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1 Introduction

In Euclidean harmonic analysis, the problem of holomorphic extension of suitable functions or their trans-
forms to appropriate domains in the corresponding complex space and characterising the extension in terms
of the original functions or their transforms appear in classical results, like Paley-Wiener type theorems, and
results on Poisson and Segal-Bargmann transforms. Results of this nature have been proved in recent times
in settings other than Euclidean spaces, namely for various classes of groups, symmetric spaces and various
manifolds. In this paper, we consider similar problems on the Heisenberg motion groups HM = H" x K, the
semidirect product of the Heisenberg group H" and any compact, connected subgroup K of U(n), where K is
a compact subgroup of U(n) such that (K, H") is a Gelfand pair.

The classical result pertaining to the Segal-Bargmann transform in the Euclidean case states that the
convolution of any f € L?(R") with the heat kernel p; of the Laplacian extends as an entire function to the
whole of C". The image of L?>(R") under the unitary map f  f = p; can be characterised as the Hilbert
space of entire functions on C" which are square integrable with respect to the positive weight p;/2(y) dx dy,
where z = x + iy € C". While the seminal work of Hall in [4] on compact, connected Lie groups vindicates the
Euclidean picture, Krétz, Thangavelu and Xu in [5] showed that for Heisenberg group, the picture is a little
different. Following their lines and observing that the Laplacian on the semidirect product HM is the sum
of the Laplacians, respectively, on H" and K, we note that as in the Heisenberg group case, the image of
LZ(HM) under the heat kernel transform is not a weighted Bergman space with a non-negative weight, but
can be considered as a direct integral of certain twisted Bergman spaces.

In the case of noncompact Riemannian symmetric spaces the image of L2 functions under the action of
the heat semigroup do not extend as entire functions but only as holomorphic functions on a domain called
the complex crown. This behaviour is therefore similar to that of Poisson integrals of L? functions on R”,
which extend only as holomorphic functions on a tube domain. Thangavelu uses Gutzmer’s formulain [11] to
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show that Poisson integrals of L2 functions on the Heisenberg group can be characterised as certain spaces of
holomorphic functions on tube domains of the complexification. Here we use Gutzmer’s formula on compact
groups proved by Lassalle in [6] and a Gutzmer formula for spectral decomposition in terms of K-spherical
functions to prove a Gutzmer formula on HM and thereby extend these results to the Heisenberg motion
groups using some structure theory on compact Lie groups.

The characterisation of Poisson integrals is equivalent to the following classical result on R due to Paley
and Wiener: A function f € L?(RR) admits a holomorphic extension to the strip {x + iy : |y| < t} such that

sup J|f(x +iy)?dx < oo foralls <t

lylss
R
if and only if

J'ezslfl F(&))? dé < oo foralls < t,
R

where f denotes the Fourier transform of f. By Plancherel’s theorem, this condition is equivalent to

1
JleSAzf({)lz dé <oco foralls<t,
R

where A is the Laplacian on R. This is the idea behind the characterisation of the Poisson integrals. Note that
the above condition is also the same as

J|ei(X+iy)¢'|2|f(§)|2 d¢ < oo forallly| <t.
R

Here ¢ — ei™+¥)¢ may be seen as the complexification of the parameters of the unitary irreducible represen-
tations & - e™*¢ of R. This point of view was explored by Goodman in [3] in the context of analytic vectors
(see Theorem 3.1). We give a characterisation of functions extending holomorphically to the complexification
of HM in terms of the complexified representations of IHIM.

Similar results were established for the Euclidean motion group M(2) of the plane R? in [7] and in the
context of general motion groups R" x K, where K is a compact subgroup of SO(n) in [9]. The aim of this paper
is to prove analogous results for the Heisenberg motion groups HM = H" x K, where H" is the Heisenberg
group and K is a compact, connected subgroup of U(n) such that (K, H") is a Gelfand pair. The plan of this
paper is as follows: In Section 2, we study the Segal-Bargmann transform on HM. In Section 3, we prove
a Gutzmer’s formula on HM and use it to study Poisson integrals on IHM. Finally, in Section 4, we prove
a Paley—Wiener type theorem which characterises functions extending holomorphically to the complexifica-
tion of HM using complexified representations analogous to the Euclidean ones described above.

2 Segal-Bargmann transform

In this section, we want to study the Segal-Bargmann transform on IHM. We recall that, for the Heisenberg
group H", it was proved by Krétz, Thangavelu and Xu [5] that the image of L2(IH") under the heat kernel
transform is not a weighted Bergman space with a non-negative weight, but can be considered as a direct
integral of twisted Bergman spaces. A similar result is true for Heisenberg motion groups as well.

Let H" = C" x R be the Heisenberg group with the group operation defined by

1 _
(z,t)- (w,s) = <z+w,t+s+ EIm(zw)) wherez, w e C", t,s € R.

A maximal compact connected group of automorphisms of H" is given by the unitary group U(n) acting on
H" via k(z, t) = (kz, t). Let K be a compact, connected Lie subgroup of U(n) such that (K, H") is a Gelfand
pair. By this, we mean that the convolution algebra of K-invariant L!-functions on H" is commutative. It is
well known (see [1]) that (U(n), H") is a Gelfand pair and there are many proper subgroups K of U(n) for
which (K, H") form a Gelfand pair.
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We define the Heisenberg motion group IHM to be the semidirect product of H" and K with the group
law
(z, t, k)(w, s, h) = ((z, t) - (kw, s), kh), where (z,t), (w,s) e H", k, h € K.

Points in HM will be denoted by (z, t, k) where (z, t) ¢ H" and k € K. Since K is compact, there exists an
AdK-invariant inner product on k. Let K3, K5, . . . , Ky be an orthonormal basis of the Lie algebra k of K with
respect to this inner product. In HM, we have 2n + 1 + N one parameter subgroups (where we identify C"
with R?") given by Gj = {(tej,0,0,1) : t € R}, Gnsj = {(0, tej, 0,1) : t € R}, Gans1 =1{(0,0, ¢, 1) : t € R} and
Gan+1+1 = 1(0,0,0,eXt) : t e R}, where 1 <j < n, 1 <1< N and e; are the co-ordinate vectors in R". Corre-
sponding to these one parameter subgroups we have 2n+1+N left invariant vector fields X1, X, . .., Xon+1+N,
which form a basis of the Lie algebra of HIM. The Laplacian A on HM is given by

A=-X}+ X3+ + X3 .0)-

It can be proved using K ¢ U(n) that A = —Apn — Ag where Agn = ij:”l* 1 X].2 and Ag = ', K7 are the Lapla-
cians on H" and K, respectively.

Since Ap» and Ag commute, it follows that the heat kernel Y, associated to A is given by the product of
the heat kernels k; on H" and g on K. In other words,

Pe(z & K) = kilz, (k) = ((zm)-" [ e pic dA)( > dne”’z”mk))

R+ nek

where

n
pi(z) = (471)_"( ) e~ cothMz)  for 3 4 0

sinh At
is the inverse Fourier transform in the central variable of the heat kernel p; for the sublaplacian £ of H" and
for each unitary, irreducible representation 7 of K, d is the degree of m, A, is such that m(Ag) = —A,I and
x=(k) = tr(ri(k)) is the character of 7. For more details, see [4].

Define a positive weight function W? on C?" by

Wiz, w) = 4™ ph 2y, 2v),

where z = x + iyand w = u + iv € C". Denote by G the complexification of K. Let k; be the fundamental solu-

tion at the identity of the equation % = %Agu on G, where Ag is the Laplacian on G (for details, see [4]).
It should be noted that k; is the real, positive heat kernel on G which is not the same as the analytic continu-
ation of g; on K.

Define A?(Cz” x G) to be the weighted Bergman space of holomorphic functions F on C2" x G such that

J |F(z, w, 8)1*W}z, w) dzdw dv(g) < co, where dv(g) = Ixt(xg) dx onG.
G Cn K

We now introduce a measurable structure on | |, A7 (C?" x G). By a section s of | | A} (C?" x G), we mean
an assignment

s:R* = | | ANC™ % G),
A#0
A s) € ANC % G).

Now we define a direct integral of Hilbert spaces by

®
J ANC? x G dn
]R*

= {s: R* - |_] AMNEC?" x G) such that s is measurable and ||s|?> = Jlls;(llﬁewtZ dA < oo},
A+0 R*

where | - |3 denotes the norm in A’}((CZ" x G). Clearly this is a Hilbert space.
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For suitable functions f on HM, let us define a function f’1 on C" x K by

Az, k) = Jf(z, t, k)e' dt.

R

Using the Segal-Bargmann result for H" and K we can prove the following theorem.

Theorem 2.1. Iff € L>(HM), then f * y; extends holomorphically to C*"™*! x G.

(@) The image of L?(HM) under the Segal-Bargmann transform f — f % ; cannot be characterised as a
weighted Bergman space with a non-negative weight.

(b) For every t > 0, the Segal-Bargmann transform e~ : L>(HM) — | |1.o ANC?" x G), f + (f P! is an
isometric isomorphism.

3 Poisson transforms using Gutzmer’s formula

In this section, we will characterise Poisson integrals on IHIM using a Gutzmer type formula for functions
on C" with respect to the K-action and the Gutzmer’s formula on compact, connected Lie groups given by
Lassalle in [6]. This is inspired from [11, Theorem 5.1].

Foreach k € K ¢ U(n), (z, t) — (kz, t) is an automorphism of H", because U(n) preserves the symplectic
form Im(zw). If p is a representation of H", then using this automorphism we can define another represen-
tation pX by pX(z, t) = p(kz, t) which coincides with p at the center. If we take p to be the Schrédinger repre-
sentation 7, for A # 0, then by the Stone—von Neumann theorem n’; is unitarily equivalent to 71y and we have

the unitary intertwining operator p, such that
ma(kz, t) = pa(k)ma(z, Opa(k)*. (3.1

The operator valued function u, can be chosen so that it becomes a unitary representation of K on L?(IR")
and is called the metaplectic representation. In general, the metaplectic representation is a projective rep-
resentation of the symplectic group but if one restricts the metaplectic representation to U(n), then the con-
stants can be redefined so that it becomes a unitary representation of U(n) (see [2, Chapter 4] for more details).

For each m > 0, let P, be the linear span of {¢, : |a| = m} where ¢4, a € N" are the normalised Hermite
functions on R". Each such P, is invariant under the action of 1 (k) for every k € K < U(n).IfK = U(n), palp,,
is irreducible. If K is a proper compact subgroup of U(n), P, need not be irreducible under the action of u,
and it further decomposes into irreducible subspaces. It is known that (K, H") is a Gelfand pair if and only if
this action of K on L?(IR") is multiplicity free (see [1]).

Associated to a Gelfand pair (K, H"), we have a class of K-invariant functions called the K-spherical
functions. A smooth K-invariant function ¢p: H" — C s called K-spherical if ¢(e) = 1 and ¢ is a joint eigen-
function for all differential operators on H" that are invariant under the action of K and the left action of H".
For each A € R* and for m € IN, a bounded U(n)-spherical function e is given by

1
ehz, t) = Tmon ———eMol (2),

where

2 222
oh = T ot =L (5 )e

la|l=m

are the Laguerre functions of order n — 1, ¢;‘(ﬁ (a, B € N™) are the scaled special Hermite functions and L',}{l
are the Laguerre polynomials of order n — 1 (for details, see [11]).
Let P, = 69‘321 Pma be the decomposition of P;, into K-irreducible subspaces. Then,

A 1 iA b
ema(z, t) = m e’ t(Pma(Z) d Tma Z (ma(z, t)¢ma’ ¢ma>

is a K-spherical function for each m, a, where {¢£w :b=1,...,Bg}isanorthonormal basis for P, such that
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{¢pl,:b=1,...,Bs, a=1,...,Ap}isan orthonormal basis for P,,. A relation between the U(n)-spherical
functions and the K-spherical functions defined above is given by (see [8] for details)

Am
dim Prep,(z, ) = Y dimPpgenq(z, t).
a=1

Now, let us write {¢2,:b=1,...,Bs, a=1,...,An} as {p} : « € N"} such that for each m, ¢?,,,
b=1,...,Bs,a=1,...,An, are the ones which occur as l/;ﬁ for |a] = m. For A # 0, we define

Pas(2) = QT (2P, ).

It is easy to see that {lpgﬁ : @, B € N"} is a complete orthonormal system in L?(C"). We call them K-special
Hermite functions. Since each 1 is a finite linear combination of ¢4, it follows that both 1} and l,bﬁ 5 extend
as holomorphic functions to C" and C?", respectively, for each a, B € N". We also note that the action of
K ¢ U(n) on R*" naturally extends to an action of G on C?". We prove the following Gutzmer formula with
respect to the K-action.

Theorem 3.1. For a function F € L*>(R?"") having a holomorphic extension to C*", we have
oo An

J IIF(I(-(z+iW))|2eA[Z’W] dzdk =Y Y (dimPra) @l QIWIF 2 gl

K R m=0 a=1

whenever either of them is finite where =, denotes the twisted convolution
frrg@ = [ fiz - wigwet I dw,
Cn
and [z, w] denotes the symplectic form of z, w € R?".
Proof. First we want to prove that lpiﬂ’s are orthogonal under the inner product
(F,G) = J J Fk-(z+iw)G(k - (z + iw))e’®" dzdk forF, G e L>(R"),
K R
which have a holomorphic extension to C*". Using standard facts like (71A(Z2) ¢, pp) = (pa, mr(-Z)¢pp) and
aZ)ymA(W) = ez MMEW) (7 + W) for Z, W € C2" (see [11]), we get that

J J ‘/’ﬁﬁ(k‘ (z + W)Yl (k - (z + iw))e> ™ dz dk

_ (ﬂ) [ [ e 2wk, matie- twyg) (mach- 2, mac - iwyl) dz die

2n
K R2n

Expanding 7 (k - z) in terms of Y3, 2 (k - 2)yy; in terms of Y and using the self-adjointness of 7 (k - iw),
the above equals

y J-(r[,\(k-iw)l/)f,,l/)g)(m(k‘iw)lpé,lp{‘,)<J gp(k-z)gbfw(k-z)dz)dk

p,OeN" R

= Buy j(m(k- 20wy}, ) dk,
K

= S [ (m@iwp G pa ) dk,
K

by the orthonormality of the K-special Hermite functions and (3.1), § being the Kronecker delta. If P,,, and
Py are the irreducible subspaces which contain 1? and z,bg, respectively, then we can expand (k1)
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and u A(k_l)lllg in terms of all 1/);‘, € Pmqgandall 1,02 € Pyp, respectively, and use Schur’s orthogonality relations
to get that the above equals

Sap D, ) ( J”va(kfl)ﬂﬁﬁ(k*l) dk)(”A(ziW)ll’A’ W5) = B ubp,y dim P g (2iw),
yGmea 6€fP1b

where 1, are the matrix coefficients of y,, which is multiplicity free since (K, H") is a Gelfand pair.
Now, expanding F € L?>(IR?") having a holomorphic extension to C?" in terms of the orthonormal basis
consisting of w,bfY 5 We have that

j JlF(k-(z+iw))|2e’“Z’W] dzdk=Y Z ";Tr;(;’w)< Y Y KEY ﬁ>|2)

K r2n m=0 a=1 QEN" BeP g

It follows from standard arguments (see [11]) that

IF 2 @hal® = Y Y KEYLRI,

aeN? ﬁETma
and hence the theorem follows. O

Now we will characterise Poisson integrals on IHM. For f € L2(IHM), by the Peter-Weyl expansion we have

flz,t, k)= ) dn Z fijz, @ (K),
ek Lj=1
where
fr(z, 0 = J fiz, t, K dk,
K
and q.')” are the matrix coefficients of 77. The Laplac1an A on HM is non-negative, so using the spectral theorem
we can define the Poisson semigroup e -a0" for q > 0. This is explicitly given by the spectral representation

e izt =c Y d Z D j e dCmmNAAD® (F) ) @] ()€™ A" dA.
nek  1j=1 m=0p

We know that for each g € G, the complexification of K can be written (non-uniquely) in the form
g =kiexp(iH)k, for ki,k, € K and H € h, where h is a maximal, abelian subalgebra of k. If we have
that k; exp (iH1)k), = ko exp (iH;)k}, then there exists w € W, the Weyl group with respect to h, such that
H, = w- H,, where “-” denotes the action of the Weyl group on h. Let | - | denote the norm with respect to the
AdK-invariant inner product on k. We have the following (almost) characterisation of the Poisson integrals.
Let

Qpp ={(z,w,7,8) e C"xC"xCxG: [Im(z, w)| < p, |H| < p', where g = ky(expiH)ka, k1, k2 € K, H € h}

be a domain in C>"*! x G. Notice that the domain Q, , is well defined since | - | is invariant under the Weyl
group action.

Theorem 3.2. Let f € L' nL2(HM) be such that f is compactly supported as a function of A. For each
0 < p < q, F = 797 f extends to a holomorphic function on the domain Qs 2 for some constant N and

I J I J IF(X - (z,w, T, 8))|? dX du, dk; dk,
K K |Im(z,w |:rIH]M
duxn(e®™) -1 2y A +2A5-2q(@mEmA+ 2 +A2) emyA L A2
= Z z ~dm?P, leLfn (=2Ar2) M +2As-2q(@mn) A+A%+ "(fl;;[) A @M 12 da,
R
wheres =Im(7), g = k1 exp(iH)k», j, is the normalized surface area measure on the sphere {|Im(z, w)| = r} < R*"
forr< 2 S,and Ly L are the Laguerre polynomials of type (n — 1).
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Conversely, there exists a fixed constant V such that if h is a holomorphic function on the domain Q 0.2 h?
is compactly supported as a function of A, and for eachr < gq,

” j J (X - (2, w, T, ky exp (iH)k>))? dX dpy dky dk < 0o,
K K [Im(z,w)|=r HM

then for every p < q, there exists f € L2(HM) such that h = e™P2* f.

Proof. First, we prove the holomorphicity of e ~qn? fonQz » for 0 < p < g by proving uniform convergence
on compact subsets. So, we consider a compact subset M c Qp »_.For(z,w, 1,g) € M, we have

¥

0. 1
e fz, w, 7, )| < C dn |¢ (g)]e " e~ 2 (@mmDZ (FmA ) o (2, w)leMIS=D A" dn.
1 0 !
nek i,j= R M=

Now, using [11, Proposition 3.1], it follows that for a fixed A,
IFD 52 oz, W)l < €50 (FI |y (dim Pm) (3 (21, 20v))2,

where z = x + iy, w = u + iv. So, we get that

1 - i/(m+n-1
—-4(@2m+n)A]) 2 |(f:]1)/1 . ‘P/rln(z’ w)| < e%(u.y_v~x)||(ﬂg]()A||1 6,—%((2m+n)l/1|)2 (( )! ) (<pm(21y, 21V))2

m=0 =0 m!(n-1)!

As in the proof of [11, Theorem 5.1], for any fixed (y, v) with |y|? + |v|> < r? < IZ <L the above series is
bounded by a constant times

o 1
z mﬂ%l mn%l_% e—((2m+n)|/\|)2 (%—r),

which certainly converges if r < p <3 Moreover using the fact that II(f’T i1 < Ifll; and f2 is compactly sup-
ported as a function of A, we can conclude that

.
e fiz, w7, 9)] < C Y, dn Z pT(g)le” v .

nek  Lj=1

For g = ke'™, we have
T(ke'™) = Z PrOPr (™).

Since (k) is unitary for k € K and n(eif!) is self-adjoint for H € h, it follows that

d, dy )
YIphl> =1 and Y [¢pfi(e™)|* = xa(exp 2iH).
=1

Lj=1

Now, using the Cauchy—Schwarz inequality, we get that

5

q

1 5
le™ fiz,w,7,8)| < C Z dz(x=(exp 2iH)):e v .

nek

From [4, Lemmas 6—7] we know that there exist constants A, B, C and M such that A, > A|u|?, d,; < B(1 + |u|®)
and |y (expiY)| < d,eMYIIM where yu is the highest weight of 7. Hence, we have

1 £\3
|l fiz,w,7,8)| < C ) B3<1 + (%)2) e VA (NIHI=5)
ek

for N = \F and the above expression is finite as long as |H| < m \F Hence, we have proved that e -qn3 f ex-

tends to a holomorphic function on the domain Qp 2 forp < gq.
2
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Now, we prove the equality in Theorem 3.2. It should be noted that the domain Q 2 pr is invariant under
left translation by the Heisenberg motion group HM. For X € HM, (z,w, T, g) € Qp _»_ and a function F
holomorphic on Qn L= by Gutzmer’s formula on K given by Lassalle in [6], we have for g k1 exp(iH)ks,

J |F(X - (z,w, T, g)|* dX du, dk; dk,
K K |Im(z,w)|=r HM

yay [

; 2
Fg(z, W, T+ %Im(zW))| Xn(exp 2iH) dx du dt dy,,
nek L=l wy =r Hn

where z = x +iy, w = u +iv and 7 = t + is. It follows that m IU(H) @l (k- (x,u)) dk is a U(n)-spherical
function (see [1]) and
1

I S NV __ 1
dim Py j Pmalk - 06 w) di = G Pm (X W

U(n)
By analytic continuation on both sides we get

S | ohathe @iy 20v)) k=

A e .

1 2iy, 2iv).

dim Py (21y, 21v)
U(n)

1
dim Py, 7
Hence, integrating over the sphere S, = {|y|? + |v|? = r?}, which is invariant under the action of U(n), we get

quf,w(ziy,ziv) duy = Iim :P ——— LA,

r

dim Pq

So, from Theorem 3.1 we have

o0
— 1
[ [ 1cmp e wyze ™ e du dy, - Y Gy e CANIED < g
S, R2n m=
It follows that

J ,[ J J [F(X - (z, W, T, ky exp (iH)k))|* dX dy, dky dk;

K K S, HM
JL" L(—2Ar2)e"” e? ( Z IER <p¢n||2)d/\.
m
R

= ). dnXn(exp 2iH) Z
ek i,j=1

Hence, for F = e—qu f we get the first part of Theorem 3.2.

To prove the converse, we first note that as in [9, Theorem 4.3], for any 0 < 9 < oo, there exist constants
U, V such that

J Xn(exp 2iH) dog(H) > d,Ue"*, (3.2)
|H|=9

where dog(H) is the normalized surface measure on the sphere {H € h : |H| = } ¢ R™ and m = dim h. Con-
sider the domain Q 4.2 for this V. Let h be a holomorphic function on the domain Qg 2 such that h* is
compactly supported as a function of A, and for r < g,

” I J (X - (2, w, T, ky exp (iH)k>))| dX dpy diy di, < co.
K K [Im(z,w)|=r HM

So, integrating the expression obtained before over |H| = § for 9 < 27‘1 and using (3.2), it follows that for r < g,
dn
Y dyeoVh Z (dim Pp,) JL;;-l(—zArz)e’“Ze“S( pN [GELES <p¢n||2) dA < co.
nek R ij=1

Now, Perron’s formula [10, Theorem 8.22.3] gives

L4 = s teb (g tmit e 0l (1 y o0m ),
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which is valid for { in the complex plane cut along the positive real axis. So, we get that

Z d eVSr z j|A|2n 2¢( (2m+n)|/\|)2 ZAS Z ”(hg)/l ) (p/r\n”2 dA < oo

ek ]R i,j=1

1
for¢ <r<gandd < 34.Forp < g, setting It = e2P(@m+ DA +A7) 2 (h})*, we obtain

flz,t, k) =) dn Z Tz, (k) € L*(HM)

nek i,j=1

and h = e PA%f, O

4 A Paley-Wiener type theorem involving complexified
representations

In this section, we will prove a Paley—Wiener type theorem involving complexified representations analogous
to the Euclidean case described in the introduction, which is inspired by [3, Theorem 3.1]. We will need
explicit realisations of the irreducible unitary representations of HIM which occur in the Plancherel identity.
Although in general these representations can be computed from Mackey’s theory and in particular, the case
of generalised Heisenberg motion groups has been considered in the paper [12] by Wolf, we will start with
a more explicit and elementary proof of this particular case.

Let (0, H,) be any irreducible, unitary representation of K. For each A # 0 and o € K, we consider the
representations pA of HM on the tensor product space L?(R") ® 3, defined by

P52, t, k) = m(z, hua(k) ® a(k),
where 13 and y, are the Schrodinger and metaplectic representations, respectively, and (z, ¢, k) € HIM.

Proposition 4.1. Each p} is unitary and irreducible.

Proof. It is easy to see that each p? is unitary. We shall now prove that p} is irreducible. Suppose that
M c L?(R") ® H, is invariant under all pA(z, t, k). If M # {0} we will show that M = L2(R") ® H, proving the
irreducibility of pg. If M is a proper subspace of L2(R") ® H,, invariant under p{}(z, t, k) for all (z, t, k), then
there are nontrivial elements f and g in L?(R") ® 3(, such that f € M and g is orthogonal to p}(z, t, k)f for
all (z, t, k). This means that (p}(z, t, k)f, g) = 0 for all (z, t, k).

An orthonormal basis of L%(R") ® H, is given by {¢ﬁ ® e;.’ :a € N",1<1i<dgy}, where (M are the scaled
Hermite functions, {e : 1 < i < d,} is an orthonormal basis of 3, and dy = dim H,. For f, g € L*(R") ® H,
consider the function Vf o(z,t, k) = (po(z t, k)f, g). We know that

PPy = Y NPy, (4.1)

lal=Iyl

where nﬁy are the matrix coefficients of pj and k € K < U(n). Then, it follows that

Vit =emiaried Y Y Y gmh togh,@)e8h,

a,BeNm 1<i,j<d, |al=]y|

where

=Y Y hudleel. g= ) Y spibjec

YEN" 1<i<d, BeNm 1<j<d,

and (,‘b]?'l. are the matrix coefficients of o. Since (;bﬁY 5 form an orthonormal basis of R?", calculating the L? norm
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of V£ with respect to z we get

2
[ Vi toraz=c ¥ | ¥ ¥ fugimosio) .
R2n a,peN1<i j<d, lal=Iyl
Now, for any unitary (not necessary irreducible) representation (1, H,) of K, if v1, v2, .. ., vg, is a basis
of H,, then for complex numbers c;, 1 <i < d, and u € K, we have

dy | dy 2 4, dy dy
YD cipfw| = Y cica Y (i, vg)(vg, nw)va) = Y |cil®. (4.2)

g=11li=1 i,a=1 q=1 i=1

Applying this for the unitary representation (u,, P,,) of K with orthonormal basis {(],’){,‘¥ : |a| = m}, we obtain
2

j Viz, t,Pdz=C Y .

R2n y,BeN"

Y fyi8pi5H)

1<i,j<dg

Integrating over K, we get that

dy dy
j V(z, t, ) dz dk = C( D Zlfy,iV)( D Z|g,;,,-|2) = CIfI%gl*.

K R2n YeEN" i=1 BeN" j=1

Under our assumption that M is nontrivial and proper, we have V£ = 0, which means that ||f]|?||g]|? = 0. This
is a contradiction since both f and g are nontrivial. Hence, M has to be the whole of L?(R") ® H, and this
proves that p? is irreducible. O

Given f € L' n L?>(IHM), consider the group Fourier transform

7, 0) = ” J flz, t, pAz, t, k) dz dt dk = j J Az, (@) @ (k) dz dk.

K R R2n K R2n

Theorem 4.2 (Plancherel). For f € L' n LZ(HM), we have

| [zt iR dzdedic= e Y do [ IFAL gl dA.
i H oek  R\{o}

Proof. We calculate the Hilbert-Schmidt operator norm of fQ, o) by using the basis
{ppoel :yeN", 1<i<d,}

By (4.1), we have

F o)ploen) = ¥ j nl, ) j Az, BTk ® a(k)e?) dz dk.

lal=Iyl R2n
Thus,
(FA, 0)gpyeel), ppoel) = (2m: A2 | ; | j May(K) j Az 10¢h, ()¢5 dz dk,
a=Mg R2n
so that . ,
Qo AMFA, o) gheeNl* =Y Y| Y |0k, j Az, ) g(2) 5 ) dz dk
ﬁGN"].:l |a|:|Y|K R2n
and

2

e ML s = Y Y

B,yeN" 1<i,j<d,

Y [yt [ £ odlyeeh00 dz di

lal=iyl g R




DE GRUYTER S. Sen, Segal-Bargmann transform and Paley-Wiener theorems on HM = 23

Using Plancherel’s theorem for K, we get that

2

Y nhy k) j @ )phy(2) dz| dk.

lal=lyl R2n

Qm A" Y dolf A, 0)ligs = Y

oek B,yeN" g

Applying (4.2), the above equals

2
dk.

>

a,BeNn K

Az, K @y(2) dz

R2n

Noting that {(],’)gﬁ : @, B € N"} is an orthonormal basis for L?(IR2"), we have

QoA Y, dalf . ol = | [ 1z o dz k.

oek K R2n
Therefore,
Qm™ j( Y dolf a)||§5>|/1|" A = j j J \f(z, t, ) dz dk dt. 0
R o€k R K R2n

Since L' n L2(HM) is dense in L2(IHM), the Fourier transform can be uniquely extended to the whole of
L?(HM) and the above Plancherel identity holds for any L2 function.

Now, if we consider the operator pf‘,(z, t, k)f(}l, 0) acting on the basis elements ¢;‘, ® e;.’, using (3.1) and
(4.1) we get that

Pz, t, Of (A, 0)(P) @ ef) = e Y Jnﬁy(k’) JfA(Z’,k’)(ﬂA(Z)ﬂA(kZ')m(k)M®U(k)0(k’)e§’)d2’ dk’

|a|:|Y| K R2n
ety quy(kk') I A K (@) mkz ) ® (kK )e?) dz' dK'.
|a|:|V| K R2n

Note that the action of K < U(n) on R?" naturally extends to an action of G on C>", therefore this action of
p{,‘(z, t, k)f()l, o) on ¢;‘, ® ef.’ can be clearly analytically continued to HM¢ = C?" x C x G, and for suitable
functions f and Z = (z, w, t + is, ke'fl) ¢ HM¢, we get that

Az, w, t +is, ke™f (A, 0)(¢;‘, ®e’)

= ey Jnﬁy(ke”{k’) I A& 1) (ma(z, wymi(ke™2 )y © a(ke™K)e?) dz' di'.
|a|:|Y|K R2n

We have the following Paley-Wiener type theorem on HM.

Theorem 4.3. Let f € L2(HM). Then, f extends holomorphically to HMc¢ such that for each Z € HMc,

J f(Z1X)12 dX < co

HM
if and only if
Y. do [I05@F ., 0P dA < oo,
gk R
In this case we also have
j IAZ X1 dX = 2m)™" Y dy Jllpf‘,(Z)f(/l, 0)IZIAI" dA. (4.3)
HM oek R

In order to prove the theorem, we will first prove it for functions with some special transformation properties,
and then prove that these functions are orthogonal to each other with respect to the given inner product so
that we can sum them up to get the result for any function.
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For F € L%(IR?"), consider the decomposition of the function k — F(kz) from K to C in terms of the irre-
ducible unitary representations of K given by

dy -
F(kz)= ) dy Y F)'(@2)pp,k), where F)i(z)= JF(kz)qb}’,q(k) dk.
vek  Pg=1 K

Then, it is easy to see that for k € K, the functions F5? satisfy the transformation property
dv
FP(kz) = Y F)U(z)pp,(K). (4.4)
q=1

From the above and the fact that ] L2(H") forevery m € Kand 1 < i, j < dy, it follows that any f € L2(HM)
can be written as

fz,t, k) =Y dq Y dy Z Z VP (2, P

nek  vek  1,j=1p=1
Lemma 4.4. For fixed i, v € K, Theorem 4.3 is true for functions of the form
fz, t, k) = Z Z 1P (z, 097 ),
i,j=1p=1
where we write (f7)}” as f{".

Proof. Firstwe assume that f € LZ(IHM) is holomorphic on HM¢ with j]H]M IfAZ71X)|? dX < coforall Z e HM¢
and is of the given form. Making changes of variables z’ — k~'z', k' — k~1k’ and using the special form of f
along with (4.4) we obtain that for (z, t, k) € HM,

ph(z t, (A, 0) (@) ef

—eilt Y J I N P ) (ma@mE )Pl © o(k)e?) d2' ¢k K )l (k1) di,
Jpaa g pon

where Zupqa denotes Z” 1 Zqu:I Z|a|=|yl' Then, for Z = (z, w, t + is, ke!!) ¢ HM¢, we get that
PADF(R, o) Pl e ef)

= 3 [ [ APz wm(E gk © ok el d2'nly (g I K g (e ) i
iqua[( R2n

Thus, expanding the inner product (mmy(z, w)m(z') 2, ¢?;> in terms of (;b", we have

(PL@DFA )} s el). hwen) = el T 3 [ [ £ by, W () a2’

6eN" ijpqa j oy
x oy (KT (e I K ) by (e7 k) di

so that
("‘—')Mupﬂ(afm BeehlE = Y Y e Y Y [ £ d
2n ! ’ ! BeN" 1<m<d, “®

OeN" ijpqa o,
2

x [ @50 U B3 I A B e M Bz, )
K

Summing over y, [ and using Plancherel’s theorem for K we derive that

QAP Y dollph(2)F A, 0l

oek

o2 Y J

V,BEN"

Y Pipzw) Y ppae i D, sy (KT dk

SN ijpqa
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Applying the same arguments as in (4.2) and change of variables k' — kk’, we obtain that the above equals
2

dn
o > e Y gl X (LB 0| ai
5 j !
aBE]N”K p,q=1 SeNn i/ 5
T( V o . 2
Z 2| X Bra(eih Y dpyla W)Z<prq, ns) O e
dn a,BeN" j,b=11 p,q=1 SeN"

Hence, we have

(@m)7" } do jnpﬁ(Z)f(/t, 0)lfsIAl" dA

zz”

R ®%BEN"j,b=1

2 _

d, ) dy N )
Z ¢;q(e_’Hk‘1) Z ¢§B(z, w) Z(fi/}pq’ ;1(5>¢$J(e—lH)
i=1

p,q=1 SeNn

We have obtained an expression for one part of Lemma 4.4. Now, looking at the other part and considering
z=(x,u)and z' = (x', u'), we have

dr d
us V 1
f(OGu, t, )7 o, LK) = z z fgq<x' -x,u —u, t' —t- E(u x—x- u’))(j);q 1)t;b"(k LK.
i,j=1p,q=1

Since f is holomorphic on HMc, each fgq also have a holomorphic extension to HMc. For Z = (z, w, T, ke'H)
inC" x C" x C x G, we get

dﬂ V
f(Z7 LK) = Z Z fﬁq(x —z,u -w, t' —T——(W X' —z-u )d)p (e Hj~ 1)(j)"(e Hij1h,
i,j=1p,q=1

Taking the L2-norm with respect to k' and applying the change of variables k' — kk’ and Schur’s orthogo-
nality relations, we obtain
2

Zn: Z fgq(x —z,u'-w, t' T——(WX zu))¢pq(e“Hk Hphe ™)

i=1p,q=1

d

J|f Z o LK) dK _dl 3
K Tt

Now, integrating over t', x’ and u’ we derive that

j fZ 1 X)1? dX

1 & dr dy . .
=g 2 e 13 X e - n - e

=TS Rn | i=1P,q=1

2
AW YV gy qu' da.

Using the relation ¢ (x, u) = ¢} _(~x, —u), we can expand (ff]’ 72 in terms of the orthonormal basis ¢ A5 to get
A
FEYuw =Y (P Pl bh(x, —w),
a,6€N"

and so we have

G~z =wy = Y (7 Bz X w ).

a,6€N"

Hence, using the orthonormality of (;bg, we obtain that the above equals

|72 e @u'-wx) y <ﬁ'}}pq ¢25>¢ 55(%> W)d)ﬁ”‘ ).

a,B,6eN"
Therefore, we get that
dn _2As | dr d, A 2
[rziopax-—3% ¥ Jw" Y Y 3 U ol s Mige | ar
HM =1 a,BeN" p i=1p,q=16

Hence, we obtain the required equality.
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For the converse, it is enough to prove the holomorphicity of f, which in turn follows from the holomor-
phicity of f;}p 7 and the equality follows from the above argument. Assume that

Z dy jllpf‘,(Z)]?(/l, 035" dA < 0o forall Z € HM.

gk R

From the above it is clear that for every 1 < [, j < d, and almost every A,

)

a,feN"

2
<00

d, d,
YN Y P dhe sz widh e ke )

i=1p,q=1 §eN"

forall (z, w) € C" x C" and ke’ ¢ G. We can put e’ = I, the identity of the group, to get

>

a,feN"

2
< 00

d, N
Y Y (R sy bhsz Wi, (k)

P,q=15eNn

forall (z, w) € C" x C" and k € K. Integrating over K and using Schur’s orthogonality relations we have that

> IS 3 g alel ey ¥

a,feN" K p,q=1 5eNn a,feN" p,q=1

2
Z AP‘Z 6>¢ B(Z w)

SN

is finite. Hence, foreach 1 < p,q<d,,1<1,j < drand (z,w) € C" x C",

)

a,feN"

2
< 0Q.

> AP Pl Bz w)

SN

Let T be the maximal torus of K ¢ U(n). After a conjugation by an element of U(n) if necessary, we can con-
sider that T ¢ T™, the n-dimensional torus, which is the maximal torus of U(n). Now, any element kg € T can
be written as el = (e%1, €%, ..., i), where 6 = (61, 63, ..., 0,). Notice that some of these 6; may be 0,
depending on T. Using the relation (3.1) and the properties of the metaplectic representation, we have

Phsko - (x, w) = €O 00PA (x, u).

Moreover, for each v € K, v|r breaks up into at most d, irreducible components, not necessarily distinct,
whichwecallvy, va, . .., Vi € Z" (abuse of notation) such that v, (e') = e'Ve'? where 1 < a < m < d,. Choos-
ing appropriate basis elements, the matrix coefficients ¢, of v satisfy ¢‘£’lb(e"9) = Sqpe’ve?, where § is the
Kronecker delta. So we obtain

(P 9l = j J FiP - O, u) s (k- (x, w)) dx du dk

T R2n

/\ r i o
ZI j 7T, )y (e9)e @I (x, u) dx du dk

T R2n

A
<f P, aa vq>55 a-vg:+

Hence, foreach1 <p,q<d,,1<l,j<dpand (z,w) e C"x C",

Z |< qu aa vq ( z |¢a v ﬂ(z, W)|2> < 0.

aeN" BeNn

From the orthonormality properties of ¢2ﬁ, it follows that

> AP Bha)| ha2iy, 20V) < co. (4.5)

a€EIN"
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Now, using the above we want to prove the holomorphicity of fi};p . We note that for (z, w) € C2",
A /1
pq(z w) = Z < pq a+vqa>¢’aa+vq( Z,-w)
aeN"

if the sum converges. Consider a compact set M ¢ C?" such that |y|? + |v|> < %, where (z, W) = (X + iy, u + iv).
We know that
DA, 2y, 2iv) = CAVTHILO(2A(y1? + [vI?))

for any y, v € R", where LO(z) 1"[] 1 ( |zj|2). Since ¢qq(2iy, 2iv) has exponential growth and (4.5) im-
plies the holomorphicity of ful’J ?asin the previous section. O

Proof of Theorem 4.3. To prove the theorem, it is enough to prove the orthogonality of the components
d, d,
faz tl =) Zlﬁ;"(z, 7 (k).
i,j=1p=

For m,v, ', v' € K, if we write the given inner product in terms of the bases elements we have

Y do(phDFEA, 0), PHDFI A, 0)) s

oek

d, .
=Y ds Y Y(pDfiA, 0)@)eel), (],')ﬂ@em)(pg(Z) YA, o)(¢A®e;f),¢g®e$n>.

ek Lm=1B,y

Expanding the above in terms of the expressions obtained before, we get the term

( j ¢, (K (KT e™ iK'y dk! )( j Do (k) (kD) DT (e~ H k- 1ky) dkl)
K

of thesum } , ¢ do Zz ¢ _, in the expansion, which by using the orthogonality of the matrix coefficients of
the representation o reduces to

Jrzay(k’)qb”(e“Hk K (KB (e k1K) di
K

Again, in the remaining expression, we have a summation )’ B,yeN" Z|a|:|y|,| o=y which when applied to the
above expression and using arguments similar to (4.2) reduces to

y J(l)”(e"Hk G, (e kK dK =0 iz,
a,BEN" ¢

Now, if we assume 7 = 7', we get a term fK oM (k)qb ,(k) dk in the expansion which equals 0 if v # v'. This
proves the orthogonality of one part.
On the other hand, for 71, v, ', v' € K, we have in the expansion of

Jf(Z_l(Z', t' KNz, t, K)) dK'
K
a term IK ¢b](k )(j) ' ,(k’) dk' =0if m# r'. If we assume 7 = 7', then we have a term

J¢bq(k)¢ (0dk=0 ifvzv. 0
K
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