Home Toxocara canis glycans influence antigen recognition by mouse IgG1 and IgM antibodies
Article
Licensed
Unlicensed Requires Authentication

Toxocara canis glycans influence antigen recognition by mouse IgG1 and IgM antibodies

  • Ewa Długosz EMAIL logo and Marcin Wiśniewski
Published/Copyright: December 30, 2015
Become an author with De Gruyter Brill

Abstract

The impact of sugar moieties of Toxocara canis glycoprotein antigens on their recognition by infected mouse antibodies was investigated in this study. Native TES and recombinant Toxocara mucins generated in Pichia pastoris yeast as well as their deglycosylated forms were used in ELISA. TES and recombinant mucins were equally recognized by T. canis infected mouse IgG1 antibodies. IgM immunoglobulins predominantly recognized TES antigens. Among mucins recognition of Tc-MUC-4 was the most significant. Deglycosylation of antigens resulted in significant loss of IgM and IgG1 reactivity to TES, mucins, Tc-MUC-3 and Tc-MUC-4. The presence of sugar moieties had no influence on IgE binding to native or recombinant T. canis antigens. Our results suggest that glycans are involved in epitope formation what should be taken into consideration in production of recombinant helminth antigens for diagnostic purposes.

References

Ahmad M., Hirz M., Pichler H., Schwab H. 2014. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 98, 5301-5317. DOI 10.1007/s00253-014-5732-510.1007/s00253-014-5732-5Search in Google Scholar

Bąska P., Wiśniewski M., Krzyżowska M., Długosz E., Zygner W., Gorski P., Wędrychowicz H. 2013a. Molecular cloning and characterisation of in vitro immune response against astacinlike metalloprotease Ace-MTP-2 from Ancylostoma ceylanicum. Experimental Parasitology, 133, 472-482. DOI: 10.1016/ j.exppara.2013.01.00610.1016/j.exppara.2013.01.006Search in Google Scholar

Bąska P., Zawistowska-Deniziak A., Zdziarska A.M.; Wasyl K., Wiśniewski M., Cywińska A., Klockiewicz M., Januszkiewicz K., Wędrychowicz H. 2013b. Fasciola hepatica - the pilot study of in vitro assessing immune response against native and recombinant antigens of the fluke. Acta Parasitologica, 58, 453-462. DOI: 10.2478/s11686-013-0163-510.2478/s11686-013-0163-5Search in Google Scholar

Coelho R.A.L., Carvalho Jr L.B., Perez E.P., Araki K., Takeuchi T., Ito A., Aoki T., Yamasaki H. 2005. Prevalence of toxocariasis in northeastern Brazil based on serology using recombinant Toxocara canis antigen. American Journal of Tropical Medicine and Hygiene, 72, 103-10710.4269/ajtmh.2005.72.103Search in Google Scholar

Długosz E., Wasyl K., Klockiewicz M., Wiśniewski M. 2015. Toxocara canis mucins among other excretory-secretory antigens induce in vitro secretion of cytokines by mouse splenocytes. Parasitology Research, 114, 3365-3371. DOI: 10.1007/ s00436-015-4561-510.1007/s00436-015-4561-5Search in Google Scholar

Doedens A., Loukas A., Maizels R.M. 2001. A cDNA encoding Tc-MUC-5, a mucin from Toxocara canis larvae identified by expression screening. Acta Tropica, 79, 211-217. DOI: 10.1016/S0001-706X(01)00137-110.1016/S0001-706X(01)00137-1Search in Google Scholar

Fillaux J., Magnaval J.F. 2013. Laboratory diagnosis of human toxocariasis. Veterinary Parasitology, 193, 327-336. DOI: 10.1016/j.vetpar.2012.12.02810.1016/j.vetpar.2012.12.028Search in Google Scholar PubMed

Fong M.Y., Lau Y.L. 2004. Recombinant expression of the larval excretory- secretory antigen TES-120 of Toxocara canis in the methylotrophic yeast Pichia pastoris. Parasitology Research, 92, 173-176. DOI: 10.1007/s00436-003-1020-510.1007/s00436-003-1020-5Search in Google Scholar PubMed

Gawor J., Borecka A., Marczyńska M., Dobosz S., Żarnowska-Prymek H. 2015. Risk of human toxocariosis in Poland due to Toxocara infection of dogs and cats. Acta Parasitologica, 60, 99-104. DOI: 10.1515/ap-2015-001210.1515/ap-2015-0012Search in Google Scholar PubMed

Gems D., Maizels R.M. 1996. An abundantly expressed mucin-like protein from Toxocara canis infective larvae: The precursor of the larval surface coat glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 93, 1665-167010.1073/pnas.93.4.1665Search in Google Scholar PubMed PubMed Central

Gillespie S.H., Bidwell D., Voller A., Robertson B.D., Maizels R.M. 1993. Diagnosis of human toxocariasis by antigen capture enzyme linked immunosorbent assay. Journal of Clinical Pathology, 46, 551-554. DOI: 10.1136/jcp.46.6.55110.1136/jcp.46.6.551Search in Google Scholar

Hayashi E., Tuda J., Imada M., Akao N., Fujita K. 2005. The high prevalence of asymptomatic Toxocara infection among schoolchildren in Manado, Indonesia. Southeast Asian Journal of Tropical Medicine and Public Health, 36, 1399-1406Search in Google Scholar

Jarosz W., Mizgajska-Wiktor H., Kirwan P., Konarski J., Rychlicki W., Wawrzyniak G. 2010. Developmental age, physical fitness and Toxocara seroprevalence amongst lower-secondary students living in rural areas contaminated with Toxocara eggs. Parasitology, 137, 53-63. DOI: 10.1017/S003118200999087410.1017/S0031182009990874Search in Google Scholar

Koizumi A., Yamano K., Tsuchiya T., Schweizer F., Kiuchi F., Hada N. 2012. Synthesis, antigenicity against human sera and struc- ture-activity relationships of carbohydrate moieties from Toxocara larvae and their analogues. Molecules, 17, 9023-9042. DOI: 10.3390/molecules1708902310.3390/molecules17089023Search in Google Scholar

Loukas A., Hintz M., Linder D., Mullin N.P., Prkinson J., Tetteh K.K.A., Maizels R.M. 2000.A family of secreted mucins from the parasitic nematode Toxocara canis bears diverse mucin domains but shares similar flanking six-cysteine repeat motifs. The Journal of Biological Chemistry, 275, 39600-39607. DOI: 10.1074/jbc.M00563220010.1074/jbc.M005632200Search in Google Scholar

Maizels R.M. 2013. Toxocara canis: Molecular basis of immune recognition and evasion. Veterinary Parasitology, 193, 365-374. DOI: 10.1016/j.vetpar.2012.12.03210.1016/j.vetpar.2012.12.032Search in Google Scholar

Meghji M., Maizels R.M. 1986. Biochemical properties of larval excretory- secretory glycoproteins of the parasitic nematode Toxocara canis. Molecular and Biochemical Parasitology, 18, 155-17010.1016/0166-6851(86)90035-6Search in Google Scholar

Mohamad S., Azmi N.C., Noordin R. 2009. Development and evaluation of a sensitive and specific assay for diagnosis of human toxocariasis by use of three recombinant antigens (TES-26, TES-30USM, and TES-120). Journal of Clinical Microbiology, 47, 1712-1717. DOI: 10.1128/JCM.00001-0910.1128/JCM.00001-09Search in Google Scholar PubMed PubMed Central

Oaks J.A., Kayes S.G. 1979. Artificial hatching and culture of Toxocara canis second stage larvae. Journal of Parasitology, 65, 969-97010.2307/3280259Search in Google Scholar

Rogé S., Van Reet N., Odiwuor S., Tran T., Schildermans K., Vandamme S., Vandenberghe I., Vervecken W., Gillingwater K., Claes F., Devreese B., Guisez Y., Buscher P. 2013. Recombinant expression of trypanosome surface glycoproteins in Pichia pastoris for the diagnosis of Trypanosoma evansi infection. Veterinary Parasitology, 197, 571-579. DOI: 10.1016/j.vetpar.2013.05.00910.1016/j.vetpar.2013.05.009Search in Google Scholar PubMed

Schabussova I., Amer H., van Die I., Kosma P., Maizels R.M. 2007. O-methylated glycans from Toxocara are specific targets for antibody binding in human and animal infections. International Journal for Prasitology, 37, 97-109. DOI: 10.1016/j.ijpara. 2006.09.006Search in Google Scholar

Smith H., Holland C., Taylor M., Magnaval J.F., Schantz P., Maizels R.M. 2009. How common is human toxocariasis? Towards standardizing our knowledge. Trends in Parasitology, 25, 182-188. DOI: 10.1016/j.pt.2009.01.00610.1016/j.pt.2009.01.006Search in Google Scholar PubMed

Tawill S., Le Goff L., Ali F., Blaxter M., Allen J.E. 2004. Both freeliving and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infection and Immunity, 72, 398-407. DOI: 10.1128/IAI. 72.1.398-407.2004Search in Google Scholar

Won K.Y., Kruszon-Moran D., Schantz P.M., Jones J.L. 2008. National seroprevalence and risk factors for zoonotic Toxocara spp. infection. American Journal of Tropical Medicine and Hygiene, 79, 552-55710.4269/ajtmh.2008.79.552Search in Google Scholar

Yamasaki H., Araki K., Lim P.K.C, Zasmy N., Mak J.W., Taib R., Aoki T. 2000. Development of a highly specific recombinant Toxocara canis second-stage larva excretory-secretory antigen for immunodiagnosis of human toxocariasis. Journal of Clinical Microbiology, 38, 1409-141310.1128/JCM.38.4.1409-1413.2000Search in Google Scholar PubMed PubMed Central

Zawistowska-Deniziak A., Wasyl K., Norbury L.J., Wesołowska A., Bień J., Grodzik M., Wiśniewski M., Bąska P., Wędrychowicz H. 2013. Characterization and differential expression of cathepsin L3 alleles from Fasciola hepatica. Molecular and Biochemical Parasitology, 190, 27-37. DOI: 10.1016/j.molbiopara. 2013.06.001 Search in Google Scholar

Received: 2015-1-9
Revised: 2015-6-18
Accepted: 2015-8-28
Published Online: 2015-12-30
Published in Print: 2016-1-1

© 2016

Articles in the same Issue

  1. Toxocarosis of the organ of sight – the complex pathological and diagnostic problem
  2. Trichomonas vaginalis: An Updated Overview Towards Diagnostic Improvement
  3. New species and records of mites of the superfamily Sarcoptoidea (Acariformes: Psoroptidia) from mammals in Brazil
  4. The morphology of free-living stages and immature parasites of Rhabdias paraensis (Nematoda: Rhabdiasidae), a parasite of Rhinella marina (Anura: Bufonidae) in Brazil
  5. Effects of altered water quality and trace elements on the infection variables of Paradiplozoon ichthyoxanthon (Monogenea: Diplozoidae) from two sites in the Vaal River system, South Africa
  6. Herd-level seroprevalence of Neospora caninum infection in dairy cattle in central and northeastern Poland
  7. Ultrastructure of Ascaridia galli (Schrank, 1788) (Nematoda: Ascaridida) from the endangered green peafowl Pavo muticus Linnaeus (Galliformes: Phasianidae)
  8. Prevalence and risk factors associated to Eimeria spp. infection in unweaned alpacas (Vicugna pacos) from Southern Peru
  9. Description of a new species of Chabaudus Inglis and Ogden, 1965 (Nematoda: Seuratoidea) from the frog Euphlyctis cyanophlyctis from Dehrandun, Uttarakhand, India
  10. Fertilization in the cestode Echinococcus multilocularis (Cyclophyllidea, Taeniidae)
  11. Expression analysis of viscerotropic leishmaniasis gene in Leishmania species by real-time RT-PCR
  12. Fourier transform infrared spectroscopy as a tool for identification of crude microbial extracts with anti-malarial potential
  13. A 43 kDa recombinant plasmepsin elicits immune response in mice against Plasmodium berghei malaria
  14. Effects of Echinostoma caproni miracidia dose on the amino acid contents of Biomphalaria glabrata as determined by high-performance thin-layer chromatography
  15. In search of a potential diagnostic tool for molecular characterization of lymphatic filariasis
  16. Seasonal pattern in parasite infracommunities of Hoplerythrinus unitaeniatus and Hoplias malabaricus (Actinopterygii: Erythrinidae) from the Brazilian Amazon
  17. The first detection of the tick-borne encephalitis virus (TBEV) RNA in Dermacentor reticulatus ticks collected from the lowland European bison (Bison bonasus bonasus L.)
  18. Assessing the influence of geographic distance in parasite communities of an exotic lizard
  19. Diagnostic value of semi-purified antigens of hydatid cyst fluid in human cystic echinococcosis
  20. Occurrence and morphogenetic characteristics of Gyrodactylus (Monogenea: Gyrodactylidae) from a rainbow trout farm (Lake Ladoga, Russia)
  21. Dactylogyrids (Monogenea) parasitic on cichlids from northern Brazil, with description of two new species of Sciadicleithrum and new host and geographical records
  22. Molecular detection and prevalence of feline hemotropic mycoplasmas in Istanbul, Turkey
  23. First report of Cystoisospora belli parasitemia in a patient with acquired immunodeficiency syndrome
  24. Cystic echinococcosis in Southern Israel
  25. Larval cestodes infecting the deep-water fish, Cataetyx laticeps (Pisces: Bythitidae) from Madeira Archipelago, Atlantic Ocean
  26. Toxocara canis glycans influence antigen recognition by mouse IgG1 and IgM antibodies
  27. Phylogenetic relationships among Linguatula serrata isolates from Iran based on 18S rRNA and mitochondrial cox1 gene sequences
  28. The transstadial persistence of tick-borne encephalitis virus in Dermacentor reticulatus ticks in natural conditions
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ap-2016-0026/html
Scroll to top button