Home Characterizations of a special family of Laguerre–Hahn forms of class one
Article
Licensed
Unlicensed Requires Authentication

Characterizations of a special family of Laguerre–Hahn forms of class one

  • Najoua Barhoumi EMAIL logo
Published/Copyright: November 10, 2016

Abstract

Our aim is to investigate through a special family of Laguerre–Hahn forms of class one verifying the three-term recurrence relation with βn=(-1)nβ0, n0, by using quadratic decomposition. The corresponding characteristic elements of the three-term recurrence relation are given explicitly.

MSC 2010: 33C45; 42C05

Acknowledgements

The author would like to thank the referee for their careful reading, critical comments and helpful suggestions, which helped to improve the quality of the paper.

References

[1] Alaya J., Quelques résultats nouveaux dans la théorie des polynômes de Laguerre–Hahn, Doctoral Dissertation, University of Tunis II, 1996. Search in Google Scholar

[2] Alaya J. and Maroni P., Some semi-classical and Laguerre–Hahn forms defined by pseudo-functions. Methods, Appl. Anal. 3 (1996), 12–30. Search in Google Scholar

[3] Alaya J. and Maroni P., Symmetric Laguerre–Hahn forms of class s=1, Integral Transforms Spec. Funct. 4 (1996), no. 4, 301–320. 10.1080/10652469608819117Search in Google Scholar

[4] Bouakkaz H., Les polynômes orthogonaux de Laguerre–Hahn de classe zéro, Thèse de Troisième Cycle, Université Pierre et Marie Curie, Paris, 1990. Search in Google Scholar

[5] Bouakkaz H. and Maroni P., Description des polynômes orthogonaux de Laguerre–Hahn de classe zéro, Orthogonal Polynomials and Their Applications, IMACS Ann. Comput. Appl. Math. 9, J. C. Balézer, Basel (1991), 189–194. Search in Google Scholar

[6] Dini J., Sur les formes linéaires et polynômes orthogonaux de Laguerre–Hahn, Thèse de Doctorat, Université Pierre et Marie Curie, Paris, 1988. Search in Google Scholar

[7] Dini J., Maroni P. and Ronveaux A., Sur une perturbation de la récurrence vérifiée par une suite de polynômes orthogonaux, Port. Math. 46 (1989), 269–282. Search in Google Scholar

[8] Foupouagnigni M. and Marcellán F., Characterization of the Dω-Laguerre–Hahn functionals, J. Difference Equ. Appl. 8 (2002), 689–717. 10.1080/1023619021000000726Search in Google Scholar

[9] Magnus A., Riccati acceleration of Jacobi continued fractions and Laguerre–Hahn orthogonal polynomials, Padé Approximation and its Applications (Bad Honnef 1983), Lecture Notes in Math. 1071, Springer, Berlin (1984), 213–230. 10.1007/BFb0099620Search in Google Scholar

[10] Marcellán F. and Prianes E., Perturbations of Laguerre–Hahn functionals, J. Comput. Appl. Math. 105 (1999), 109–128. 10.1016/S0377-0427(99)00025-4Search in Google Scholar

[11] Maroni P., Une théorie algébrique des polynômes orthogonaux, application aux polynômes orthogonaux semi-classiques, Orthogonal Polynomials and Their Applications, IMACS Ann. Comput. Appl. Math. 9, J. C. Balézer, Basel (1991), 95–130. Search in Google Scholar

[12] Maroni P., An introduction to second degree forms, Adv. Comput. Math. 3 (1995), no. 1–2, 59–88. 10.1007/BF02431996Search in Google Scholar

[13] Maroni P. and Tounsi I. M., The Second-order self-associated orthogonal sequences, J. Appl. Math. 2004 (2004), no. 2, 137–167. 10.1155/S1110757X04402058Search in Google Scholar

Received: 2016-1-12
Revised: 2016-10-3
Accepted: 2016-10-12
Published Online: 2016-11-10
Published in Print: 2017-1-1

© 2017 by De Gruyter

Downloaded on 4.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/apam-2016-0006/html
Scroll to top button