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Abstract. The number of papers on the analysis of unevenly sam-
pled time series is scarce. The present article is an attempt to provide 
a fairly simple introduction to this topic. We start with the demon-
stration that some procedures for analysis of unevenly sampled time 
series, such as the power spectrum, suffer from a number of faults and 
traps which make them unreliable in practice. Then we consider the 
application of orthogonal models in statistics and testing of statisti-
cal hypotheses. Next, we demonstrate, how these classical principles 
of statistics can be adapted to the analysis of unevenly sampled time 
series. In this way we derive new, reliable methods for analysis of 
unevenly sampled time series. We discuss the relevant statistics, i.e. 
periodogram functions and their performance, and provide tools for 
planning efficiency of time series observations. These methods should 
be particularly useful for astronomers, since astronomical time series 
are often sampled unevenly in time. 
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1. INTRODUCTION 

Many observers would not read a paper on new statistical meth-
ods, arguing tha t by sticking to the old, classical methods (i) they 
know what they are doing and (ii) any conclusions drawn in a clas-
sical way are conservative and based on well tested methods. How-
ever, the interpretation of classical results relies on theoretical analy-
sis. Until recently, the analysis was performed almost exclusively for 
evenly sampled time series. We shall demonstrate tha t extension of 
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this analysis onto the unevenly sampled time series, often encoun-
tered in astronomy, is questionable. The general aim of the present 
paper is to convince readers that the analysis of the unevenly sam-
pled series differs significantly from the analysis of time series sam-
pled unevenly. More specifically, we would like to demonstrate that 
(i) analyses, experiences and intuitions based on the application of 
the classical methods to evenly sampled signals often fail for un-
evenly sampled time series and (ii) that the old classical methods of 
statistics may be applied in a new way for the analysis of the uneven 
time series. 

In most of our paper we refer to the classical theory of exper-
iment elaborated by Fisher and collaborators early in this century. 
In Section 2 we discuss the power spectrum as a counter example, 
demonstrating how the well known classical method fails in new cir-
cumstances. Section 3 is devoted to fitting of the orthogonal models. 
The essential statistical concepts are presented in Section 4. The as-
pects of applications of these general concepts to a particular case of 
unevenly sampled time series are discussed in the following sections. 
In Section 5 we evaluate the performance of various methods. Short 
comments on analysis of multi-periodic signals are given in Section 
6. Application of simulations to analysis of time series is discussed 
in Section 7. We conclude with discussion of time series analysis in 
large photometric surveys (Section 8). Many concepts discussed here 
are quite general. However, where the specific properties of a signal 
are considered, we draw most emphasis to periodic signals. In an as-
tronomical context this means we pay more attention to stellar than 
to extra-galactic applications. The present review is rather biased by 
the author's preferences. For different aspects and contexts of time 
series analysis (hereafter TSA), the reader is referred to reviews by 
Feigelson (1997) and Scargle (1997). A readable introductory text 
on signal models and power spectrum was published by Deeming 
(1975). 

2. A SINUSOIDAL SIGNAL SAMPLED UNEVENLY 

2.1. Power spectrum 

Let us start from observation that, for a given frequency w, sine 
(cosine) discrete Fourier transform (DFT) constitutes a special case 
of scalar product of observations X fc ̂  Jc — 1, * t * j Tt with the sine (cosine) 
function: 
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Fig. 1. The power, corresponding to |x'|2, may be expressed by pro-
jections of a function x onto sine and cosine directions. For uneven sam-
pling, sine and cosine are not orthogonal vectors (7 ^ n/ty and the power 
does not correspond to the squared amplitude: ||x||2 ^ II^'H2-

n 

(x,sinu>t) = ^ x(ijfc)sinwiA (1) 
Jfc=l,n 

Let us assume, for this section alone, that our signal consists of 
a pure haxmonic oscillation without noise. Adopting geometrical 
terminology it may be said that Fourier transforms are orthogonal 
projections onto the directions of sine and cosine in the space of 
functions of time. For uneven sampling, sine and cosine generally 
are not orthogonal functions in the sense of scalar product in Eq. 
(1): 

(cos ut, sinwi) ^ 0 (2) 

This is in marked contrast to the even sampling fast Fourier trans-
form (hereafter F F T ) case, where sine and cosine harmonics are or-
thogonal. Because of non-orthogonality, a sum of squares of sine 
and cosine projections, called the power P(cj ) , fails to satisfy the 
Pythagorean Theorem: 

P(u>) = (x,cosu;£)2 + (x,sinu;i)2 ^ 

# ||x||2 = (x,x) . (3) 

The vector x and its sine and cosine projections do not form a 
rectangular triangle. A rectangular triangle formed of projections 
yields another vector x' (Fig. 1). Now recall that the squared ampli-
tude corresponds to the vector norm A2 = ||x||2 = (x, x ) while power 
corresponds to another vector norm P = ||x'||2 ^ A2. Clearly, x co-
incides with x' only for 7 = tt/2, i.e. for sine and cosine orthogonal in 
Eq. (2). A simple but somewhat surprising conclusion following from 
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the inequality (Eq. (3)) is lack of any simple relation between the sig-
nal power P and the amplitude A for uneven sampling. By simple 
geometrical considerations one may demonstrate that the power re-
mains restricted to a limited range 0 < P < 2A2, depending on the 
angle between sine and cosine components, tt > 7 > 0, respectively. 
Thus any popular methods exploiting DFT (Eq. (1)), such as power 
spectrum or CLEAN (Deeming 1975, Roberts et al. 1987), yield un-
reliable estimates of signal amplitudes for uneven sampling. For this 
reason one may question whether observers using power spectrum 
for unevenly sampled signals obtain a faithful estimate of amplitudes 
(Section 1 (i)). Clearly, better methods are required for the case of 
uneven sampling. 

Please note that the failure of the power spectrum P in estima-
tion of amplitudes is a different effect from aliasing (Section 3.3). 
This failure occurs at the signal true frequency u0 while aliasing oc-
curs because of interference between signal and sampling at some 
other frequency oj. 

2.2. Modified spectrum 

Lomb (1976) has observed that it is always possible to shift the 
phase of sine and cosine functions so that they become orthogonal in 
the sense of Eq. (2). The amount of phase shift required for this pur-
pose generally depends on frequency, r = t(u>). Since the shifted sine 
and cosine functions are orthogonal, (sin (ut + r), cos (u>t + r ) ) = 0, 
the projections onto their directions obey the Pythagoras theorem. 
Hence the corresponding modified power Pm carries full information 
on amplitude of the corresponding harmonic component Pm == A2, if 
no components other than sine and cosine are present. If the signal 
consists of a sinusoid plus white noise then, for a given frequency u j , 
a direct correspondence exists between the modified power Pm and 
X 2 for the least squares fit of the data with a sinusoid: 

Pm(a,) = ||x||2-X2(u;) (4) 
where now ||x||2 = (x,x) constitutes the total signal power in all 
frequencies u (c.f. Eq. (7)). The total power is independent of a; and 
contains contributions from both signal and noise. Hence, according 
to Eq. (4), the plots of Pm or \2 against u>, called periodograms, are 
mirror reflections of each other. 

So far we assumed that the signal contains no constant term. 
The value of the constant term is a priori unknown and it is usually 
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estimated from the data, e.g. as the average value of the data. Hence, 
the Lomb procedure involves fitting of three functions, sine, cosine 
and a constant term, instead of two functions. However, Ferraz-Mello 
(1981) has pointed out that for uneven sampling the constant term 
is not orthogonal with respect to the Lomb sine and cosine functions. 
If so, the Lomb spectrum is not equivalent to the least squares fit and 
yields a biased estimate of amplitude, correlated with the constant 
term. The distribution of the corresponding statistics is no longer ex-
ponential x2(2), as claimed. Ferraz-Mello (1981) has demonstrated, 
how to obtain a fully orthogonal model by application of the Gramm-
Schmidt orthogonalization to the three functions listed above (c.f. 
Eqs. (19-21) in the Appendix). Examples and further discussion of 
the application of the Lomb functions with and without constant 
term are provided by Scargle (1982) and Foster (1994), respectively. 
Early references are listed by Ferraz-Mello (1981) and Press et al. 
(1992). 

Unfortunately, the Gramm-Schmidt orthogonalization is so in-
efficient, that its application to any large set of functions would be 
prohibitively costly. An efficient procedure for generation of com-
plex orthogonal trigonometric functions is discussed in Section 3.4. 
Summarizing, for uneven sampling the power spectrum yields a bi-
ased and non-optimal estimate of amplitude A. The Lomb-Scargle 
spectrum is better in that respect, but still involves a non-orthogonal 
constant term, hence it is neither unbiased nor optimal. We mean 
optimality in the sense of the least squares residuals and bias means 
that , despite improving signal-to-noise ratio (S/iV), estimates do not 
converge to the true value of A. The model of Ferraz-Mello (1981) is 
fully orthogonal, hence it is free of problems haunting previous two 
models. We shall not discuss it here as it constitutes a special case 
of the model discussed in Section 3.4. Just for completeness, we ob-
serve that for even sampling all three models are identical, unbiased 
and optimum. 

3. MODELS OF SIGNALS 

S.l. Classification 

Time series are functions, albeit discrete ones. Although there 
are theorems which allow classification of a given function, their as-
sumptions such as continuity or infinite length of observation interval 
are too unrealistic to be useful in practice. In other words, by no 
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method one can be sure that a given discrete and finite series of ob-
servations represents a periodic function, a pure random process or 
the mixture. For example, a series appearing random may have the 
period longer than the interval of observations, or a purely random 
process can produce a perfect section of a sinusoid. We may only 
judge how likely or unlikely are these interpretations. In this judg-
ment we often use our prejudice about the nature of the observed 
process. Thus, in the final instance, TSA stays on the assumed prop-
erties of a signal, i.e. on the signal model. 

Three broad classes of signals exist: deterministic, chaotic and 
stochastic signals. These types of signals differ by the character of 
dependence of their value at time t on their previous value at time 
t — At. More precisely, the classification depends on the absolute 
value of the correlation |p( t , t — Ai) | « |/c>(Ai)| as a function of the 
time interval At. For deterministic signals \p\ & 1 for arbitrary 
long At. For stochastic signals, |yo] < < 1 for arbitrary short At. 
For chaotic process, |p| —* 1 for At —> 0 and decays to small val-
ues \p\ < < 1 for At > r , where r is the correlation decay time, 
characteristic for a given chaotic process. It is related to the so-
called Lyapunov exponent 1 / r . It is clear from the above defini-
tions that deterministic and stochastic signals are extreme cases of 
chaotic signals corresponding to r = oo and 0, respectively. Often 
these definitions are relaxed in the sense that instead of all At one 
means all At of interest. General chaotic processes received little 
attention from astronomers (but c.f. Scargle 1989, Buchler 1993). 
Solar spots constituted an early example of stochastic time series. 
Nowadays astronomical stochastic time series are considered mostly 
in X-ray and extragalactic contexts. Deterministic signals, or, more 
specifically, (multi-)periodic signals, are often encountered in stel-
lar astronomy. In TSA of both stochastic and deterministic signals, 
explicit function models are used. The technical difference is that 
for the stochastic processes one assumes a model shape of expected 
autocorrelation function or its Fourier transform power spectrum, 
while for the deterministic processes one assumes a shape of the sig-
nal itself (Deeming 1975). In the present review, when appropriate, 
we shall concentrate on periodic deterministic models. 

S.2. Least squares 

Rarely the observations x and the model values xy are exactly 
the same. Normally, the residuals x — xy are not vanishing. The 
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residuals are used to formulate the criteria for selection of optimum 
model parameters, such as the maximum likelihood and entropy cri-
teria or least squares (hereafter LSQ) criterion. According to this 
criterion one selects a set of model parameters y minimizing norm 
of residuals: minj, = ||x — X||(y)||2. For the Gaussian errors of ob-
servations and the linear model function X||(j/), the LSQ criterion is 
optimum in a certain sense. LSQ may be also used if errors are so 
small that within their range the linear approximation of a nonlinear 
£||(t/) is accurate enough. This property underlines the role of linear 
models in statistics. However, in general case, LSQ may perform 
worse than other criteria. For selection among models with different 
number of parameters one should apply a modified criterion, namely, 
the LSQ per degree of freedom criterion: 

I I S - S I I M 2 
mm -- 1 (5) 

y n — r 

where by the number of degrees of freedom n — r we mean the number 
of observations in excess of r, the number of parameters y. A general 
version of this criterion was proposed by Akaike (1973). 

3.3. General orthogonal models 

All methods in time series analysis rely on a model of signal, 
built in either explicitly or implicitly. In Section 2 we have explained 
already that, depending on sampling, either the original power spec-
trum P or its modification Pm correspond to the least squares fit of 
the data with a sine function. By fitting a model one decomposes 
the observed signal x into its model and residual components, xy 
and x± = x — Xjj. A particularly efficient way of performing a linear 
LSQ fit is the projection onto orthogonal base of model functions 
z(k\ k = 1,..., r. In the language of linear algebra one speaks about 
the vector space of all possible signals x and its subspace of the model 
signals a:|| with base z. Then the fitted model is computed as follows: 

r 

Z | | = 5 > , Z < * V * \ (6) 
Jt=i 

where x = xy + and t/jt = are model parameters. By 
virtue of Fisher's lemma, model and residuals are orthogonal (Eq. 8), 
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(observations) 
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(model) 
Fig. 2. Split of a signal into orthogonal components: model X|| and 

residuals x ± . 

so that the components and x± satisfy the Pythagoras relation 

Eq. (7) may be interpreted in terms of decomposition of the 
total signal power into the model and noise power. In the following 
sections we discuss important forms of the orthogonal functions used 
for modeling the signals. 

On one hand, it is not difficult to see that as soon as observa-
tions axe fixed, ||x|| is independent of frequency u> and of other model 
details. On the other hand, the split of the power among the com-
ponents ||a;|||| and ||a:jJ| depends on u>. Plots of ||z||||, | |xjJ| or their 
functions against u are called periodograms. In most of the present 
paper we discuss the properties depending on orthogonality of model 
functions for a given u). This kind of orthogonality does not guaran-
tee orthogonality of the model functions corresponding to different 
frequencies. In fact, the only known set of periodic functions, orthog-
onal on a grid of frequencies, are FFT harmonics. Generally, no set 
of functions orthogonal between frequencies exists for uneven sam-
pling. This follows from the fact that functions for each u> axe already 
prescribed and only tunable parameters axe frequencies. However, n 
observations may be converted by an orthogonal transformation to 
no more than n frequencies, not enough to satisfy (n —l)r/2 orthogo-
nality conditions. The lack of orthogonality between the frequencies 

(Fig. 2): 

IMI 2 + IMII2 = IMI 
2 

(7) 

(8) (®||,®±) = o 
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for the uneven sampling results in a correlation between the values 
of periodogram at these frequencies. This effect persists with no re-
gard for model and periodogram in use. The correlation of nearby 
values of periodogram is called the power leakage. The correlation 
of distant regions of periodogram is called aliasing. Further effects 
of correlation between frequencies are discussed in Section 4.4.2. 

3-4• Fourier series model 

Orthogonal sine and cosine functions are used as model func-
tions in a modified power spectrum (Lomb 1976, Ferraz-Mello 1981, 
c.f. Section 2.2). However, there are lots of strongly non-sinusoidal 
signals for which the sinusoid constitutes a poor model. For these 
signals, a Fourier series consisting of multiple harmonics constitutes 
a bet ter model. For even sampling, the Fourier harmonics are or-
thogonal. However, for uneven sampling they are no longer orthog-
onal, so that the orthogonal projections are useless. Fit t ing obser-
vations with the Fourier series directly by least squares or by the 
Gramm-Schmidt orthogonalization constitutes so slow and possibly 
ill-conditioned algorithms, that no period search method in the past 
used this model. The situation has changed with the notion tha t fast 
recurrence formulae exist for generation of trigonometric polynomi-
als orthogonal on uneven grid of observations (Grenander & Szegô 
1958). This enabled formulation of a computationally efficient yet 
sensitive multi-harmonic method, based on the fit of Fourier series 
by means of projection onto orthogonal trigonometric polynomials 
(Schwarzenberg-Czerny 1996). The advantage of this method may 
be best appreciated by inspection of Fig. 3. In this example, the 
multi-harmonic periodogram reveals a strong signal detection with 
no alias ambiguity. Yet the corresponding power spectrum is prone 
to multiple closely spaced aliases. There are two causes of good per-
formance of the multi-harmonic method. The first reason is of a sta-
tistical nature: the multi-harmonic Fourier series fits non-sinusoidal 
signals considerably better than a pure sinusoid does. This means 
that less power is left in residuals x±, corresponding to higher sen-
sitivity. The second reason is of a graphical nature: since we plot 
||z | | | |2/||:ej_||2, our periodogram is visibly sensitive to the small ||xj_||, 
marking a good fit. 
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Fig. 3. Multi-harmonic periodogram using orthogonal trigonomet-
ric polynomials. Note the absence of alias ambiguity, in marked contrast 
to ordinary power spectrum for the same data (V15 in M68, c.f. Fig. 6 
of Walker 1994). Sole ghost features are sub-harmonics of the base fre-
quency. 

S.5. Compact support models 

Compact support base functions (hereafter CSF) vanish every-
where except for a narrow phase interval. An example of an or-
thogonal CSF base are top hat functions covering consecutive phase 
intervals. All phase folding and binning methods implicitly use these 
orthogonal top hat functions for modeling of signals. Another exam-
ple of orthogonal CSF are spline bell functions employed by Akerlof 
et al. (1994). Although original bell functions are not orthogonal as 
they partially overlap, the MACHO team uses pre-computed matri-
ces for transformation between bell functions and their orthogonal 
combinations. A distinct advantage of CSF in time series analysis is 
a weak dependence of their computational efficiency on complexity of 
a model. Still, for the complex models using many CSF functions, an 
adequate sampling requires a frequency grid which is dense in com-
parison to the corresponding Fourier grid, at extra computational 

: , , i J 

— 1— 1 

L ^ _ J 

1 1 — | r - - | 

L j t 

1 . 1 , 1 , 1 . 1 . 1 I i I I I L 
0 1 2 3 4 5 

Frequency (c/d) 
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cost. Detailed investigations reveal that CSF models suffer from 
uneven sensitivity as a function of phase difference between signal 
and base functions. This may be caused by a poor correspondence 
between shapes of the real signals and CSF (Schwarzenberg-Czerny 
1997b). Wavelets constitute another example of orthogonal CSF. 
Although at tempts to model periodic functions with wavelets are 
scarce, efforts were made to use wavelets to model and subtract noise 
f rom unevenly sampled observations (Lehto 1997, Scargle 1997). An-
other interesting application of CSF is a time-frequency analysis. In 
this analysis one considers not just power of a signal but also its 
coherence length (Mallat Sz Zhang 1993, Roques et al. 1996). 

4. F IT QUALITY 

4-1- Quality statistic 

It may appear a bit paradoxical that most information on statis-
tical properties of a fitted model is contained in the residuals f rom the 
fit, This information concerns the type of distribution, correla-
tion of observations, significance of model detection in observations, 
confidence intervals of the fitted parameters and their covariances. 
All period search methods involve a measure of the fit quality be-
tween observations and the model. This measure is a function of 
both model parameters and of observations. Since observations are 
affected by errors, they are random variables. A value of the func-
tion of random variable is a random variable too. Such a function is 
called a statistic. Among different types of statistics used as a mea-
sure of the fit quality, the most important ones are related to norm of 
residuals ||£_l||. For the orthogonal models, the Pythagoras theorem 
(Eq. (7)) provides a simple relation of the model and residual norms: 

I N II2 = IMI2 - I M I 2 (9) 

where the total power ||x|| is a constant independent of the model 
and frequency. Particularly useful are dimensionless ratios of these 
norms (c.f. Section 4.4.3). Such ratios are listed in Table 1. 

A brief derivation of the corresponding probability distributions 
is given in Bickel & Doksum (1977). Note that because of Eq. (7) 
these ratios are unique functions of each other: 
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Table 1. Classification of the least squares statistics. 

Statistic 0 Distribution"'6 Applications 

j / i j \ Lomb-Scargle Spectrum0 

11' L ' Whittaker h Robinson statistic1* 

/©((¿j_, <i||) = Ii-@(d\\,d±) x2 method, P D M method** 

IM 2 

l k ± f 

N 2 

Ii I ? 
I r i 
I x± II2 

t? ( j j \ A O V periodogram6, 
II' ' Multi-harmonic periodogram-^ 

a I and F are the Beta and Fisher-Snedecor distributions (Abramovitz 
& Stegun 1971, Bickel & Doksum 1977); 

b d|| = r and d± = n — r are the numbers of degrees of freedom in 
model and residuals, respectively; 

c Lomb 1976, Scargle 1982; 
d Stellingwerf 1978; 
e Schwarzenberg-Czerny 1989; 
f Schwarzenberg-Czerny 1996. 

= 1 - F-L 

1 + 
- 2 ' 

(10) 

To illustrate the properties of these distributions, we consider 
here the phase dispersion minimization (hereafter P D M ) statistic 
corresponding to the ||xj_||2/||a;||2 ratio for the step function model 
(Stellingwerf 1978). It follows from Table 1 that the P D M statistic 
is the Beta probability distribution (Fig. 4b). Its originally claimed 
distribution was the Fisher-Snedecor distribution. These two distri-
butions are markedly different (Fig. 4a). Note that the Beta dis-
tribution is highly asymmetrical and thus is awkward to use by the 
observers who are used to the Gaussian distribution. For this reason 
we proposed to use the analysis of variance (hereafter A O V ) statistic 
IkllllVlk-LlI2 or its log value, since they follow nearly symmetrical 
F-S or Snedecor distributions (Schwarzenberg-Czerny 1989, 1996). 
Since all statistics listed in Table 1 are uniquely related, statistical 
conclusions do not depend on which one is used, provided that the 
distribution and the statistic are matching. 
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Fig. 4. Families of (a) incorrect, F-S, and of (b) correct, Beta 
distributions for the PDM periodogram. Each line in a family corresponds 
to the probability distribution for a given number of observations n. 
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It is remarkable that virtually every method used for a period 
search in astronomy may be reduced to one of these statistics with a 
suitable model. In the present paper we discuss the power spectrum, 
Lomb-Scargle spectrum, PDM and AOV methods. The asymptotic 
relation of string-length methods with the statistics of Table 1 was 
discussed by Schwarzenberg-Czerny (1989). These relationships en-
able us to find the correspondence between different methods used 
in practice. The relations combined with the test power theory pre-
sented in Section 5 enable the evaluation and comparison of sensi-
tivity of different methods. Rarely used combinated methods do not 
fall within the present scheme, however. 

4-2. Classical detection criterion 

In order to asses the significance of the detected signal one com-
pares two situations: either the observed signal contains a pure noise 
or it contains some deterministic (function) component plus random 
errors. In statistics the former, undesirable situation is called the null 
hypothesis Ho, the latter, desirable situation is called the alternative 
hypothesis H\. Let the observed value of the statistic be 0 . One 
considers the probability of observing the larger value P ( 0 ' > 0 ) for 
the null hypothesis Ho valid, i.e. for pure noise. The complement 
probability Q = 1 — P is called the significance of detection of the 
model yielding 0 fit. This significance may be expressed directly 
as a probability, in percents or in corresponding deviations of the 
Gaussian distribution (e.g. 0.995, 99.5% or 3<r). Related questions 
in statistics are called the hypotheses testing. In the classical, non-
Bayesian statistics one adopts a priori certain critical value Pc and 
considers the detection significant if P < Pc. A complement critical 
probability a = 1 — Pc is called the confidence level. Such a detec-
tion criterion depends on the distribution of 0 for the pure noise, 
i.e. for Ho valid. Its independence of a possibly complex distribu-
tion for compound signal corresponding to Hi constitutes a practical 
advantage. The relevant distributions are listed in Table 1. 

4-3. Bayesian detection criterion 

Unfortunately, statisticians are divided on the basic assumptions 
of the procedures they use. Bayesian statisticians for hypotheses 
testing adopt a priori distributions of model parameters, called the 
prior distributions. From these prior distributions and distribution 
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of observations they derive a detection criterion specific to the given 
problem. The dependence of their criterion on the problem is consid-
ered as a disadvantage by critics of Bayesian statistics. Fortunately, 
for the period search in large number of observations the Bayesian 
criterion reduces to the asymptotic form P < PB resembling the 
classical criterion. Although the Bayesian and non-Bayesian criteria 
are different in general, PB Pc, they coincide for a particular set 
of prior distributions. Critics of the classical method point out that 
these particular prior distributions seem unrealistic. In the absence 
of conclusive arguments in the Bayesian dispute, only taste and tra-
dition motivate our preference of classical, non-Bayesian method in 
the present discussion. 

4-4- Corrections to distributions 

4.4.1 Correlated residuals 

In Fig. 5 we display the Wolf solar spot number as a function 
of time. Formal errors of the least squares fit of this function with 
a sinusoid are surprisingly small, 1% in period. Yet inspection of 
Fig. 5 reveals that the observed and fitted curves are often up to 
half a period out of phase. In fact, the solar spot cycle constitutes 
a well known example of an non-periodic (stochastic) process, which 
forgets its phase of oscillation just after a few cycles. This example 
demonstrates one danger in TSA: you may get a formally excellent fit 
of no physical and statistical significance. Formal errors of periods 
derived from fast photometry, as a rule, suffer from this problem. 
Here we discuss methods which enable us to identify such problems 
and to rectify the results of analysis. 

The distributions discussed in statistics for the Ho hypothesis 
are derived for observations containing Gaussian white noise. This 
corresponds to assumptions that (i) all observations follow the same 
Gaussian distribution, (ii) their mean is 0 and (iii) that they are un-
correlated. Inspection of the residuals encountered in practice reveals 
that assumption (iii) is often violated. The residuals become corre-
lated for the reasons connected either to the source and propagation 
of a signal or because the model is too coarse to follow the struc-
ture of a signal. These correlations affect the distribution of 0 by 
decreasing the effective number of observations neff. It is quite easy 
to recognize the correlation by estimation of an average number of 
adjacent residuals of the same sign. If among nGbs observations the 
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Fig . 5. Wolf number of solar spots as a function of year number and 
its least squares fit with a sinusoid. The formal error of a period fit is 1% 
and one would naively expect the consistency of true and fitted maxima 
within a few percent of their period, while, in fact, the discrepancies reach 
up to half of the period. See text for explanation. 

groups of nC Orr consecutive points axe correlated, on average, then 
the effective number of observations is neff = n 0 bs / n cc>r r and the true 
errors are a factor of y/nCOTI larger than these obtained from the least 
squares fit routine (Schwarzenberg-Czerny 1991). In Fig. 5 up to 30 
consecutive residuals have the same sign, indicating the true period 
error of the order of l \ /30 « 5% and the phase error, accumulated 
over 10 cycles, of the order of 50%. Such a large error warns against 
inconsistency of the signal and the model. 

4.4.2. Bandwidth penalty 

The distributions discussed so far refer to the situation in which 
one considers a specific frequency. In practice, many frequencies in 
a periodogram axe scanned in pursuit of a detectable signal. This 
corresponds in statistics to multiple trials. Clearly, the probabilities 
of success, i.e. of detection in single and N trials, Pi and PN, respec-
tively, are different. If trials corresponding to different frequencies 
are independent, then 

PN = 1 - (1 - P 0 N » iVPa (11) 
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where the last equality holds only for NPi <C 1. For uneven sam-
pling, the 0 statistics at different frequencies are generally correlated 
because of power leakage and aliasing. Then the identification of the 
effective number of searched independent frequencies n becomes dif-
ficult. Home & Baliunas (1986) discuss the Monte Carlo method of 
estimation of effective N. Although their method is correct, it is in-
correct to extrapolate their results by means of their fitted empirical 
formulae. Far extrapolations using these formulae yield nonsensical 
results, namely, N exceeding either the number of computed frequen-
cies or the number of observations n. 

4.4.3. Theoretical versus empirical distributions 

Following the null hypothesis Ho, one assumes that observations 
constitute a pure white noise of known variance a 2 . If so, then, ex-
cept for a constant factor, norms ||£||||2 constitute sums of squares 
of normal random variables and thus they follow the x2 distribu-
tion. For this reason, statisticians advise one to use x2 in the data 
analysis. Distributions, obtained in this way, we call theoretical dis-
tributions. The constant normalization factor, variance a2, has to 
be used since the statistical tables are prepared for a unit variance. 
Unfortunately, since observers do not know a •priori the variance of 
their data, they have to estimate it from the same data using an-
other norm, say a 2 = ||x||2/(n — 1), where n is the total number 
of observations. However, the variance of the data a 2 is a constant 
parameter of the distribution while a 2 is a statistical, i.e. a random 
variable depending on random observations. So, by dividing the 
norms by a 2 , observers obtain the ratios of two random variables, 
ll^ll IIVIMI2 = ®|| o r llx|| l|2/llxl|2 = These ratios follow the Beta 
distribution (Table 1). Distributions, obtained in this way, we call 
empirical distributions. Although it is often argued that for the large 
number of data empirical distributions converge to theoretical ones, 
this convergence is fast only near the center of the distribution and 
not in its tails. In fact, these tails are used most often by observers 
in evaluation of the significance of signal detection. 

To demonstrate this subtle effect, we consider the L-S statis-
tic. Its theoretical distribution derived by Scargle is exponential, 
Qiexp(z) = 1 — P\{x) = e - 1 , corresponding to x2 (2)- Its em-
pirical Beta distribution may be evaluated analytically, yielding 
QiBeta(^) = /i_i(n/2,1) = (1 - (2z/n)) n/2 . For realistic appli-
cations, one requires JV rather than P\ (Section 4.4.2). In this 
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example we assume so good frequency sampling that N « n and 
employ Eq. (11) to convert QI to QN- The empirical and theoret-
ical distributions QN computed in this way are plotted in Fig. 6. 
In Gaussian units, the differences reach ±1(7 at probabilities corre-
sponding to 3cr. Clearly, the Beta and x 2 distributions are not the 
same. 
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Fig. 6 . Comparison of theoretical and empirical probability distri-
butions, corrected for bandwidth, for the Lomb-Scargle statistic. Long, 
medium and short dash curves correspond to n =100, 1000 and 10000 
observations. Note that in Gaussian units the differences reach ± 1 a at 
probabilities corresponding to 3a. 

5. SENSITIVITY AND T E S T POWER 

One advantage of classical, non-Bayesian statistics is the inde-
pendence of detection criteria on the shape of the input signal. On 
one hand, by setting the fixed significance level a we accept the fixed 
rate 1 —a of false detection with no regard for the method and quality 
of observations. On the other hand, the rate of detected true signals 

1 

log QbeU 
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/3 depends on the method and signal-to-noise ratio S/N. These ef-
fects cannot be avoided in non-Bayesian statistics. The fraction /? 
is called by statisticians the test power. The larger the test power 
/?, the more sensitive is a given method for detection of particular 
signals. The sensitivity depends on the following properties: 
(1) on the signal amplitude and its shape; 
(2) it increases with the number of observations and signal-to-noise 

(3) for real smooth signals, the smooth (e.g. Fourier) models per-
form better than the step models (binning); 

(4) the best sensitivity is obtained for the models (harmonics) 
matching the data in resolution. 
The sensitivity does not depend on which of the statistics listed 

in Table 1 is used, provided that the detection criterion is based 
on matching probability distribution (Schwarzenberg-Czerny 1997a). 
This means that all methods from a broad class using x2-like norms 
of residuals are equivalent, as long as they use the same model of 
a signal. It follows from property (1) that no single method exists 
which is optimum for all kinds of signals. Because of this property, 
a comparison of performance of different methods is not possible in 

Fairly general formula may be obtained for an asymptotic case 
of small amplitudes, A —• 0 (Schwarzenberg-Czerny 1997b). The for-
mula enables a quantitative evaluation of gains or losses in sensitivity 
0 due to effects ( l ) -(4) : 

where in the asymptotic limit of large number of observations the 
function R is defined as follows: R(T) -»• [1 - erf(T)]/2. Thus in the 
limit, the power is a unique function of the fractional fitted power 
||s||||2 = ||a;|| ||2/||̂ ||2- In Fig. 7 we present the results of the sample 
calculations of ||s||||2- The calculations were performed for a family 
of von Mieses input signals, a periodic analogue of the Gaussian Bell. 
Their results demonstrate that the use of trigonometric polynomials 
ensures higher sensitivity than the use of step functions (i.e. phase 
binning), at least for the assumed signal shape. 

ratio; 

general. 

(12) 
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Fig. 7. Fractional fitted power ||£||||/||ic|| plotted against von 
Mieses shape parameter K. The detection sensitivity is a unique func-
tion of ||:c|| ||/1|a?||. Small and large /c correspond to near sinusoidal and 
narrow pulse input signals, respectively. Continuous lines correspond to 
trigonometric orthogonal polynomials, families of dashed lines correspond 
to phase bins (step functions) with different phase offsets. The top curves 
correspond to an 11 parameter model (5 harmonics or 11 bins) and the 
bottom curves are from the three-parameter model (pure sinusoid or 3 
bins). 

6. MULTI-PERIODIC SIGNALS 

Multiple periodic stars play an important role in research of 
pulsating stars. The detection of multiple periods is a difficult task 
from a statistical point of view. The use of truly multi-periodic 
models would require multi-dimensioned frequency grids. The num-
ber of statistical trials, corresponding to such large grids, should 
be large enough to make rather strong detections insignificant after 
bandwidth correction (c.f. Section 4.4.2). A more practical method 
relies on a consecutive identification of the strongest oscillation in 
the remaining signal and its subsequent removal by prewhitening, 
i.e. subtraction of the least squares sinusoid. The methods of such 
type in statistics are called sequential analysis (e.g. Eadie et al. 
1971). As the course of analysis in sequential methods is driven by 
the data, their statistical properties depend on the data too. Hence, 
no general discussion of properties of these methods is feasible. In 
particular, the sensitivity of these methods strongly depends on the 
data. 
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7. SIMULATIONS 

Statistical properties of the period search methods can be inves-
tigated using simulations. Two types of numbers are used in simula-
tions: Monte Carlo simulations rely on random number generators, 
and bootstrap and jack-knife methods rely on shuffling of the original 
observations. The simplicity, adaptability to complex situations and 
reliable estimates of low moments of relevant distributions constitute 
the advantages of simulations. 

Unfortunately, simulations suffer from disadvantages, too. The 
tails of simulated distributions rely on rare events from random num-
ber generators. Random number generators and Monte Carlo algo-
rithms are untested and unreliable for these rare events. In extreme 
cases, the effects of discrete representation of machine numbers may 
influence the results for rare events. At the same time, the gen-
eration of sufficient number of rare events for reasonable accuracy 
in the distribution tails becomes computationally very costly. For 
similar reasons, the estimation of high moments of distributions by 
Monte Carlo methods becomes both unreliable and inaccurate. We 
conclude this section with the suggestion not to use simulations in 
analysis of large data samples. For such data samples, many classical 
statistical methods have known analytical asymptotic expansions of 
distributions and their moments, thus they are easy and reliable to 
use. Simultaneously with increasing number of observations, errors 
of these classical methods decrease. 

8. LARGE SURVEYS 

8.1. Specific statistical aspects 

Let us discuss the implications of the general principles discussed 
previously for large surveys. Because of property (2) (Section 5) large 
surveys potentially enable the detection of low S/N ratio signals. 
However, this may be prevented by prefiltering data using "general 
variability criteria". These general criteria, usually based on the to-
tal variance, are not particularly sensitive for detection of periodic 
signals. This is so because by virtue of the Parceval Equation, the 
total variance is proportional to the sum of power over all neff in-
dependent frequencies. Consequently, an increase of the power at a 
given frequency by a large factor, A2/a2 1, can produce insignif-
icant increase of the total variance by a factor of A2/(cr2neff) <C 1. 
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Thus, the general variability criterion leaves many significant oscil-
lations undetected. 

8.2. Efficiency 

Scanning of the large number of low ampli tude signals requires 
the use of efficient algorithms. For near sinusoidal signals sampled 
nearly uniformly, with no large gaps, the modified power spectrum 
has good sensitivity and its F F T implementation performs with 
0 (npFT log2 ^ f f t ) efficiency, where « f f t is the number of inter-
polated points covering the whole observation time interval (Press 
& Rybicki 1989). However, such a combination of signals and 
sampling occurs in astronomy rarely. Methods, relying on phase 
folding and binning, have better sensitivity for non-sinusoidal sig-
nals and perform as C^enFFT^obs), where £ « 1 for a good fre-
quency sampling. For large gaps, npFT becomes very large and 
then the phase folding methods outperform the F F T power spec-
t rum, particularly if only the fraction £ < 1 of ^ f f t frequencies 
is searched: npFT log2 ™ f f t ) > e^FFT^obs)- The phase folding and 
binning methods are still less sensitive than the methods employ-
ing Fourier series (property (3) of Section 5). Wi th introduction 
of the orthogonal projection algorithm it becomes feasible to ap-
ply the multi-harmonic Fourier series method for large da ta samples 
(Schwarzenberg-Czerny 1996). The orthogonal projection method 
performs as 0(enFFTnobs"harm)> where nharm denotes the number of 
harmonics in use. Thus in circumstances discussed above, the multi-
harmonic method may outperform the F F T based methods in terms 
of numerical efficiency. In any case, the multi-harmonic periodogram 
is more sensitive than the power spectrum for non-sinusoidal oscilla-
tions. 

8.3. Practical experience 

The OGLE collaboration performs a large imaging survey of se-
lected fields, collecting in the process over 50 000 light curves of vari-
able stars. A manual scanning of these light curves and correspond-
ing periodograms is hardly feasible. The statistical detection criteria 
discussed above are well suited for automatic search of periodic stars 
in the large da ta base. The OGLE da ta were used to perform de-
tailed tests of the AOV and PDM methods (Schwarzenberg-Czerny 
1989, Stellingwerf 1978). The AOV method relies on phase folding 
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Fig. 8. Results of the OGLE variable star search in Baade's Window, 
using (i) AOV periodogram and (ii) uncorrected PDM periodogram. Nu-
merals indicate the number of periodic variable stars found by each/both 
methods. 

and binning of observations and on the AOV statistic Go (Table 1). 
PDM is an older method, popular among observers. It uses the same 
folding and binning scheme as AOV but differs in using of the Oj_ 
statistic and F-S distribution. According to Table 1, the statistic 
and the distribution do not match, so, in its original form, PDM is 
statistically incorrect. 

The first test concerned the sensitivity of the AOV method. It 
was performed for stars laying in overlapping areas of frames, so 
that two independent light curves were available for each object. 
Analysis of these data revealed a nearly 100% detection efficiency 
for amplitudes exceeding 0.2 mag and stars brighter than 17 mag. 
The second test involved a comparison of performances of the AOV 
and PDM methods. Both the AOV and PDM methods were applied 
to variable stars found by OGLE in Baade's Window. In this field, 
96 periodic variable stars were identified by both AOV and PDM. 
Only 4 other stars were discovered with PDM and missed by AOV. 
Additionally, 117 stars, i.e. most of periodic variables discovered in 
this field, were found by AOV and missed by PDM (Fig. 8). The 
periodic nature of all stars detected in this test was confirmed by 
eye inspection of the folded light curves. The conclusion drawn from 
both tests was that AOV gives the best results for different types of 
periodic variables (Udalski et al. 1994). Note, however, that PDM 
with the matching distribution derived according to Section 4 should 
perform equally well as AOV. Application of a better model, namely 
of Fourier series as in multi-harmonic periodogram, should improve 
the performance further. 
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APPENDIX A: ORTHOGONAL BASES 

Equation (1) suggests that it would be convenient to do time 
series analysis in a mathematical environment where functions be-
have as vectors and form scalar products. Note that since it is often 
convenient to use a complex exponential function instead of sine 
and cosine, complex values should be allowed. The relevant mathe-
matical space is called Hilbert space. Hilbert spaces encountered in 
quantum mechanics, /H0o, have infinite number of dimensions and, 
correspondingly, complex theory. As long as we consider only dis-
crete time series of, say, n complex observations Xk,k = l , . . . , n , we 
should concern ourselves only with a finite dimension Hilbert space 
7i n . For studying properties of Tin, often suffices an analogy with 
ordinary geometry and no arcane knowledge of operator and spec-
tral theory is required. H n differs from a familiar n-dimensional real 
vector space TZn only slightly because of a complex scalar product: 

where x denotes the complex conjugate of x. A scalar product defi-
nition suitable for the present purposes is 

(x,y) = (y, x) 

(ax + y,z) = a(x , z) + (y, z) 

||x||2 = (x, x) > 0 and 
llxll = 0 = 0 

(13) 
(14) 

(15) 
(16) 

n 

( x , y ) = dkXkVk (17) 

where gk are real and positive, to satisfy Eq. (15). The presence 
of complex conjugate terms in Eqs. (13)—(17) is necessary to satisfy 
Eq. (15) for the pure imaginary x. The vector norm ||x|| and the angle 
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between vectors j(x, y) axe defined in a usual way: ||x||2 = (x, x) and 
cos7 = (a:,y)/||ar||||y||. 

Similarly to ordinary vector space, 7in must contain a set of n in-
dependent base vectors = 1,..., n, such that | c o s 7 ( 2 ^ , ^ 
1 for j ^ k. From these vectors one may always construct the ortho-
normal vector base = 1, ...,n, such that 

( x ^ , x ^ ) = 6 j k , (18) 

where Sjk = 1 for j = k and 0 otherwise. The construction, called 
Gramm-Schmidt orthonormalization, is a recurrence process: 

a W ^ z W / l l ^ l l , (19) 
i - i 

xu) ^ zu) _ ] ry* ) ( x (* ) , zO ' ) ) , (20) 
*=1 

XU) < ; = x ( i ) / | | x O)| | 

for j = 2,..., n. (21) 

Eq. (20) times x ^ l \ t = 1, j demonstrates that x ^ satisfies Eq. (18) 
if x ^ k \ k = 1 — 1 do. Some reasons which make orthogonal 
(orthonormal) bases convenient were discussed already in Section 2. 
Arbitrary vectors, say, y, z and their scalar product and norm have 
a simple expansion in an orthonormal base x ^ : 

y = X > ( f c ) ( s ( f c \ y ) , (22) 
k=1 

n 

(y,z) = £ (y ,x ( f c ) ) (* (* \ . z ) , (23) 
k=1 

| | y | | 2 ^ | ( y , * < f c ) ) | 2 . (24) 
k=1 

The validity of Eq. (22) is best demonstrated by observation that 
its scalar product with x ^ reduces using Eq. (18) to an identity 
(xW,y ) = (s(*) ,y)foral l n values of k. Since there are n components 
of y to satisfy these n identities, the expansion in Eq. (22) must be 
exact and unique. Eq. (23) is obtained by substitution of Eq. (22) 
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for y and z in (y,z) and subsequent use of Eq. (18). Eq. (24) is 
obtained from Eq. (23), as a special case for (x,x), using Eqs. (15) 
and (13). Equations (22)-(24) are familiar from real vector spaces. 
They retain validity for the complex Hn• These complex equations 
have an interesting interpretation for even sampled observations and 
the FFT model. For the FFT frequency grid, harmonics exp (u>t) are 
orthonormal with suitable normalization. Then for real y, the FFT 
transform is J-y(k) = and Eq. (22) reduces to a familiar 
identity y = The equation H-Ft/H2 = ||y||2 corresponds to 
Eq. (24). The convolution theorem y*z = T y T z does not generalize 
for arbitrary orthonormal bases since generally ^ for a 
independent of k. However, Eq. (23) demonstrates that for a special 
case of zero lag, (y * z)(0), the convolution theorem holds for general 
orthonormal functions. 

APPENDIX B: ORTHOGONAL LEAST SQUARES FIT 

Let us consider for the moment a model X|| built of a linear 
combination of orthogonal base functions, z ^ : 

r 

* | | = X > s ( * \ (25) 
k=1 

where yk are model parameters. We restrict ourselves to observations 
and models represented by vectors of the real numbers, x and X||, 
respectively. Let us fit the parameters y by least squares. Then 
0 = (d/dyk)\\x±\\2 = ( d / d y k ) [ ( x - x\\,x - xy) + (x - - J | | ) ] , 

where differentiation acts only on underlined terms. Noting that x 
does not depend on y and that swapping of real arguments does not 
change the second product, one obtains: 0 = — 2(dx\\/dyk, ar — X||) — 
- 2 { z ^ k \ x - Y , V k Z { k ) ) = - 2 [ ( z ^ k \ x ) - y k ( z ^ k \ z ^ ) ] . We exploit 
here orthonormality of the base vectors (Eq. 18). In this way one 
derives the final result: 

y k = (z^k\x). ( 2 6 ) 

In this way we demonstrate that for the orthogonal model a (unique) 
least squares solution for model parameters is obtained by an orthog-
onal projection. 




