diagram, an initial mass function and a 
continuous set of isochrones. 

The probability of the observed point , Cj being the result of a 
full given SFR(t) will therefore be: 

and where to and t\ are a maximum and a minimum time needed 
to be considered, for example 0 and 15 Gyr. We shall refer to Gi(t) 
as the likelihood matrix. At this point we introduce the hypothesis 
that the n different observed points making up the total HR diagram 
are independent events, to construct: 

which is the probability that the full observed HR diagram resulted 
from a given SFR(t). This first part is essentially well known, and 
we have presented it as it was laid out in Tolstoy & Saha (1996), who 
use Eq. (6) to compare between different set proposed SFR(t)'s. 

The remainder of the development is entirely new. We shall use 
Eq. (6) to construct the Euler equation of the problem, and hence 
obtain an integro-differential equation directly for the maximum like-
lihood SFR(t), about which we shall assume nothing a priori. It is 
the functional C(SFR (t)) which we want to maximize with respect 
to SFR (t) to find the maximum likelihood star formation history. 

The condition that C(SFR) has an extremal can be written as 

<0 
where 
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6C(SFR) = 0, 
and the techniques of variational calculus brought to bear on the 
problem. Firstly, we develop the product over i using the chain rule 
for the variational derivative, and divide the resulting sum by C to 
obtain: 

» (6^SFR(t)Gi(t)dt\ = q 

¿1 \ Sto SFR(t)Gi(t)dt J 

In order to construct an integro-differential equation for SFR (t) 
we introduce the new variable Y(t) defined as: 

Y(t) = J y/SFR(t)dt SFR(t) = ( j ^ ^ j 

Introducing the above expression into Eq. (7) and developing 
the Euler equation yields, 

d*Y(t) A (Gj{t)\ dY(t) A fdGj/dt\ 
dt2 ¿ J V m J dt ¿ ^ V 1 ( 0 J { v 

where 
1 SFR(t)Gi(t)dt. 

a 
We have thus constructed an integro-differential equation whose 

solution yields a SFR(t) for which the likelihood has a vanishing 
first variation. This in effect has transformed the problem from one 
of searching for a function which maximizes a product of integrals 
(Eq. 6) to one of solving an integro-differential equation (Eq. 8). 
Solving Eq. (8) will be the main problem, as this would yield the 
required star formation history directly, without having to calculate 
C explicitly over the whole space containing all the possible SFR (t)s. 

One may now implement an iterative scheme for solving Eq. 
(8), the details of which are given in Hernandez, Vall-Gabaud &; 
Gilmore (1999). Given the complexity of the isochrones, the initial 
mass function and the unknown star formation histories we are try-
ing to recover, it is not possible to prove convergence analytically 
for the implemented iterative method. Hernandez et al. show that 
the method works remarkably well for a wide range of synthetic HR 
diagrams produced from known SFR(tys, independent of the ini-
tialization used. 

I(i) = / 
Jt 
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3. TESTING THE METHOD: A SUMMARY 

To illustrate the validity of the method, we present here a subset 
of the simulation results of Hernandez et al., where further details 
may be found. The method used here is to create an artificial colour-
magnitude diagram from a set of adopted star formation histories, 
and then to apply the method above to deduce a star formation 
history from the CMD. The true simulation input and the derived 
output are compared. 

Important general features of these simulations include the age 
resolution, choice of isochrones, and adopted IMF. To produce a real-
istic HR diagram from a proposed SFR(t) requires firstly a method 
of obtaining the colour and luminosity of a star of a given mass and 
age. Interpolating between isochrones is a risky procedure which 
can imprint spurious structure in the inference procedure, given the 
almost discontinuous way that stars' properties vary across critical 
points along the isochrones, and how these critical points vary with 
time and metallicity. 

To avoid this we use the latest Padova (Fagotto et al. 1994, 
Girardi et al. 1996) full stellar tracks, calculated at fine variable time 
intervals, and a careful interpolating method which uses only stars at 
constant evolutionary phases to construct an isochrone library. We 
calculate 100 isochrones containing 1000 uniformly spaced masses 
each, with a linear spacing between 0.1 and 15 Gyr, which determines 
the time resolution with which we implement the method to be 150 
Myr. An arbitrary time resolution can be achieved using a finer 
isochrone grid, which only increases the calculation times linearly 
with the number of intervals. Unless otherwise stated, we assume a 
metallicity of [FC/H]Q = —1.7 for the tests of the method. Although 
in comparison with real data one uses colours and magnitudes, trying 
to make these first tests as clean as possible, we perform them on 
the theoretical HR diagram, in terms only of temperature (T) and 
luminosity (L). Units throughout are LQ, degrees K, t Gyr and 
M©/ Gyr. 

Having fixed the isochrones, we now need to specify the manner 
in which the density of stars will vary along these isochrones, i.e. an 
IMF. We use the IMF derived by Kroupa et al. (1993), where a sin-
gle fit to this function is seen to hold for stars towards both galactic 
poles, and for all stars in the solar neighborhood. In analyzing the 
stellar distribution towards the galactic poles, a wide range of metal-
licities and ages is sampled, and care was taken to account for all 
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the effects this introduces, including the changing mass-luminosity 
relation at different ages and metallicities, completeness effects as a 
function of luminosity and distance, and the contribution of binaries. 
At this point we shall assume their result to be of universal validity, 
and use their fit: 

{m"1-3 0.08M© < m < 0.5M© 

m~2 2 0.50M© < m < 1.0M© (9) 
m - 2 7 1.00M© < m 

We normalize this relation such that a unit total mass is contained 
upwards of 0.08M©, although only stars in the mass range 0.6 —3M© 
can end up in the HR diagram. We can now choose a SFR(t), and 
use the IMF of Eq. (9) to populate our isochrones and create a syn-
thetic HR diagram, after including "observational" errors, assumed 
as Gaussian on logT). The dispersion is assumed to depend only on 
L, and as an illustrative example we will use: 0-035 

a { L ) = r; m o - n " • ( 1 0 ) 
[log(L) + 1] 

3.1. A simple 2-burst example 

As a first test we use a SFR (t) consisting of two Gaussian bursts 
at different epochs, of different amplitudes and total masses. This 
SFR (t) is shown by the dashed line in the right panel of Fig. 1, where 
the time axis shows the age of the corresponding stellar populations. 
The left panel of Fig. (1) shows the resulting HR diagram which 
contains a total of 3819 stars. To ensure a realistic error structure 
the shape of Eq. (10) was obtained from a fit to the errors of the 
HST observations of dSph galaxies of Unavane and Gilmore (private 
communication). The amplitude of this error is representative of 
what is seen in current HST observations, corresponding to a few 
percent photometric errors in broad-band colours at the turnoff. It 
is comparable to Gaia data for the galactic bulge. From the synthetic 
HR diagram the general features of the input SFR (t) can be seen, 
in that two basic populations are evident. Obtaining the precise 
duration and location of these two bursts requires more work, and 
the detailed shape of each is quite hard to recover. 

From the position of every one of the 1324 simulated stars with 
log!,) > 0 on Fig. (1) (see below) we construct the matrix G{(t), 
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F i g . 1. Left: synthetic HR diagram resulting from the first input 
SFR(t). The length of the bars to the right corresponds to 2a in the 
log Teff) error to each side of the dots. Right: first input SFR(t), dashed 
line. Also shown are the derived SFR(tys after 2, 4, 6, 8 and 10 iterations 
of the inversion method, dotted curves. The 12th iteration is given by 
the solid curve, showing convergence and a reliable recovery of the input 
SFR(t). 

where we further assume that the "observational" errors are well un-
derstood i.e. cr(L) is known. Since the colour of a star having a given 
luminosity can sometimes be a multi-valued function, in practice we 
check along a given isochrone, to find all possible masses a given 
observed star might have as a function of time, and add all contribu-
tions (mostly 1, sometimes 2 and occasionally 3) in the same Gi(t). 
Calculating this matrix is the only slow part of the procedure, and is 
equivalent to calculating the likelihood of one model. The likelihood 
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matrix G,(t) is the only input required by the method. The total 
number of stars is used as a normalization constraint at each iter-
ation, needed to recover SFR(t) from Y(t). As mentioned earlier, 
it is not necessary to calculate the likelihood over the solution space 
being considered, i.e. Gi(t) is only calculated once, which makes the 
method highly efficient. 

Given the degeneracy of isochrones of different ages in the main 
sequence region, the lower fraction of the HR diagram is of relevance 
only in establishing the total normalization condition, and not in 
determining the shape of the SFR(t). For this reason, we only 
include in the inference procedure stars with log!*) > 0, other stars 
are only used in fixing the overall normalization. The final results 
are not affected by this cut, but the iterative procedure converges 
much more rapidly and in a numerically more stable way if the lower 
degenerate and high error region of the HR diagram is excluded. 

In Fig. 1 we also show the results of the first 12 iterations of 
the method every 2 iterations, which form a sequence of increasing 
resemblance to the input SFR(t). The distance between successive 
iterations decreases monotonically at all ages, which together with 
the fact that after 12 iterations no further change is seen, shows 
the convergence of the method for this case. From the 2nd itera-
tion (lowest dotted curve in the burst regions) it can be seen that 
the iteration of the variational calculus equation constructed from 
maximizing the likelihood is able to recover the input SFR(t) effi-
ciently. The positions, shapes and relative masses of the two bursts 
were correctly inferred by the 2nd iteration, although it took longer 
for the method to eliminate the populations outside of the two input 
bursts. The convergence solution is in remarkable agreement with 
the input SFR(t), and only differs slightly, as seen from Fig. 1. No 
information was used in the inverting procedure beyond that which is 
available from the synthetic HR diagram, which was used extensively 
in constructing the likelihood matrix Gi(t), which is the only input 
required by the inversion. The variational calculus method recovers 
a SFR(t) for which the first variation of the likelihood vanishes, 
without assuming any a priori condition on the SFR(t), beyond 
being a continuous twice differentiate function of time. 

3.2. Testing temporal resolution 

The second test uses an input SFR (t) which differs from the pre-
vious one in that the bursts are of much shorter duration and larger 
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Fig. 2. Left: synthetic HR diagram resulting from the second input 
SFR(t). Right: second input SFR(t), dashed line. Also shown are the 3, 
6, 9, 12 and 15 iterations of the inversion method, dotted curves. The 20th 
iteration is given by the solid curve, showing convergence and a reliable 
recovery of the input SFR(t) 

amplitude, to approximately preserve the total number of stars. The 
input SFR (t) of this case is shown by the dashed curve in the right 
panel of Fig. 2. The HR diagram which results from this SFR(t) 
is shown in the left panel of Fig. 2 and shows basically the same 
populations as in Fig. 1 but with a much smaller spread, it contains 
a total of 3783 stars, with 1299 above logL) = 0. The errors in these 
two cases were equal. 

The inversion procedure is shown in the right panel of Fig. 2, 
were it can be seen that the convergence of the method remains ro-
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bust, although this time it took slightly longer, the first 15 iterations 
are shown every 3. The SFR(t) to which the method converged 
(after 20 iterations) again accurately reproduces the input one, the 
age, duration, amplitude and shape of the two input bursts were cor-
rectly inferred. That the shorter duration of the bursts was correctly 
inferred in this case shows that in the previous one the reconstructed 
age duration was not due to the spread caused by the errors, but was 
actually resolved in the data, and recovered correctly by the method. 
In this second case however, the spread due to the errors begins to be 
comparable to the intrinsic one of the input SFR(t), and causes an 
artificial broadening of the recovered stellar ages, particularly in the 
older component. This last effect causes also a slight underestimate 
in the maximum amplitude of the bursts. Reducing the duration of 
the older component further would not produce a shorter duration 
in the inferred burst, unless the errors were also reduced. 

That is, the method is capable of recovering the full age precision 
allowed by the observational errors. 

3.3. Very old populations: sensitivity to photometric errors 

The next test explores explicitly the way in which the method 
reacts to populations older than 10 Gyr, an approximate limit beyond 
which observational errors totally confuse the turn off points, in the 
adopted error distribution. A model SFR(t) is shown by the dashed 
line in the right panel of Fig. 3. The left panel of Fig. 3 shows the 
resulting HR diagram which is used in the inversion process, and 
which only marginally differs from the one of Fig. 3. 

Fig. 3 shows that the inversion procedure converged to a SFR (t) 
which is a highly accurate representation of the input SFR(t) in 
regions younger than around 10 Gyr. However, the star formation 
history for the oldest stars was not recovered. 

Fig. 4 has the same input SFR ( t) as in case 3, and differs only 
in that a much lower noise level was assumed. In constructing the 
HR diagram seen in the left panel of Fig. 4 the numerical constant 
in Eq. (10) was reduced from 0.035 to 0.01. This lower noise level 
is reflected in the clearer HR diagram, where the older population 
is now distinguishable from the noise of the younger main sequence. 
The right panel in Fig. 4 shows the result of the inversion procedure, 
which differs from case 3 mostly in the speed with which the method 
converged, only 10 iterations were needed. The few stars in the oldest 
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F i g . 3 . Left: synthetic HR diagram resulting from the fifth input 
SFR(t). Right: fifth input SFR(t), dashed line. Also shown are the 3, 
6, 9, 12 and 15 iterations of the inversion method, dotted curves. The 
20th iteration is given by the solid curve, showing convergence and a good 
recovery of the input SFR(t) for t < 10 Gyr. 

component which can be separated from the younger main sequence 
are sufficient to accurately recover the shape for this burst. 

In general, the variational calculus treatment of the maximum 
likelihood problem, together with the iterative method for solving 
the resulting equation, works well within the practical limits set by 
the "observational" errors. Having assumed only that the SFR(t) 
was a continuous function of time, the method manages to recover 
the input function quite accurately, under conditions similar to those 
feasible for Gaia observations. 
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Fig. 4. Left: synthetic HR diagram resulting from the fifth input 
SFR(t), produced using a much lower noise level. As in Fig. 1, the length 
of the bars to the right corresponds to 2a in the log L error to each side 
of the dots. Right: fifth input SFR(t), dashed line. Also shown are the 
2, 4, 6, 8 and 9 iterations of the inversion method, dotted curves. The 
10th iteration is given by the solid curve, showing rapid convergence and 
a good recovery of the input SFR(t). 

4. SENSITIVITY TO UNCERTAINTIES IN IMF, METALLICITY 
AND BINARIES 

Uncertainties in the IMF, metallicity and binaries differ from 
simple sample size or photometric error in inducing a systematic 
mismatch between the isochrones used in any specific calculation 
and those which describe the astrophysics of the HR diagram being 
inverted. The following tests show the sensitivity of the method 
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Fig. 5. Left: synthetic HR diagram resulting from the control input 
SFR(t). Right: sixth input SFR(t), dashed line. Also shown are the 3, 6, 
9, 12 and 15 iterations of the inversion method, dotted curves. The 18th 
iteration is given by the solid curve, showing convergence and an accurate 
recovery of the input SFR(t). This is used as a control case against which 
to compare variations in the assumed IMF, metallicity and binary fraction. 

to uncertainties in the input IMF, metallicities and binary fraction. 
Firstly we present Fig. 5, the synthetic HR diagram contains 6340 
stars with 1808 brighter than logX = 0, and the input SFR(t) is 
shown by the dashed line in the right panel of Fig. 5. The inversion of 
this HR diagram clearly shows again the convergence of the method 
to an accurate representation of the input SFR(t). This test was 
included to define a control case to which variations can be compared. 
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Fig. 6. Left: sixth input SFR(t), dashed line. Also shown are the 
3, 6, 9, 12 and 15 iterations of the inversion method, dotted curves. The 
18 iteration is given by the solid curve, assuming an IMF much more 
weighted towards smaller masses than the one used for the HR diagram, 
which produces a normalization error. Right: sixth input SFR(t), dashed 
line. Also shown are the 3, 6, 9, 12 and 15 iterations of the inversion 
method, dotted curves. The 18th iteration is given by the solid curve, 
assuming a metallicity one order of magnitude higher than the one used 
for the HR diagram, which results in the method converging to a younger 
SFR(t). 

4-1• IMF mismatch 

The left panel in Fig. 6 shows the results of applying the inversion 
procedure with a "wrong" IMF to the HR diagram in Fig. 5 which 
was produced using the IMF of Eq. (9). The inversion procedure 
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assumed an IMF p(m) cc m~3 for all masses. Comparing Fig. 5 
and the left panel in Fig. 6 it can be seen that the main effect of 
an error in the IMF is a distorted normalization, which is based on 
the total number of stars. The IMF used in the inversion is one in 
which low mass stars are more dominant than in the IMF used to 
construct the HR diagram, as a result, a lower SFR(t) sufficed to 
produce the correct number of stars. As the colour and luminosity 
of a star of a given age and mass are not affected by changes in 
the IMF, the location of the relevant populations was not affected. 
The net result of changing the IMF used in the inversion was a 
reduction of the recovered SFR(t) by a factor of 0.85, which is the 
factor by which the mass in stars in the mass region which we are 
sampling differs between the two IMF's. The convergence of the 
method was similarly unaffected. We can conclude that errors in 
the IMF used, within the expected uncertainties, do not affect the 
temporal structure of the derived star formation history significantly, 
but do affect its normalization. This quantifies the case for precise 
knowledge of the Gaia selection function. 

4-2. Metallicity mismatch 

In the following tests we investigate the effects of an uncertainty 
in the metallicity; the well known degeneracy between the inferred 
age and metallicity of an observed stellar population will be evident. 
Fig. 6, right panel shows the result of inverting the HR diagram of 
Fig. 5, which was produced using a metallicity of [Fe/H] = —1.7, 
using this time isochrones for [Fe/H] = —0.7 in the inversion pro-
cedure. The convergence of the method was not affected, and pro-
ceeded at the same rate as in the previous two cases, as the same HR 
diagram was used. The result of having assumed a metallicity one 
order of magnitude higher than that of the stellar population being 
inverted is a SFR(t) much younger than the input one, as can be 
seen from Fig. 6, right panel. This discrepancy is due to the fact 
that the isochrones used in the inversion have very different temper-
atures and luminosities for stars of a given mass, from those of the 
isochrones used to generate the HR diagram. Actually, the colours 
and luminosities of stars from the higher metallicity isochrones ap-
proximately correspond to those of younger stars from the lower 
metallicity isochrones, the age-metallicity degeneracy. Having used 
isochrones in the inversion procedure which do not correspond to the 
stars being studied also confuses the method and the shape of the 
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Fig. 7. Left: synthetic HR diagram resulting from the sixth input 
SFR(t), produced using a metallicity of [Fe/H]@ = —1.7 for the stars 
older than 7.5 Gyr and of [Fe/H]Q = —0.7 for the stars younger than 
7.5 Gyr. Right: sixth input SFR(t), dashed line. Also shown are the 3, 6, 
9, 12 and 15 iterations of the inversion method, dotted curves. The 18th 
iteration is given by the solid curve, assuming a constant metallicity for 
the entire evolution, which confuses the method. 

recovered SFR (t) is slightly distorted. The younger age assigned to 
the stars being analyzed also produces a slightly lower total SFR(t), 
as with a younger population a larger fraction of the stars live into 
the present day HR diagram. 

We also consider the complementary test, where the HR diagram 
is produced using a range of metallicities, and inverted assuming a 
single metallicity. This is presented in Fig. 7. 
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Fig. 7 shows the HR diagram which results from the input 
SFR(t) of Fig. 5, with the difference that on this occasion the 
metallicity was not a delta function. In this case we used a metal-
licity of [Fe/H] = — 1.7 for the stars older than 7.5 Gyr, and of 
[Fe/H] = —0.7 for the stars younger than 7.5 Gyr, i.e., a crude en-
richment history. This is clearly seen in Fig. 7, where the two popula-
tions having different metallicities are evident, from the width of the 
RGB. As in all previous cases, the noise level was not changed. The 
result of applying the inversion method assuming a single metallicity 
of [Fe/H] = —1.7 is shown in the right panel of Fig. 7. The method 
correctly identifies the half of the SFR(t) with the lower metallicity; 
the higher metallicity population is totally misinterpreted. Actually, 
the age the inversion procedure should assign to the high metallicity 
component is in fact greater than 15 Gyr, which is in contradiction 
with the fixed boundary condition of SFR (15) = 0. This makes 
the inversion procedure somewhat unstable, which in principle can 
be used to indicate that the isochrones being used in the inversion 
procedure do not correspond to the studied stars. The two distinct 
giant branches seen in this HR diagram indicate a difference in the 
metallicities of both populations. 

As it might have been expected, uncertainties in the metallicity 
distort the inference procedure significantly, making determination of 
star formation histories robust only in cases where individual metal-
licities are available. 

4-3. Binaries mismatch: optical and physical 

As a final variation we consider the effects a non-zero unrecog-
nized binary fraction would produce, which is shown in Fig. 8. It 
shows the HR diagram which results from the SFR(t) of the pre-
vious tests, with the same IMF and metallicity of Fig. 5, but with 
the inclusion of a binary fraction of 0.5. Half of the stars generated 
had a secondary companion picked from the same IMF. The lumi-
nosity of the resulting binary is given by the sum of the luminosi-
ties of the two components, and its combined effective temperature 
through the Stefan-Boltzmann law. In the current observations of 
dSph galaxies and other similarly crowded fields the main contribu-
tion to the "binary" population comes not from physical binaries, 
but from observational confusion. Attempting to model this effect 
we picked the secondary star from the same IMF as the primary one 
(e.g. see Kroupa et al. (1993) for a discussion of binary confusion in 
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Fig. 8. Left: synthetic HR diagram resulting from the sixth in-
put SFR(t), produced using a binary fraction of 0.5. Right: sixth input 
SFR (t), dashed line. Also shown are the 3, 6, 9, 12 and 15 iterations of the 
inversion method, dotted curves. The 18th iteration is given by the solid 
curve, assuming a binary fraction of 0, which results in a normalization 
error. The slight broadening of the MS is interpreted by the method as a 
small older component. 

observations). We took the value of 0.5 for the binary fraction as a 
representative number from Kroupa et al. (1993). 

As can be seen from comparing Figs. 8 and 5, the main result 
of having included a large unresolved binary fraction is a reduction 
in the total number of stars; the morphology of the HR diagram was 
not significantly affected. This last effect is due to the fact that the 
offset between the single star and the binary star main sequences 
is comparable to the noise in that region, producing only a slightly 
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broadened main sequence. The effects of binaries in other parts of 
the diagram are negligible, as the addition of a main sequence star to 
a giant does not affect the observed properties of the giant, and the 
odds of getting a binary giant are slim. The results of the inversion 
method are shown in the right panel of Fig. 8, where the dashed 
line shows the input SFR(t), and the dotted and solid curves the 
first 18 iterations of the method, every 3. The convergence of the 
method is not affected, and proceeds quite rapidly. It can be seen 
that the method accurately identifies the age, duration and structure 
of the input burst, although with a normalization error which results 
from the reduction in the total number of stars seen. A further 
slight discrepancy between the input SFR(t) and the recovered one 
appears at old ages, as the method confuses the broadening in the 
main sequence for a minor, extended age population. As with the 
errors in the IMF, having neglected the effects of binaries affects 
mostly the normalization of the recovered SFR(t), distorting the 
general shape only slightly. 

5. CONCLUSIONS CONCERNING THE METHOD 

We can summarize our methodological results as follows: 
(1) We have introduced a variational calculus scheme for solv-

ing maximum likelihood problems, and tested it successfully in the 
particular case of inverting HR diagrams. 

(2) Assuming a known IMF and metallicity we have presented 
a non-parametric method for inverting HR diagrams which yields 
good results when recovering stellar populations younger than 10 
Gyr, with data quality similar to those attained in current HST 
observations of dSph galaxies. Populations older than 10 Gyr can 
only be recovered equally well from HR diagrams with much reduced 
observational errors. 

(3) Uncertainties in the IMF and binary fractions result in nor-
malization errors on the total SFR(t). Given the existence of an 
age-metallicity degeneracy on the colours and magnitudes of stars, 
an error in the assumed metallicity results in a seriously mistaken 
SFR (t). This makes the version of the variational calculus approach 
we present here useful only in cases where the metallicity of the stars 
is knowable independently of the form of the colour-magnitude dia-
gram near the turnoff. 
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Fig. 9. Left: synthetic HR diagram for an "old" component, us-
ing isochrones of [Fe/H\ = -1.5, and including a 10% observational error. 
Right: inferred SFR(t) for the "old" component, assuming the correct 
metallicity of [Fe/H\ = -1.5, solid curve. The dotted curve shows the in-
put SFR(t). Comparison of the two curves shows the accuracy to which 
the age structure of an old population could be recovered using current 
statistical methods, if data having errors of <10 % in luminosity and tem-
perature, and comparable in metallicity, were available. 
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Fig. 10. Left: same HR diagram as in Fig. 9. Right: inferred SFR(t) 
for the "old" component, assuming a metallicity of [Fe/B\ = 0, solid curve. 
The dotted curve shows the input SFR(t). Comparing these two curves 
shows the extent of the age-metallicity degeneracy in this case. Thus, 
unless metallicities are available, gross analysis errors are inevitable. 
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Fig. 11. Left: synthetic HR diagram for an "arm" component, using 
isochrones of solar metallicity, and including a 10 % observational error. 
Right: inferred SFR(t) for the "arm" component, assuming the correct 
metallicity of [Fe/H\ = 0.0, solid curve. The dotted curve shows the in-
put SFR(t). Comparison of the two curves shows the accuracy to which 
the age structure of a young population could be recovered using current 
statistical methods, if data having errors of <10% were available. 
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Fig. 12. Left: same HR diagram as in Fig. 11. Right: inferred 
SFR(t) for the "arm" component, assuming a metallicity slightly off, of 
[.Fe/H\ = 0.18, solid curve. The dotted curve shows the input SFR(t). 
Comparing these two curves shows the extent of the age-metallicity de-
generacy in this case i.e. fine details in the build up history of the disk 
could be accurately recovered, if metallicities of the relevant populations 
were known to a ~ 0.2 dex accuracy. 
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Fig. 1 3 . Left: combined HR diagram including both components. 
Right: inferred SFR(t) for the combined HR diagram, assuming a metal-
licity of [Fe/H\ = -1 .5 , solid curve. The dotted curve shows the total 
SFR(t) for these two components. Comparison of the two curves shows 
that useful information relative to galactic structure can only be obtained 
if the different populations present in an integrated HR diagram can be 
separated. 
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6. SIMULATIONS RELEVANT TO GAIA 

The main-sequence turnoff of the oldest stellar populations cor-
responds to apparent magnitude ~ 20 at the galactic center, and near 
the apparent outer edge of the disk. Gaia can therefore determine 
the full star formation history of the near half of the Milky Way for 
all ages. This provides a sufficiently large sample that the global star 
formation history of our Galaxy can indeed be determined by Gaia. 
The star formation history at more recent times can also be deter-
mined for larger distances, especially in the Magellanic Clouds and 
Sgr dSph. Such determinations however require metallicity measures 
accurate to about 0.2 dex, and photometric data able to provide stel-
lar effective temperatures good to about 10 % of Teff, for stars at and 
above the turnoff. 

Figures 9-13 illustrate calculations specific to Gaia observations 
of stars at a distance of ~ 10 kpc. 

7. CONCLUSIONS 

The general implications for the Gaia mission include: 
(1) The Gaia data set can be analysed to determine the star forma-

tion history of the Milky Way Galaxy, one of our primary science 
goals; 

(2) This determination requires a well-known selection function from 
the central bulge to the outer galactic disk, at the Gaia limiting 
magnitude; 

(3) Individual stellar metallicities are required for a large, well-
defined, although not necessarily complete, sample of stars, with 
an accuracy ideally as good as 0.2 dex; 

(4) Effective temperatures must be determinable for these same 
stars with an accuracy of about 10 %; 

(5) This precision shares the final uncertainty equally between stel-
lar temperature, stellar metallicity and distance uncertainty. 
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