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1 Introduction
In Euclidean harmonic analysis, the problem of holomorphic extension of suitable functions or their trans-
forms to appropriate domains in the corresponding complex space and characterising the extension in terms
of the original functions or their transforms appear in classical results, like Paley–Wiener type theorems, and
results on Poisson and Segal–Bargmann transforms. Results of this nature have been proved in recent times
in settings other than Euclidean spaces, namely for various classes of groups, symmetric spaces and various
manifolds. In this paper, we consider similar problems on the Heisenberg motion groupsℍM = ℍn ⋊ K, the
semidirect product of the Heisenberg groupℍn and any compact, connected subgroup K of U(n), where K is
a compact subgroup of U(n) such that (K,ℍn) is a Gelfand pair.

The classical result pertaining to the Segal–Bargmann transform in the Euclidean case states that the
convolution of any f ∈ L2(ℝn) with the heat kernel ρt of the Laplacian extends as an entire function to the
whole of ℂn. The image of L2(ℝn) under the unitary map f Ü→ f ∗ ρt can be characterised as the Hilbert
space of entire functions onℂn which are square integrable with respect to the positive weight ρt/2(y) dx dy,
where z = x + iy ∈ ℂn. While the seminal work of Hall in [4] on compact, connected Lie groups vindicates the
Euclidean picture, Krötz, Thangavelu and Xu in [5] showed that for Heisenberg group, the picture is a little
di�erent. Following their lines and observing that the Laplacian on the semidirect product ℍM is the sum
of the Laplacians, respectively, on ℍn and K, we note that as in the Heisenberg group case, the image of
L2(ℍM) under the heat kernel transform is not a weighted Bergman space with a non-negative weight, but
can be considered as a direct integral of certain twisted Bergman spaces.

In the case of noncompact Riemannian symmetric spaces the image of L2 functions under the action of
the heat semigroup do not extend as entire functions but only as holomorphic functions on a domain called
the complex crown. This behaviour is therefore similar to that of Poisson integrals of L2 functions on ℝn,
which extend only as holomorphic functions on a tube domain. Thangavelu uses Gutzmer’s formula in [11] to
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show that Poisson integrals of L2 functions on theHeisenberg group can be characterised as certain spaces of
holomorphic functions on tube domains of the complexi�cation. Here we use Gutzmer’s formula on compact
groups proved by Lassalle in [6] and a Gutzmer formula for spectral decomposition in terms of K-spherical
functions to prove a Gutzmer formula on ℍM and thereby extend these results to the Heisenberg motion
groups using some structure theory on compact Lie groups.

The characterisation of Poisson integrals is equivalent to the following classical result onℝ due to Paley
and Wiener: A function f ∈ L2(ℝ) admits a holomorphic extension to the strip {x + iy : |y| < t} such that

sup
|y|≤s

∫
ℝ

|f(x + iy)|2 dx < ∞ for all s < t

if and only if

∫
ℝ

e2s|ξ||f̃ (ξ)|2 dξ < ∞ for all s < t,

where f̃ denotes the Fourier transform of f . By Plancherel’s theorem, this condition is equivalent to

∫
ℝ

|es∆
1
2 f(ξ)|2 dξ < ∞ for all s < t,

where ∆ is the Laplacian onℝ. This is the idea behind the characterisation of the Poisson integrals. Note that
the above condition is also the same as

∫
ℝ

|ei(x+iy)ξ |2|f̃ (ξ)|2 dξ < ∞ for all |y| < t.

Here ξ Ü→ ei(x+iy)ξ may be seen as the complexi�cation of the parameters of the unitary irreducible represen-
tations ξ Ü→ eixξ of ℝ. This point of view was explored by Goodman in [3] in the context of analytic vectors
(see Theorem3.1).We give a characterisation of functions extending holomorphically to the complexi�cation
ofℍM in terms of the complexi�ed representations ofℍM.

Similar results were established for the Euclidean motion group M(2) of the plane ℝ2 in [7] and in the
context of generalmotion groupsℝn ⋊ K, where K is a compact subgroup of SO(n) in [9]. The aimof this paper
is to prove analogous results for the Heisenberg motion groupsℍM = ℍn ⋊ K, whereℍn is the Heisenberg
group and K is a compact, connected subgroup of U(n) such that (K,ℍn) is a Gelfand pair. The plan of this
paper is as follows: In Section 2, we study the Segal–Bargmann transform on ℍM. In Section 3, we prove
a Gutzmer’s formula on ℍM and use it to study Poisson integrals on ℍM. Finally, in Section 4, we prove
a Paley–Wiener type theorem which characterises functions extending holomorphically to the complexi�ca-
tion ofℍM using complexi�ed representations analogous to the Euclidean ones described above.

2 Segal–Bargmann transform
In this section, we want to study the Segal–Bargmann transform onℍM. We recall that, for the Heisenberg
group ℍn, it was proved by Krötz, Thangavelu and Xu [5] that the image of L2(ℍn) under the heat kernel
transform is not a weighted Bergman space with a non-negative weight, but can be considered as a direct
integral of twisted Bergman spaces. A similar result is true for Heisenberg motion groups as well.

Letℍn = ℂn × ℝ be the Heisenberg group with the group operation de�ned by

(z, t) ⋅ (w, s) = (z + w, t + s + 1
2 Im(zw)) where z, w ∈ ℂn , t, s ∈ ℝ.

A maximal compact connected group of automorphisms ofℍn is given by the unitary group U(n) acting on
ℍn via k(z, t) = (kz, t). Let K be a compact, connected Lie subgroup of U(n) such that (K,ℍn) is a Gelfand
pair. By this, we mean that the convolution algebra of K-invariant L1-functions onℍn is commutative. It is
well known (see [1]) that (U(n),ℍn) is a Gelfand pair and there are many proper subgroups K of U(n) for
which (K,ℍn) form a Gelfand pair.
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We de�ne the Heisenberg motion group ℍM to be the semidirect product of ℍn and K with the group
law

(z, t, k)(w, s, h) = ((z, t) ⋅ (kw, s), kh), where (z, t), (w, s) ∈ ℍn , k, h ∈ K.

Points in ℍM will be denoted by (z, t, k) where (z, t) ∈ ℍn and k ∈ K. Since K is compact, there exists an
AdK-invariant inner product on k. Let K1, K2, . . . , KN be an orthonormal basis of the Lie algebra k of K with
respect to this inner product. In ℍM, we have 2n + 1 + N one parameter subgroups (where we identify ℂn
with ℝ2n) given by Gj = {(tej , 0, 0, I) : t ∈ ℝ}, Gn+j = {(0, tej , 0, I) : t ∈ ℝ}, G2n+1 = {(0, 0, t, I) : t ∈ ℝ} and
G2n+1+l = {(0, 0, 0, etKl ) : t ∈ ℝ}, where 1 ≤ j ≤ n, 1 ≤ l ≤ N and ej are the co-ordinate vectors in ℝn. Corre-
sponding to these oneparameter subgroupswehave2n+1+N left invariant vector �elds X1, X2, . . . , X2n+1+N ,
which form a basis of the Lie algebra ofℍM. The Laplacian ∆ onℍM is given by

∆ = −(X21 + X
2
2 + ⋅ ⋅ ⋅ + X22n+1+N).

It can be proved using K ⊂ U(n) that ∆ = −∆ℍn − ∆K where ∆ℍn = ∑2n+1
j=1 X2j and ∆K = ∑N

l=1 K
2
l are the Lapla-

cians onℍn and K, respectively.
Since ∆ℍn and ∆K commute, it follows that the heat kernel ψt associated to ∆ is given by the product of

the heat kernels kt onℍn and qt on K. In other words,

ψt(z, ξ, k) = kt(z, ξ)qt(k) = ((4π)−n ∫
ℝ∗

e−iλξ e−tλ2pλt (z) dλ)( ∑
π∈K̂

dπe−
λπ t
2 χπ(k))

where
pλt (z) = (4π)−n( λ

sinh λt)
n
e−

λ
4 coth(λt|z|2) for λ ̸= 0

is the inverse Fourier transform in the central variable of the heat kernel pt for the sublaplacian L ofℍn and
for each unitary, irreducible representation π of K, dπ is the degree of π, λπ is such that π(∆K) = −λπ I and
χπ(k) = tr(π(k)) is the character of π. For more details, see [4].

De�ne a positive weight functionWλ
t on ℂ2n by

Wλ
t (z, w) = 4neλIm(zw)pλ2t(2y, 2v),

where z = x + iy and w = u + iv ∈ ℂn. Denote by G the complexi�cation of K. Let κt be the fundamental solu-
tion at the identity of the equation du

dt = 1
4∆Gu on G, where ∆G is the Laplacian on G (for details, see [4]).

It should be noted that κt is the real, positive heat kernel on G which is not the same as the analytic continu-
ation of qt on K.

De�neAλ
t (ℂ

2n × G) to be the weighted Bergman space of holomorphic functions F on ℂ2n × G such that

∫
G

∫
ℂ2n

|F(z, w, g)|2Wλ
t (z, w) dz dw dν(g) < ∞, where dν(g) = ∫

K

κt(xg) dx on G.

We now introduce ameasurable structure on⨆λ ̸=0A
λ
t (ℂ

2n × G). By a section s of⨆λ ̸=0A
λ
t (ℂ

2n × G), wemean
an assignment

s : ℝ∗ → ⨆
λ ̸=0

Aλ
t (ℂ

2n × G),

λ Ü→ sλ ∈ Aλ
t (ℂ

2n × G).

Now we de�ne a direct integral of Hilbert spaces by
⊕

∫
ℝ∗ A

λ
t (ℂ

2n × G)e2tλ2 dλ

= {s : ℝ∗ → ⨆
λ ̸=0

Aλ
t (ℂ

2n × G) such that s is measurable and ‖s‖2 = ∫
ℝ∗ ‖sλ‖

2
λe

2tλ2 dλ < ∞},

where ‖ ⋅ ‖λ denotes the norm inAλ
t (ℂ

2n × G). Clearly this is a Hilbert space.
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For suitable functions f onℍM, let us de�ne a function f λ on ℂn × K by

f λ(z, k) = ∫
ℝ

f(z, t, k)eiλt dt.

Using the Segal–Bargmann result forℍn and K we can prove the following theorem.

Theorem 2.1. If f ∈ L2(ℍM), then f ∗ ψt extends holomorphically to ℂ2n+1 × G.
(a) The image of L2(ℍM) under the Segal–Bargmann transform f Ü→ f ∗ ψt cannot be characterised as a

weighted Bergman space with a non-negative weight.
(b) For every t > 0, the Segal–Bargmann transform e−t∆ : L2(ℍM) → ⨆λ ̸=0A

λ
t (ℂ

2n × G), f Ü→ (f ∗ ψt)λ is an
isometric isomorphism.

3 Poisson transforms using Gutzmer’s formula
In this section, we will characterise Poisson integrals on ℍM using a Gutzmer type formula for functions
on ℂ2n with respect to the K-action and the Gutzmer’s formula on compact, connected Lie groups given by
Lassalle in [6]. This is inspired from [11, Theorem 5.1].

For each k ∈ K ⊆ U(n), (z, t) Ü→ (kz, t) is an automorphism ofℍn, because U(n) preserves the symplectic
form Im(zw). If ρ is a representation ofℍn, then using this automorphism we can de�ne another represen-
tation ρk by ρk(z, t) = ρ(kz, t) which coincides with ρ at the center. If we take ρ to be the Schrödinger repre-
sentation πλ for λ ̸= 0, then by the Stone–von Neumann theorem πkλ is unitarily equivalent to πλ and we have
the unitary intertwining operator µλ such that

πλ(kz, t) = µλ(k)πλ(z, t)µλ(k)∗. (3.1)

The operator valued function µλ can be chosen so that it becomes a unitary representation of K on L2(ℝn)
and is called the metaplectic representation. In general, the metaplectic representation is a projective rep-
resentation of the symplectic group but if one restricts the metaplectic representation to U(n), then the con-
stants canbe rede�ned so that it becomes aunitary representation ofU(n) (see [2, Chapter 4] formore details).

For each m > 0, let Pm be the linear span of {ϕα : |α| = m}where ϕα, α ∈ ℕn are the normalised Hermite
functions onℝn. Each suchPm is invariant under the action of µλ(k) for every k ∈ K ⊆ U(n). If K = U(n), µλ|Pm

is irreducible. If K is a proper compact subgroup of U(n), Pm need not be irreducible under the action of µλ
and it further decomposes into irreducible subspaces. It is known that (K,ℍn) is a Gelfand pair if and only if
this action of K on L2(ℝn) is multiplicity free (see [1]).

Associated to a Gelfand pair (K,ℍn), we have a class of K-invariant functions called the K-spherical
functions. A smooth K-invariant function ϕ : ℍn → ℂ is called K-spherical if ϕ(e) = 1 and ϕ is a joint eigen-
function for all di�erential operators onℍn that are invariant under the action of K and the left action ofℍn.
For each λ ∈ ℝ∗ and for m ∈ ℕ, a bounded U(n)-spherical function eλm is given by

eλm(z, t) =
1

dimPm
eiλtφλm(z),

where
φλm(z) = ∑

|α|=m
ϕλαα(z) = Ln−1m (

|λz|2

2 )e−
|λz|2
4

are the Laguerre functions of order n − 1, ϕλαβ (α, β ∈ ℕn) are the scaled special Hermite functions and Ln−1m
are the Laguerre polynomials of order n − 1 (for details, see [11]).

Let Pm = ⨁Am
a=1 Pma be the decomposition of Pm into K-irreducible subspaces. Then,

eλma(z, t) =
1

dimPma
eiλtφλma(z) =

1
dimPma

Ba
∑
b=1

⟨πλ(z, t)ϕbma , ϕbma⟩

is aK-spherical function for eachm, a, where {ϕbma : b = 1, . . . , Ba} is an orthonormal basis forPma such that
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{ϕbma : b = 1, . . . , Ba , a = 1, . . . , Am} is an orthonormal basis for Pm. A relation between the U(n)-spherical
functions and the K-spherical functions de�ned above is given by (see [8] for details)

dimPmeλm(z, t) =
Am
∑
a=1

dimPmaeλma(z, t).

Now, let us write {ϕbma : b = 1, . . . , Ba , a = 1, . . . , Am} as {ψλα : α ∈ ℕn} such that for each m, ϕbma,
b = 1, . . . , Ba, a = 1, . . . , Am, are the ones which occur as ψλα for |α| = m. For λ ̸= 0, we de�ne

ψλαβ(z) = (2π)−
n
2 |λ|

n
2 ⟨πλ(z)ψλα , ψλβ⟩.

It is easy to see that {ψλαβ : α, β ∈ ℕn} is a complete orthonormal system in L2(ℂn). We call them K-special
Hermite functions. Since each ψλα is a �nite linear combination of ϕλα, it follows that both ψλα and ψλαβ extend
as holomorphic functions to ℂn and ℂ2n, respectively, for each α, β ∈ ℕn. We also note that the action of
K ⊆ U(n) on ℝ2n naturally extends to an action of G on ℂ2n. We prove the following Gutzmer formula with
respect to the K-action.

Theorem 3.1. For a function F ∈ L2(ℝ2n) having a holomorphic extension to ℂ2n, we have

∫
K

∫
ℝ2n

|F(k ⋅ (z + iw))|2eλ[z,w] dz dk =
∞

∑
m=0

Am
∑
a=1

(dimPma)−1φλma(2iw)‖F ∗λ φλma‖2,

whenever either of them is �nite where ∗λ denotes the twisted convolution

f ∗λ g(z) = ∫
ℂn

f(z − w)g(w)e
i
2 λIm(zw) dw,

and [z, w] denotes the symplectic form of z, w ∈ ℝ2n.

Proof. First we want to prove that ψλαβ’s are orthogonal under the inner product

⟨F, G⟩ = ∫
K

∫
ℝ2n

F(k ⋅ (z + iw))G(k ⋅ (z + iw))eλ[z,w] dz dk for F, G ∈ L2(ℝn),

which have a holomorphic extension to ℂ2n. Using standard facts like ⟨πλ(Z)ϕα , ϕβ⟩ = ⟨ϕα , πλ(−Z̄)ϕβ⟩ and
πλ(Z)πλ(W) = e i

2 λIm(ZW̄)πλ(Z +W) for Z,W ∈ ℂ2n (see [11]), we get that

∫
K

∫
ℝ2n

ψλαβ(k ⋅ (z + iw))ψ
λ
µν(k ⋅ (z + iw))eλ[z,w] dz dk

= (
|λ|
2π)

n
∫
K

∫
ℝ2n

⟨πλ(k ⋅ z)ψλα , πλ(k ⋅ iw)ψλβ⟩⟨πλ(k ⋅ z)ψ
λ
µ , πλ(k ⋅ iw)ψλν⟩ dz dk.

Expanding πλ(k ⋅ z)ψλα in terms of ψλρ, πλ(k ⋅ z)ψλµ in terms of ψλσ and using the self-adjointness of πλ(k ⋅ iw),
the above equals

∑
ρ,σ∈ℕn

∫
K

⟨πλ(k ⋅ iw)ψλρ , ψλβ⟩⟨πλ(k ⋅ iw)ψ
λ
σ , ψλν⟩( ∫

ℝ2n

ψλαρ(k ⋅ z)ψλµσ(k ⋅ z) dz) dk

= δα,µ ∫
K

⟨πλ(k ⋅ 2iw)ψλν , ψλβ⟩ dk,

= δα,µ ∫
K

⟨πλ(2iw)µλ(k−1)ψλν , µλ(k−1)ψλβ⟩ dk,

by the orthonormality of the K-special Hermite functions and (3.1), δ being the Kronecker delta. If Pma and
Plb are the irreducible subspaces which contain ψλν and ψλβ, respectively, then we can expand µλ(k−1)ψλν
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and µλ(k−1)ψλβ in terms of allψλã ∈ Pma and allψλδ ∈ Plb, respectively, and use Schur’s orthogonality relations
to get that the above equals

δα,µ ∑
ã∈Pma

∑
δ∈Plb

(∫
K

ηãν(k−1)ηδβ(k−1) dk)⟨πλ(2iw)ψλã, ψλδ⟩ = δα,µδβ,ν dimP−1
maφλma(2iw),

where ηãν are the matrix coe�cients of µλ, which is multiplicity free since (K,ℍn) is a Gelfand pair.
Now, expanding F ∈ L2(ℝ2n) having a holomorphic extension to ℂ2n in terms of the orthonormal basis

consisting of ψλαβ, we have that

∫
K

∫
ℝ2n

|F(k ⋅ (z + iw))|2eλ[z,w] dz dk =
∞

∑
m=0

Am
∑
a=1

φλma(2iw)
dimPma

( ∑
α∈ℕn

∑
β∈Pma

|⟨F, ψλαβ⟩|
2).

It follows from standard arguments (see [11]) that

‖F ∗λ φλma‖2 = ∑
α∈ℕn

∑
β∈Pma

|⟨F, ψλαβ⟩|
2,

and hence the theorem follows.

Now we will characterise Poisson integrals onℍM. For f ∈ L2(ℍM), by the Peter–Weyl expansion we have

f(z, t, k) = ∑
π∈K̂

dπ
dπ
∑
i,j=1

f πij (z, t)ϕ
π
ij(k),

where
f πij (z, t) = ∫

K

f(z, t, k)ϕπij(k) dk,

andϕπij are thematrix coe�cients of π. The Laplacian ∆ onℍM is non-negative, so using the spectral theorem
we can de�ne the Poisson semigroup e−q∆1/2 for q > 0. This is explicitly given by the spectral representation

e−q∆
1
2 f(z, t, k) = c ∑

π∈K̂

dπ
dπ
∑
i,j=1

ϕπij(k)
∞

∑
m=0

∫
ℝ

e−q((2m+n)|λ|+λ2+λπ)
1
2 (f πij )

λ ∗λ φλm(z)eiλt|λ|ndλ.

We know that for each g ∈ G, the complexi�cation of K can be written (non-uniquely) in the form
g = k1 exp (iH)k2 for k1, k2 ∈ K and H ∈ h, where h is a maximal, abelian subalgebra of k. If we have
that k1 exp (iH1)k�1 = k2 exp (iH2)k�2, then there exists w ∈ W, the Weyl group with respect to h, such that
H1 = w ⋅ H2, where “ ⋅ ” denotes the action of theWeyl group on h. Let | ⋅ | denote the normwith respect to the
AdK-invariant inner product on k. We have the following (almost) characterisation of the Poisson integrals.
Let

Ωp,p� = {(z, w, τ, g) ∈ ℂn ×ℂn ×ℂ× G : |Im(z, w)| < p, |H| < p�, where g = k1(exp iH)k2, k1, k2 ∈ K, H ∈ h}

be a domain in ℂ2n+1 × G. Notice that the domain Ωp,p� is well de�ned since | ⋅ | is invariant under the Weyl
group action.

Theorem 3.2. Let f ∈ L1 ∩ L2(ℍM) be such that f λ is compactly supported as a function of λ. For each
0 < p < q, F = e−q∆

1
2 f extends to a holomorphic function on the domain Ω p

2 ,
p

N√2 for some constant N and

∫
K

∫
K

∫
|Im(z,w)|=r

∫
ℍM

|F(X ⋅ (z, w, τ, g))|2 dX dµr dk1 dk2

= ∑
π∈K̂

∞

∑
m=0

dπχπ(e2iH)
dimPm

dπ
∑
i,j=1

∫
ℝ

Ln−1m (−2λr2)eλr2+2λs−2q((2m+n)|λ|+λ2+λπ)
1
2 ‖(f πij )

λ ∗λ φλm‖2 dλ,

where s = Im(τ), g = k1 exp(iH)k2, µr is the normalized surfaceareameasure on the sphere {|Im(z, w)| = r} ⊆ ℝ2n
for r < p

2 , and L
n−1
m are the Laguerre polynomials of type (n − 1).
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Conversely, there exists a �xed constant V such that if h is a holomorphic function on the domain Ωq, 2qV , hλ

is compactly supported as a function of λ, and for each r < q,

∫
K

∫
K

∫
|Im(z,w)|=r

∫
ℍM

|h(X ⋅ (z, w, τ, k1 exp (iH)k2))|2 dX dµr dk1 dk2 < ∞,

then for every p < q, there exists f ∈ L2(ℍM) such that h = e−p∆
1
2 f .

Proof. First, we prove the holomorphicity of e−q∆
1
2 f on Ω p

2 ,
p

N√2 for 0 < p < q by proving uniform convergence
on compact subsets. So, we consider a compact subset M ⊆ Ω p

2 ,
p

N√2 . For (z, w, τ, g) ∈ M, we have

!!!!e
−q∆

1
2 f(z, w, τ, g)!!!! ≤ C ∑

π∈K̂

dπ
dπ
∑
i,j=1

|ϕπij(g)|e
− q√λπ√2 ∫
ℝ

∞

∑
m=0

e−
q
2 ((2m+n)|λ|)

1
2 |(f πij )

λ ∗λ φλm(z, w)|e|λ|(|s|−
q
2 )|λ|n dλ.

Now, using [11, Proposition 3.1], it follows that for a �xed λ,

|(f πij )
λ ∗λ φλm(z, w)| ≤ e

λ
2 (u⋅y−v⋅x)‖(f πij )

λ‖1(dimPm)
1
2 (φλm(2iy, 2iv))

1
2 ,

where z = x + iy, w = u + iv. So, we get that

∞

∑
m=0

e−
q
2 ((2m+n)|λ|)

1
2 |(f πij )

λ ∗λ φλm(z, w)| ≤ e
λ
2 (u⋅y−v⋅x)‖(f πij )

λ‖1
∞

∑
m=0

e−
q
2 ((2m+n)|λ|)

1
2 (

(m + n − 1)!
m!(n − 1)! )

1
2
(φλm(2iy, 2iv))

1
2 .

As in the proof of [11, Theorem 5.1], for any �xed (y, v)with |y|2 + |v|2 ≤ r2 < p2
4 < q2

4 , the above series is
bounded by a constant times

∞

∑
m=0

m
n−1
2 m

n−1
4 − 1

8 e−((2m+n)|λ|)
1
2 ( q2−r),

which certainly converges if r < p
2 < q

2 . Moreover, using the fact that ‖(f πij )λ‖1 ≤ ‖f ‖1 and f λ is compactly sup-
ported as a function of λ, we can conclude that

!!!!e
−q∆

1
2 f(z, w, τ, g)!!!! ≤ C ∑

π∈K̂

dπ
dπ
∑
i,j=1

|ϕπij(g)|e
− q√λπ√2 .

For g = keiH , we have

ϕπij(ke
iH) =

dπ
∑
l=1
ϕπil(k)ϕ

π
lj(e

iH).

Since π(k) is unitary for k ∈ K and π(eiH) is self-adjoint for H ∈ h, it follows that

dπ
∑
l=1

|ϕπil(k)|
2 = 1 and

dπ
∑
l,j=1

|ϕπlj(e
iH)|2 = χπ(exp 2iH).

Now, using the Cauchy–Schwarz inequality, we get that

!!!!e
−q∆

1
2 f(z, w, τ, g)!!!! ≤ C ∑

π∈K̂

d
5
2
π ( χπ(exp 2iH))

1
2 e−

q√λπ√2 .
From [4, Lemmas6–7]weknow that there exist constantsA, B, C andM such that λπ ≥ A|µ|2, dπ ≤ B(1 + |µ|C)
and |χπ(exp iY)| ≤ dπeM|Y||µ|, where µ is the highest weight of π. Hence, we have

!!!!e
−q∆

1
2 f(z, w, τ, g)!!!! ≤ C ∑

π∈K̂

B3(1 + (
λπ
A )

C
2
)
3
e√λπ(N|H|−

q√2 )
for N = M

√A
, and the above expression is �nite as long as |H| < q

N√2 . Hence, we have proved that e−q∆
1
2 f ex-

tends to a holomorphic function on the domain Ω p
2 ,

p
N√2 for p < q.



20 | S. Sen, Segal–Bargmann transform and Paley–Wiener theorems onℍM

Now, we prove the equality in Theorem 3.2. It should be noted that the domain Ω p
2 ,

p
N√2 is invariant under

left translation by the Heisenberg motion group ℍM. For X ∈ ℍM, (z, w, τ, g) ∈ Ω p
2 ,

p
N√2 and a function F

holomorphic on Ω p
2 ,

p
N√2 , by Gutzmer’s formula on K given by Lassalle in [6], we have for g = k1 exp(iH)k2,

∫
K

∫
K

∫
|Im(z,w)|=r

∫
ℍM

|F(X ⋅ (z, w, τ, g))|2 dX dµr dk1 dk2

= ∑
π∈K̂

dπ
dπ
∑
i,j=1

∫
|Im(z,w)|=r

∫
ℍn

!!!!!!!
Fπij(z, w, τ +

i
2Im(zw))

!!!!!!!

2
χπ(exp 2iH) dx du dt dµr ,

where z = x + iy, w = u + iv and τ = t + is. It follows that 1
dimPma

∫U(n) φ
λ
ma(k ⋅ (x, u)) dk is a U(n)-spherical

function (see [1]) and
1

dimPma
∫
U(n)

φλma(k ⋅ (x, u)) dk =
1

dimPm
φλm(x, u).

By analytic continuation on both sides we get
1

dimPma
∫
U(n)

φλma(k ⋅ (2iy, 2iv)) dk =
1

dimPm
φλm(2iy, 2iv).

Hence, integrating over the sphere Sr = {|y|2 + |v|2 = r2}, which is invariant under the action of U(n), we get
1

dimPma
∫
Sr

φλma(2iy, 2iv) dµr =
1

dimPm
Ln−1m (−2λr2)eλr2 .

So, from Theorem 3.1 we have

∫
Sr

∫
ℝ2n

|(Fπij)
λ(z, w)|2eλIm(zw) dx du dµr =

∞

∑
m=0

1
dimPm

Ln−1m (−2λr2)eλr2‖(Fπij)
λ ∗λ φλm‖2.

It follows that

∫
K

∫
K

∫
Sr

∫
ℍM

|F(X ⋅ (z, w, τ, k1 exp (iH)k2))|2 dX dµr dk1 dk2

= ∑
π∈K̂

dπχπ(exp 2iH)
∞

∑
m=0

1
dimPm

∫
ℝ

Ln−1m (−2λr2)eλr2e2λs(
dπ
∑
i,j=1

‖(Fπij)
λ ∗λ φλm‖2) dλ.

Hence, for F = e−q∆
1
2 f we get the �rst part of Theorem 3.2.

To prove the converse, we �rst note that as in [9, Theorem 4.3], for any 0 < ϑ < ∞, there exist constants
U, V such that

∫
|H|=ϑ

χπ(exp 2iH) dσϑ(H) ≥ dπUeVϑ√λπ , (3.2)

where dσϑ(H) is the normalized surface measure on the sphere {H ∈ h : |H| = ϑ} ⊆ ℝm and m = dim h. Con-
sider the domain Ωq, 2qV for this V. Let h be a holomorphic function on the domain Ωq, 2qV such that hλ is
compactly supported as a function of λ, and for r < q,

∫
K

∫
K

∫
|Im(z,w)|=r

∫
ℍM

|h(X ⋅ (z, w, τ, k1 exp (iH)k2))|2 dX dµr dk1 dk2 < ∞.

So, integrating the expression obtained before over |H| = ϑ for ϑ < 2q
V and using (3.2), it follows that for r < q,

∑
π∈K̂

dπeVϑ√λπ
∞

∑
m=0

(dimPm)−1 ∫
ℝ

Ln−1m (−2λr2)eλr2e2λs(
dπ
∑
i,j=1

‖(hπij)
λ ∗λ φλm‖2) dλ < ∞.

Now, Perron’s formula [10, Theorem 8.22.3] gives

Lαm(ζ ) =
1
2π

− 1
2 e

ζ
2 (−ζ )−

α
2−

1
4m

α
2−

1
4 e2(−mζ )

1
2 (1 + O(m− 1

2 )),
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which is valid for ζ in the complex plane cut along the positive real axis. So, we get that

∑
π∈K̂

dπeVϑ√λπ
∞

∑
m=0

∫
ℝ

|λ|2ne2ς((2m+n)|λ|)
1
2 e2λs

dπ
∑
i,j=1

‖(hπij)
λ ∗λ φλm‖2 dλ < ∞

for ς < r < q and ϑ < 2q
V . For p < q, setting (f πij )

λ = e2p((2m+1)|λ|+λ2+λπ)
1
2 (hπij)

λ, we obtain

f(z, t, k) = ∑
π∈K̂

dπ
dπ
∑
i,j=1

f πij (z, t)ϕ
π
ij(k) ∈ L

2(ℍM)

and h = e−p∆
1
2 f .

4 A Paley–Wiener type theorem involving complexi�ed
representations

In this section, wewill prove a Paley–Wiener type theorem involving complexi�ed representations analogous
to the Euclidean case described in the introduction, which is inspired by [3, Theorem 3.1]. We will need
explicit realisations of the irreducible unitary representations ofℍMwhich occur in the Plancherel identity.
Although in general these representations can be computed fromMackey’s theory and in particular, the case
of generalised Heisenberg motion groups has been considered in the paper [12] by Wolf, we will start with
a more explicit and elementary proof of this particular case.

Let (σ,Hσ) be any irreducible, unitary representation of K. For each λ ̸= 0 and σ ∈ K̂, we consider the
representations ρλσ ofℍM on the tensor product space L2(ℝn) ⊗Hσ de�ned by

ρλσ(z, t, k) = πλ(z, t)µλ(k) ⊗ σ(k),

where πλ and µλ are the Schrödinger and metaplectic representations, respectively, and (z, t, k) ∈ ℍM.

Proposition 4.1. Each ρλσ is unitary and irreducible.

Proof. It is easy to see that each ρλσ is unitary. We shall now prove that ρλσ is irreducible. Suppose that
M ⊂ L2(ℝn) ⊗Hσ is invariant under all ρλσ(z, t, k). IfM ̸= {0}we will show thatM = L2(ℝn) ⊗Hσ proving the
irreducibility of ρλσ. If M is a proper subspace of L2(ℝn) ⊗Hσ, invariant under ρλσ(z, t, k) for all (z, t, k), then
there are nontrivial elements f and g in L2(ℝn) ⊗Hσ such that f ∈ M and g is orthogonal to ρλσ(z, t, k)f for
all (z, t, k). This means that ⟨ρλσ(z, t, k)f, g⟩ = 0 for all (z, t, k).

An orthonormal basis of L2(ℝn) ⊗Hσ is given by {ϕλα ⊗ eσi : α ∈ ℕn , 1 ≤ i ≤ dσ}, where ϕλα are the scaled
Hermite functions, {eσi : 1 ≤ i ≤ dσ} is an orthonormal basis ofHσ and dσ = dimHσ. For f, g ∈ L2(ℝn) ⊗Hσ,
consider the function V fg(z, t, k) = ⟨ρλσ(z, t, k)f, g⟩. We know that

µλ(k)ϕλã = ∑
|α|=|ã|

ηλαã(k)ϕλα , (4.1)

where ηλαã are the matrix coe�cients of µλ and k ∈ K ⊆ U(n). Then, it follows that

V fg(z, t, k) = (2π)
n
2 |λ|−

n
2 eiλt ∑

α,β∈ℕn
∑

1≤i,j≤dσ
∑

|α|=|ã|
fã,igβ,jηλαã(k)ϕλαβ(z)ϕ

σ
ji(k),

where

f = ∑
ã∈ℕn

∑
1≤i≤dσ

fã,iϕλã ⊗ eσi , g = ∑
β∈ℕn

∑
1≤j≤dσ

gβ,jϕλβ ⊗ e
σ
j

and ϕσji are the matrix coe�cients of σ. Since ϕλαβ form an orthonormal basis ofℝ2n, calculating the L2 norm
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of V fg with respect to z we get

∫
ℝ2n

|V fg(z, t, k)|2 dz = C ∑
α,β∈ℕn

!!!!!!!!!
∑

1≤i,j≤dσ
∑

|α|=|ã|
fã,igβ,jηλαã(k)ϕσji(k)

!!!!!!!!!

2
.

Now, for any unitary (not necessary irreducible) representation (π,Hπ) of K, if v1, v2, . . . , vdπ is a basis
ofHπ, then for complex numbers ci , 1 ≤ i ≤ dπ and u ∈ K, we have

dπ
∑
q=1

!!!!!!!!!

dπ
∑
i=1
ciϕπqi(u)

!!!!!!!!!

2
=

dπ
∑
i,a=1

cica
dπ
∑
q=1

⟨π(u)vi , vq⟩⟨vq , π(u)va⟩ =
dπ
∑
i=1

|ci|2. (4.2)

Applying this for the unitary representation (µλ ,Pm) of K with orthonormal basis {ϕλα : |α| = m}, we obtain

∫
ℝ2n

|V fg(z, t, k)|2 dz = C ∑
ã,β∈ℕn

!!!!!!!!!
∑

1≤i,j≤dσ
fã,igβ,jϕσji(k)

!!!!!!!!!

2
.

Integrating over K, we get that

∫
K

∫
ℝ2n

|V fg(z, t, k)|2 dz dk = C( ∑
ã∈ℕn

dσ
∑
i=1

|fã,i|2)( ∑
β∈ℕn

dσ
∑
j=1

|gβ,j|2) = C‖f ‖2‖g‖2.

Under our assumption that M is nontrivial and proper, we have V fg = 0, which means that ‖f ‖2‖g‖2 = 0. This
is a contradiction since both f and g are nontrivial. Hence, M has to be the whole of L2(ℝn) ⊗Hσ and this
proves that ρλσ is irreducible.

Given f ∈ L1 ∩ L2(ℍM), consider the group Fourier transform

f̂ (λ, σ) = ∫
K

∫
ℝ

∫
ℝ2n

f(z, t, k)ρλσ(z, t, k) dz dt dk = ∫
K

∫
ℝ2n

f λ(z, k)(πλ(z)µλ(k) ⊗ σ(k)) dz dk.

Theorem 4.2 (Plancherel). For f ∈ L1 ∩ L2(ℍM), we have

∫
K

∫
ℍn

|f(z, t, k)|2 dz dt dk = (2π)−n ∑
σ∈K̂

dσ ∫
ℝ\{0}

‖f̂ (λ, σ)‖2HS|λ|
n dλ.

Proof. We calculate the Hilbert–Schmidt operator norm of f̂ (λ, σ) by using the basis

{ϕλã ⊗ eσi : ã ∈ ℕn , 1 ≤ i ≤ dσ}.

By (4.1), we have

f̂ (λ, σ)(ϕλã ⊗ eσi ) = ∑
|α|=|ã|

∫
K

ηλαã(k) ∫
ℝ2n

f λ(z, k)(πλ(z)ϕλα ⊗ σ(k)eσi ) dz dk.

Thus,
⟨f̂ (λ, σ)(ϕλã ⊗ eσi ), ϕ

λ
β ⊗ e

σ
j ⟩ = (2π)

n
2 |λ|−

n
2 ∑
|α|=|ã|

∫
K

ηλαã(k) ∫
ℝ2n

f λ(z, k)ϕλαβ(z)ϕ
σ
ji(k) dz dk,

so that

(2π)−n|λ|n‖f̂ (λ, σ)(ϕλã ⊗ eσi )‖
2 = ∑

β∈ℕn

dσ
∑
j=1

!!!!!!!!!
∑

|α|=|ã|
∫
K

ηλαã(k) ∫
ℝ2n

f λ(z, k)ϕλαβ(z)ϕ
σ
ji(k) dz dk

!!!!!!!!!

2

and

(2π)−n|λ|n‖f̂ (λ, σ)‖2HS = ∑
β,ã∈ℕn

∑
1≤i,j≤dσ

!!!!!!!!!
∑

|α|=|ã|
∫
K

ηλαã(k) ∫
ℝ2n

f λ(z, k)ϕλαβ(z)ϕ
σ
ji(k) dz dk

!!!!!!!!!

2
.



S. Sen, Segal–Bargmann transform and Paley–Wiener theorems onℍM | 23

Using Plancherel’s theorem for K, we get that

(2π)−n|λ|n ∑
σ∈K̂

dσ‖f̂ (λ, σ)‖2HS = ∑
β,ã∈ℕn

∫
K

!!!!!!!!!
∑

|α|=|ã|
ηλαã(k) ∫

ℝ2n

f λ(z, k)ϕλαβ(z) dz
!!!!!!!!!

2
dk.

Applying (4.2), the above equals

∑
α,β∈ℕn

∫
K

!!!!!!!!!
∫
ℝ2n

f λ(z, k)ϕλαβ(z) dz
!!!!!!!!!

2
dk.

Noting that {ϕλαβ : α, β ∈ ℕn} is an orthonormal basis for L2(ℝ2n), we have

(2π)−n|λ|n ∑
σ∈K̂

dσ‖f̂ (λ, σ)‖2HS = ∫
K

∫
ℝ2n

|f λ(z, k)|2 dz dk.

Therefore,

(2π)−n ∫
ℝ

( ∑
σ∈K̂

dσ‖f̂ (λ, σ)‖2HS)|λ|
n dλ = ∫

ℝ

∫
K

∫
ℝ2n

|f(z, t, k)|2 dz dk dt.

Since L1 ∩ L2(ℍM) is dense in L2(ℍM), the Fourier transform can be uniquely extended to the whole of
L2(ℍM) and the above Plancherel identity holds for any L2 function.

Now, if we consider the operator ρλσ(z, t, k)f̂ (λ, σ) acting on the basis elements ϕλã ⊗ eσi , using (3.1) and
(4.1) we get that

ρλσ(z, t, k)f̂ (λ, σ)(ϕλã ⊗ eσi ) = e
iλt ∑

|α|=|ã|
∫
K

ηλαã(k�) ∫
ℝ2n

f λ(z�, k�)(πλ(z)πλ(kz�)µλ(k)ϕλα ⊗ σ(k)σ(k�)eσi ) dz
� dk�

= eiλt ∑
|α|=|ã|

∫
K

ηλαã(kk�) ∫
ℝ2n

f λ(z�, k�)(πλ(z)πλ(kz�)ϕλα ⊗ σ(kk�)eσi ) dz
� dk�.

Note that the action of K ⊆ U(n) on ℝ2n naturally extends to an action of G on ℂ2n, therefore this action of
ρλσ(z, t, k)f̂ (λ, σ) on ϕλã ⊗ eσi can be clearly analytically continued to ℍMℂ = ℂ2n × ℂ × G, and for suitable
functions f and Z = (z, w, t + is, keiH) ∈ ℍMℂ, we get that

ρλσ(z, w, t + is, keiH)f̂ (λ, σ)(ϕλã ⊗ eσi )

= eiλ(t+is) ∑
|α|=|ã|

∫
K

ηλαã(keiHk�) ∫
ℝ2n

f λ(z�, k�)(πλ(z, w)πλ(keiHz�)ϕλα� ⊗ σ(keiHk�)eσi ) dz� dk�.
We have the following Paley–Wiener type theorem onℍM.

Theorem 4.3. Let f ∈ L2(ℍM). Then, f extends holomorphically toℍMℂ such that for each Z ∈ ℍMℂ,

∫
ℍM

|f(Z−1X)|2 dX < ∞

if and only if
∑
σ∈K̂

dσ ∫
ℝ

‖ρλσ(Z)f̂ (λ, σ)‖2HS|λ|
n dλ < ∞.

In this case we also have

∫
ℍM

|f(Z−1X)|2 dX = (2π)−2n ∑
σ∈K̂

dσ ∫
ℝ

‖ρλσ(Z)f̂ (λ, σ)‖2HS|λ|
n dλ. (4.3)

In order to prove the theorem, wewill �rst prove it for functions with some special transformation properties,
and then prove that these functions are orthogonal to each other with respect to the given inner product so
that we can sum them up to get the result for any function.
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For F ∈ L2(ℝ2n), consider the decomposition of the function k Ü→ F(kz) from K to ℂ in terms of the irre-
ducible unitary representations of K given by

F(kz) = ∑
ν∈K̂

dν
dν
∑
p,q=1

Fpqν (z)ϕνpq(k), where Fpqν (z) = ∫
K

F(kz)ϕνpq(k) dk.

Then, it is easy to see that for k ∈ K, the functions Fpqν satisfy the transformation property

Fppν (kz) =
dν
∑
q=1

Fpqν (z)ϕνpq(k). (4.4)

From the above and the fact that f πij ∈ L2(ℍn) for every π ∈ K̂ and 1 ≤ i, j ≤ dπ, it follows that any f ∈ L2(ℍM)
can be written as

f(z, t, k) = ∑
π∈K̂

dπ ∑
ν∈K̂

dν
dπ
∑
i,j=1

dν
∑
p=1

(f πij )
pp
ν (z, t)ϕπij(k).

Lemma 4.4. For �xed π, ν ∈ K̂, Theorem 4.3 is true for functions of the form

f(z, t, k) =
dπ
∑
i,j=1

dν
∑
p=1

f ppij (z, t)ϕπij(k),

where we write (f πij )
pp
ν as f ppij .

Proof. Firstwe assume that f ∈L2(ℍM) is holomorphic onℍMℂwith∫ℍM|f(Z
−1X)|2 dX < ∞ for all Z ∈ ℍMℂ

and is of the given form. Making changes of variables z� → k−1z�, k� → k−1k� and using the special form of f
along with (4.4) we obtain that for (z, t, k) ∈ ℍM,

ρλσ(z, t, k)f̂ (λ, σ)(ϕλã ⊗ eσl )

= eiλt ∑
ijpqα

∫
K

∫
ℝ2n

ηλαã(k�)f
λpq
ij (z�)(πλ(z)πλ(z�)ϕλα ⊗ σ(k�)eσl ) dz

�ϕπij(k
−1k�)ϕνpq(k−1) dk�,

where∑ijpqα denotes∑dπ
i,j=1∑

dν
p,q=1∑|α|=|ã|. Then, for Z = (z, w, t + is, keiH) ∈ ℍMℂ, we get that

ρλσ(Z)f̂ (λ, σ)(ϕλã ⊗ eσl )

= eiλ(t+is) ∑
ijpqα

∫
K

∫
ℝ2n

f λpqij (z�)(πλ(z, w)πλ(z�)ϕλα ⊗ σ(k�)eσl ) dz
�ηλαã(k�)ϕπij(e

−iHk−1k�)ϕνpq(e−iHk−1) dk�.

Thus, expanding the inner product ⟨πλ(z, w)πλ(z�)ϕλα , ϕλβ⟩ in terms of ϕλδ, we have

⟨ρλσ(Z)f̂ (λ, σ)(ϕλã ⊗ eσl ), ϕ
λ
β ⊗ e

σ
m⟩ = (2π)n|λ|−neiλ(t+is) ∑

δ∈ℕn
∑
ijpqα

∫
K

∫
ℝ2n

f λpqij (z�)ϕλαδ(z
�)ϕλδβ(z, w)ϕ

σ
ml(k

�) dz�

× ηλαã(k�)ϕπij(e
−iHk−1k�)ϕνpq(e−iHk−1) dk�,

so that

(
|λ|
2π)

2n
‖ρλσ(Z)f̂ (λ, σ)(ϕλã ⊗ eσl )‖

2 = ∑
β∈ℕn

∑
1≤m≤dσ

e−2λs
!!!!!!!!!
∑
δ∈ℕn

∑
ijpqα

∫
ℝ2n

f λpqij (z�)ϕλαδ(z
�) dz�

× ∫
K

ϕσml(k
�)ηλαã(k�)ϕπij(e

−iHk−1k�) dk�ϕνpq(e−iHk−1)ϕλδβ(z, w)
!!!!!!!!!

2
.

Summing over ã, l and using Plancherel’s theorem for K we derive that

(2π)−2n|λ|2n ∑
σ∈K̂

dσ‖ρλσ(Z)f̂ (λ, σ)‖2HS

= e−2λs ∑
ã,β∈ℕn

∫
K

!!!!!!!!!
∑
δ∈ℕn

ϕλδβ(z, w) ∑
ijpqα

ϕνpq(e−iHk−1)⟨f
λpq
ij , ϕλαδ⟩η

λ
αã(k�)ϕπij(e

−iHk−1k�)
!!!!!!!!!

2
dk�.
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Applying the same arguments as in (4.2) and change of variables k� → kk�, we obtain that the above equals

e−2λs ∑
α,β∈ℕn

∫
K

!!!!!!!!!

dν
∑
p,q=1

ϕνpq(e−iHk−1) ∑
δ∈ℕn

ϕλδβ(z, w)
dπ
∑

i,j,b=1
⟨f λpqij , ϕλαδ⟩ϕ

π
ib(e

−iH)ϕπbj(k
�)
!!!!!!!!!

2
dk�

=
e−2λs

dπ
∑

α,β∈ℕn

dπ
∑
j,b=1

!!!!!!!!!

dν
∑
p,q=1

ϕνpq(e−iHk−1) ∑
δ∈ℕn

ϕλδβ(z, w)
dπ
∑
i=1

⟨f λpqij , ϕλαδ⟩ϕ
π
ib(e

−iH)
!!!!!!!!!

2
.

Hence, we have

(2π)−2n ∑
σ∈K̂

dσ ∫
ℝ

‖ρλσ(Z)f̂ (λ, σ)‖2HS|λ|
n dλ

= ∫
ℝ

∑
α,β∈ℕn

dπ
∑
j,b=1

!!!!!!!!!

dν
∑
p,q=1

ϕνpq(e−iHk−1) ∑
δ∈ℕn

ϕλδβ(z, w)
dπ
∑
i=1

⟨f λpqij , ϕλαδ⟩ϕ
π
ib(e

−iH)
!!!!!!!!!

2 e−2λs

dπ
|λ|−n dλ.

Wehaveobtainedanexpression for onepart of Lemma4.4.Now, looking at the other part and considering
z = (x, u) and z� = (x�, u�), we have

f ((x, u, t, k)−1(x�, u�, t�, k�)) =
dπ
∑
i,j=1

dν
∑
p,q=1

f pqij (x� − x, u� − u, t� − t − 1
2 (u ⋅ x� − x ⋅ u�))ϕνpq(k−1)ϕπij(k

−1k�).

Since f is holomorphic onℍMℂ, each f pqij also have a holomorphic extension toℍMℂ. For Z = (z, w, τ, keiH)
in ℂn × ℂn × ℂ × G, we get

f (Z−1(x�, u�, t�, k�)) =
dπ
∑
i,j=1

dν
∑
p,q=1

f pqij (x� − z, u� − w, t� − τ − 1
2 (w ⋅ x� − z ⋅ u�))ϕνpq(e−iHk−1)ϕπij(e

−iHk−1k�).

Taking the L2-norm with respect to k� and applying the change of variables k� → kk� and Schur’s orthogo-
nality relations, we obtain

∫
K

!!!!f (Z
−1(x�, u�, t�, k�))!!!!

2 dk� = 1
dπ

dπ
∑
j,l=1

!!!!!!!!!

dπ
∑
i=1

dν
∑
p,q=1

f pqij (x�−z, u�−w, t�−τ−12 (w⋅x
�−z⋅u�))ϕνpq(e−iHk−1)ϕπil(e

−iH)
!!!!!!!!!

2
.

Now, integrating over t�, x� and u� we derive that

∫
ℍM

|f(Z−1X)|2 dX

=
1
dπ

dπ
∑
j,l=1

∫
ℝ

e−2λs ∫
ℝ2n

!!!!!!!!!

dπ
∑
i=1

dν
∑
p,q=1

(f pqij )λ(x� − z, u� − w)ϕνpq(e−iHk−1)ϕπil(e
−iH)

!!!!!!!!!

2
eλ(u�⋅y−v�⋅x) dx� du� dλ.

Using the relation ϕλαδ(x, u) = ϕ
λ
δα(−x, −u), we can expand (f pqij )λ in terms of the orthonormal basis ϕλαδ to get

(f pqij )λ(x, u) = ∑
α,δ∈ℕn

⟨f λpqij , ϕλαδ⟩ϕ
λ
δα(−x, −u),

and so we have
(f pqij )λ(x� − z, u� − w) = ∑

α,δ∈ℕn
⟨f λpqij , ϕλαδ⟩ϕ

λ
δα(z − x

�, w − u�).

Hence, using the orthonormality of ϕλβ, we obtain that the above equals

|λ|−
n
2 e

iλ
2 (z⋅u

�−w⋅x�) ∑
α,β,δ∈ℕn

⟨f λpqij , ϕλαδ⟩ϕ
λ
δβ(z, w)ϕ

λ
βα(−x

�, −u�).

Therefore, we get that

∫
ℍM

|f(Z−1X)|2 dX =
1
dπ

dπ
∑
j,l=1

∑
α,β∈ℕn

∫
ℝ

e−2λs

|λ|n
!!!!!!!!!

dπ
∑
i=1

dν
∑
p,q=1

∑
δ∈ℕn

⟨f λpqij , ϕλαδ⟩ϕ
λ
δβ(z, w)ϕ

ν
pq(e−iHk−1)ϕπil(e

−iH)
!!!!!!!!!

2
dλ.

Hence, we obtain the required equality.
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For the converse, it is enough to prove the holomorphicity of f , which in turn follows from the holomor-
phicity of f λpqij and the equality follows from the above argument. Assume that

∑
σ∈K̂

dσ ∫
ℝ

‖ρλσ(Z)f̂ (λ, σ)‖2HS|λ|
n dλ < ∞ for all Z ∈ ℍM.

From the above it is clear that for every 1 ≤ l, j ≤ dπ and almost every λ,

∑
α,β∈ℕn

!!!!!!!!!

dπ
∑
i=1

dν
∑
p,q=1

∑
δ∈ℕn

⟨f λpqij , ϕλαδ⟩ϕ
λ
δβ(z, w)ϕ

ν
pq(e−iHk−1)ϕπil(e

−iH)
!!!!!!!!!

2
< ∞

for all (z, w) ∈ ℂn × ℂn and keiH ∈ G. We can put eiH = I, the identity of the group, to get

∑
α,β∈ℕn

!!!!!!!!!

dν
∑
p,q=1

∑
δ∈ℕn

⟨f λpqlj , ϕλαδ⟩ϕ
λ
δβ(z, w)ϕ

ν
pq(k)

!!!!!!!!!

2
< ∞

for all (z, w) ∈ ℂn × ℂn and k ∈ K. Integrating over K and using Schur’s orthogonality relations we have that

∑
α,β∈ℕn

∫
K

!!!!!!!!!

dν
∑
p,q=1

∑
δ∈ℕn

⟨f λpqlj , ϕλαδ⟩ϕ
λ
δβ(z, w)ϕ

ν
pq(k)

!!!!!!!!!

2
dk = ∑

α,β∈ℕn

dν
∑
p,q=1

!!!!!!!!!
∑
δ∈ℕn

⟨f λpqlj , ϕλαδ⟩ϕ
λ
δβ(z, w)

!!!!!!!!!

2

is �nite. Hence, for each 1 ≤ p, q ≤ dν, 1 ≤ l, j ≤ dπ and (z, w) ∈ ℂn × ℂn,

∑
α,β∈ℕn

!!!!!!!!!
∑
δ∈ℕn

⟨f λpqlj , ϕλαδ⟩ϕ
λ
δβ(z, w)

!!!!!!!!!

2
< ∞.

Let T be the maximal torus of K ⊆ U(n). After a conjugation by an element of U(n) if necessary, we can con-
sider that T ⊆ Tn, the n-dimensional torus, which is the maximal torus of U(n). Now, any element kθ ∈ T can
be written as eiθ = (eiθ1 , eiθ2 , . . . , eiθn ), where θ = (θ1, θ2, . . . , θn). Notice that some of these θj may be 0,
depending on T. Using the relation (3.1) and the properties of the metaplectic representation, we have

ϕλαδ(kθ ⋅ (x, u)) = e
i(δ−α)⋅θϕλαδ(x, u).

Moreover, for each ν ∈ K̂, ν|T breaks up into at most dν irreducible components, not necessarily distinct,
whichwe call ν1, ν2, . . . , νm ∈ ℤn (abuse of notation) such that νa(eiθ) = eiνa ⋅θ, where 1 ≤ a ≤ m ≤ dν. Choos-
ing appropriate basis elements, the matrix coe�cients ϕνab of ν satisfy ϕνab(e

iθ) = δabeiνa ⋅θ, where δ is the
Kronecker delta. So we obtain

⟨f λpqlj , ϕλαδ⟩ = ∫
T

∫
ℝ2n

f λpqlj (k ⋅ (x, u))ϕλαδ(k ⋅ (x, u)) dx du dk

=
dν
∑
r=1

∫
T

∫
ℝ2n

f λprlj (x, u)ϕνqr(eiθ)ei(δ−α)⋅θϕλαδ(x, u) dx du dk

= ⟨f λpqlj , ϕλαα−νq⟩δδ,α−νq .

Hence, for each 1 ≤ p, q ≤ dν, 1 ≤ l, j ≤ dπ and (z, w) ∈ ℂn × ℂn,

∑
α∈ℕn

!!!!⟨f
λpq
lj , ϕλαα−νq⟩

!!!!
2( ∑

β∈ℕn
|ϕλα−νqβ(z, w)|

2) < ∞.

From the orthonormality properties of ϕλαβ, it follows that

∑
α∈ℕn

!!!!⟨f
λpq
lj , ϕλα+νqα⟩

!!!!
2ϕλαα(2iy, 2iv) < ∞. (4.5)
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Now, using the above we want to prove the holomorphicity of f λpqij . We note that for (z, w) ∈ ℂ2n,

f λpqij (z, w) = ∑
α∈ℕn

⟨f λpqlj , ϕλα+νqα⟩ϕ
λ
αα+νq (−z, −w)

if the sum converges. Consider a compact setM ⊆ ℂ2n such that |y|2 + |v|2 ≤ r2, where (z, w) = (x + iy, u + iv).
We know that

ϕλαα(2iy, 2iv) = Ceλ(|y|
2+|v|2)L0α(−2λ(|y|2 + |v|2))

for any y, v ∈ ℝn, where L0α(z) = ∏n
j=1 L0αj (

1
2 |zj|

2). Since ϕαα(2iy, 2iv) has exponential growth and (4.5) im-
plies the holomorphicity of f λpqij as in the previous section.

Proof of Theorem 4.3. To prove the theorem, it is enough to prove the orthogonality of the components

f νπ(z, t, k) =
dπ
∑
i,j=1

dν
∑
p=1

f ppij (z, t)ϕπij(k).

For π, ν, π�, ν� ∈ K̂, if we write the given inner product in terms of the bases elements we have

∑
σ∈K̂

dσ⟨ρλσ(Z)f̂ νπ(λ, σ), ρλσ(Z)f̂ ν
�
π� (λ, σ)⟩HS

= ∑
σ∈K̂

dσ
dσ
∑
l,m=1

∑
β,ã

⟨ρλσ(Z)f̂ νπ(λ, σ)(ϕλã ⊗ eσl ), ϕ
λ
β ⊗ e

σ
m⟩⟨ρλσ(Z)f̂ ν

�
π� (λ, σ)(ϕλã ⊗ eσl ), ϕλβ ⊗ eσm⟩.

Expanding the above in terms of the expressions obtained before, we get the term

(∫
K

ϕσml(k
�)ηλαã(k�)ϕπij(e

−iHk−1k�) dk�)(∫
K

ϕσml(k1)η
λ
α�ã(k1)ϕπ�i� j� (e−iHk−1k1) dk1)

of the sum ∑σ∈K̂ dσ ∑
dσ
l,m=1 in the expansion, which by using the orthogonality of the matrix coe�cients of

the representation σ reduces to

∫
K

ηλαã(k�)ϕπij(e
−iHk−1k�)ηλα�ã(k�)ϕπ�i� j� (e−iHk−1k�) dk�.

Again, in the remaining expression, we have a summation ∑β,ã∈ℕn ∑|α|=|ã|,|α�|=|ã|, which when applied to the
above expression and using arguments similar to (4.2) reduces to

∑
α,β∈ℕn

∫
K

ϕπij(e
−iHk−1k�)ϕπ�i� j� (e−iHk−1k�) dk� = 0 if π ≇ π�.

Now, if we assume π ≅ π�, we get a term ∫K ϕ
ν
rq(k)ϕν

�
r�q� (k) dk in the expansion which equals 0 if ν ≇ ν�. This

proves the orthogonality of one part.
On the other hand, for π, ν, π�, ν� ∈ K̂, we have in the expansion of

∫
K

f (Z−1(z�, t�, k�))f (Z−1(z�, t�, k�)) dk�

a term ∫K ϕ
π
bj(k

�)ϕπ�b� j� (k�) dk� = 0 if π ≇ π�. If we assume π ≅ π�, then we have a term

∫
K

ϕνbq(k)ϕ
ν�
b�q� (k) dk = 0 if ν ≇ ν�.
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