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Abstract. Objective determination of a star formation history from
a colour-magnitude diagram, independently of assumed parametric
descriptions, is a requirement if Gaia is to determine the evolution-
ary history of the Galaxy. We introduce a new method for solving
maximum likelihood problems through variational calculus, and ap-
ply it to the case of recovering an unknown star formation history,
SFR(t), from a resulting HR diagram. This approach allows a to-
tally non-parametric solution which has the advantage of requiring
no initial assumptions on the SFR(¢).
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1. INTRODUCTION

A primary scientific requirement of the Gaza mission is determi-
nation of the star formation histories, as described by the temporal
evolution of the star formation rate, SFR(t), and the cumulative
numbers of stars formed, of the bulge, inner disk, solar neighbour-
hood, outer disk and halo of the Milky Way. In practise, uncer-
tainties in the theories of stellar formation and evolution, as well
as degeneracy in a stars’ observational parameters between age and
metallicity, not to mention observational errors and unknown dis-
tance and reddening corrections, make inferring SFR(t) for mixed
stellar populations difficult. Even assuming a known stellar initial
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mass function (IMF) and metallicity, a given set of isochrones and
no distance or reddening uncertainties, recovering the SFR (t) which
gave rise to a given HR diagram is not trivial.

The increasing application of HST studies which resolve the stel-
lar populations of nearby systems has initiated quantitative investi-
gation of the SFR(t) in these systems through comparison of the
observed HR diagram with synthetic ones e.g. Chiosi et al. (1989),
Aparicio et al. (1990) and Mould et al. (1997) using Magellanic and
local clusters, and Mighell & Butcher (1992), Smecker-Hane et al.
(1994), Tolstoy (1995), Aparicio & Gallart (1995) and Mighell (1997)
using dSph compamons to the Milky Way. The framework within
which this problem is generally faced is to construct a statistical es-
timator of how closely a synthetic HR diagram constructed from an
assumed SF R (t) resembles the observed one, and then to select the
SFR(t), from amongst a set of plausible ones, which maximizes the
value of this estimator (e.g. Tolstoy & Saha 1996). The most rigor-
ous estimator is probably the likelihood, as defined through Bayes’s
theorem. In practice this states that one should look for the model
which maximizes the probability of the observed data set having
arisen from it. In comparing two or more candidate models through
the likelihood one takes into account the position of each star in
the observed HR diagram, there being no necessity to smooth the
data into a continuous distribution, or to include only specific fea-
tures of the HR diagram, such that all the available information
contributes to the comparison. The robustness of the approach is
undermined by the degree of subjectivity associated with defining
the set of plausible models one is going to consider. Further, as none
of the statistical estimators has an absolute normalization, in the
end one is left with that model, of the ones one started by propos-
ing, which best reproduces the data, which might not necessarily be
a “good” approximation to the true SFR(t). The likelihood of the
data having arisen from a particular model can only be calculated if
one has the data, the errors, and the particular model fully specified.
This last condition has led to the almost exclusive use of parametric
SFR(t)’s.

However, in real stellar systems, one expects a complex SFR (t),
where the aim of a particular parameterization is to reject a particu-
lar astrophysical model and favour another. If it is the precise form
of the SFR(t) which serves as a constraint on a theory (e.g. a col-
lection of randomly located bursts as fragments accrete or a more
uniform function as gas cools, for the build up of the Galaxy), one



Star formation history of the Milky Way 205

must consider the most general SFR(t). The less one assumes a
prior: about the SFR(t) one is solving for, the more objective the
inference will be.

A first attempt at solving for SFR(t) non parametrically is to
break the star formation history into a series of bursts, and to solve
for the amplitude of each one e.g. Dolphin (1997). Other variants of
this approach are possible, for example Hurley-Keller et al. (1998)
who parameterize the SF R (t) of the Carina dwarf as consisting of 3
bursts, and solve for the positions, durations and amplitudes of each.
In principle, as the number of bursts considered tends to infinity, the
full SFR(t) is recovered. The difficulty in increasing the number
of bursts considerably lies in that each extra burst increases the di-
mension of the parameter space by at least one. As the likelihood
hyper-surface will in general be quite complex, the only reliable way
of finding the absolute maximum is to evaluate the likelihood func-
tion over the entire parameter space. This last procedure is clearly
not a practical approach, as calculating the likelihood of a complete
set of thousands of observed stars for even one single model is a
lengthy procedure, let alone throughout a 100 or more dimensional
space.

Further, methods which consider a large parameter space often
do not use a full likelihood analysis, but simpler statistical estima-
tors such as luminosity functions (Aparicio & Gallart 1995, Mighell
1997). In this last approach the HR diagram is divided into cells and
the numbers of stars in each used as independent variables to con-
struct a statistical estimator. The resulting statistic is not strictly
rigorous as the numbers of stars in different cells are in fact corre-
lated through the underlying IMF and SFR(t). Presently, methods
of comparing simulated HR diagrams with observations can be clas-
sified according to the statistical criterion used in the comparison.
A few examples of the variety in these categories are Tolstoy (1995)
and Mould et al. (1997) who use full maximum likelihood statistics,
Dolphin (1997) and Ng (1998) who use chi-squared statistics, and
Aparicio et al. (1997) and Hurley-Keller et al. (1998) who break
the HR diagrams into luminosity functions before constructing the
statistical estimator.

Since Gaia and the Milky Way evaluation require a more general
approach, we (Hernandez, Valls-Gabaud & Gilmore 1999 MNRAS
in press; Hernandez, Gilmore & Valls-Gabaud 1999, MNRAS sub-
mitted) developed a variational calculus method of solving directly
for the maximum likelihood SFR(t), which does not require any
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assumptions on the function one is trying to recover, or to evaluate
the likelihood of any of the SFR(t)’s being considered (all continu-
ous functions of time). We construct an integro-differential equation
which is iterated to find a SFR(t) which yields a vanishing first vari-
ation for the likelihood. At each iteration the SFR(t) is solved with
an arbitrary time resolution. Conveniently, computation times scale
only linearly with this time resolution. This allows a very fine recon-
struction of the SFR(t), which would be prohibitively expensive in
a parametric decomposition of the SFR(t).

Full details of the model, the extensive tests and calibrations,
and its application to new HST data for the galactic dSph satel-
lites, are presented in the references noted (Hernandez et al. 1999a,
1999b). In this note I summarize the method and its validity. I
then simulate Gata observations of an old metal-poor stellar popula-
tion, a young metal rich population, and a mixed population. These
simulations show that Gaie data can indeed meet the scientific goal
required, quantify the metallicity accuracy needed, and quantify the
photometric precision required by Gaia at faint magnitudes.

2. DERIVING STAR FORMATION HISTORIES

Our goal is to recover the star formation history which gave rise
to an observed population of stars, described by SFR(t), the star
formation rate as a function of time. As we want our method to
be of a very general applicability, we shall assume absolutely noth-
ing about the SFR(t) we are trying to recover, beyond that it be
a continuous function of time. It is important not to impose any a
priori parameterization on SFR(t), since it is precisely the form of
this function that we are trying to recover from the data: SFR(t)
will be fixed entirely by the data. One obvious constraint will be the
total number of stars produced, which furnishes a normalization con-
dition on SFR(t), over the range of masses over which stars can be
observed. Obtaining the faint end slope of the initial mass function
is an entirely different problem which we shall not address. Here we
will be concerned only with that fraction of the total star formation
which produced stars still readily visible today. It is this that we are
calling the SFR (t). We note that this requires an accurate determi-
nation of the local Gaia completeness limit, but does not imply that
this completeness limit have a value near unlty

The final observed HR d1agrams as a function of place are the
result of the star formation histories in those places, later dynamical
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evolution, and also of the relevant initial mass function, the metal-
licity and the stellar evolutionary processes. As we see later, it is
essential that the IMF near the turnoff, and the star by star metal-
licity, be independently known. It is this requirement which is the
primary science case for Gaie to determine stellar metallicity, and
which constrains the requisite photometric performance. [Note that
there are other astrophysical systems for which this essentially holds,
and for which only the star formation history is poorly known. Ex-
amples of such systems are some of the dwarf spheroidal companions
to our Galaxy, whose star formation histories we have derived.]

Further, we are only interested in the stars which end up in the
observations at the distance of the galactic center, and the stellar
edge of the disk. This determines the mass regime over which the
initial mass function needs to be well established. Theoretical studies
of stellar isochrones have advanced significantly over the last decade,
and now there seems to be little uncertainty in the physical properties
of stars over the mass range 0.6-3 solar masses, during all but the
shortest lived periods. Here we are using the latest Padova isochrones
(Fagotto et al. 1994, Girardi et al. 1996), including most stages of
stellar evolution up to the RGB phase. Our detailed inferences will
depend on the precise details of the isochrones we use. Our aim here
is not to insist upon any particular age calibration, but basically to
prove the method. Any and all isochrones can be used.

2.1. The method

Having a fixed set of observations A = (A4;, ..., An), which we are
assuming resulted from a model which belongs to a certain known
set of models B = By,... we want to find the model which has the
highest probability of resulting in the observed data set, A. That is,
we wish to identify the model which maximizes P(AB;), the joint
probability of A occurring for a given model B;. From the definition
of conditional probabilities,

P(AB;) = P(A|B;)- P(B;) = P(Bi|A) - P(4) (1)

where P(A|B;) is the conditional probability of observing A given
a fixed model B; occurred, P(B;|A) is the conditional probability
of model B; given the observed data A, and P(A), P(B;) are the
independent probabilities of A and B;, respectively. Further, if the
Bis are exclusive and exhaustive,
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P(4) = [ P(4iB) - P(B) =1/C (2)

where C' is a constant, so that equation (1) becomes:
P(Bi|4) = C - P(A|B;) - P(B)) (3)

which is Bayes’ theorem. P(B;) is called the prior distribution, and
defines what is known about model B; without any knowledge of the
data. As we want to maximize the relevance of the data in our infer-
ence, we can take the hypothesis of equal prior probabilities, finding
the maximum likelihood model under this assumption is hence sim-
plified to finding the model B; for which P(A|B;) is maximized. Our
set of models from which the optimum SFR(t) is to be chosen in-
cludes all continuous, twice differentiable functions of time such that
the total number of stars formed does not conflict with the observed
HR diagram.

In order to find the SFR (t) which maximizes the probability of
the observed HR diagram resulting from it, we first have to introduce
a statistical model to calculate the probability of the data resulting
from a given SFR(t). Take one particular star, having an observed
luminosity and colour, /;, ¢;, and an intrinsic luminosity and colour
L;, C;, which will usually differ due to observational errors, where the
index 1 < ¢ < n distinguishes between the n observed stars making
up the HR diagram. The probability of this observed point being a
star belonging to a particular isochrone C(L;t;), i.e., being part of
the stars formed by SFR(t;) will be given by:

Py(t;) = SFR (“)—5(2—?;8 ?)eXp <_ [C(é} ;’2?1,))— al ) O]

In Eq. (4) o(l;) denotes the observational error in the measure-
ment of the colour of the ¢th observed star, which is a function of the
luminosity of this star, and which we are assuming follows a Gaus-
sian distribution. In real data, the errors in the luminosity are much
smaller than in the colour determination, which comes from subtract-
ing two observed quantities. For simplicity, we only consider errors
in the colour, which increase with decreasing luminosity, in a way
determined by the particular observation. In this case L; = I; which
we adopt throughout, the generalization to an error ellipsoid being
trivial. C(L;;t;) is the colour the observed star having luminosity I;
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would have if it had actually formed at ¢t = ¢;. p(L;;t;) is the density
of stars along the isochrone C(L;;) around the luminosity of the ob-
served star, /;, for an isochrone containing a unit total mass of stars.
Therefore, for stars in their main sequence phase, p(L;t;) is actu-
ally the initial mass function expressed in terms of the luminosity
of the stars. Further along the isochrone it contains the initial mass
function convolved with the appropriate evolutionary track. Finally,
SFR(t;) indicates the total mass of stars contained in the isochrone
in question, and is the only quantity in Eq. (4) which we ignore,
given an observational HR diagram, an initial mass function and a
continuous set of isochrones.

The probability of the observed point [;, ¢; being the result of a
full given SFR(t) will therefore be:

Pi(SFR(t)) = / " SFR (t)Gi(t)dt (5)

to

where

it = ks p(‘[c(zfjéf,)i)_ C‘])

and where ¢ty and ¢; are a maximum and a minimum time needed
to be considered, for example 0 and 15 Gyr. We shall refer to G;(t)
as the likelihood matrix. At this point we introduce the hypothesis
that the n different observed points making up the total HR diagram
are independent events, to construct:

n t1
c=]] ( / SFR(t)Gl-(t)dt> (6)
i=1 o '
which is the probability that the full observed HR diagram resulted
from a given SFR(t). This first part is essentially well known, and
we have presented it as it was laid out in Tolstoy & Saha (1996), who
use Eq. (6) to compare between different set proposed SFR(t)'s.
The remainder of the development is entirely new. We shall use
Eq. (6) to construct the Euler equation of the problem, and hence
obtain an integro-differential equation directly for the maximum like-
lihood SFR(t), about which we shall assume nothing a priori. It is
the functional L(SFR(t)) which we want to maximize with respect
to SFR(t) to find the maximum likelihood star formation history.

The condition that £(SFR) has an extremal can be written as
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§C(SFR) =0,

and the techniques of variational calculus brought to bear on the
problem. Firstly, we develop the product over i using the chain rule
for the variational derivative, and divide the resulting sum by £ to

obtain:
" (8 [ SFR(t)Gi(t)dt
Z( "t SFR()G; (t)dt) o ()

=1

In order to construct an integro-differential equation for SFR(t)
we introduce the new variable Y(¢) defined as:

v = [ VIFR®w = sFr@ = (40

Introducing the above expression into Eq. (7) and developing
the Euler equation yields,

TWEED-TEE

t
I(t) = SFR(t)G:(t)dt.
to

We have thus constructed an integro-differential equation whose
solution yields a SFR(t) for which the likelihood has a vanishing
first variation. This in effect has transformed the problem from one
of searching for a function which maximizes a product of integrals
(Eq. 6) to one of solving an integro-differential equation (Eq. 8).
Solving Eq. (8) will be the main problem, as this would yield the
required star formation history directly, without having to calculate
L explicitly over the whole space containing all the possible SFR(t)s.

One may now implement an iterative scheme for solving Eq.
(8), the details of which are given in Hernandez, Vall-Gabaud &
Gilmore (1999). Given the complexity of the isochrones, the initial
mass function and the unknown star formation histories we are try-
ing to recover, it is not possible to prove convergence analytically
for the implemented iterative method. Hernandez et al. show that
the method works remarkably well for a wide range of synthetic HR
diagrams produced from known SFR(t)’s, independent of the ini-
tialization used.

where
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3. TESTING THE METHOD: A SUMMARY

To illustrate the validity of the method, we present here a subset
of the simulation results of Hernandez et al., where further details
may be found. The method used here is to create an artificial colour-
magnitude diagram from a set of adopted star formation histories,
and then to apply the method above to deduce a star formation
history from the CMD. The true simulation input and the derived
output are compared.

Important general features of these simulations include the age
resolution, choice of isochrones, and adopted IMF. To produce a real-
istic HR diagram from a proposed SF R (t) requires firstly a method
of obtaining the colour and luminosity of a star of a given mass and
age. Interpolating between isochrones is a risky procedure which
can imprint spurious structure in the inference procedure, given the
almost discontinuous way that stars’ properties vary across critical
points along the isochrones, and how these critical points vary with
time and metallicity.

To avoid this we use the latest Padova (Fagotto et al. 1994,
Girardi et al. 1996) full stellar tracks, calculated at fine variable time
intervals, and a careful interpolating method which uses only stars at
constant evolutionary phases to construct an isochrone library. We
calculate 100 isochrones containing 1000 uniformly spaced masses
each, with a linear spacing between 0.1 and 15 Gyr, which determines
the time resolution with which we implement the method to be 150
Myr. An arbitrary time resolution can be achieved using a finer
isochrone grid, which only increases the calculation times linearly
with the number of intervals. Unless otherwise stated, we assume a
metallicity of [F'e/H]g = —1.7 for the tests of the method. Although
in comparison with real data one uses colours and magnitudes, trying
to make these first tests as clean as possible, we perform them on
the theoretical HR diagram, in terms only of temperature (T') and
luminosity (L). Units throughout are Lg, degrees K, ¢t Gyr and
M, ® / Gyr.

Having fixed the isochrones, we now need to specify the manner
in which the density of stars will vary along these isochrones, i.e. an
IMF. We use the IMF derived by Kroupa et al. (1993), where a sin-
gle fit to this function is seen to hold for stars towards both galactic
poles, and for all stars in the solar neighborhood. In analyzing the
stellar distribution towards the galactic poles, a wide range of metal-
licities and ages is sampled, and care was taken to account for all
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the effects this introduces, including the changing mass-luminosity
relation at different ages and metallicities, completeness effects as a
function of luminosity and distance, and the contribution of binaries.
At this point we shall assume their result to be of universal validity,
and use their fit:

m~13 0.08 My < m < 0.5Mg
p(m) < ¢ m™22 0.50Mg < m < 1.0Mg (9)
m=27 1.00Mg < m

We normalize this relation such that a unit total mass is contained
upwards of 0.08 M, although only stars in the mass range 0.6 —3M,
can end up in the HR diagram. We can now choose a SFR(t), and
use the IMF of Eq. (9) to populate our isochrones and create a syn-
thetic HR diagram, after including “observational” errors, assumed
as Gaussian on logT'). The dispersion is assumed to depend only on
L, and as an illustrative example we will use:

o(L) = 003 _
[log(L) + 1]

(10)

3.1. A simple 2-burst example

As a first test we use a SF R (t) consisting of two Gaussian bursts
at different epochs, of different amplitudes and total masses. This
SFR(t) is shown by the dashed line in the right panel of Fig. 1, where
the time axis shows the age of the corresponding stellar populations.
The left panel of Fig. (1) shows the resulting HR diagram which
contains a total of 3819 stars. To ensure a realistic error structure
the shape of Eq. (10) was obtained from a fit to the errors of the
HST observations of dSph galaxies of Unavane and Gilmore (private
communication). The amplitude of this error is representative of
what is seen in current HST observations, corresponding to a few
percent photometric errors in broad-band colours at the turnoff. It
is comparable to Gaia data for the galactic bulge. From the synthetic
HR diagram the general features of the input SFR(t) can be seen,
in that two basic populations are evident. Obtaining the precise
duration and location of these two bursts requires more work, and
the detailed shape of each is quite hard to recover.

From the position of every one of the 1324 simulated stars with
log L) > 0 on Fig. (1) (see below) we construct the matrix Gi(t),
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Fig. 1. Left: synthetic HR diagram resulting from the first input
SFR(t). The length of the bars to the right corresponds to 2z in the
log Tesr) error to each side of the dots. Right: first input SFR(t), dashed
line. Also shown are the derived SFR(t)’s after 2, 4, 6, 8 and 10 iterations
of the inversion method, dotted curves. The 12th iteration is given by
the solid curve, showing convergence and a reliable recovery of the input

SFR(%).

where we further assume that the “observational” errors are well un-
derstood i.e. o(L) is known. Since the colour of a star having a given
luminosity can sometimes be a multi-valued function, in practice we
check along a given isochrone, to find all possible masses a given
observed star might have as a function of time, and add all contribu-
tions (mostly 1, sometimes 2 and occasionally 3) in the same G;(t).
Calculating this matrix is the only slow part of the procedure, and is
equivalent to calculating the likelihood of one model. The likelihood
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matrix G;(t) is the only input required by the method. The total
number of stars is used as a normalization constraint at each iter-
ation, needed to recover SFR(t) from Y (t). As mentioned earlier,
it is not necessary to calculate the likelihood over the solution space
being considered, i.e. G;(t) is only calculated once, which makes the
method highly efficient.

Given the degeneracy of isochrones of different ages in the main
sequence region, the lower fraction of the HR diagram is of relevance
only in establishing the total normalization condition, and not in
determining the shape of the SFR(t). For this reason, we only
include in the inference procedure stars with log L) > 0, other stars
are only used in fixing the overall normalization. The final results
are not affected by this cut, but the iterative procedure converges
much more rapidly and in a numerically more stable way if the lower
degenerate and high error region of the HR diagram is excluded.

In Fig. 1 we also show the results of the first 12 iterations of
the method every 2 iterations, which form a sequence of increasing
resemblance to the input SFR(t). The distance between successive
iterations decreases monotonically at all ages, which together with
the fact that after 12 iterations no further change is seen, shows
the convergence of the method for this case. From the 2nd itera-
tion (lowest dotted curve in the burst regions) it can be seen that
the iteration of the variational calculus equation constructed from
maximizing the likelihood is able to recover the input SFR(t) effi-
ciently. The positions, shapes and relative masses of the two bursts
were correctly inferred by the 2nd iteration, although it took longer
for the method to eliminate the populations outside of the two input
bursts. The convergence solution is in remarkable agreement with
the input SFR(t), and only differs slightly, as seen from Fig. 1. No
information was used in the inverting procedure beyond that which is
available from the synthetic HR diagram, which was used extensively
in constructing the likelihood matrix G;(t), which is the only input
required by the inversion. The variational calculus method recovers
a SFR(t) for which the first variation of the likelihood vanishes,
without assuming any a priori condition on the SFR(t), beyond
being a continuous twice differentiable function of time.

3.2. Testing temporal resolution

The second test uses an input SF R (t) which differs from the pre-
vious one in that the bursts are of much shorter duration and larger
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Fig. 2. Left: synthetic HR diagram resulting from the second input
SFR(t). Right: second input SFR(t), dashed line. Also shown are the 3,
6,9, 12 and 15 iterations of the inversion method, dotted curves. The 20th
iteration is given by the solid curve, showing convergence and a reliable
recovery of the input SFR (t)

amplitude, to approximately preserve the total number of stars. The
input SFR(t) of this case is shown by the dashed curve in the right
panel of Fig. 2. The HR diagram which results from this SFR(t)
is shown in the left panel of Fig. 2 and shows basically the same
populations as in Fig. 1 but with a much smaller spread, it contains
a total of 3783 stars, with 1299 above log L) = 0. The errors in these
two cases were equal.

The inversion procedure is shown in the right panel of Fig. 2,
were it can be seen that the convergence of the method remains ro-
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bust, although this time it took slightly longer, the first 15 iterations
are shown every 3. The SFR(t) to which the method converged
(after 20 iterations) again accurately reproduces the input one, the
age, duration, amplitude and shape of the two input bursts were cor-
rectly inferred. That the shorter duration of the bursts was correctly
inferred in this case shows that in the previous one the reconstructed
age duration was not due to the spread caused by the errors, but was
actually resolved in the data, and recovered correctly by the method.
In this second case however, the spread due to the errors begins to be
comparable to the intrinsic one of the input SFR(t), and causes an
artificial broadening of the recovered stellar ages, particularly in the
older component. This last effect causes also a slight underestimate
in the maximum amplitude of the bursts. Reducing the duration of
the older component further would not produce a shorter duration
in the inferred burst, unless the errors were also reduced.

That is, the method is capable of recovering the full age precision
allowed by the observational errors.

3.8. Very old populations: sensitivity to photometric errors

The next test explores explicitly the way in which the method
reacts to populations older than 10 Gyr, an approximate limit beyond
which observational errors totally confuse the turn off points, in the
adopted error distribution. A model SFR(t) is shown by the dashed
line in the right panel of Fig. 3. The left panel of Fig. 3 shows the
resulting HR diagram which is used in the inversion process, and
which only marginally differs from the one of Fig. 3.

Fig. 3 shows that the inversion procedure converged to a SFR (t)
which is a highly accurate representation of the input SFR(t) in
regions younger than around 10 Gyr. However, the star formation
history for the oldest stars was not recovered.

Fig. 4 has the same input SFR(t) as in case 3, and differs only
in that a much lower noise level was assumed. In constructing the
HR diagram seen in the left panel of Fig. 4 the numerical constant
in Eq. (10) was reduced from 0.035 to 0.01. This lower noise level
is reflected in the clearer HR diagram, where the older population
is now distinguishable from the noise of the younger main sequence.
The right panel in Fig. 4 shows the result of the inversion procedure,
which differs from case 3 mostly in the speed with which the method
converged, only 10 iterations were needed. The few stars in the oldest
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Fig. 3. Left: synthetic HR diagram resulting from the fifth input
SFR(t). Right: fifth input SFR(t), dashed line. Also shown are the 3,
6, 9, 12 and 15 iterations of the inversion method, dotted curves. The
20th iteration is given by the solid curve, showing convergence and a good
recovery of the input SFR(t) for t < 10 Gyr.

component which can be separated from the younger main sequence
are sufficient to accurately recover the shape for this burst.

In general, the variational calculus treatment of the maximum
likelihood problem, together with the iterative method for solving
the resulting equation, works well within the practical limits set by
the “observational” errors. Having assumed only that the SFR(t)
was a continuous function of time, the method manages to recover
the input function quite accurately, under conditions similar to those
feasible for Gaia observations.
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Fig. 4. Left: synthetic HR diagram resulting from the fifth input
SFR(t), produced using a much lower noise level. As in Fig. 1, the length
of the bars to the right corresponds to 2¢ in the log L error to each side
of the dots. Right: fifth input SFR(t), dashed line. Also shown are the
2, 4, 6, 8 and 9 iterations of the inversion method, dotted curves. The
10th iteration is given by the solid curve, showing rapid convergence and

a good recovery of the input SFR(t).

4. SENSITIVITY TO UNCERTAINTIES IN IMF, METALLICITY
AND BINARIES

Uncertainties in the IMF, metallicity and binaries differ from
simple sample size or photometric error in inducing a systematic
mismatch between the isochrones used in any specific calculation
and those which describe the astrophysics of the HR diagram being
inverted. The following tests show the sensitivity of the method
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Fig. 5. Left: synthetic HR diagram resulting from the control input
SFR(t). Right: sixth input SFR(?), dashed line. Also shown are the 3, 6,
9, 12 and 15 iterations of the inversion method, dotted curves. The 18th
iteration is given by the solid curve, showing convergence and an accurate
recovery of the input SFR(t). This is used as a control case against which
to compare variations in the assumed IMF, metallicity and binary fraction.

to uncertainties in the input IMF, metallicities and binary fraction.
Firstly we present Fig. 5, the synthetic HR diagram contains 6340
stars with 1808 brighter than log L = 0, and the input SFR(t) is
shown by the dashed line in the right panel of Fig. 5. The inversion of
this HR diagram clearly shows again the convergence of the method
to an accurate representation of the input SFR(t). This test was
included to define a control case to which variations can be compared.
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Fig. 6. Left: sixth input SFR(t), dashed line. Also shown are the
3,6, 9, 12 and 15 iterations of the inversion method, dotted curves. The
18 iteration is given by the solid curve, assuming an IMF much more
weighted towards smaller masses than the one used for the HR diagram,
which produces a normalization error. Right: sixth input SFR(¢), dashed
line. Also shown are the 3, 6, 9, 12 and 15 iterations of the inversion
method, dotted curves. The 18th iteration is given by the solid curve,
assuming a metallicity one order of magnitude higher than the one used

for the HR diagram, which results in the method converging to a younger
SFR(t).

4.1. IMF mismatch

The left panel in Fig. 6 shows the results of applying the inversion
procedure with a “wrong” IMF to the HR diagram in Fig. 5 which
was produced using the IMF of Eq. (9). The inversion procedure
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assumed an IMF p(m) o« m™3 for all masses. Comparing Fig. 5
and the left panel in Fig. 6 it can be seen that the main effect of
an error in the IMF is a distorted normalization, which is based on
the total number of stars. The IMF used in the inversion is one in
which low mass stars are more dominant than in the IMF used to
construct the HR diagram, as a result, a lower SFR(t) sufficed to
produce the correct number of stars. As the colour and luminosity
of a star of a given age and mass are not affected by changes in
the IMF, the location of the relevant populations was not affected.
The net result of changing the IMF used in the inversion was a
reduction of the recovered SFR(t) by a factor of 0.85, which is the
factor by which the mass in stars in the mass region which we are
sampling differs between the two IMF’s. The convergence of the
method was similarly unaffected. We can conclude that errors in
the IMF used, within the expected uncertainties, do not affect the
temporal structure of the derived star formation history significantly,
but do affect its normalization. This quantifies the case for precise
knowledge of the Gaia selection function.

4.2. Metallicity mismatch

In the following tests we investigate the effects of an uncertainty
in the metallicity; the well known degeneracy between the inferred
age and metallicity of an observed stellar population will be evident.
Fig. 6, right panel shows the result of inverting the HR diagram of
Fig. 5, which was produced using a metallicity of [Fe/H] = —1.7,
using this time isochrones for [Fe/H] = —0.7 in the inversion pro-
cedure. The convergence of the method was not affected, and pro-
ceeded at the same rate as in the previous two cases, as the same HR
diagram was used. The result of having assumed a metallicity one
order of magnitude higher than that of the stellar population being
inverted is a SFR(t) much younger than the input one, as can be
seen from Fig. 6, right panel. This discrepancy is due to the fact
that the isochrones used in the inversion have very different temper-
atures and luminosities for stars of a given mass, from those of the
isochrones used to generate the HR diagram. Actually, the colours
and luminosities of stars from the higher metallicity isochrones ap-
proximately correspond to those of younger stars from the lower
metallicity isochrones, the age-metallicity degeneracy. Having used
isochrones in the inversion procedure which do not correspond to the
stars being studied also confuses the method and the shape of the
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Fig. 7. Left: synthetic HR diagram resulting from the sixth input
SFR(t), produced using a metallicity of [F'e/H]o = —1.7 for the stars
older than 7.5 Gyr and of [Fe/H]g = —0.7 for the stars younger than
7.5 Gyr. Right: sixth input SFR(t), dashed line. Also shown are the 3, 6,
9, 12 and 15 iterations of the inversion method, dotted curves. The 18th
iteration is given by the solid curve, assuming a constant metallicity for
the entire evolution, which confuses the method.

recovered SFR(t) is slightly distorted. The younger age assigned to
the stars being analyzed also produces a slightly lower total SFR(t),
as with a younger population a larger fraction of the stars live into
the present day HR diagram. '

We also consider the complementary test, where the HR diagram
is produced using a range of metallicities, and inverted assuming a
single metallicity. This is presented in Fig. 7.



Star formation history of the Milky Way 223

Fig. 7 shows the HR diagram which results from the input
SFR(t) of Fig. 5, with the difference that on this occasion the
metallicity was not a delta function. In this case we used a metal-
licity of [Fe/H] = —1.7 for the stars older than 7.5 Gyr, and of
[Fe/H] = —0.7 for the stars younger than 7.5 Gyr, i.e., a crude en-
richment history. This is clearly seen in Fig. 7, where the two popula-
tions having different metallicities are evident, from the width of the
RGB. As in all previous cases, the noise level was not changed. The
result of applying the inversion method assuming a single metallicity
of [Fe/H] = —1.7 is shown in the right panel of Fig. 7. The method
correctly identifies the half of the SFR(t) with the lower metallicity;
the higher metallicity population is totally misinterpreted. Actually,
the age the inversion procedure should assign to the high metallicity
component is in fact greater than 15 Gyr, which is in contradiction
with the fixed boundary condition of SFR(15) = 0. This makes
the inversion procedure somewhat unstable, which in principle can
be used to indicate that the isochrones being used in the inversion
procedure do not correspond to the studied stars. The two distinct
giant branches seen in this HR diagram indicate a difference in the
metallicities of both populations.

As it might have been expected, uncertainties in the metallicity
distort the inference procedure significantly, making determination of
star formation histories robust only in cases where individual metal-
licities are available.

4.3. Binaries mismatch: optical and physical

As a final variation we consider the effects a non-zero unrecog-
nized binary fraction would produce, which is shown in Fig. 8. It
shows the HR diagram which results from the SFR(t) of the pre-
vious tests, with the same IMF and metallicity of Fig. 5, but with
the inclusion of a binary fraction of 0.5. Half of the stars generated
had a secondary companion picked from the same IMF. The lumi-
nosity of the resulting binary is given by the sum of the luminosi-
ties of the two components, and its combined effective temperature
through the Stefan-Boltzmann law. In the current observations of
dSph galaxies and other similarly crowded fields the main contribu-
tion to the “binary” population comes not from physical binaries,
but from observational confusion. Attempting to model this effect
we picked the secondary star from the same IMF as the primary one
(e.g. see Kroupa et al. (1993) for a discussion of binary confusion in



G. Gilmore

224
3 . ‘ 1.5x10°
A
"
I
2 i
Iy
o 4 [}
10 h 'l
-.-'- ] |,
_— [} \
o & |
e |
S i s ; A
-y -~ |
-] I
=) B AW}
— Lz, 1
= I pe 1l
1 E.3
5000 FE A
HE
LE 4y
i H
0 |
3 ;
[}
!
I
1,
7
oeeeg 78 36 34 05 s

t(Gyr)

Fig. 8. Left: synthetic HR diagram resulting from the sixth in-
put SFR(t), produced using a binary fraction of 0.5. Right: sixth input
SFR(t), dashed line. Also shown are the 3, 6,9, 12 and 15 iterations of the
inversion method, dotted curves. The 18th iteration is given by the solid
curve, assuming a binary fraction of 0, which results in a normalization
error. The slight broadening of the MS is interpreted by the method as a

small older component.

observations). We took the value of 0.5 for the binary fraction as a
representative number from Kroupa et al. (1993).

As can be seen from comparing Figs. 8 and 5, the main result
of having included a large unresolved binary fraction is a reduction
in the total number of stars; the morphology of the HR diagram was
not significantly affected. This last effect is due to the fact that the
offset between the single star and the binary star main sequences
is comparable to the noise in that region, producing only a slightly
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broadened main sequence. The effects of binaries in other parts of
the diagram are negligible, as the addition of a main sequence star to
a giant does not affect the observed properties of the giant, and the
odds of getting a binary giant are slim. The results of the inversion
method are shown in the right panel of Fig. 8, where the dashed
line shows the input SFR(t), and the dotted and solid curves the
first 18 iterations of the method, every 3. The convergence of the
method is not affected, and proceeds quite rapidly. It can be seen
that the method accurately identifies the age, duration and structure
of the input burst, although with a normalization error which results
from the reduction in the total number of stars seen. A further
slight discrepancy between the input SFR(t) and the recovered one
appears at old ages, as the method confuses the broadening in the
main sequence for a minor, extended age population. As with the
errors in the IMF, having neglected the effects of binaries affects
mostly the normalization of the recovered SFR(t), distorting the
general shape only slightly.

5. CONCLUSIONS CONCERNING THE METHOD

We can summarize our methodological results as follows:

(1) We have introduced a variational calculus scheme for solv-
ing maximum likelihood problems, and tested it successfully in the
particular case of inverting HR diagrams.

(2) Assuming a known IMF and metallicity we have presented
a non-parametric method for inverting HR diagrams which yields
good results when recovering stellar populations younger than 10
Gyr, with data quality similar to those attained in current HST
observations of dSph galaxies. Populations older than 10 Gyr can
only be recovered equally well from HR diagrams with much reduced
observational errors.

(3) Uncertainties in the IMF and binary fractions result in nor-
malization errors on the total SFR(t). Given the existence of an
age-metallicity degeneracy on the colours and magnitudes of stars,
an error in the assumed metallicity results in a seriously mistaken
SFR(t). This makes the version of the variational calculus approach
we present here useful only in cases where the metallicity of the stars
is knowable independently of the form of the colour-magnitude dia-
gram near the turnoff.



226 G. Gilmore

2
2x10°
0
5 1.5x10"
2 ! T
N Q
N 4
by 4
& 10
&
4
5000
6
gl " . 0
0 0.5 1 1.5 0

Fig. 9. Left: synthetic HR diagram for an “old” component, us-
ing isochrones of [Fe/H] = -1.5, and including a 10 % observational error.
Right: inferred SFR(t) for the “old” component, assuming the correct
metallicity of [Fe/H] = -1.5, solid curve. The dotted curve shows the in-
put SFR(t). Comparison of the two curves shows the accuracy to which
the age structure of an old population could be recovered using current
statistical methods, if data having errors of <10 % in luminosity and tem-
perature, and comparable in metallicity, were available.
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Fig. 10. Left: same HR diagram as in Fig. 9. Right: inferred SFR(¢)
for the “old” component, assuming a metallicity of [Fe/H] = 0, solid curve.
The dotted curve shows the input SFR(¢). Comparing these two curves
shows the extent of the age-metallicity degeneracy in this case. Thus,
unless metallicities are available, gross analysis errors are inevitable.
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Fig. 11. Left: synthetic HR diagram for an “arm” component, using
isochrones of solar metallicity, and including a 10 % observational error.
Right: inferred SFR(t) for the “arm” component, assuming the correct
metallicity of [Fe/H] = 0.0, solid curve. The dotted curve shows the in-
put SFR(t). Comparison of the two curves shows the accuracy to which
the age structure of a young population could be recovered using current
statistical methods, if data having errors of <10 % were available.
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Fig. 12. Left: same HR diagram as in Fig. 11. Right: inferred
SFR(t) for the “arm” component, assuming a metallicity slightly off, of
[Fe/H) = 0.18, solid curve. The dotted curve shows the input SFR(%).
Comparing these two curves shows the extent of the age-metallicity de-
generacy .in this case i.e. fine details in the build up history of the disk
could be accurately recovered, if metallicities of the relevant populations
were known to a ~ 0.2 dex accuracy.
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Fig. 13. Left: combined HR diagram including both components.
Right: inferred SFR(t) for the combined HR diagram, assuming a metal-
licity of [Fe/H) = -1.5, solid curve. The dotted curve shows the total
SFR(t) for these two components. Comparison of the two curves shows
that useful information relative to galactic structure can only be obtained
if the different populations present in an integrated HR diagram can be

separated.
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6. SIMULATIONS RELEVANT TO GAIA

The main-sequence turnoff of the oldest stellar populations cor-
responds to apparent magnitude ~ 20 at the galactic center, and near
the apparent outer edge of the disk. Gata can therefore determine
the full star formation history of the near half of the Milky Way for
all ages. This provides a sufficiently large sample that the global star
formation history of our Galaxy can indeed be determined by Gaza.
The star formation history at more recent times can also be deter-
mined for larger distances, especially in the Magellanic Clouds and
Sgr dSph. Such determinations however require metallicity measures
accurate to about 0.2 dex, and photometric data able to provide stel-
lar effective temperatures good to about 10 % of T.g, for stars at and
above the turnoff.

Figures 9-13 illustrate calculations specific to Gaia observations
of stars at a distance of ~ 10 kpc.

7. CONCLUSIONS

The general implications for the Gaia mission include:

(1) The Gaia data set can be analysed to determine the star forma-
tion history of the Milky Way Galaxy, one of our primary science
goals;

(2) This determination requires a well-known selection function from
the central bulge to the outer galactic disk, at the Gaia limiting
magnitude;

(3) Individual stellar metallicities are required for a large, well-
defined, although not necessarily complete, sample of stars, with
an accuracy ideally as good as 0.2 dex;

(4) Effective temperatures must be determinable for these same
stars with an accuracy of about 10 %;

(5) This precision shares the final uncertainty equally between stel-
lar temperature, stellar metallicity and distance uncertainty.
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