Home A sampling theorem for the twisted shift-invariant space
Article
Licensed
Unlicensed Requires Authentication

A sampling theorem for the twisted shift-invariant space

  • Radha Ramakrishnan EMAIL logo and Saswata Adhikari
Published/Copyright: June 17, 2017

Abstract

Recently, a characterization of frames in twisted shift-invariant spaces in L2(2n) has been obtained in [16]. Using this result, we prove a sampling theorem on a subspace of a twisted shift-invariant space in this paper.

MSC 2010: 94A20; 42C15; 42B99

Acknowledgements

We thank the referee for meticulously reading our manuscript and giving us several valuable comments and suggestions.

References

[1] A. E. Acosta, A. Aldroubi and I. Krishtal, On stability of sampling reconstruction models, Adv. Comput. Math. 31 (2008), 5–34. 10.1007/s10444-008-9083-6Search in Google Scholar

[2] A. Aldroubi and K. Gröchenig, Beurling–Landau-type theorems for non-uniform sampling in shift-invariant spline spaces, J. Fourier Anal. Appl. 6 (2000), 93–103. 10.1007/BF02510120Search in Google Scholar

[3] A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev. 43 (2001), no. 4, 585–620. 10.1137/S0036144501386986Search in Google Scholar

[4] M. Bownik, The structure of shift-invariant subspaces of L2(n), J. Funct. Anal. 176 (2000), 282–309. 10.1006/jfan.2000.3635Search in Google Scholar

[5] C. Cabrelli and V. Paternostro, Shift-invariant spaces on LCA groups, J. Funct. Anal. 258 (2010), 2034–2059. 10.1016/j.jfa.2009.11.013Search in Google Scholar

[6] O. Christensen, Frames and Bases. An Introductory Course, Birkhäuser, Boston, 2008. 10.1007/978-0-8176-4678-3Search in Google Scholar

[7] R. J. Duffin and J. J. Eachus, Some notes on an expansion theorem of Paley and Wiener, Bull. Amer. Math. Soc. 48 (1942), 850–855. 10.1090/S0002-9904-1942-07797-4Search in Google Scholar

[8] H. G. Feichtinger and K. Gröchenig, Theory and practice of irregular sampling, Wavelets: Mathematics and Applications, Stud. Adv. Math., CRC Press, Boca Raton (1994), 305–363. 10.1201/9781003210450-10Search in Google Scholar

[9] A. G. García, G. Pérez-Villalón and A. Portal, Riesz bases in L2(0,1) related to sampling in shift-invariant spaces, J. Math. Anal. Appl. 308 (2005), 703–713. 10.1016/j.jmaa.2004.11.058Search in Google Scholar

[10] K. Gröchenig and H. Schwab, Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces, SIAM J. Matrix Anal. Appl. 24 (2003), 899–913. 10.1137/S0895479802409067Search in Google Scholar

[11] K. Gröchenig and J. Stöckler, Gabor frames and totally positive functions, Duke Math. J. 162 (2013), 1003–1031. 10.1215/00127094-2141944Search in Google Scholar

[12] C. Heil, A Basis Theory Primer. Expanded Edition, Birkhäuser, Basel, 2011. 10.1007/978-0-8176-4687-5Search in Google Scholar

[13] M. I. Kadec, The exact value of the Paley–Wiener constant, Dokl. Akad. Nauk. SSSR. 155 (1964), 1253–1254. Search in Google Scholar

[14] R. A. Kamyabi Gol and R. Raisi Tousi, The structure of shift invariant spaces on a locally compact abelian group, J. Math. Anal. Appl. 340 (2008), 219–225. 10.1016/j.jmaa.2007.08.039Search in Google Scholar

[15] R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloq. Publ. 19, American Mathematical Society, Providence, 1987. Search in Google Scholar

[16] R. Radha and S. Adhikari, Frames and Riesz bases of twisted shift-invariant spaces in L2(2n), J. Math. Anal. Appl. 434 (2016), 1442–1461. 10.1016/j.jmaa.2015.07.040Search in Google Scholar

[17] R. Radha and N. Shravan Kumar, Shift-invariant subspaces on compact groups, Bull. Sci. Math. 137 (2013), no. 4, 485–497. 10.1016/j.bulsci.2012.11.003Search in Google Scholar

[18] Q. Sun, Local reconstruction for sampling in shift-invariant spaces, Adv. Comput. Math. 32 (2010), 335–352. 10.1007/s10444-008-9109-0Search in Google Scholar

[19] W. Sun and X. Zhou, Average sampling in spline subspaces, Appl. Math. Lett. 15 (2002), 233–237. 10.1016/S0893-9659(01)00123-9Search in Google Scholar

[20] W. Sun and X. Zhou, Reconstruction of functions in spline subspaces from local averages, Proc. Amer. Math. Soc. 131 (2003), 2561–2571. 10.1090/S0002-9939-03-07082-5Search in Google Scholar

[21] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Birkhäuser, Boston, 1997. 10.1007/978-1-4612-1772-5Search in Google Scholar

[22] G. G. Walter and X. Shen, Wavelets and Other Orthogonal Systems, 2nd ed., Stud. Adv. Math., Chapman and Hall/CRC, Boca Raton, 2001. Search in Google Scholar

[23] X. Zhou and W. Sun, On the sampling theorem for wavelet subspaces, J. Fourier Anal. Appl. 5 (1999), no. 4, 347–354. 10.1007/BF01259375Search in Google Scholar

Received: 2016-9-9
Revised: 2017-4-27
Accepted: 2017-5-1
Published Online: 2017-6-17
Published in Print: 2017-10-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/apam-2016-0090/html?lang=en
Scroll to top button