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Abstract. The tools for analysis of the WET data after the basic
data reduction are described. They include: fast Fourier transform,
discrete Fourier transform, spectral windows, barycentric time cor-
rection, least-squares, O-C' and pulse shape analysis.
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1. Introduction

The data acquired with the Whole Earth Telescope (WET) net-
work for one star consists of a set of runs of temporal intensity mea-
surements or light curves, one for each observing night, or part of a
night, and for each telescope (Nather et al. 1990).

The data reduction procedure described by C. Clemens in these
proceedings shows how to correct the data for dead-time losses, sky
background and extinction, how to bridge the small data gaps, nor-
malize them by the mean intensity and subtract the mean. Note
that a gap is considered a small one if it lasts less than one cycle
of the variation period, typically up to 200 s. Larger gaps call for
separation of the light curve into separate files. Therefore, at the
end of the basic data reduction we have for each run one or more
data files with times and fractional intensities.

The first step in our procedure is to calculate a Fast Fourier
Transform (FFT) for each individual run. The FFT is used because
each run consists of equally spaced data (e.g. Bracewell 1978). From
these individual FFTs, we estimate the stability of the light curve,
i.e., its changes from run to run, which have timescales of hours. In



516 S.0. Kepler

the case of significant changes from one run to the next, we should
divide the runs into smaller intervals to estimate the timescale for
these variations. Normally, the changes are on timescales of several
hours to days, and, therefore, we can study the combined light curve,
i.e., the light curve resulting from more than one consecutive run.

Before we can combine the different runs, we must put them
on the same temporal timescale. As the Earth moves around the
barycenter of the solar system, there is a wobble of the distance
between us and the star, which translates into a variation in the
arrival time of the photons by up to 499 s due to movement of the
Earth around the Sun and up to additional 3 s due to the effect of
the giant planets on the barycenter of the solar system. We must,
therefore, correct all the timings to the barycenter. As we usually
combine data sets from different years, it is important to include
the correction due to leap-seconds and to transform all the timings
to Julian Barycentric Dynamical Time (JTDB, formerly BJED and
BJDD).

To transform the timings, we use the algorithm developed by
Stumpf (1980) to calculate the barycentric correction, including all
nine planets and the Moon. The algorithm is accurate to ~0.1 s.
The leap-second corrections, published by the Bureau International
de I’'Heure (BIH) in France or the National Institute of Standards and
Technology (NIST) in the USA (see NIST 1993) from determinations
by the International Earth Rotation Service (IERS), are added to
transform the broadcast Universal Coordinated Time (UTC), used at
the observatories, to the International Atomic Time (TAI). Adding of
the constant 32.184 s transforms the TAI to the Terrestrial Dynam-
ical Time (TDT). Finally, all timings are converted to Julian Days.
The data reduction programs DRED, written by Butler Hines, and
QED, written by Ed Nather, allow the time scale correction at that
stage.

Table 1 presents the time increments that must be added to the
universal time (UTC) in order to get TDT. Leap-second increments
were added at 0 h UTC on the given date (see the Astronomical
Almanac, pages B4-5 and K9 for additional information).

After transformation of all the timings to JTDB, we can calcu-
late the Fourier transform (FT) of the combined data set. As the
data set may now include gaps, we cannot use the FFT algorithm.
The most precise algorithm is the Discrete Fourier Transform (DFT)
described by Deeming (1975). The one we normally use is a faster al-
gorithm which calculates the FFT for each run and adds the Fourier
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components in the complex space. The algorithm, developed by Carl
Hansen from JILA, is called NEWSFT (see Nather et al. 1990 for a
detailed description).

Table 1. Time corrections

Date TDT-UTC (s) Date TDT-UTC (s)

1 Jan 1958 32.184 1 Jan 1980 51.184
1 Jan 1972 42.184 1 Jul 1981 52.184
1 Jul 1972 43.184 1 Jul 1982 53.184
1 Jan 1973 44.184 1 Jul 1983 54.184
1 Jan 1974 45.184 1 Jul 1985 55.184
1 Jan 1975 46.184 1 Jan 1988 56.184
1 Jan 1976 47.184 1 Jan 1990 57.184
1 Jan 1977 48.184 1 Jan 1991 58.184
1 Jan 1978 49.184 1 Jul 1992 59.184
1 Jan 1979 50.184 1 Jul 1993 60.184

As NEWSFT carries all calculations in complex space, it also
outputs the phases of each frequency component. For calculation of
phase accurately, one must calculate the transform at least 5 times
the minimum resolution, i.e.,

where f is the frequency and T is the total time span of the data set.
To be more accurate, in general we calculate at 10 times resolution

(Af =1/10T). Note that any Fourier transform should be calculated
at most up to the Nyquist frequency,

2
.fNyqulst = A_t’

where At is the integration time. In the case when one is adding up
data, i.e., summing points with smaller integration time, At should
be the effective (summative) integration time (Tukey 1967). The
smallest frequency studied should correspond to at least two cycles
in the data set, though the period and amplitudes are accurate only
for periods smaller than 1/107T.
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2. Is a peak in the Fourier Transform real?

When we obtain the FT of a data set, we must estimate the
probability that a peak is not a result of the noise only. First, we
must calculate the local average power (square of the amplitude) on
the FT, summing up all the power in the frequency region (Horne &
Baliunas 1986):

N
<P>=) AN,
i=1

where A; is the amplitude of the peak i, and N is the number of
points in that region.
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Fig. 1. FT with 140000 frequencies for the WET observation of the
star G 226-29 during February 1992, for which we obtained 121 hrs of
data, spread over 14 days.

To calculate the average noise power, one must be careful to
select the frequency regions so that the average power takes into
account the effects of atmospheric transparency fluctuations. We
cannot calculate only one average power over all frequencies, since it
changes for frequencies < 6000 pHz (Harvey 1988).
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Fig. 2. Dependence of the number of peaks from 0 =n < P >: (a)
is for FT of the observed data set and (b) is for FT of the shuffled data
set. No peaks with o > 10 are seen on the shuffled data set. All peaks
with 0 > 10 on (a) are seen in the region of the 9135 uHz peak.

If the noise is randomly distributed, the probability of having a
peak of power < Pgps in one trial (one frequency FT) is:

k)

Pobo 1 P P
0 < P>

where < P > is the average power for the region of frequencies
studied.

If FALSE is the false alarm probability, [1 — Prob(Pobs)], the
probability that one peak of noise in N; independent samples
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(frequencies) is above P,ps/ < P > is (Scargle 1982):

FALSE = 1 — (1 — e" <F8)Ni o ;. e~ <H

or

N;
Pops = ln(FALSE) <P>.

For example, if we calculate an FT with one million independent
frequencies, Pops = 20.72 < P > for FALSE=1/1000, i.e., the peak
must be 20.72 times greater than the average power to have one
chance in 1000 of it being due to noise only.

The number of independent frequencies is N; = N/OVS, where
OVS is the oversampling ratio and N is the number of calculated
frequencies (Press & Rybicki 1989).

We can demonstrate that this description is correct by removing
any time-series correlation present in the data set, then taking FT of
the result. We re-order the data points at random (called shuffling
the data set) and then calculate the FT:

N .
2 L
S(f) = N E I[npoints x ranf(1)] - e'%rt(t),
i=1

where I(7) is the intensity at time #(¢), and ranf(1) is a random
number normalized to unity (¢ is a random time point calculated as
npoints * ranf(1) ).

We should calculate the average power, the largest peak and
a histogram of points above n -+ < P >= o¢. Only peaks above
the region of the histogram cutoff for the shuffled FT are real, i.e.,
not consistent with noise. Note that if the noise is not randomly
distributed, or the mean brightness of the star is changing, even
peaks that are above P, might be due to noise!

3. Spectral window

When we calculate the FT, each coherent frequency present in
the data set appears as a peak, with side-lobes and aliases due to the
finite length of the set and to the gaps present in it (Tukey 1967).
The spectral window describes these artifacts. If the data set is com-
posed of multiple frequencies, each peak will have a corresponding
spectral window, and, therefore, not all peaks in the FT correspond
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to real frequencies in the data set. For example, if we have two runs
separated by one day, the FT of the combined light curve will show a
peak at the real frequency, plus two other peaks, each one separated
from the real peak by Af = 1/86400s. These are called the one day
aliases. To identify which peaks are real frequencies and which are
aliases, we superpose the spectral window to the main peaks and
identify the position of the aliases.

When the data set has gaps or when we combine data from
several runs together that do not overlap, we must calculate a spectral
window to localize the aliases and side-lobes present in the FT. The
spectral window is calculated by constructing a data set with exactly
the same timings as the data set under study, but with the intensity
calculated from a single sinusoid. When we calculate an FT of the
sinusoidal data set, or as we call it, the “window data set”, the FT
will have the main peak at the frequency for the sinusoid, but will
show aliases and side-lobes. If we superpose this spectral window to
all large peaks in the FT, we can identify which peaks are due to
aliases, and, therefore, are not real frequencies in the light curve.

To obtain accurate amplitudes, phases and the uncertainties on
those values, we must fit sinusoids to the data set by linear least
squares, with the periods determined from the FT and amplitudes
and phases as unknowns. To obtain also the uncertainty on the
period, we must fit sinusoids with unknown periods, amplitudes and
phases to the data set by the non-linear least squares methods.

4. Prewhitening and synthesis

The next step after calculating the spectral window is to
prewhiten the data, i.e., remove from the data a sinusoid with the
same frequency and amplitude as the main peak in the FT. Note
that we must subiract the sinusoid from the data set, not from the
FT. The whole spectral window associated with that peak, includ-
ing the phase information, must be subtracted. Note also that we
subtract an ideal or noiseless sinusoid. Even the photon counting sta-
tistical noise is not subtracted from the surrounding region when we
prewhiten the data set. After subtracting the sinusoid, we calculate
another F'T of the new data set and identify its main peak and spec-
tral window. If the remaining peaks do not show the same spectral
window, they are probably due to noise, not to real frequencies.
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Fig. 8. The spectral window for the same G 226-29 data as in Fig. 1
and 2. The spectral window shows sidelobes even 150 uHz away from the
input frequency at 9135 pHz.

Another way of identifying peaks is related with synthesis, an
integral method as compared to the differential method of prewhiten-
ing. To synthesize the FT, we identify the main peaks, calculate their
amplitudes and phases by fitting multiple sinusoids simultaneously
to the data set by least-squares and generate a synthetic light curve
by constructing a data set with these multiple sinusoids, all with the
same timing, as the real data set. After calculation of the FT for
the synthetic data set, we compare it with the FT of the observed
data set to check if there are other peaks in the real data set not
represented by the multi-frequency synthesis. The synthesis method
also suffers from the absence of noise in the synthetic light curve.

Taking the FT of a large data sets, we often see the split of peaks
in the cases where there are closely spaced frequencies. To see if the
splitting is stable, we should divide the data set into smaller sets,
take their FT's and compare them. The length of each data set must
be larger than 1/2Af, if Af is the frequency split we are analyzing.
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5. How do we know if the pulsation frequency is changing?

To study the frequency or period variation with time, we must
calculate an O-C versus time diagram, where O is the time of maxi-
ma, of the observed sinusoid, and C is the time of maxima, calculated
from a linear relation.

5.1. Measurement ofP from the O-C vs. time relation

The rate of the period change, as well as a correction to the
period and epoch, can be obtained by fitting a parabola to the O-C
vs. time relation; more generally, we start with a guessed ephemeris
and look for systematic residuals.

We assume a fit of the form C = FEy + P- E and what we obtain
from the fit are corrections to the initial values of P and FEy, which
we call AEy and AP:

1 .
O—C=ATmax+AP-E+§P-P-E2,

where AT,y is the correction to the epoch of observation, i.e., the
time of maximum assumed to be the zero ephemeris, AP is the
correction to the period, E is the number of cycles elapsed since Ey
and P is the rate of change of the period with time, dP/dt.

Appendices 1 and 2 show the relation between O-C and P ob-
tained in two different ways (E. L. Robinson, private communica-
tion). The two derivations are consistent and require a coefficient of
0.5 in the P term. The factor is important because some authors
have defined the O-C without this factor in the past (Willson 1986;
Tomaney 1987). Consequently, their values of P differ from our defi-
nition by a factor of 2. .

Another way of measuring P is by fitting the equation

I(t) = Z A, - cos[(w, + %U'ht)(t — ¢max)]
=1

to the light curve by non-linear least squares; here n is the number of
sine curves in the light curve we want to fit. We have found that the
internal errors given by the non-linear least squares are in general by
a factor of 10 smaller than those from the O-C fit. This can arise
when the fitting parameters are correlated with each other; the error
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calculation assumes they are not. As the O-C is more conservative,
and its errors are simpler to understand, we have been quoting those
values in our papers.

6. Pulse shape

After we find a peak in the F'T, we must check if the data are
consistent with a sinusoidal variation at that frequency, typical for
linear (small) variations, or if it shows deviations from a sinusoid,
indicating non-linear effects are present. The presence of harmonics
or sub-harmonics in the FT indicates that the variations are non-
sinusoidal. To study the pulse shape, we fold the light curve at the
observed frequency and compare it to a sinusoid.

7. Linear combination terms

Most of the variable stars show peaks not only at the frequen-
cies f1, fa2,..., but also at the frequencies which are their simple linear
combinations: 2f1, fi + f2, fi — f2 and so on. Therefore, after we
have identified a couple of peaks, we should also look for these linear
combination frequencies. These frequencies might arise from sev-
eral sources: pulse distortion, non-linear driving effects, resonance
between the modes, and even mathematical formulation of the prob-
lem, as pointed out by Mike Breger in these proceedings.

8. Splittings in pulsating star light curves

If the variations in the light curve are due to pulsations, then
the rotation (e.g. Brassard et al. 1988) and magnetic fields (Jones et
al. 1989) can break the spherical symmetry of the star. If the star
rotates, the degeneracy of a pulsation with latitudinal index ! is lifted
and we obtain (2¢ + 1) modes, each represented by the longitudinal
index m. Therefore, to the first order, modes with the same £ will
have the same splitting. We should, therefore, look for peaks with
the same splitting in the FT, indicating modes with the same £. We
can use the asymptotic formula to look for different £ modes, if the
value of the radial overtone k is large enough (true for DOV and
DBV stars), after we have found modes with the same splitting. We
use the relation:
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Af(l) [ +1)
Af() ~ \ (e +1)

Differential rotation causes the m splitting to be different for different
k values.

We should also look for peaks which are equally spaced in period,
since the modes of the same ¢ should have similar period spacings.

The asymptotic formula for the g-mode period spacing, as given by
Kawaler (1987), is:

VEE+1)

Inclination of the pulsation axis of the star relative the line of
sight (II, is a constant period) causes modes with different m, split
by slow rotation, to have different amplitudes, even if they originate
with the same amplitude (Pesnell 1985). Therefore, we do not expect
all m modes to have the same amplitude, but we expect them (the-
oretically) to have amplitudes that are symmetrical around m = 0.
Observationally this does not take place, so we must learn why.

< AP >x

Dziembowski (1977) showed that geometrical cancellation causes
modes with higher £ values to have smaller observable amplitudes,
even if they started up with the same physical amplitude. That is
one reason why most of the pulsation modes we observe are £ =
1. Robinson, Kepler & Nather (1982) calculated the geometrical
cancellation values for £ = 1 to 5, for the g-modes, and Kepler (1984)
for the r-modes. This only works for undistorted (linear) sinusoids,
however.

Note considering the programs

Any program described in this paper can be obtained from the
author by e-mail.
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Appendix 1: Simple derivation of the O—C difference
If the period of a cyclic variation is constant, then
Tmex=Fo+P-E, (1.1)
where P is the period at Ey, and E is the epoch (cycle number from Ej). Therefore

Tmax—p. (1.2)

If the period changes slowly with time, we may expand T ax into a Taylor series,
keeping only up to the quadratic term:

2
Tmax=Tmax +£"%%u (E—Eo)'*'%d—d’gna"‘& (E-—Eo)z. (1.3)
Eg Eg Ep

Writing

d’_Tnym_Q_ dt dP _ pdP (1.4)
dEZ  dE dE dt t .
we get
Tmax=Tmax| +P(E—Eo)+}P-P(E-E)?,
Eo

—P-Eo+P-E+1P-P-E*-P-P-Ey-E+}P-P-E},
Eq

=Tmax

—P-Eo+ 1 P-P-E})+P-E+}P-P(E*~2Eo-E). (1.5)
Eq

= (Tmax

Defining Fo=0 at T,%“=0, i.e., defining the zero ephemeris at the observed maxima,
we get:

Tmax:'T0

max

+P-E+1P-P-E*. (1.6)

If we define: O=T28" =Tmax, and C=TL  +P;-E, we get:

max

O—C=(Tax—Thax)+H(P—P1)E+1P-P-E?,

ax

then
O~C=ATmax+AP+iP-P.E? (1.7)

where ATmax=T0 oy =T sy a0d AP=P—P;.
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Appendix 2: Derivation of the O-C difference in terms of

phase
We assume a light variation of the type:
I=Acos@

using the definition
t
6= | wdt,

(2.1)

(2.2)

where 0 is the angular phase, and w is the angular frequency of pulsation, related to

the period by:
P=

ey

If w is not constant, we can use a Taylor expansion of it:

w(t)~wo+ 42| (t—t)

t1

and

t
0=j;o [wo+-dz‘t£ (t—tl)] dt ,
t1

t t
0=wo(t—to)+ft° dwl tdi—t, fto dwl gy =
ty t1
=wo(t—to)+14e| (2-12)+42| (to—t)t4,
t1 t1

or, defining ¢t,=0:
0=wo(t—to)+%u';(t2—t§) .

(2.3)

(2.4)

(2:5)

The maximum of the light curve will occur at time Ty,ax such that:

% =0=>6 =2n-FE, for E=integer .

Tm ax Tm ax

Therefore,

=w0(Tmax_t0)+%lb(T;‘x—ig)=21r'E

Tm ax

or
%%(Tm.x—to)—-;-%’-}P(T,fmx—tg)=21r-E .
0

Dropping the index zero from the period leads to

Tmn.x=t0+P'E+% %(T:“,x_tg) .

(2.6)

(2.7)

(2.8)
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To keep the derivation to only the first order in P, we can substitute Trax=to+P-F
in the right-hand side of the above equation:

Tmax=to+P-E+} 5(P?E?+2t,-P-E) . (2.9)
Assuming 2to K P-F, we get:
Tmex=to+P-E+1P-P-E?. (2.10)
If we define: O=T3%, =Tmax, and C=T}, +P;-E, we get:

O—C=(to—Th,)+(P-P)E+1P.-P-E?

or
O-C=ATmax+AP-E+1P-P-E?, (2.11)
where AT max=to—T"

max

, and AP=P—P;.



