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Abstract. The two-body problem in Manev-type fields (featured
by potentials of the form A/r+B/r2; r is the distance between par-
ticles, A and B are real parameters) constitutes a good model for
various concrete physical problems of astronomy, astrophysics, rela-
tivity, atomic physics, mechanics, etc. We study relative motion in
such fields both quantitatively and qualitatively. An analytic solution
is obtained in a closed form. A qualitative investigation is performed,
representing the motion in the (1/r,7) phase plane, where all the so-
lutions are conic sections (or arcs of them). A bifurcation analysis is
performed case by case for the whole allowed interplay among field
parameters, angular momentum and total energy. Each solution is
interpreted in terms of physical motion.

Key words: celestial mechanics: two-body problem - qualitative
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1. INTRODUCTION

The two-body problem with a quasihomogeneous potential of the
form A/r + B/r? (where r is the distance between particles, while A
and B are real constants) is more than three centuries old. Newton
was the first to consider it (for positive A and B) in his Principia;
in Book I, Article IX, Proposition XLIV, Theorem XIV, Corollary 2,
he showed that such a force entails a precessionally elliptic relative
orbit. In other words, the trajectory of a particle with respect to a
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fixed frame originated in the other particle will be an ellipse whose
focal axis rotates in the plane of motion. Except for this result,
Newton’s research on such a model remained unpublished during his
lifetime; however, the 1888-catalogue of the Portsmouth Collection
of unpublished manuscripts points out his interest in this subject.
The reason was the impossibility of explaining the Moon’s apsidal
motion within the framework of the inverse-square force model. After
Newton, the A/r + B/r? potential was tackled by Clairaut, who
finally abandoned it in favor of the classical potential.

One knows that the perihelion advance of the inner planets (es-
pecially that of Mercury) cannot be fully explained within the frame-
work of the classical Newtonian law, even resorting to perturbation
theory. The many pre- and post-relativistic laws (as those proposed
by Hall and Newcomb, for instance) usually answered this question,
but failed to explain other issues (as the secular motion of the Moon’s
perigee). As regards general relativity, it succeeded in explaining
well such phenomena, both quantitatively and qualitatively. Un-
fortunately, this powerful theory, which answered many momentous
questions in physics and astronomy, is not of much help for celes-
tial mechanics. All attempts to formulate a meaningful relativistic
n-body problem have failed to provide valuable results.

Therefore, the problem is to find a model able to respond to
the theoretical needs of celestial mechanics (by keeping the simplic-
ity and advantages of the Newtonian mechanics) and also to de-
scribe correctly the orbits coming close to collisions. In other words,
we need a model able to maintain dynamical astronomy within the
framework of classical mechanics, offering at the same time equally
good justifications of the observed phenomena as in the relativity
theory.

Such a model is that based on the above A/r + B/r? potential.
Using physical principles, the Bulgarian physicist G. Manev (Maneff
in his papers written in French or German) obtained a similar model
in the twenties, and proposed it as an alternative substitute of rel-
ativity (Maneff 1924, 1925, 1930a,b). In the corresponding central
force problem with unit mass for the “satellite” particle, Manev’s
potential gives A = u, B = 3u?/(2c?), where p is the product be-
tween the Newtonian gravitational constant G and the sum of the
masses and ¢ is the speed of light. Fallen into oblivion for half a
century, then pointed out by Hagihara (1975) as providing the same
good theoretical approximations as the relativity theory (at the so-
lar system level, at least), Manev’s law was recently reconsidered
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in a series of studies having as a departure point the researches by
Diacu (1993). For the two-body problem with this law, Mioc and
Stoica (1995a,b) used Sundman-type transformations to regularize
the motion equations and found a general solution of the regularized
equations. Diacu et al. (1995) obtained an analytic solution and a
local flow near collision. The isosceles three-body case was studied by
Diacu (1993), while Ureche (1995) used this field to an astrophysical
problem: the free-fall collapse of a homogeneous sphere.

The Manev potential for arbitrary positive values of A and B
was also tackled. Lacomba et al. (1991) studied it in the Hamilto-
nian formalism for negative total energy; they also applied the KAM
theory to a perturbed potential of this kind to prove a crucial result:
if the motion equations undergo a slight perturbation, not necessar-
ily Hamiltonian, most invariant cylinders and tori are topologically
preserved. The Melnikov integral associated to the nonhyperbolic
equilibria was computed by Casasayas et al. (1993). Aparicio and
Floria (1996) showed that only the class of Hamiltonians to which
Manev’s model belongs admits linearization (reduction to harmonic
oscillators). Diacu (1996) proved that Manev’s case represents the
only bifurcation of the flow among all quasihomogeneous potentials.
Stoica and Mioc (1996a,b) depicted the problem geometrically in the
usual phase planes, while Delgado et al. (1996) provided the com-
plete analytic, geometric and physical description of the global flow
in the space of McGehee’s coordinates. The anisotropic Manev prob-
lem (important for understanding the connections between classical
and quantum mechanics), suggested by Diacu (1993), was investi-
gated by Craig et al. (1996). They obtained the local flow near
collision, some elements of the global flow and the complete picture
of the zero energy case.

One might say (and physicists do it often): to find the motion
corresponding to the A/r + B/r? potential is an obsolete problem.
Indeed, it appears (under different formulations) as an exercise in
classical textbooks as those of Moulton (1923, p.96, Problem 4) or
Goldstein (1980, p.123, Problem 14). Leaving aside the fact that
the respective statement is incorrect in Goldstein’s case or covers
a very restricted area in Moulton’s case, the above quoted results,
and especially those obtained by Delgado et al. (1996), show how
complex the problem is in reality.

The aim of this paper is to generalize the results given by Del-
gado et al. (1996), providing the complete analytic, geometric and
physical description of the two-body problem associated to a Manev-
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type potential for any values (positive, negative or zero) of the field
parameters A and B.

The importance of such an analysis is emphasized by the mul-
titude of concrete physical and astronomical situations modellable
in connection with a potential of this kind. Some examples can be
given. The motion in certain relativistic fields, truncating the neg-
ligible terms, is such a situation. The expressions correspond to
Fock’s field (Mioc 1994): A = (2E? — 1)u, B = 3u2?E?/c? (where
E =14 h/c? and h is the total energy per unit mass of the orbiting
particle), hence A > 0, B > 0. For the relativistic field described
by the Reissner-Nordstrom metric, we obtain A > 0, B < 0 as fol-
lows: A = pu, B = —GQ?/(87eoc?), where Q is the electric charge
of the field-generating source, while ¢ is the electric permittivity of
vacuum. A photogravitational field generated by a radiative source
is featured by A = p — oL/(4nmc) (where o and m are the cross-
sectional area and the mass of the orbiting body, while L is the lu-
minosity of the central body). In this case B can be zero or nonzero
when the gravitational component of the field is Newtonian or not.
In its turn, A can be positive, zero, or negative, as the Newtonian
part of the gravitational force is stronger than, equal to, or weaker
than the repulsive radiative force. Moreover, considering that L is
not constant (the case of a variable star for instance; see Saslaw
1978, Mioc & Radu 1992, Selaru et al. 1993), we are in front of
a perturbed Manev-type potential. The two-body problem with an
equivalent gravitational parameter (Selaru et al. 1992) belongs to
the same category, with B = 0. For atomic physics, the potential
energy of the outward electron in the field of the nucleus is given in
a second approximation by a Manev-type model (Sommerfeld 1951,
Belenkii 1981). Other implications in this direction were pointed out
by Diacu (1993). For mechanics, the Manev-type model with 4 =0,
B > 0 has several interesting properties: it is a dividing line between
two very different types of orbit behavior (McGehee 1981). Also in
such a field, a system of n particles moving along a straight line is
completely integrable (Moser 1975); the time of total collision for the
associated general n-body problem can be computed (Diacu 1990).

To end this series of examples we resort to some supplemen-
tary astronomical arguments. We saw that in Manev-type fields the
natural, unperturbed motion of celestial bodies is precessional (as
relativity had foreseen). In such fields the set of initial data leading
to collisions has a positive measure (and in the solar system the col-
lisions are not so rare as the Newtonian model asserts). Finally, we
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mention a scenario concerning the formation of a pulsar from two
white dwarfs that spiral in toward each other, eventually merging
into a single object (see Stephens 1996). Such a black hole effect
(spiral collision) is possible in Manev’s field (Diacu et al. 1995), but
not in Newton’s field.

In this paper we develop the Manev-type two-body problem,
with interplay allowed among the field parameters, angular momen-
tum and total energy. Reducing the framework to that of a central
force problem, the analytic solution is obtained in closed form. Then
a qualitative analysis is performed, based on the geometric represen-
tation of the motion in the (1/r,7)-plane, where the corresponding
trajectories are found to be only conic sections or arcs of them. Each
allowed trajectory is interpreted in terms of physical motion, obtain-
ing in this way an ample picture of the problem.

2. ANALYTIC SOLUTION

Consider hence the Manev-type two-body problem. We may
reduce it to a central force problem (e.g. Arnold 1976) and study
the motion of one body (of unit mass, hereafter particle) with respect
to a fixed frame originated in the other body (hereafter center). This
relative motion will be planar and described by the equation

. A 2B

r= —r—sr - r—4r, (1)
where r = radius vector of the particle with respect to the center,
r =| r | and dots mark time-differentiation.

Passing to polar coordinates (r, u), equation (1) transforms into

.. A 2B
r—ru2=—r—2—r—3, (2)

ri + 2ru =0, (3)
system to which we attach the initial conditions
(ryu,7,u)(to) = (ro, uo, 7o = Vpcosa, tg = Vpsina/rg), (4)

where Vo = V(to), V =| i | (velocity), a = angle between initial
radius vector and initial velocity.

The force field being central, the angular momentum is con-
served, and (3) provides the first integral
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2.
r‘u = C, (5)

where C = roVp sina is the constant angular momentum. The first
integral of energy can also be easily obtained as

Vi=r? o2 = E+§-+h, (6)
2

where h = V2 — 24/ro — 2B/r? is the constant of energy.

The solution of the problem can be obtained in closed form.
For instance, in the nonradial case (C # 0), resorting to the usual
technique (by (5), dt = (r?/C)du, and so forth), equation (2) leads
to the Binet-type equation

D (-Bam=4 Q

with the initial conditions (written in an equivalent form extracted

from (4) and (5))

(1/m G2 two) = 1o, =iof).

The general solution of the initial value problem attached to equation
(7) depends on the sign of the parameter (1 — 2B/C?) and will be
for (a) C? < 2B; (b) C? = 2B; (c) C? > 2B, respectively:

[/ 1 A x To & A -
r(w) = (— +550) O - S~ ]
r(u) = 57 (u ug)® — -—(u ~ug) + rlo] ; (8)

(1 A\~ fo & 4 17
w=|(5 - c—_—za‘) 0~ arsp S e gg]

where we abridged

(8, C)(u) = (sinh, cosh) (m(u - uo)) ,
(8, C)(u) = (sin, cos) (\/—2_5/—02——1(11 - uo)) .
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Formulae (8) were actually obtained (in a slightly modified form)
by Delgado et al. (1996). Although the respective paper referred to
the Manev problem with A and B as positive constants, the analytic
form of the solutions remains valid for any real value of A and B
(and for C # 0, of course).

The radial case (C = 0) can also be solved, by resorting to
equation (6) with & = 0. We shall not dwell upon it for two reasons.
On the one hand, the analytic solution of the initial value problem
attached to Eq. (6) (in which « = 0) will be of the form ¢t = #(r),
relation invertible only in particular cases. On the other hand, we are
more interested in a qualitative investigation of the particle behavior.
The analysis we are going to perform in the next section covers both
cases.

3. GEOMETRIC DESCRIPTION

To study the particle behavior from a qualitative standpoint, we
eliminate u between (5) and (6), obtaining

C*-2B 24
This represents in the (1/r,7)-plane a family of conic sections whose
kind (ellipses, parabolas, hyperbolas) and nature (nondegenerate,
degenerate) are respectively given by the parameters § = C? — 2B
and A = h(2B—C?)— A%. Observe that there exists a critical energy
level A2

" 2B-C?
for which A = 0 (degenerate conic sections).

If C? < 2B (6 < 0), Eq.(9) represents a family of hyperbolas
(Fig. 1) centered in P(—A/(2B—C?), 0). For h < h. the semiaxes are
(ke — R)/(2B — C?) and vk, — k, while the foci are lying on the
1/r-axis. For h = h., Eq.(9) represents the respective asymptotes
and for h > h. it describes the family of conjugate hyperbolas.

If C? = 2B (6§ = 0), Eq.(9) represents a family of parabolas,
nondegenerate for A # 0 (Figs.2a, 2c). For A = 0 (A = 0), every
parabola degenerates into a pair of lines (distinct or not) parallel to
the 1/r-axis (Fig. 2b).

If C? > 2B (6 > 0), Eq. (9) represents a family of ellipses (Fig. 3)

with the same center and semiaxes as the above hyperbolas. The

he
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Fig. 1. The flow for C? < 2B.

ellipses are real for b > h (A < 0), they reduce to the center P of
the family if h = h, and they are imaginary if h < he.

Knowing that only the curves lying in the halfplane 1/r > 0
represent real motion in the physical plane, and using (9), we can
remove the forbidden combinations {A, B,C, h}, which lead to im-
possible real motion and geometrically mean:

{C? = 2B, A <0, h < 0}: parabolas lying wholly in the zone
1/r <0

{C?=2B, A=0, h < 0}: pairs of imaginary parallel lines;

{C? > 2B, A <0, h <0}: real ellipses lying wholly in the zone
1/r <0;

{C?> 2B, A>0, h < h.}: imaginary ellipses.

The trajectories in the (1/r,7)-plane are represented in Figs.1
(C? < 2B), 2 (C? = 2B) and 3 (C? > 2B). The corresponding
curves (arcs of curves) for 1/r > 0 and for each allowed combination
{A, B,C, h} are easy to identify.

There are equilibria for each case: P is a saddle point in Fig.1
and a center in Fig. 3; in Fig. 2b the whole semiaxis (1/r > 0, # = 0)
consists of stable equilibria.
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Fig. 2. The flow for C? = 2B and (a) A < 0, (b) A = 0, (c) A >0.
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Fig. 8. The flow for C2 > 2B.

To end this section, we would like to emphasize the main advan-
tage offered by the use of the (1/r,7)-plane in describing the problem
geometrically. The trajectories in this plane are conic sections, whose
features are very well known (providing immediately the qualitative
behavior of the particle and facilitating the physical interpretation),
while the usual (r,7) phase curves are more complicated (see Stoica
& Mioc 1996a,b). Also, if we choose the velocity plane (V,, = C/r,
V, = r), the trajectories are found again to be conic sections, but
the rectilinear case cannot be studied in such a way.

4. PHYSICAL INTERPRETATION

First of all, let us clear up the nature of the physical motion rep-
resented geometrically in Figs. 1-3. By (5), u varies monotonically
(C # 0) or remains constant (C = 0) all along the motion. Con-
sequently, every trajectory segment in the upper/lower halfplane of
figures physically means spiral (C # 0) or rectilinear (C = 0) motion
performed outwards/inwards.
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Tables 1-3 (each one interpreting the corresponding figure) syn-
thesize the particle behavior in terms of physical motion for the whole
allowed interplay among field parameters, angular momentum and
total energy. The symbols used in tables are:

0 — 0: orbits ejecting from collision and then tending back to
collision (the particle cannot escape);

0 — oo: orbits ejecting from collision and then tending to infinity
(after ejection the particle cannot collide anymore with the center);

oo — 0: orbits coming from infinity and tending to collision (no
escape is possible);

00 — 00: orbits coming from infinity and then tending back to
infinity (no collision is possible);

SE: stable equilibrium orbits (circular for C' # 0, or stable rest
for C = 0);

UE: unstable equilibrium orbits (circles or rest as C' # 0 or for
C = 0, respectively).

To have a more detailed picture of the physical motion, some ex-
planatory notes are necessary: if C' = 0, the collision (ejection) is rec-
tilinear; if C' # 0, the situation changes: the particle spirals around
the center, performing infinitely many rotations immediately before
collision (after ejection) (cf. Delgado et al. 1996). The velocity has
an infinite value in these cases, except for {C? = 2B, A = 0,h > 0}
(Table 2, Fig. 2b), when V = v/h all along the motion.

When the particle escapes to infinity, its velocity tends asymp-
totically (except the above constant V case) to vk by lower values
if A <0or {C? > 2B,A = 0} or by higher values if A > 0 or
{C?* < 2B,A =0}.

The case {C? > 2B,A > 0,h, < h < 0} means motion with
periodic character; neither collision nor escape are possible. In recti-
linear motion (C' = 0) the particle librates radially (0 < rmin < r <
Tmax < 00). For C' # 0 the orbits are precessional ellipses (cf. Diacu
et al. 1995) inside an annulus: the motion is periodic (closed curves)

if /1 —2B/C? is rational (see the last formula (8)), or quasiperi-

odic (unclosed curves filling densely an annulus) if 1/1 — 2B/C? is
irrational (see Arnold 1976, Delgado et al. 1996).

Finally, one can see that for rectilinear motion (C = 0) all cases
concerning comparison between C? and 2B reduce to cases concern-
ing the sign of B. In such a situation the column A = 0 in Table 2
corresponds to motion (or rest) in the absence of the field.
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Table 1. C? < 2B; h, > 0.

™ & ] A<0 [A=0(h.=0)] A>0 |
h<0 00 0—0 00
h=0 0—-0 0—00,00—0

0< h<h, 0—-0,00—> 00 0—00,00—=20|0>00,00—0
0—UE,o00— UE

h=h, UE—-0,UE - x 0—-0,00—0
UE
h > h, 0-0,00—-0 [0—m0,0—=0{0—>0,00—=0

Table 2. C? = 2B.

| B [A<0(h>0)] A=0(h>0) | A>0 |
h<0 - - 0—0

h=0 - SE 0—-o00c,0—0
h>0 00 — 00 020,020 0—>00,00—0

Table 8. C? > 2B; h, <0.

| h [A<0(h>0)|A=0(rh>0)|A>0 (h>h)]

h=h, - - SE
he<h<0 - - quasiperiodic,
periodic
h=90 - - 00 — 00
h>0 00 — 00 00 — 00 00 — 00
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