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Abstract: In this work, we carried out numerical model-
ing of the large deformation of a shear thinning droplet
suspended in a Newtonian matrix using the constrained
volume model. The adopted approach was to consider mak-
ing incremental corrections to the evolution of the droplet
anisotropy equation in order to capture the experimental
behavior of a shear thinning droplet when subjected to de-
formation due to imposed flow. The constrained volume
model was modified by using different models to describe
the viscosity of droplet phase: the Bautista et al.model, the
Carreau-Yasuda model and the Power-lawmodel. We found
that by combining the constrained volume model with a
simple shear thinning viscosity model we were able to de-
scribe the available experimental data for large deformation
of a shear thinning droplet suspended in a Newtonian ma-
trix. Moreover, we developed an equation approximating
flow strength during droplet retraction, and we found that
the model can accurately describe the experimental data
of the retraction of a shear thinning droplet.

Keywords: Constitutive Modeling; shear thinning; Droplet
deformation

1 Introduction
The modeling of polymer blends composed of Newtonian
fluids have been extensively investigated by researchers [1–
8], and their flow behavior—to a great extent—is well un-
derstood. On the other hand, the behavior of blends com-
posed of non-Newtonian components remains a subject
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that needs further development. As an example of the com-
plexity of the topic of blends composed of non-Newtonian
components, consider the work of Greco [9]. Greco [9] has
derived a small deformation model based on second order
fluidmodel, where a second order fluid is onewith constant
viscosity, but its stress is also affected by the presence of
the first and second normal stress coefficients. As a result of
the complication in the expression of the constitutive equa-
tion that describes each phase comprising the blend, the
theory that was developed by Greco to describe the effect
of second order fluid is mathematically tedious. And, while
the behavior of a Newtonian droplet in a Newtonian matrix
is controlled by two parameters, namely the capillary num-
ber (Ca) and viscosity ratio, the Non-Newtonian droplet
in a non-Newtonian matrix, according to the Greco’s the-
ory, is controlled by four more additional parameters: two
Deborah numbers and two ratios of the two normal stress
differences for both the matrix and the droplet phases.

Thepreviouslymentionedmodel andothermodels that
have tackled the subject of blends composed of viscoelastic
components assume that blends aremainly composed from
Boger fluids, which are fluids that have a constant viscosity
and significant normal stresses [10], and thosemodels were
limited to small deformation [9, 11–13]. Large deformation
of droplets for such case has been modeled only by a few
researchers [14–16] and numerically simulated by [17–19].

For the case of one or both of the phases composed
from shear thinning components, only very few experimen-
tal studies exist for the effect of shear thinning on the de-
formation of a single droplet. Elmendorp and Maalcke [20]
investigated a variety of combinations of droplet andmatrix
phase fluids, including moderately shear thinning droplets
in a Newtonian matrix and the opposite setup. Both sys-
tems were studied at small droplet deformation conditions.
Delaby et al. [21] carried out experimental work on non-
Newtonian droplets suspended in a non-Newtonian matrix.
The system was subjected to a uniaxial extensional flow,
and droplet lengths as they extend in extensional flowwere
compared to droplet lengths assuming affine deformation.
It was found that when droplet deformation was predicted
using an extensional rate inside the droplet that is defined
using a self-consistent approach, very good agreement with
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experimental data was obtained. Their analytical work was
carried out based on small deformation theory and it as-
sumed a linear relationship between droplet length during
extensional flow and the affine droplet length. Another
study was done by Boufarguine et al. [22]. This study used
a strongly shear thinning fluid as a droplet phase and sub-
jected the shear thinning droplet to large shearing defor-
mation. The droplet deformation was studied in addition
to droplet retraction after stopping the flow. Interestingly,
due to the strong shear thinning nature of the droplet fluid,
the droplet, after being extended in shearing flow, stops its
retraction after a short while from stopping the flow.

Some researchers have also explored the topic of a
shear thinning fluid in a Newtonian matrix theoretically.
Favelukis et al. [23] theoretically studied the deformation of
a shear thinning single droplet suspended in a Newtonian
matrix during uniaxial extensional flow. Harvie et al. [24]
studied a shear thinning droplet suspended in a Newto-
nian liquid as it flows in a microchannel. They found that
the shear thinning droplet phase can be replaced by an-
other fluid whose viscosity is the average viscosity of the
shear thinning fluid while it is within the contraction. Gi-
raldo et al. [25] used the boundary element method to study
the behavior of a shear thinning non-Newtonian droplet
in a Newtonian matrix in a Couette flow. A non-Newtonian
droplet deformed more than a Newtonian droplet with the
same zero-shear viscosity. Peters et al. [6] have developed
a constitutive equation for polymer blends based on the
microstructural evolution of the anisotropy tensor, and de-
rived a constitutive equation to describe stresses for blends
with unequal viscosity between matrix and droplet phases.
Later on, the Peters et al.model was compared to the rhe-
ology of blends composed of viscoelastic components by
taking the viscosity to be obtained through the Carreau-
Yasuda model [26]. The approach used by Peters et al. in
their original work was to model the blend’s microstruc-
ture by assuming passive mixing, i.e., the droplet deforms
passively with the imposed flow, and hence the droplet
phase deformation is independent of the viscosity ratio be-
tween the droplet and matrix phases. Therefore, in their
model, the microstructure is not affected by the viscosity
ratio value, although the stress is affected.

In this work, we will attempt to describe the shear thin-
ning behavior and incorporate it in the constrained volume
droplet model by implementing an approach similar to that
of Tyagi et al. [26] However, the rate of deformation inside
the droplet will be used to evaluate the viscosity of the
droplet phase through the three different models that will
be coupled with the constrained volume model. The first is
the Carreau-Yasuda model, which is a steady state model
that relates viscosity to applied deformation. The second is

the Bautista et al.model [27], which describes shear thin-
ning fluids through a constitutive equation. The third is a
simple power law model. Then, we will compare predic-
tions to experimental results of Boufarguine et al. [22] for
shearing flow and to Delaby’s results for extensional flow.
To our knowledge, there are no previous studies that cou-
ple a shear thinning constitutive model to a droplet model.
Although droplet elasticity can play a role in large deforma-
tion shearing flow taking place at high flow rates, this topic
is outside the scope of this current work.

2 Theoretical Background

2.1 The Constrained Volume Model

The following equation describes the average velocity gra-
dient tensor (κ*αβ) inside the droplet using the theory of
Wetzel and Tucker [1]:

κ*αβ = Ωαβ +
(︀
Bαβκλ + Cαβκλ

)︀
Dκλ . (1)

Note that we use the Einstein notation for vectors and ten-
sors in this equation and all subsequent equations. Dαβ is
the applied rate of deformation tensor, Ωαβ is the applied
vorticity tensor, and Bαβκλ and Cαβκλ are the strain rate and
vorticity fourth order concentration tensors, respectively.
Those fourth order concentration tensors depend only on
droplet anisotropy (q̂αβ = 1

Vd
∫︀
nαnβdS, where nα is a unit

vector normal to the interface of the droplet and S is the
droplet surface area) and viscosity ratio (M = η*/η) between
the blend’s components [28, 29], where η is the viscosity
of the matrix phase, η* is the viscosity of the minor phase.
The procedure for obtaining Bαβκλ and Cαβκλ from droplet
anisoropy and viscosity ratio is detailed in Appendix A.
Droplet anisotropy evolves according to the assumption
that changes due to its interfacial retraction and due to
convective applied flow are decoupled [30].

d
dt q̂αβ (t)

⃒⃒⃒⃒
total

= d
dt q̂αβ (t)

⃒⃒⃒⃒
convection

(2)

+ d
dt q̂αβ (t)

⃒⃒⃒⃒
retraction

where t is time. The droplet convection and retraction terms
are described by the following two equations [31]:

d
dt q̂αβ(t)

⃒⃒⃒⃒
convection

= −q̂α𝛾κ*𝛾β − q̂β𝛾κ*𝛾α + q̂αβκλκ*κλ , (3)

d
dt q̂αβ(t)

⃒⃒⃒⃒
retraction

= −f (M, ϕ) Γη V
1/6
a q̂3/2α𝛾

[︀
q̂𝛾β (4)



Modeling the Deformation of Shear Thinning Droplets | 153

−δ𝛾βg
(︀
q̂αβ
)︀]︀
,

where Γ is the interfacial tension, Va is the approximate
volume of the ellipsoidal droplet which is expressed in the
model in terms of invariants of the anisotropy tensor [4],
δαβ is the identity tensor, g

(︀
q̂αβ
)︀
is a function that is intro-

duced in order to maintain constancy of droplet volume
in the droplet retraction expression [4]. q̂αβκλ is the fourth
order anisotropy tensor, which is related to the second or-
der anisotropy tensor via a closure described elsewhere [4].
f (M, ϕ) is a function of the viscosity ratioM and the vol-
ume fraction of the dispersed phase (ϕ):

f (M, ϕ) = (5)

160c
(︀
27 + 30

√
3
)︀ 1

12 (1 +M)2

(16 + 19M) [8M2 + 5M (4 + 19ϕ) + 4 (3 + 20ϕ)]

where c is a constant with a value of 0.695. For the evolution
of the shape of a single droplet, ϕ is given a value of zero.
The viscosity of the major phase is assumed to follow New-
tonian behavior, whereas for the minor phase, viscosity
is evaluated at the magnitude of the rate of deformation
tensor inside the droplet together with the model describ-
ing the shear thinning behavior of the droplet phase, and
hence η* is a value that changes during the deformation of
the droplet.

2.2 Modeling Shear Thinning Behavior of
Droplet Phase

The Carreau-Yasudamodel is a simplemodel describing the
steady state viscosity of a shear thinning fluid:

η* − η*∞
η*o − η*∞

=
[︂
1 +
(︁
τCY 𝛾̇*

)︁a]︂(n−1)/a
(6)

where η*∞ is the viscosity at infinite shear rate, η*o is the
zero-shear rate viscosity and τCY , a and n are considered
to be fitting parameters. In order to have a frame-invariant

equation, 𝛾̇* is replaced by
√︂
2
⃒⃒⃒
D*αβD*αβ

⃒⃒⃒
where D*αβ the

rate of deformation tensor inside the droplet.
Constitutive models exist for describing stresses and

viscosity of shear thinning fluids such as micellar solutions.
One of the constitutive models that are developed for pre-
dicting stresses in micellar solutions is the Bautista et al.
model [27]. Examples of other constitutivemodels for micel-
lar solutions are the Johnson Segalman model [32, 33], the
modified Johnson Segalman model [34] and the Vasquez,
McKinley and Cook model [35]. The Bautista model is ca-
pable of accurately describing shear thinning behavior of

micellar solutions, in addition to the time dependent behav-
ior of the viscosity, unlike the Carreau-Yasudamodel, which
provides no time-dependent behavior for the viscosity.

The Bautista et al. family of constitutive models con-
sist of two parts: an equation describing fluidity through a
Fredrickson model for fluidity, and a constitutive equation
describing stress evolution. Having an equation describing
stress and another describing a structure parameter (fluid-
ity is an example of a structure parameter) is a commonly
used technique in describing thixotropic fluids [36]. The
original Bautista model [27] uses the Maxwell model for
stress tensor evolution, although later publications used
other types of constitutive models such as the Oldroyd-B
model [37]. Boek et al. [38] have modified the Oldroyd-B
Bautista model, since extensional viscosity predictions of
the original Bautista model showed instability at large ex-
tensional flow rate values. Such model is later known as
the MBM model and was used by later researchers to de-
scribe flow of micellar solutions in a circular axisymmetric
capillary channel [39, 40]. In this work, we will use the orig-
inal Bautista et al. model since the flow type developing
inside the droplet that we will investigate in this work is
predominantly shearing type.

The Bautista et al. model consists of an equation for
stress evolution, which is that of the upper convected
Maxwell equation:

σ*αβ +
η*
Go

▽
σ*αβ = 2η*D*αβ (7)

coupled to a fluidity equation by Fredrickson [41], where
fluidity≡ η−1:

dη*−1
dt = 1

τB

(︂
1
η*o
− 1
η*

)︂
+ k
(︂

1
η*∞

− 1
η*

)︂
σ*αβD*αβ (8)

The last term in the above equation has been proven and
validated by Stephanou et al. [42] and Stephanou [43]. σ*αβ
is the stress value of the droplet phase, Go is the elastic
modulus, τB is the relaxation time of the Bautista model,
and k is a structural relaxation parameter of the droplet
phase. The latter parameter is taken to be a constant in
this work, although other publications have assumed that
k is dependent on flow strength [39]. The symbol∇ placed
on top of the stress tensor denotes the upper convected
derivative. Thus, σ*αβ and η* are updated according to the
value of D*αβ in the constrained volume model.

It is important at this point to note that all themodeling
approaches for a shear thinning fluid that we implemented
in this work will alter the microstructure evolution in the
CV model, because the microstructural evolution depends
on viscosity ratio, and because the velocity gradient inside
the droplet depends on the viscosity ratio as well. Since
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Figure 1: Schematic illustrating the cyclical dependence between droplet evolution and viscosity of droplet phase for a shear thinning
droplet fluid.

the viscosity of the droplet shear-thinning fluid depends on
the velocity gradient inside the droplet, the picture seems
to indicate a cyclical dependence between the viscosity
of the droplet phase and the velocity gradient inside the
droplet. The idea is illustrated in Figure 1. Such a situation is
very much amenable to a numerical solution. The modified
constrained volumemodel is composed of coupled ordinary
differential equations. In our numerical implementation,
we use the fourth order-Runge Kuttamethodwith a variable
step-size and relative error acceptance criterion of less than
10−8.

3 Results and Discussions

3.1 Fitting Flow Sweep Test Data of
Boufarguine et al.

Figure 2 shows viscosity as a function of shear rate
for a dense aqueous suspension of star-like micelles of
poly(ethylene oxide) (PEO) hydrophobically end-capped
with an octadecyl group that was used as droplet phase
in the work of Boufarguine et al. [22]. The data are com-
pared to predictions of the Carreau-Yasuda model [33], to
predictions of the steady state Bautista et al. model and
to the power law model. The Carreau-Yasuda model shows
excellent agreement with the data using the parameters
provided in Table 1. Note that the parameter η*o was given
a very high value (4·108 Pa·s) because there is no evidence

in the experimental data of Boufarguine et al. of a plateau
viscosity value at very low shear rate values. Moreover, the
η*∞ value was set to be the viscosity of water (0.001 Pa·s).
The rest of the parameters were obtained through error min-
imization of a standard objective function. For a power law
of the type η* = A * 𝛾̇B, the fit to the experimental data
resulted in A = 493 Pa·s. and B = −0.806. This power law fit
resulted in identical viscosity predictions as those obtained

Figure 2: Experimental data of viscosity of polyoxyethylene water
solution versus shear rate from Boufarguine et al. [22] compared
to predictions using the Carreau-Yasuda model, the steady-state-
Bautista et al.model and the power law model with exponent value
of −0.73. Parameters of the Carreau-Yasuda model are provided in
Table 1.
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Table 1: Values of the Carreau-Yasuda model that were used in
describing the experimental viscosity data of Boufarguine et al.

Parameter Value
η*o (Pa·s) 4.0·108.0

η*∞ (Pa·s) 0.001
τCY (s) 16.249·106

n 0.182
a 0.312

error (%) 0.26
R2 0.999

by the Carreau-Yasuda model, and thus identical predic-
tions of the shear thinning droplet deformation. Finally, we
note here that there is an additional prediction denoted
in the legend of the plot as power law with B = −0.73. This
power law viscosity prediction curve will be revisited later.

For the Bautista Model in this part, we used the steady
state viscosity (η*ss) solution of equation 7 and 8 as reported
in [27] in the following form:

1
η*ss

= 1
2

[︂
−
(︂
kτB𝛾̇*2 −

1
η*o

)︂
(9)

+
(︃(︂

kτB𝛾̇*2 −
1
η*o

)︂2
+ 4kτB𝛾̇*2/η*∞

)︃ 1
2
⎤⎦

The steady state viscosity of the Bautista et al.model
was fit by specifying the value of the combined parameter
kτB. The fitting parameter value that can give reasonable
results for subsequent plots was obtained by fitting the last
part of the viscosity-shear rate data (i.e., data at the higher
end of the shear rate values). The value of the combined
parameter kτB giving the best fit was 1.51·10−9 s·Pa−1, and
η*∞ is assumed to be the viscosity of water. Compared to
the fit of Carreau-Yasuda, the Bautista et al. steady state
viscosity predictions do not fit the experimental results as
well as the Carreau-Yasuda fit does.

3.2 Comparison of CV Model
Implementations to Experimental Data

We will compare in this part theoretical predictions to ex-
perimental results of a shear thinning droplet suspended
in a Newtonian matrix provided by Boufarguine et al. How-
ever, since the droplet size was not explicitly stated in that
paper, we use the data reported in Figures 10 and 11 of the
Boufarguine et al. paper, and we assume that data points
reported in those two figures have a droplet size that is the
same as that used in producing other plots in the same pa-

per.We found fromour comparison of Figures 10 and 11 that
droplet size is roughly around 150 mm for data where the
viscosity of the matrix phase fluid was 30 Pa·s, and hence
this value is used in all of our subsequent comparisons to
the experimental data from that paper.

3.2.1 Comparison with Boufarguine et al. Data Under
Shear Deformation

Figure 3 shows predictions of λLo (droplet extension im-
mediately after the stop of step-shear), compared to λLa,
which is the normalized droplet longest dimension after a
given strain assuming affine flow as given by the following
expression [22]:

λLa =
1
2

(︂
𝛾o +

√︁
4 + 𝛾2o

)︂
(10)

where 𝛾o is the applied strain in a step-shear experiment.
The experimental results were carried out at different ap-
plied shear rates. Part (a) of figure 3 shows a comparison
to the original CV model, part (b) shows a comparison to
the CV model combined with the Carreau-Yasuda model
(CV-CY), part (c) shows a comparison to the CV-Bautista
(CV-B) model and part (d) shows a comparison to the CV
model combined with the power law model (CV-P). Fig-
ure 3-a was implemented by evaluating the viscosity of the
droplet phase at external flow rate conditions. Figure 3-a
demonstrates that the original CV model highly overesti-
mates droplet deformation. On the other hand, Figures 3-b
and 3c show similarity in trends with experimental data,
but disagreement in values. The CV-B shows slightly bet-
ter predictions than the CV-CY model. We note also that
the CV-B model predictions start with a flat line as a conse-
quence of droplet phase having a high viscosity value at the
early stages of deformation. The values of A and B for the
power lawmodel are 700.0 Pa·s. and −0.73 respectively. The
viscosity predictions of the power law model using those
two parameters are shown in Figure 2. Note that the model
predictions of the droplet behavior at applied shear rate of
16 s−1 agree with the experimental data only in the begin-
ning of the step strain, then they diverge, where the model
shows behavior akin to having an effective viscosity ratio
value higher than 3.5, which is the condition necessary for
a droplet to start showing tumbling behavior. In fact, if we
calculate the apparent droplet viscosity according to the
formula:

λLo − 1
λLa − 1

= 5
2 M + 3 (11)

we find that the model is predicting an apparent droplet
viscosity value of 296 Pa·s, giving an effective viscosity ratio
value of 9.85.
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(a) (b)

(c) (d)

Figure 3: Stretching ratio after step shear carried out at specific shear rate values versus stretching ratio assuming aflne deformation.
Experimental data from Boufarguine et al. [22] are represented with circles for 𝛾̇ = 16 s−1, triangles for 𝛾̇ = 30 s−1, and diamond shapes for
𝛾̇ = 49 s−1. Theoretical predictions using the CV model are represented by solid lines for 𝛾̇ = 16 s−1, long dashes for 𝛾̇ = 30 s−1 and short
dashes for 𝛾̇ = 49 s−1. In parts a, b, c and d, lines are predictions of the original CV model, the CV model combined with the Carreau-Yasuda
shear thinning model, the CV model combined with the Bautista et al.model and the CV model combined with the power law with exponent
value −0.73, respectively.

Figure 4: Normalized droplet length during and after a step shear
experiment (from [22]) compared to the original CV, CV-CY, CV-B and
CV-P models. In the experiment, the shear thinning droplet was
subjected to step shear at 8 s−1 for 0.54 s, and then flow is stopped.
The prediction curves show that the droplet does not retract after
the shearing flow was stopped.

Figure 4 shows dimensionless droplet length versus
time for a droplet subjected to shearing flow of 8 s−1. The
original CV model highly overestimates droplet deforma-
tion as in the previous figure. However, the CV-CY agrees
with the experimental data verywell, when compared to the
CV-P, which highly underestimates the maximum that was
observed experimentally. Lastly, the CV-B model does not
show any deformation, because the viscosity of the droplet
phase did not drop from its high zero-shear value during
the step shear time.

3.2.2 Comparison with Delaby et al. Data Under Aflne
Extensional Deformation

A question can be raised about the accuracy of the con-
strained volume model itself in predicting droplet defor-
mation as was shown in Figure 3. For that purpose, we
compare the predictions of the model to the experimental
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Figure 5: Stretching ratio (λL) versus applied strain during extensional flow. The experimental data are from Delaby et al. [21]. The figure
compares the CV-CY model (solid lines) to the experimental data point as well as to predictions of Delaby et al. [21] (dashed lines). The
corrected viscosity ratio value is displayed in each sub-figure. The blends are arranged from small to large viscosity ratio values, with blend
components (major phase – minor phase) as follows: PS1-PE2, PS2-PE2, PS1-PE1, PS2-PE1, PS1-PMMA and PS2-PMMA. The viscosity of each
component is obtained according to the Carreau-Yasuda parameters provided in Table 2.

Table 2: Values of the Carreau-Yasuda model for the polymers used in the Delaby et al. study [21].

Parameter PS1 PS2 PE1 PE2 PMMA
ηo (Pa·s) 3.00·106 1.80·105 1.6·105 4.5·103 2.8·106

η∞ (Pa·s) 695.8 0.00 0.00 0.00 0.00
τCY (s) 34.26 3.852 11.249 0.288 61.264
n 0.0861 0.239 0.421 0.645 0.234
a 0.460 0.633 0.442 0.679 0.822



158 | A. S. Almusallam et al.

data of Delaby et al. [21], where non-Newtonian droplets are
suspended in a non-Newtonian matrix. The experimental
results of Delaby et al. are presented in a very similar way
to the experimental results of Boufarguine et al. presented
previously in Figure 3. The only difference is that while Bo-
ufarguine et al. carried out their experiments in a shearing
flow, Delaby et al. carried out their experiments in an ex-
tensional flow for droplet and matrix fluids that are both
shear thinning. Delaby et al. used polystyrene, polyethy-
lene and polymethylmethacrylate as fluids for the matrix
and droplet phases. Choices of matrix and droplet fluids
were made in such a way that viscosity ratio values ranging
from 0.005 to 13 could be obtained. The approach used by
Delaby et al. was to calculate λLo from the flow strength
inside the droplet. For the case of extensional flow, flow
strength inside the droplet is related to affine extension
and droplet extension after step extension according to the
following relation:

λLo
λLa

=
exp

(︁
ϵ̇*t
)︁

exp (ϵ̇t)
(12)

where ϵ̇ is the applied extensional rate and ϵ̇* is the ex-
tensional rate inside the droplet. This equation is coupled
with Eq. 10 and equations describing the shear thinning
behavior of both components to estimate the extensional
rate inside the droplet and λLo.

To model the deformation of droplets in the Delaby et
al. study, their linear viscoelastic data of the shear thinning
fluids was used together with the assumption of Cox-Merz
rule to obtain the Carreau-Yasuda parameters for all the flu-
ids that make up the blends. Note that it is not possible to
use a power law to describe the viscosity data of the blends’
components in the Delaby et al. study, as they all exhibit
plateau viscosity, unlike the Boufarguine et al. data. We
then run the CV-CYmodel at the conditions specified by the
experiments of Delaby et al.with extensional rate of 0.01
s−1 and droplet diameter of 60 µm. The Carreau-Yasuda pa-
rameters for Delaby et al. fluids are provided in Table 2. The
results of the comparison between the experimental data
of Delaby et al. and the CV-CY model are shown in Figure 5.
The figure shows predictions that are at least as good as the
predictionsmade byDelaby et al. and are particularly better
than those of Delaby et al. at small and large viscosity ratio
values. There are no large disagreements with experimental
data as was observed previously in Figure 3-b.

3.2.3 Comparison with Boufarguine et al. Relaxation Data
After Step-Shear

Figure 6 shows experimental and theoretical predictions
for droplet relaxation after step shear at different shear rate
values (4 strain units with shear rate value of 16 s−1, 6 strain
units with shear rate value of 16 s−1, and 4 strain units with
shear rate value of 24 s−1). The theoretical predictions of
the CV-CY are generally close to the experimental behavior.
However, the small relaxation observed experimentally is
not observed theoretically. For the case of the CV-CY model,
as soon as flow is stopped, the viscosity takes the value of
the zero-shear rate viscosity, which makes it impossible for
the droplet to relax. For the case of the CV-P with exponent
value of −0.73, we see that the model vastly underestimates
droplet deformation in all the comparisons to the step-shear
experiments.

3.3 Overall Model Assessment in Describing
Blends Composed of Shear Thinning
Components

The overall evaluation of results of the comparisons with
experimental data of Boufarguine et al. and Delaby et al.
makes us lean towards the conclusion that the CV model
coupled with a shear thinning description by a model such
as the Carreau-Yasuda model is capable of satisfactorily de-
scribing experimental data of shear thinning droplet defor-
mation. The CV-P with exponent value of −0.73 resulted in a
good fit to Boufarguine’s data in Figure 3-d due to the forced
selection of the power law parameters. However, other com-
parisons to experimental data (c.f. Figures 4 and 6) using
the exponent value of −0.73 resulted in poor agreement.

3.4 Improvement of the CV Model for the
Case of Droplet Retraction

The decoupling approximation used in the CV model is the
reason why the model does not display any retraction be-
havior when flow is stopped for a shear thinning droplet, al-
though experimental data shows small relaxation followed
by complete freezing of the flow. Thus, an estimation of the
flow strength inside the droplet during relaxation is needed
in order to calculate the viscosity of the retracting shear
thinning droplet. Since the model is developed in terms
of anisotropy rather than droplet dimensions, an expres-
sion was developed in terms of anisotropy invariants to
describe droplet longest axis (L) based on the assumption
of an axisymmetric prolate droplet. This expression is the
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following:
L = 1.176 × I0.5q̂ III−0.5q̂ (13)

where Iq̂ and IIIq̂ are the first and third invariants of
anisotropy tensor, respectively. We assume that the speed
of droplet retraction is equal to ∇v . r [44], where r is a
vector that represents the location of a point in space at the
interface of the droplet. If we take r to be the point at the tip
of the prolate droplet and that relaxation induces flow that
can be approximated as the reverse of uniaxial extensional
flow, then it follows that the velocity gradient tensor can
be approximated as:

∇v =

⎛⎜⎝s 0 0
0 −0.5 s 0
0 0 −0.5 s

⎞⎟⎠ (14)

where s, on dimensional grounds, can be estimated as
s ≈ −c1

L
dL
dt , and c1 is introduced to the expression as a fitting

constant. The value of the parameter c1 was obtained by
fitting the CVmodel to the experimental relaxation data dis-
played in Figure 6. The experimental droplet dimensions at
the start of relaxation were used to calculate the anisotropy
tensor components, which were used as the initial condi-
tion for the relaxation runs of the CV model. The experi-
mental and theoretical droplet dimensions at the end of
relaxation were used to calculate modeling error. Then, the
error was minimized as a function of the fitting parameter
c1 and the best c1 value was found. Figure 7 shows the re-
sults of this implementation, using c1 = 20.6. At the end of
the step shear and the start of retraction, the model shows
minor change in droplet’s dimensions taking place due to
droplet retraction. As the driving force for droplet retrac-

Figure 6: Normalized droplet dimensions as a function of time after step shear experiments (from [22]) carried out at different shear rates
(row 1: strain = 4 and shear rate = 16 s−1 - denoted in the figure as 4-16, row 2: strain = 6 and shear rate = 16 s−1 - denoted as 6-16, and row
3: strain = 4 and shear rate = 24 s−1 - denoted as 4-24), compared to the CV-CY model (first column) and the CV-P model (second column).
Squares, triangles and circles are experimental normalized droplet lengths, widths and thicknesses, respectively. Solid lines, dash-dotted
lines and dashed lines are theoretical predictions using the CV model for normalized droplet lengths, widths and thicknesses, respectively.
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Figure 7: The same experimental data in Figure 6 are compared to
the CV-CY model combined with approximate description of rate of
deformation inside the droplet during droplet retraction. Parts a, b
and c refer to strain value of 4 and shear rate value of 16 s−1, strain
value of 6 and shear rate value of 16 s−1 and strain value of 4 and
shear rate value of 24 s−1, respectively.

tion weakens due to the droplet becoming less extended,
flow inside the droplet becomes slower and hence viscosity
value of the fluid inside the droplet rises to the point where
droplet dimensions practically cease from changing. The
model shows excellent agreement with experimental data.

4 Conclusions
The constrained volume model was adapted to the case
where a shear thinningdroplet is suspended in aNewtonian

fluid. Three approacheswere suggested to describe the case.
Only two approaches showed reasonable results: the con-
strained volume model combined with the Carreau-Yasuda
model and the constrained volume model combined with
the power law model. The third approach, the constrained
volumemodel combinedwith Bautista et al.model, showed
a failure in predicting the shear thinning viscosity behavior
of the polyoxyethylene water solution of Boufarguine et al.
and failed in describing droplet deformation during startup
of shearing experiment. The simplicity of the power-law
model makes it suitable for describing droplet deformation
if it is composed of purely shear thinning fluid. On the other
hand, the Carreau-Yasuda model has the advantage over
the power-lawmodel that it can describe viscosity data that
has, or lacks, a plateau viscosity. The decoupling approxi-
mation, which is built in the approach of original Doi-Ohta
model, implies that droplet retraction does not have any
effect on internal flow. This issue was addressed by devel-
oping an expression for flow strength inside the droplet in
terms of anisotropy invariants in such a way that the larger
the droplet deformation, the larger the flow strength inside
the droplet. By using this expression, the relaxation data
of a shear thinning droplet was excellently described.
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A Calculation of Average Velocity
Gradient Tensor Inside the
Droplet

The procedure for obtaining the average velocity gradient
inside the droplet from the anisotropy tensor, the imposed
velocity gradient tensor and viscosity ratio is as follows [28]:

1. Obtain the area tensor from the anisotropy tensor,
where the area tensor is defined as:

Aαβ = q̂αβ/Iq̂ (A1)

2. Obtain the eigenvalues of the Aαβ tensor and arrange
them in decreasing order. Save the order of arrange-
ment.

3. It is necessary to obtain the fourth order tensor S.
The S tensor has five basic components that can be
related to the arranged eigenvalues of the area tensor
as follows:

S1 = (4.17625039658827 (A2)
− 9.20850661941592A1
− 0.553135609689901A21
+ 21.6874206451302A31
− 21.2568710422144A41
+ 6.1548422296018A51
− 42.616540944532A2
+ 113.829950489808A1A2
− 86.7500411371294A21A2
+ 0.365874036598785A31A2
+ 15.1417807406092A41A2
+ 153.020181943596A22
− 343.813953201013A1A22
+ 241.125657171276A21A22
− 49.4898901316211A31A22
− 257.958946460697A32
+ 395.622455351456A1A32
− 145.078706965184A21A32
+ 215.596803577334A42
− 168.449082343817A1A42

−70.6599267550296A52
)︁2

S2 = (4.17625039658827 (A3)
− 34.2616658055224A1

+ 94.3983307383786A21
− 119.36024295102A31
+ 71.4515933564552A41
− 16.4042657348787A51
− 17.5633817584255A2
+ 153.060848346559A1A2
− 344.370272249619A21A2
+ 303.717692700773A31A2
− 93.5896810636499A41A2
+ 18.8378177387772A22
− 230.603225189622A1A22
+ 398.946506608063A21A22
− 184.220910397017A31A22
+ 27.5982202365534A32
+ 122.691400831295A1A32
− 151.841781877225A21A32
− 65.3532744021372A42
+ 2.72925202332791A1A42

+30.9464032180017A52
)︁2

S3 = (−40.7723330492405 (A4)
+ 225.30698049376A1
− 510.579507296145A21
+ 597.728209754151A31
− 360.307571512262A41
+ 88.6242216097376A51
+ 310.483574745563A2
− 1308.24247156398A1A2
+ 2146.12778534329A21A2
− 1629.00562122183A31A2
+ 479.860149860514A41A2
− 934.211287968719A22
+ 2868.24184948991A1A22
− 3050.03472285699A21A22
+ 1125.43908724485A31A22
+ 1403.22822221236A32
− 2816.03840013891A1A32
+ 1461.76816239862A21A32
− 1049.55576568688A42
+ 1038.39259315147A1A42

+310.827589746918A52
)︁2



Modeling the Deformation of Shear Thinning Droplets | 163

S4 = (0.582186603041814 (A5)
− 1.77064557477319A1
+ 3.21220714043462A21
− 2.77788406828005A31
+ 0.17708298096669A41
+ 0.577052918610156A51
− 1.66865159339246A2
+ 4.81231528227066A1A2
− 13.1653042138577A21A2
+ 13.5960292792509A31A2
− 3.66067583609819A41A2
+ 0.331554784838164A22
+ 2.60424478697637A1A22
+ 8.26789627322757A21A22
− 8.28818650462254A31A22
+ 1.80319677649229A32
− 13.4975620028569A1A32
+ 4.01209148031042A21A32
+ 0.802756308377304A42
+ 6.21150625086756A1A42

−1.8510429793571A52
)︁2

S5 = (0.464027821843141 (A6)
− 2.62030099578352A1
+ 6.04806172237524A21
− 7.09389113343162A31
+ 4.20496058136589A41
− 1.00285799636913A51
− 3.13803762243291A2
+ 13.5929583391671A1A2
− 22.57791366665A21A2
+ 16.9930745605835A31A2
− 4.87073883189719A41A2
+ 9.94753514109264A22
− 30.5332294948941A1A22
+ 32.5644137562749A21A22
− 11.9051508259964A31A22
− 13.8878012776587A32
+ 28.7906085364173A1A32
− 15.141288329496A21A32
+ 9.83071135363056A42

− 10.2437594613684A1A42

−2.65631386947735A52
)︁2

4. We then calculate the components of the fourth order
Eshelby tensor S in contracted notation (6 × 6matrix)
as follows:

S33 = S1 (A7)

S22 = S2 (A8)

S11 = S3 (A9)

S12 = S4 (A10)

S23 = S5 (A11)

S13 = 1 − S23 − S33 (A12)

S32 = 1 − S12 − S22 (A13)

S44 = 0.5 (S23 − S32) (A14)

S21 =
(3 − S11 − S22 − S33)

2 − S32 − S13 (A15)

S66 = 0.5 (S21 + S12) (A16)

S31 = 1 − S11 − S21 (A17)

S55 = 0.5 (S31 + S13) (A18)

The other components of the fourth order S tensor in
contracted notation have zero values.

5. We calculate the components of the fourth order al-
ternate Eshelby tensor T as follows:

T44 = 0.5 (S32 − S23) (A19)

T55 = 0.5 (S13 − S31) (A20)

T66 = 0.5 (S21 − S12) (A21)

The other components of the fourth order alternate
Eshelby tensor T in contracted notation have zero
values.
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6. Obtain the value of the Db parameter as follows:

ν = M − 1 (A22)

Db = 1 + ν (S11 + S22 + S33) (A23)
+ ν2 (S11S22 + S22S33 + S33S11 − S12S21
−S23S32 − S31S13) + ν3 (S11S22S33 + S12S23S31
+ S21S32S13 − S11S23S32 − S22S31S13
−S33S12S21)

7. Obtain the fourth order concentration tensor Btensor
in contracted notation as follows:

B11 = (A24)[︀
1 + ν (S22 + S33) + ν2 (S22S33 − S23 S32)

]︀
Db

B22 = (A25)[︀
1 + ν (S33 + S11) + ν2 (S33S11 − S31S13)

]︀
Db

B33 = (A26)[︀
1 + ν (S11 + S22) + ν2 (S11S22 − S12S21)

]︀
Db

B12 = −ν
[S12 + ν (S12S33 − S13S32)]

Db
(A27)

B21 = −ν
[S21 + ν (S21S33 − S23S31)]

Db
(A28)

B23 = −ν
[S23 + ν (S23S11 − S21S13)]

Db
(A29)

B32 = −ν
[S32 + ν (S32S11 − S31S12)]

Db
(A30)

B31 = −ν
[S31 + ν (S31S22 − S32S21)]

Db
(A31)

B13 = −ν
[S13 + ν (S13S22 − S12S23)]

Db
(A32)

B44 =
1

(2 + 4νS44)
(A33)

B55 =
1

(2 + 4νS55)
(A34)

B66 =
1

(2 + 4νS66)
(A35)

The other components of the fourth order B tensor in
contracted notation have zero values.

8. Obtain the fourth order concentration tensor C as
follows:

C44 = −ν
T44

(1 + 2νS44)
(A36)

C55 = −ν
T55

(1 + 2νS55)
(A37)

C66 = −ν
T66

(1 + 2νS66)
(A38)

9. Construct the fourth order concentration tensors B
and C using:

BRT(i,1),RT(i,1), RT(j,1), RT(j,1) = Bij , (A39)
i = 1..3, j = 1..3.

BRT(i,1),RT(i,2), RT(j,1), RT(j,2) = Bij , (A40)
i = 4..6, j = 4..6.

BRT(i,1),RT(i,2), RT(j,2), RT(j,1) = Bij , (A41)
i = 4..6, j = 4..6.

BRT(i,2),RT(i,1), RT(j,2), RT(j,1) = Bij , (A42)
i = 4..6, j = 4..6.

CRT(j,1),RT(j,1), RT(i,1), RT(i,1) = Cij , (A43)
i = 1..3, j = 1..3.

CRT(i,1),RT(i,2), RT(j,1), RT(j,2) = Cij , (A44)
i = 4..6, j = 4..6.

CRT(i,2),RT(i,1), RT(j,1), RT(j,2) = −Cij , (A45)
i = 4..6, j = 4..6.

CRT(i,1),RT(i,2), RT(j,2), RT(j,1) = Cij , (A46)
i = 4..6, j = 4..6.

CRT(i,2),RT(i,1), RT(j,2), RT(j,1) = −Cij , (A47)
i = 4..6, j = 4..6.

RT denotes the reconstruction table provided in Ta-
ble A1

10. Rearrange the fourth order concentration tensor ac-
cording to the saved order of arrangement in step
2.

11. Rotate Eαβ and Ωαβ to the droplet eigen frame.
12. Calculate the velocity gradient inside the droplet κ*αβ

in the eigen frame according to Eq. 1.
13. Rotate κ*αβ back to the original frame.
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Table A1: Reconstruction table containing indices that relate fourth
order tensors (B and C) in contracted notation to their expanded
form.

First index Second index
1 1
2 2
3 3
2 3
3 1
1 2
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