GHz femtosecond processing with agile high-power laser
Abstract
Bursts of GHz repetition rate pulses can significantly improve the ablation efficiency of femtosecond lasers. Depending on the process conditions, thermal mechanisms can be promoted and controlled. GHz ablation therefore combines thermal and non-thermal ablation mechanisms. With an optimal choice of the burst duration, the non-thermal ablation can be highly enhanced by a heating phase due to the first pulses in the burst. The GHz burst mode can be considered as a key function for the “agility” of new high-power lasers.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] J. Schille, L. Schneider, and U. Loeschner, “Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality,” Appl. Phys. A, vol. 120, pp. 847–855, 2015, https://doi.org/10.1007/s00339-015-9352-4.Search in Google Scholar
[2] J. Lopez, K. Mishchik, G. Mincuzzi, E. Audouard, E. Mottay, and R. Kling, “Efficient metal processing using high average power ultrafast laser,” J. Laser MicroNanoeng., vol. 12, p. 3, 2017, https://doi.org/10.2961/jlmn.2017.03.0020.Search in Google Scholar
[3] J. Lopez, G. Mincuzzi, R. Devillard, et al.., “Ablation efficiency of high-average power ultrafast laser,,” J. Laser Appl., vol. 27, p. S28008, 2015, https://doi.org/10.2351/1.4906479.Search in Google Scholar
[4] P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett., vol. 35, pp. 4169–4171, 2010, https://doi.org/10.1364/ol.35.004169.Search in Google Scholar
[5] C. Hönninger and E. Audouard, “Multi 100 W femtosecond laser perspectives,” LTJ, vol. 2, pp. 50–53, 2018, https://doi.org/10.1002/latj.201800008.Search in Google Scholar
[6] B. Neuenschwander, B. Jaeggi, D. J. Foerster, T. Kramer, and S. Remund, “Influence of the burst mode onto the specific removal rate for metals and semiconductors,” J. Laser Appl., vol. 31, no. 2, p. 022203, 2019, https://doi.org/10.2351/1.5096083.Search in Google Scholar
[7] T. Kramer, Y. Zhang, S. Remund, et al.., “Increasing the specific removal rate for ultra short pulsed laser-micromachining by using pulse bursts,” J. Laser MicroNanoeng., vol. 12, pp. 107–114, 2017, https://doi.org/10.2961/jlmn.2017.02.0011.Search in Google Scholar
[8] J. Mur, L. Pirker, N. Osterman, and R. Petkovšek, “Silicon crystallinity control during laser direct microstructuring with bursts of picosecond pulses,” Opt. Express, vol. 25, p. 26356, 2017, https://doi.org/10.1364/oe.25.026356.Search in Google Scholar PubMed
[9] A. Žemaitis, P. Gečys, M. Barkauskas, G. Račiukaitis, and M. Gedvilas, “Highly-efficient laser ablation of copper by bursts of ultrashort tuneable (fs–ps) pulses,” Sci. Rep., vol. 9, p. 12280, 2019.10.1038/s41598-019-48779-wSearch in Google Scholar PubMed PubMed Central
[10] D. J. Foerster, S. Faas, S. Gröninger, F. Bauer, A. Michalowski, and T. Graf, “Shielding effects and re-deposition of material during processing of metals with bursts of ultra-short laser pulses,” Appl. Surf. Sci., vol. 440, p. 926, 2018.10.1016/j.apsusc.2018.01.297Search in Google Scholar
[11] C. Kerse, H. Kalaycioglu, P. Elahi, et al., “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature, vol. 537, p. 84, 2016. https://doi.org/10.1038/nature18619.Search in Google Scholar PubMed
[12] G. Bonamis, K. Mishchik, E. Audouard, et al.., “Use of bursts up to GHz repetition rate for femtosecond ablation efficiency increase,” J. Laser Appl., vol. 31, p. 022205, 2019.10.2351/1.5096087Search in Google Scholar
[13] K. Mishchik, G. Bonamis, J. Qiao, et al.., “High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source,” Opt. Lett., vol. 44, p. 2193, 2019, https://doi.org/10.1364/ol.44.002193.Search in Google Scholar
[14] G. Bonamis, E. Audouard, C. Hönninger, et al.., “Systematic study of laser ablation with GHz bursts of femtosecond pulses,” Opt. Express, vol. 28, p. 27702, 2020, https://doi.org/10.1364/oe.400624.Search in Google Scholar
[15] R. Marjoribanks, C. Dille, J. Schoenly, et al.., “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Laser Med., vol. 1, p. 155, 2012, https://doi.org/10.1515/plm-2012-0020.Search in Google Scholar
[16] J. Mur, J. Petelin, N. Osterman, and R. Petkovšek, “High precision laser direct microstructuring system based on bursts of picosecond pulses,” J. Phys. Appl. Phys., vol. 50, p. 325104, 2017, https://doi.org/10.1088/1361-6463/aa7b5a.Search in Google Scholar
[17] E. Audouard and E. Mottay, “Engineering model for ultrafast laser microprocessing,” in Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI, SPIE, 2016, p. 9740.10.1117/12.2206203Search in Google Scholar
[18] F. Bauer, A. Michalowski, T. T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express, vol. 23, p. 001035, 2015, https://doi.org/10.1364/OE.23.001035.Search in Google Scholar PubMed
[19] A. Ancona, S. Döring, C. Jauregui, et al.., “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett., vol. 34, p. 3306, 2009, https://doi.org/10.1364/OL.34.003304.Search in Google Scholar PubMed
[20] M. Domke, V. Matylitsky, and S. Stroj, “Surface ablation efficiency and quality of fs lasers in single-pulse mode, fs lasers in burst mode, and ns lasers,” Appl. Surf. Sci., vol. 505, p. 144594, 2020, https://doi.org/10.1016/j.apsusc.2019.144594.Search in Google Scholar
[21] P. Elahi, C. Akçaalan, C. Ertek, K. Eken, O. Ilday, and H. Kalaycoglu, “High power Yb-based all-fiber laser delivering 300 fs pulses for high speed ablation cooled material removal,” Opt. Lett., vol. 43, p. 535, 2018, https://doi.org/10.1364/ol.43.000535.Search in Google Scholar
[22] L. Zhibin, H. Matsumoto, and J. Kleinert, Ultrafast Laser Ablation of Copper with GHz-Bursts, SPIE, 2018, pp. 10519–10521.Search in Google Scholar
[23] C. Gaudiuso, G. Giannuzzi, A. Volpe, P. M. Lugarà, I. Choquet, and A. Ancona, “Incubation during laser ablation with bursts of femtosecond pulses with picosecond delays,” Opt. Express, vol. 26, p. 3801, 2018, https://doi.org/10.1364/oe.26.003801.Search in Google Scholar
[24] R. Ramaswami and K. Sivarajan, Optical Networks: A Practical Perspective, San Diego, CA, USA, Elsevier Science & Technology Books, 1998, OCLC: 892781758.Search in Google Scholar
[25] A. Bartels, R. Cerna, C. Kistner, et al.., “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum., vol. 78, p. 035107, 2007, https://doi.org/10.1063/1.2714048.Search in Google Scholar
[26] A. Hatziefremidis, D. Papadopoulos, D. Fraser, and H. Avramopoulos, “Laser sources for polarized electron beams in CW and pulsed accelerators,” Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., vol. 431, p. 4652, 1999, https://doi.org/10.1016/s0168-9002(99)00271-5.Search in Google Scholar
[27] C. Kerse, H. H. Kalaycioglu, P. Elahi, N. Akçaalan, and F. M. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun., vol. 366, p. 404, 2016, https://doi.org/10.1016/j.optcom.2015.12.064.Search in Google Scholar
[28] A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett., vol. 33, p. 1905, 2008, https://doi.org/10.1364/ol.33.001905.Search in Google Scholar PubMed
[29] A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solidstate laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun., vol. 8, p. 178, 2017, https://doi.org/10.1038/s41467-017-01999-y.Search in Google Scholar PubMed PubMed Central
[30] R. Paschotta, L. Krainer, S. Lecomte, et al.., “Picosecond pulse sources with multi-GHz repetition rates and high output power,” New J. Phys., vol. 6, p. 174, 2004, https://doi.org/10.1088/1367-2630/6/1/174.Search in Google Scholar
[31] A. Ishizawa, T. Nishikawa, A. Mizutori, et al.., “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express, vol. 19, p. 22402, 2011, https://doi.org/10.1364/oe.19.022402.Search in Google Scholar
[32] A. Aubourg, J. Lhermite, S. Hocquet, E. Cormier, and G. Santarelli, “Generation of picosecond laser pulses at 1030 nm with gigahertz range continuously tunable repetition rate,” Opt. Lett., vol. 40, p. 5610, 2015, https://doi.org/10.1364/ol.40.005610.Search in Google Scholar PubMed
[33] T. Hirsiger, M. Gafner, S. M. Remund, et al.., “Machining metals and silicon with GHz bursts: surprising tremendous reduction of the specific removal rate for surface texturing applications,” in Proc. SPIE 11267, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXV, 2020, p. 112670T, https://doi.org/10.1117/12.2543948.Search in Google Scholar
[34] A. Žemaitis, M. Gaidys, P. Gečys, M. Barkauskas, and M. Gedvilas, “Femtosecond laser ablation by bibursts in the MHz and GHz pulse repetition rates,” Opt. Express, vol. 29, p. 7641, 2021.10.1364/OE.417883Search in Google Scholar
[35] S. Schwarz, S. Rung, C. Esen, and R. Hellmann, “Enhanced ablation efficiency using GHz bursts in micromachining fused silica,” Opt. Lett., vol. 46, p. 282, 2021, https://doi.org/10.1364/ol.415959.Search in Google Scholar
[36] T. Menold, M. Ametowobla, J. R. Köhler, and J. H. Werner, “Surface patterning of monocrystalline silicon induced by spot laser melting,” J. Appl. Phys., vol. 24, p. 163104, 2018, https://doi.org/10.1063/1.5049781.Search in Google Scholar
[37] J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys., vol. 112, p. 103514, 2012, https://doi.org/10.1063/1.4766380.Search in Google Scholar
[38] C. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev., vol. 134, p. A1058, 1964, https://doi.org/10.1103/physrev.134.a1058.Search in Google Scholar
[39] J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci., vol. 221, p. 215, 2004, https://doi.org/10.1016/s0169-4332(03)00881-x.Search in Google Scholar
[40] G. Bonamis, E. Audouard, C. Hönninger, et al.., Méthode de Détermination Des Conditions Opérationnelles d’un Procédé d’ablation Laser Femtoseconde à Très Haute Cadence Pour Un Matériau Donné, Patent n° 19 01188 (2019).Search in Google Scholar
[41] L. L. Taylor, J. Qiao, and J. Qiao, “Optimization of femtosecond laser processing of silicon via numerical modeling,” Opt. Mater. Express, vol. 6, p. 2745, 2016, https://doi.org/10.1364/ome.6.002745.Search in Google Scholar
[42] M. E. Povarnitsyn, P. R. Levashov, and D. V. Knyazev, “Simulation of ultrafast bursts of subpicosecond pulses: in pursuit of efficiency,” Appl. Phys. Lett., vol. 112, p. 051603, 2018, https://doi.org/10.1063/1.5012758.Search in Google Scholar
[43] G. Bonamis, Conception et réalisation d’une source laser femtoseconde GHz et applications au régime d’ablation très haute cadence, Université de Bordeaux, 2020. https://www.theses.fr/2020BORD0293.Search in Google Scholar
[44] J. Schille, L. Schneider, P. Lickschat, U. Loeschner, R. Ebert, and H. Exner, “High-pulse repetition frequency ultrashort pulse laser processing of copper,” J. Laser Appl., vol. 27, p. S28007, 2015, https://doi.org/10.2351/1.4906482.Search in Google Scholar
[45] F. Nyenhuis, A. Michalowski, and J. A. L’Huillier, “Surface treatment with GHz-bursts,” in Proc. SPIE 11268, Laser-Based Micro- and Nanoprocessing, vol. XIV, 2020, p. 112680B, https://doi.org/10.1117/12.2544337.Search in Google Scholar
[46] D. Metzner, P. Lickschat, and S. Weiÿmantel, “High-quality surface treatment using GHz burst mode with tunable ultrashort pulses,” Appl. Surf. Sci., vol. 531, p. 147270, 2020, https://doi.org/10.1016/j.apsusc.2020.147270.Search in Google Scholar
[47] D. J. Forster, B. Jaggi, A. Michalowski, and B. Neuenschwander, “Review on experimental and theoretical investigations of ultra short pulse laser ablation of metals with burst pulses,” Materials, vol. 14, p. 3331, 2021, https://doi.org/10.3390/ma14123331.Search in Google Scholar PubMed PubMed Central
[48] T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys., vol. 44, p. L687, 2005, https://doi.org/10.1143/jjap.44.l687.Search in Google Scholar
[49] Y. Ozeki, T. Inoue, T. Tamaki, et al.., “Direct welding between copper and glass substrates with femtosecond laser pulses,” APEX, vol. 1, p. 082601, 2008, https://doi.org/10.1143/apex.1.082601.Search in Google Scholar
[50] H. Penilla, L. F. Devia-Cruz, A. T. Wieg, et al.., “Ultrafast laser welding of ceramics,” Science, vol. 365, pp. 803–808, 2019, https://doi.org/10.1126/science.aaw6699.Search in Google Scholar PubMed
[51] M. Chambonneau, Q. Li, V. Fedorov, M. Blothe, S. Tzortzakis, and S. Nolte, “Semiconductor-metal ultrafast laser welding with relocated filaments,” in Proc. SPIE 11676, Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications, vol. XXI, p. 1167610, 2021, https://doi.org/10.1117/12.2579220.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Topical Issue: High-rate Laser Processing; Guest Editors: Jörg Schille and Udo Löschner
- Editorial
- Ultrashort pulse lasers in high-rate laser micro processing – Quo vadis?
- Views
- The challenges of productive materials processing with ultrafast lasers
- Review Articles
- High-power modelocked thin-disk oscillators as potential technology for high-rate material processing
- GHz femtosecond processing with agile high-power laser
- Research Articles
- High-power ultrafast fiber lasers for materials processing
- High-power ultrafast thin-disk multipass amplifiers for efficient laser-based manufacturing
- Accelerating laser processes with a smart two-dimensional polygon mirror scanner for ultra-fast beam deflection
- Pulse-on-demand laser operation from nanosecond to femtosecond pulses and its application for high-speed processing
- Multi beam microprocessing for printing and embossing applications with high power ultrashort pulsed lasers
- High-rate laser processing with ultrashort laser pulses by combination of diffractive elements with synchronized galvo scanning
Articles in the same Issue
- Frontmatter
- Topical Issue: High-rate Laser Processing; Guest Editors: Jörg Schille and Udo Löschner
- Editorial
- Ultrashort pulse lasers in high-rate laser micro processing – Quo vadis?
- Views
- The challenges of productive materials processing with ultrafast lasers
- Review Articles
- High-power modelocked thin-disk oscillators as potential technology for high-rate material processing
- GHz femtosecond processing with agile high-power laser
- Research Articles
- High-power ultrafast fiber lasers for materials processing
- High-power ultrafast thin-disk multipass amplifiers for efficient laser-based manufacturing
- Accelerating laser processes with a smart two-dimensional polygon mirror scanner for ultra-fast beam deflection
- Pulse-on-demand laser operation from nanosecond to femtosecond pulses and its application for high-speed processing
- Multi beam microprocessing for printing and embossing applications with high power ultrashort pulsed lasers
- High-rate laser processing with ultrashort laser pulses by combination of diffractive elements with synchronized galvo scanning