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Abstract. The tools for analysis of the WET data after the basic 
data reduction are described. They include: fast Fourier transform, 
discrete Fourier transform, spectral windows, barycentric time cor-
rection, least-squares, 0-C and pulse shape analysis. 
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1. Introduction 

The data acquired with the Whole Earth Telescope ( W E T ) net-
work for one star consists of a set of runs of temporal intensity mea-
surements or light curves, one for each observing night, or part of a 
night, and for each telescope (Nather et al. 1990). 

The data reduction procedure described by C. Clemens in these 
proceedings shows how to correct the data for dead-time losses, sky 
background and extinction, how to bridge the small data gaps, nor-
malize them by the mean intensity and subtract the mean. Note 
that a gap is considered a small one if it lasts less than one cycle 
of the variation period, typically up to 200 s. Larger gaps call for 
separation of the light curve into separate files. Therefore, at the 
end of the basic data reduction we have for each run one or more 
data files with times and fractional intensities. 

The first step in our procedure is to calculate a Fast Fourier 
Transform ( F F T ) for each individual run. The F F T is used because 
each run consists of equally spaced data (e.g. Bracewell 1978). From 
these individual FFTs, we estimate the stability of the light curve, 
i.e., its changes from run to run, which have timescales of hours. In 
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the case of significant changes from one run to the next, we should 
divide the runs into smaller intervals to estimate the timescale for 
these variations. Normally, the changes are on timescales of several 
hours to days, and, therefore, we can study the combined light curve, 
i.e., the light curve resulting from more than one consecutive run. 

Before we can combine the different runs, we must put them 
on the same temporal timescale. As the Earth moves around the 
barycenter of the solar system, there is a wobble of the distance 
between us and the star, which translates into a variation in the 
arrival t ime of the photons by up to 499 s due to movement of the 
Ear th around the Sun and up to additional 3 s due to the effect of 
the giant planets on the barycenter of the solar system. We must, 
therefore, correct all the timings to the barycenter. As we usually 
combine data sets from different years, it is important to include 
the correction due to leap-seconds and to transform all the timings 
to Julian Barycentric Dynamical Time (JTDB, formerly BJED and 
BJDD). 

To transform the timings, we use the algorithm developed by 
Stumpf (1980) to calculate the bary centric correction, including all 
nine planets and the Moon. The algorithm is accurate to ~0.1 s. 
The leap-second corrections, published by the Bureau International 
de l 'Heure (BIH) in France or the National Institute of Standards and 
Technology (NIST) in the USA (see NIST 1993) from determinations 
by the International Earth Rotation Service (IERS), are added to 
transform the broadcast Universal Coordinated Time (UTC), used at 
the observatories, to the International Atomic Time (TAI). Adding of 
the constant 32.184 s transforms the TAI to the Terrestrial Dynam-
ical Time (TDT). Finally, all timings are converted to Julian Days. 
The da ta reduction programs DRED, written by Butler Hines, and 
QED, written by Ed Nather, allow the time scale correction at that 
stage. 

Table 1 presents the time increments that must be added to the 
universal time (UTC) in order to get TDT. Leap-second increments 
were added at 0 h UTC on the given date (see the Astronomical 
Almanac, pages B4-5 and K9 for additional information). 

After transformation of all the timings to JTDB, we can calcu-
late the Fourier transform (FT) of the combined data set. As the 
da ta set may now include gaps, we cannot use the F F T algorithm. 
The most precise algorithm is the Discrete Fourier Transform (DFT) 
described by Deeming (1975). The one we normally use is a faster al-
gorithm which calculates the F F T for each run and adds the Fourier 
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components in the complex space. The algorithm, developed by Carl 
Hansen from JILA, is called N E W S F T (see Nather et al. 1990 for a 
detailed description). 

Table 1. Time corrections 

Date T D T - U T C (s) Date T D T - U T C (s) 

1 Jan 1958 32.184 1 Jan 1980 51.184 
1 Jan 1972 42.184 1 Jul 1981 52.184 
1 Jul 1972 43.184 1 Jul 1982 53.184 
1 Jan 1973 44.184 1 Jul 1983 54.184 
1 Jan 1974 45.184 1 Jul 1985 55.184 
1 Jan 1975 46.184 1 Jan 1988 56.184 
1 Jan 1976 47.184 1 Jan 1990 57.184 
1 Jan 1977 48.184 1 Jan 1991 58.184 
1 Jan 1978 49.184 1 Jul 1992 59.184 
1 Jan 1979 50.184 1 Jul 1993 60.184 

As N E W S F T carries all calculations in complex space, it also 
ou tpu ts the phases of each frequency component. For calculation of 
phase accurately, one must calculate the t ransform at least 5 times 
the minimum resolution, i.e., 

where / is the frequency and T is the total t ime span of the da t a set. 
To be more accurate, in general we calculate at 10 times resolution 
( A / = 1/10T). Note that any Fourier t ransform should be calculated 
at most up to the Nyquist frequency, 

/Nyquist — 

where At is the integration time. In the case when one is adding up 
data , i.e., summing points with smaller integration time, At should 
be the effective (summative) integration time (Tukey 1967). The 
smallest frequency studied should correspond to at least two cycles 
in the da ta set, though the period and amplitudes are accurate only 
for periods smaller than 1/10 T. 
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2. Is a peak in the Fourier Transform real? 

When we obtain the F T of a data set, we must estimate the 
probability that a peak is not a result of the noise only. First, we 
must calculate the local average power (square of the amplitude) on 
the FT , summing up all the power in the frequency region (Horne &; 
Baliunas 1986): 

<P>=1£A$/N, 
i—i 

where A,- is the amplitude of the peak i, and N is the number of 
points in that region. 
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F i g . 1. F T with 140 000 frequencies for the W E T observation of the 
star G 226-29 during February 1992, for which we obtained 121 hrs of 
data, spread over 14 days. 

To calculate the average noise power, one must be careful to 
select the frequency regions so that the average power takes into 
account the effects of atmospheric transparency fluctuations. We 
cannot calculate only one average power over all frequencies, since it 
changes for frequencies < 6000 /¿Hz (Harvey 1988). 
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F ig . 2. Dependence of the number of peaks from a = n < P > : (a) 
is for FT of the observed data set and (b) is for FT of the shuffled data 
set. No peaks with a > 10 are seen on the shuffled data set. All peaks 
with a > 10 on (a) are seen in the region of the 9135 /¿Hz peak. 

If the noise is randomly distributed, the probability of having a 
peak of power < P0bs in one trial (one frequency FT) is: 

Prob(P < P o b 8 ) = f P ° b ' - i — e - ^ = 1 - e " ^ , 
Jo < r > 

where < P > is the average power for the region of frequencies 
studied. 

If FALSE is the false alarm probability, [1 — Prob(P0hs)], the 
probability that one peak of noise in Ni independent samples 
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(frequencies) is above PQbs/ < P > is (Scargle 1982): 

FALSE = 1 - (1 - ~ Ni • 

or 

Pobs = ln( 
Ni 

)• < P > . 
FALSE 

For example, if we calculate an FT with one million independent 
frequencies, PQbs = 20.72 < P > for FALSE=1/1000, i.e., the peak 
must be 20.72 times greater than the average power to have one 
chance in 1000 of it being due to noise only. 

The number of independent frequencies is iV,- = Nf OVS, where 
OVS is the oversampling ratio and N is the number of calculated 
frequencies (Press & Rybicki 1989). 

We can demonstrate that this description is correct by removing 
any time-series correlation present in the data set, then taking FT of 
the result. We re-order the data points at random (called shuffling 
the data set) and then calculate the FT: 

where I(i) is the intensity at time i(z), and ranf( 1) is a random 
number normalized to unity (i is a random time point calculated as 
npoints * ranf( 1) ). 

We should calculate the average power, the largest peak and 
a histogram of points above n • < P > = a. Only peaks above 
the region of the histogram cutoff for the shuffled FT are real, i.e., 
not consistent with noise. Note that if the noise is not randomly 
distributed, or the mean brightness of the star is changing, even 
peaks that are above PQbs might be due to noise! 

3. Spectral window 

When we calculate the FT, each coherent frequency present in 
the data set appears as a peak, with side-lobes and aliases due to the 
finite length of the set and to the gaps present in it (Tukey 1967). 
The spectral window describes these artifacts. If the data set is com-
posed of multiple frequencies, each peak will have a corresponding 
spectral window, and, therefore, not all peaks in the FT correspond 
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to real frequencies in the data set. For example, if we have two runs 
separated by one day, the F T of the combined light curve will show a 
peak at the real frequency, plus two other peaks, each one separated 
from the real peak by A / = 1/86400 s. These are called the one day 
aliases. To identify which peaks are real frequencies and which are 
aliases, we superpose the spectral window to the main peaks and 
identify the position of the aliases. 

When the data set has gaps or when we combine data from 
several runs together that do not overlap, we must calculate a spectral 
window to localize the aliases and side-lobes present in the F T . The 
spectral window is calculated by constructing a data set with exactly 
the same timings as the data set under study, but with the intensity 
calculated from a single sinusoid. When we calculate an F T of the 
sinusoidal data set, or as we call it, the "window data set", the F T 
will have the main peak at the frequency for the sinusoid, but will 
show aliases and side-lobes. If we superpose this spectral window to 
all large peaks in the F T , we can identify which peaks are due to 
aliases, and, therefore, are not real frequencies in the light curve. 

To obtain accurate amplitudes, phases and the uncertainties on 
those values, we must fit sinusoids to the data set by linear least 
squares, with the periods determined from the F T and amplitudes 
and phases as unknowns. To obtain also the uncertainty on the 
period, we must fit sinusoids with unknown periods, amplitudes and 
phases to the data set by the non-linear least squares methods. 

4. Prewhitening and synthesis 

The next step after calculating the spectral window is to 
prewhiten the data, i.e., remove from the data a sinusoid with the 
same frequency and amplitude as the main peak in the F T . Note 
that we must subtract the sinusoid from the data set, not from the 
F T . The whole spectral window associated with that peak, includ-
ing the phase information, must be subtracted. Note also that we 
subtract an ideal or noiseless sinusoid. Even the photon counting sta-
tistical noise is not subtracted from the surrounding region when we 
prewhiten the data set. After subtracting the sinusoid, we calculate 
another F T of the new data set and identify its main peak and spec-
tral window. If the remaining peaks do not show the same spectral 
window, they are probably due to noise, not to real frequencies. 
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Fig. 3. The spectral window for the same G 226-29 data as in Fig. 1 
and 2. The spectral window shows sidelobes even 150 ¿tHz away from the 
input frequency at 9135 fx Hz. 

Another way of identifying peaks is related with synthesis, an 
integral method as compared to the differential method of prewhiten-
ing. To synthesize the FT, we identify the main peaks, calculate their 
amplitudes and phases by fitting multiple sinusoids simultaneously 
to the data set by least-squares and generate a synthetic light curve 
by constructing a data set with these multiple sinusoids, all with the 
same timing, as the real data set. After calculation of the F T for 
the synthetic data set, we compare it with the FT of the observed 
data set to check if there axe other peaks in the real data set not 
represented by the multi-frequency synthesis. The synthesis method 
also suffers from the absence of noise in the synthetic light curve. 

Taking the FT of a large data sets, we often see the split of peaks 
in the cases where there are closely spaced frequencies. To see if the 
splitting is stable, we should divide the data set into smaller sets, 
take their FTs and compare them. The length of each data set must 
be larger than 1 /2A/ , if A / is the frequency split we axe analyzing. 
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5. How do we know if the pulsation frequency is changing? 

To study the frequency or period variation with time, we must 
calculate an O-C versus time diagram, where O is the time of maxi-
ma of the observed sinusoid, and C is the time of maxima calculated 
from a linear relation. 

5.1. Measurement of P from the 0-C vs. time relation 

The rate of the period change, as well as a correction to the 
period and epoch, can be obtained by fitting a parabola to the 0-C 
vs. time relation; more generally, we start with a guessed ephemeris 
and look for systematic residuals. 

We assume a fit of the form C — EQ + P • E and what we obtain 
from the fit are corrections to the initial values of P and EQ, which 
we call AE 0 and A P : 

0-C = A Tm a x + A P • E + l-P • P • E\ 

where AT m a x is the correction to the epoch of observation, i.e., the 
time of maximum assumed to be the zero ephemeris, A P is the 
correction to the period, E is the number of cycles elapsed since EQ 
and P is the rate of change of the period with time, dP/dt. 

Appendices 1 and 2 show the relation between 0-C and P ob-
tained in two different ways (E. L. Robinson, private communica-
tion). The two derivations are consistent and require a coefficient of 
0.5 in the P term. The factor is important because some authors 
have defined the 0-C without this factor in the past (Willson 1986; 
Tomaney 1987). Consequently, their values of P differ from our defi-
nition by a factor of 2. 

Another way of measuring P is by fitting the equation 

" 1 

t=i 

to the light curve by non-linear least squares; here n is the number of 
sine curves in the light curve we want to fit. We have found that the 
internal errors given by the non-linear least squares are in general by 
a factor of 10 smaller than those from the 0-C fit. This can arise 
when the fitting parameters are correlated with each other; the error 



524 S.O. Kepler 

calculation assumes they are not. As the O-C is more conservative, 
and its errors are simpler to understand, we have been quoting those 
values in our papers. 

6. Pulse shape 

After we find a peak in the FT, we must check if the data are 
consistent with a sinusoidal variation at that frequency, typical for 
linear (small) variations, or if it shows deviations from a sinusoid, 
indicating non-linear effects are present. The presence of harmonics 
or sub-harmonics in the FT indicates that the variations are non-
sinusoidal. To study the pulse shape, we fold the light curve at the 
observed frequency and compare it to a sinusoid. 

7. Linear combination terms 

Most of the variable stars show peaks not only at the frequen-
cies / i , fi,..., but also at the frequencies which are their simple linear 
combinations: 2/i , f\ + ¡2, fi ~ fi and so on. Therefore, after we 
have identified a couple of peaks, we should also look for these linear 
combination frequencies. These frequencies might arise from sev-
eral sources: pulse distortion, non-linear driving effects, resonance 
between the modes, and even mathematical formulation of the prob-
lem, as pointed out by Mike Breger in these proceedings. 

8. Splittings in pulsating star light curves 

If the vaxiations in the light curve are due to pulsations, then 
the rotation (e.g. Brassard et al. 1988) and magnetic fields (Jones et 
al. 1989) can break the spherical symmetry of the star. If the star 
rotates, the degeneracy of a pulsation with latitudinal index I is lifted 
and we obtain (2£ + 1) modes, each represented by the longitudinal 
index m. Therefore, to the first order, modes with the same t will 
have the same splitting. We should, therefore, look for peaks with 
the same splitting in the FT, indicating modes with the same Í. We 
can use the asymptotic formula to look for different i modes, if the 
value of the radial overtone k is large enough (true for DOV and 
DBV stars), after we have found modes with the same splitting. We 
use the relation: 
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A / ( I Q _ Ui(£ i + 1) 

A f { i 2 ) V ¿2(^2 + 1 ) ' 

Differential rotation causes the m splitting to be different for different 
A: values. 

We should also look for peaks which are equally spaced in period, 
since the modes of the same i should have similar period spacings. 
The asymptotic formula for the g-mode period spacing, as given by 
Kawaler (1987), is: 

< A P t >oc n ° 

Inclination of the pulsation axis of the star relative the line of 
sight ( n o is a constant period) causes modes with different m, split 
by slow rotation, to have different amplitudes, even if they originate 
with the same amplitude (Pesnell 1985). Therefore, we do not expect 
all m modes to have the same amplitude, but we expect them (the-
oretically) to have amplitudes that are symmetrical around m = 0. 
Observationally this does not take place, so we must learn why. 

Dziembowski (1977) showed that geometrical cancellation causes 
modes with higher i values to have smaller observable amplitudes, 
even if they started up with the same physical amplitude. That is 
one reason why most of the pulsation modes we observe are t = 
1. Robinson, Kepler & Nather (1982) calculated the geometrical 
cancellation values for I = 1 to 5, for the g-modes, and Kepler (1984) 
for the r-modes. This only works for undistorted (linear) sinusoids, 
however. 

Note considering the programs 

Any program described in this paper can be obtained from the 
author by e-mail. 
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Appendix 1: Simple derivation of the O—C difference 

If the period of a cyclic variation is constant, then 

T m a x = E 0 + P £ , (1.1) 

where P is the period at EQ, and E is the epoch (cycle number from EQ)- Therefore 

i l ™ * = P. (1.2) 

If the period changes slowly with time, we may expand T m a x into a Taylor series, 
keeping only up to the quadratic term: 

Writing 

we get 

^max—^max i d Tmax 1 WE 
B o E0 

(.E-Eo)5 

¿ Tmax — dP _ it dP p dP 
d E * d E ~dW iit ~ r dt ' 

-̂ max— Tmax + P(E-E0)+IP-P(E-E0)2, 

(1-3) 

(1.4) 

-PE0+PE+±PP-E2-P-P-E0E+±PP-ES, 
E o 

-PEO+\PP-EL)+P-E+IP-P(E2-2EO-E). (1.5) 

Defining E0=0 at T ^ a x = 0 , i.e., defining the zero ephemeris at the observed maxima, 
we get: 

T m a x = r ° a x + p - f ; + i p . p . £ ; 2 . 

If we define: 0 = T ° t a i x = T m a x , and C = T ^ X + P i - E , we get: 

0-C=(TLx-TLx)+(P~Pi)E+hPPE2, 

(1.6) 

then 

0 - C = A r m a x + A P + i P P - E 2 , 

where A T m a x = T ^ a x - T 1 i l a x and A P = P - P L . 

(1.7) 

q.e.d. 
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Appendix 2: Derivation of the O—C difference in terms of 
phase 

We assume a light variation of the type: 

1=A cos 9 

using the definition 
9= [' w dt , 

Jto 

(2 . 1 ) 

(2.2) 

where 9 is the angular phase, and w is the angular frequency of pulsation, related to 
the period by: 

. (2 .3) 

If w is not constant, we can use a Taylor expansion of it: 

(<-<l ) 
«1 

and 

- f J»o 

0=u>o(<-<o)+J* 

WO + %- (t-t l) 
«1 

dt , 

dry IT dt = t-dt-tlj;o% 

( t o - t ) t i , (t 2 ~tl )+% 
'1 «1 

or, defining t i = 0 : 
0 = i u o ( t - < o ) + 5 Ù > ( t 2 - f o ) • 

The maximum of the light curve will occur at time T m a x such that : 

dl_ it = 0 =>9 =2ir-E,foi E=integer . 

Therefore, 

= w0(Tm&x-t0) + \w(T^x-tl)=2n-E 

Dropping the index zero from the period leads to 

Tm„=t0 + P-E+±£r(T^x-tl) . 

(2.4) 

(2!5) 

(2 .6) 

(2 .7) 

(2 .8) 
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To keep the derivation to only the first order in P, we can substitute Tma.x=to + P-E 
in the right-hand side of the above equation: 

Tm„=t0+P-E+$$(PaE*+2t0-P-E) . (2.9) 

Assuming 2to<g.P-E, we get: 

Tm&x=t0 + PE+iP-P-E2. (2.10) 

If we define: 0=T^'x=Tm*x, and C=T^X+Px E, we get: 

0-C=(to-T^x) + (P~Pi)E+±P-PE2, 

or 

0 - C = A T m a x + A P E + ± P P - E 2 , (2 .11) 

where A T m u = i 0 - r ^ x , and A P = P - P t . q.e.d. 


