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Abstract. The unusual variable star AM CVn has puzzled as-
tronomers for over 40 years. This object, both a photometric and 
spectroscopic variable, is believed to contain a pair of hydrogen de-
ficient white dwarfs of extreme mass ratio, transferring material via 
an accretion disk. We have examined the phase stability of the dom-
inant photometric variation at 1902.5 //Hz, analyzing 289 hours of 
high speed photometric data spanning 1976 to 1992, and have deter-
mined the dominant frequency to be (1902.509802 ± 0.00001) //Hz, 
with P = (+1.71±0.04) X 10"11 s s"1 . 
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1. Introduction 

AM CVn (HZ 29, WD 1232+37, PG 1232+379) was discovered 
by Humason & Zwicky (1947). Its peculiar optical spectrum is char-
acterized by broad, shallow, asymmetric absorption lines of neutral 
helium and a complete lack of hydrogen (Greenstein & Matthews 
1957). AM CVn is also a photometric variable, varying its bright-
ness at the 1% level at two independent frequencies; a previously 
reported double humped 951.3 //Hz (1051.2 s) variation (Smak 1967) 
and 988.7 //Hz (1011.4 s) (Solheim et al. 1984). Flickering, a classic 
signature of mass transfer, is also reported in AM CVn's light curve 
(Warner & Robinson 1972). No large magnitude outbursts have been 
observed. 

AM CVn is the prototype interacting binary white dwarf system 
(IBWDs), believed to contain two helium white dwarfs of extreme 
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mass ratio, transferring material via an accretion disk. If we can un-
derstand the mechanics behind these objects, we will have a sensitive 
probe to explore nucleosynthesis, binary star evolution and stellar 
structure. However, fundamental questions persist. Only circum-
stantial evidence supports AM CVn's binary nature, we do not see 
the secondary. The orbital frequency is believed to be 951.3 /i Hz, but 
all attempts to find radial velocity variations or photometric power 
at this frequency have failed (Provencal et al. 1995). Despite the 
951.3 //Hz variation's presumed origin, a predictive ephemeris has 
not yet been presented. Solheim et al. (1984) first reported signif-
icant power at 988.7 /¿Hz. If 951.3 /¿Hz is the orbital frequency, we 
require a second mechanism to produce the 988.7 /¿Hz variation. Fi-
nally, Patterson, Halpern & Shambrook (1993) find line profile vari-
ations with a frequency of 20.7 /¿Hz in AM CVn's optical spectra, 
which they show cannot be the orbital frequency and they interpret 
as the precession of an elliptical disk. 

We consider a thorough examination of the phase stability of 
AM CVn's photometric variations to be extremely important. We 
report on our analysis of 289 hours of high speed photometric data 
spanning 1976 to 1992. We determine the dominant frequency in 
the Fourier transform (FT) to be (1902.509802 ± 0.00001) /¿Hz, with 
P = (+1.71±0.04) x 1 0 - n s s " 1 . 

2. Phase stability 

The traditional method of phase analysis is the O — C diagram, 
a series of points characterizing a variation's behavior relative to an 
ephemeris (Kepler et al. 1991). An accurate model for a stable 
frequency will produce a set of O — C points best fitted by a straight 
line with zero slope. 

Previous O — C calculations for AM CVn, examining the sup-
posed 951.3 /¿Hz variation, use timings derived from a single night of 
observations, with varying results (see Patterson et al. 1979, Solheim 
et al. 1984 and Patterson et al. 1992 for examples). Our FTs do 
not show power at 951.3 /¿Hz. The dominant photometric period is 
actually a doublet, at 1902.5 /¿Hz. We have shown (Provencal et al. 
1995) that the 1902.5 [iHz doublet requires 13.4 hours of continuous 
data to resolve, so a timing from a single night of observations is not 
accurate. If the FTs do not contain a sufficient time base to resolve 
the web of aliases, the aliases from the small component contribute 
significantly to the power in the dominant peak. 
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We will minimize these problems by calculating seasonal timings 
for the 1902.5 /¿Hz frequency to ensure complete resolution of the 
power spectra. Provencal et al. (1995) contains a detailed account 
of the frequency and amplitude stability of this variation, eliminating 
the possibility of two or more unresolved variations beating together. 
We determine the dominant frequency for our entire data set to be 
(1902.509804 ± 0.000003) //Hz. 
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Fig. 1. O—C diagram for the 1990 WET observing run. 

We begin by placing a limit on the 1902.5 //Hz variation's rate 
of period change, the details of which are outlined in Provencal et 
al. (1995). Fig. 1 is the O — C diagram for the best period from the 
1990 W E T data set, which places a constraint of P < (2.3 ± 1 . 4 ) x 
1 0 - 8 s s - 1 and eliminates the possibility of random phase changes 
on timescales of days. This constraint is improved by examining 
the change in the best frequencies for each season (see Table 2 in 
Provencal et al. 1995). Using the 1990 and 1992 frequencies, \P\ < 
2 x l O - 1 0 s s - 1 , otherwise we would see a greater change in seasonal 
frequencies. This figure is consistent with the difference between any 
two seasons and is comfortably below our earlier limit. 

To calculate our O - C points, we fitted a 1902.509804 //Hz 
sinusoid to each observing season's data. Because the 1992 season 
spans the longest time base, we designate this season's Tmax Tz e r o , 
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Fig. 2. 0—C diagram for AM CVn's 1902.5 ¿¿Hz variation, repre-
senting all possible timings given our limit on the rate of period change. 
A solution must pass through one timing from each season. 

and give it an 0 — C value of 0 s, and refer other O — C points to this 
initial timing. Our constrained, but nonzero value of P introduces 
cycle count aliases between observing seasons, greatly increasing the 
possible solutions to the O — C diagram. From 1990 to 1992, we 
could accumulate ± 1 cycles, eliminating solutions that in 1990 pass 
through cycle count aliases greater than this. Applying similar limits 
to other O — C points results in the fan-shaped plot in Fig. 2. In 
order to prove that we measure a period change, all possible solutions 
except one must be eliminated to a high degree of confidence. 

We calculated fits for values of constant P by fitting (Kepler et 
al. 1991) 

(O - C ) = T°baSx - Tzero - P E - \ P P E 2 
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Fig. 3. Best fit to the 0— C points in Fig. 2. The 1 a errors are the 
size of the points. 

where E is the number of cycles which elapse until T z e r o and P = 
j = 525.621470 s, to the points in the O — C diagram. Provencal 
et al. (1995) outlines the extensive steps we employed. The only 
fit exhibiting predictive power is P = (+1 .68±0.03) x 1 0 - 1 1 s s _ 1 

(Fig. 3). The probability of obtaining 6 random points that lie on a 
parabola is 1 in 125 000. 

To confirm this value for the period change, we fitted a sinusoid 
with various values of P to the entire data set. The best value for P 
obtained via this method is (+1.73±0.03) x 1 0 - 1 1 s s - 1 , in agreement 
with that obtained directly from the O — C diagram. Our measured 
rate of period change is therefore (+1.71 ± 0.04) x 1 0 - 1 1 s s - 1 , cor-
responding to a timescale of 

£ « 1 x 106 yr . 
P  3  

With such a long timescale, it is doubtful that this variation arises 
in a disk. 



Periodi stability in AM CVn 401 

References 

Kepler S.O. et al. 1991, in Proc. of the 7th European Workshop on 
White Dwarfs (NATO ASI Ser.), eds. G. Vauclair & E.M. Sion, Kluwer 
Academic Publishers, p. 143 

Patterson J., Nather R.E., Robinson E.L. 1979, ApJ, 232, 819 
Patterson J., Sterner E., Halpern J.P., Raymond J.C. 1992, ApJ, 384, 234 
Provencal J.L. et al. 1995, ApJ, 445, 927 
Solheim J.E., Robinson E.L., Nather R.E., Kepler S.O. 1984, A&A, 135, 1 


