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Abstract: A solution of the Allen–Cahn equation in ℝ3 is called a two-end solution if its nodal set is asymptotic

to
{
(x′, z) ∈ ℝ3: z = ki ln |x′|+ ci, 1 ≤ i ≤ 2

}
at infinity. In this paper, we show that two-end solutions are axially

symmetric andmonotonic if k1, k2 satisfy k1 − k2 > 2
√
2. We also establish the nonexistence of two-end solution

with k1, k2 satisfying −
√
2

2
< k2 < k1 <

√
2

2
or k1 = −k2 =

√
2

2
.
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1 Introduction

The Allen–Cahn equation has the form

Δu−W ′(u) = 0 in ℝn, (1.1)

whereW ∈ C3(ℝ) is a double-well potential satisfying:
– W(s) ≥ 0, andW(s) = 0 if and only if s = ±1,
– W ′′(±1) = 𝜅 > 0.

The standard double-well potential is given byW(t) = 1

4
(1− t2 )2.

For the one-dimensional case, there is a unique heteroclinic solution H = tanh
(
t∕

√
2
)
that satisfies

H′′ = H3 − H in ℝ and lim
t→±∞

H(t) = ±1.

It is known that as t→±∞, H(t) converges exponentially to±1. More precisely, for all t > 0 large, we have

H(t) = 1− 2e−
√
2t + O

(
e−2

√
2t
)
, H′(t) = 2

√
2e−

√
2t + O

(
e−2

√
2t
)
,

Similar expansion holds as t→ −∞. Then we can define the energy constant

𝜎0 :=∫
ℝ

[
1

2
H′2(t)+W(H(t))

]
dt = ∫

ℝ

H′2(t)dt.
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For open setΩ ⊂ ℝn with Lipschitz boundary, let us consider the following energy functional:

E𝜀,Ω(u) = ∫
Ω

[
𝜀

2
|∇u|2 + 1

𝜀
W(u)

]
dx,

whose Euler–Lagrange equation is the following singularly perturbed Allen–Cahn equation

𝜀2Δu𝜀 = W ′(u𝜀 ) in Ω. (1.2)

The theory of Γ-convergence, which is introduced by De Giorgi [1] and developed by Modica-Mortola [2]

(see also [3]–[5]), establishes a deep connection between the Allen–Cahn equation (1.1) and minimal surfaces.

Specifically, the solution u𝜀 of the equation (1.2) converges to the function 𝜒M − 𝜒Ω∖M in a suitable sense as

𝜀→ 0 and the interface 𝜕M is a minimal surface. Furthermore, E𝜀,Ω(u𝜀) ∼ 𝜎0|𝜕M| for 𝜀 > 0 small enough. For

the detailed proofs, we refer the reader to [6]–[8].

Parallel to Bernstein’s theorem for minimal surfaces, De Giorgi proposed the following conjecture in [9]:

Conjecture 1.1. For n ≤ 8, any solution u ∈ C2(ℝn ) of Δu = u3 − u satisfying |u| ≤ 1 and
𝜕u

𝜕xn
> 0 must be one-

dimensional solution, that is

u(x) = H(a ⋅ x+ b),

for some a,b ∈ ℝn with |a| = 1.

This conjecture states that if the bounded solution u of the Allen–Cahn equation is monotonic in a fixed

direction, then the level set of u must be the hyperplane. It was proved to hold true in dimensions 2 and 3 by

Ghoussoub-Gui [10] and Ambrosio-Cabré [11], respectively. Savin [12] demonstrated its validity for dimension

4 ≤ n ≤ 8 under the additional condition limxn→±∞u(x) = ±1. Based on the nontrivial minimal surface con-

structed in [13], del Pino et al. [14] gave a counterexample to the conjecture by employing the infinite-dimensional

Lyapunov–Schmidt reduction method.

In fact, Savin’s limit condition implies a minimizing property. We can deduce from Savin’s proof that any

globalminimizer of E1,ℝn is a one-dimensional solution for 4 ≤ n ≤ 7. For the cases n ≥ 9 and n ≥ 8, del Pino et al.

[14] and Liu et al. [15] gave a nontrivial minimizer solution respectively. Then we consider the stable version of

De Giorgi conjecture:

Conjecture 1.2. For n ≤ 7, any bounded stable solution u ∈ C2(ℝn ) of Δu = u3 − u is either a one-dimensional

solution or a constant.

Dancer [16] proved that this conjecture holds for n = 2, 3, where the energy growth condition E1,BR(0)(u) ≤ CR2 is

required for n = 3. On the other hand, Pacard-Wei [17] constructed nontrivial stable (and minimizer) solutions

when n ≥ 8. For 4 ≤ n ≤ 7, the classification of stable solutions remains an open problem.

It is natural to generalize the De Giorgi conjecture to solutions with finite Morse index. However, the finite

Morse index condition is difficult to exploit. Instead, we study themultiple-end solutions. For n = 2, themultiple-

end (such as 2k-end) condition means that the nodal set of solution is asymptotic to 2k half straight lines outside

a large ball. The saddle solution, corresponding to the four-end solution with angle 𝜋∕2 between two lines, was
constructed by Dang et al. [18]. On the other hand, del Pino et al. [19] utilized the Lyapunov–Schmidt reduction

method to construct the four-end (indeed 2k-end) solutions with the nodal curves that are almost parallel at

infinity. Moreover, for any angle between (0, 𝜋∕2), the existence of four-end solutions was established by using
the continuation method in [20] and the variational method in [21]. It is worth noting that Gui et al. described

the connection between the four-end solution and the Scherk surfaces, which is a family of minimal surfaces

determined by the angle 𝜃 between adjacent wings. For angle 𝜃 small enough, the uniqueness of four-end solu-

tion was established in [22]. In particular, the moduli space of (even) four-end solutions is one-dimensional and

can be continuously generated by the saddle solution. Meanwhile, Gui [23] proved that any four-end solution is
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(even) symmetric andmonotonic along both x and y in the first quadrant (up to rotation). For the general 2k-end

case, Alessio et al. [24] constructed dihedral symmetry saddle solutions, where the nodal set is exactly the union

of k lines passing through the origin with angle 𝜃 = 𝜋∕k. For 2k ≥ 6, Kowalczyk et al. [25] prove the existence of

solutions with nodal set closes to the 2k lines such that no two of these lines are parallel, and no three of them

have a common intersection. In particular, theMorse index of 2k-end solutions is finite in [26]. Additional details

regarding the 2k-end solutions can be found in [27]–[30].

In the theory of minimal surfaces, the finite Morse index condition is closely related to the finite ends con-

dition. Li-Wang [31] proved the complete, immersed, oriented minimal hypersurfaces with finite Morse index

have finitely many ends. Analogously, a natural question is whether the finite Morse index solution of (1.1) has

finite ends in ℝn. It was proved to hold true for the case n = 2 by Wang-Wei [32]. In particular, they concluded

that any Morse index 1 solution has exactly four ends. They investigated the uniform second-order regularity

of the cluster interface in the singular perturbation two-dimensional Allen–Cahn equation (1.2) and established

a uniform curvature estimate for the level set of solution u with finite Morse index. Moreover, they asserted

that the following conditions: finite Morse index, finite ends and linear energy growth (EBR(0)(u) ≤ CR) are all

equivalent for (1.1) in ℝ2. It is worth noting that Mantoulidis gave an exact lower bound k − 1 for the Morse

index of the 2k-end solution in [33]. Chodosh-Mantoulidis [34] extended the Wang-Wei curvature estimates to

the three-dimensional closed manifolds under the additional assumption about quadratic energy growth. Then

they proved the phase transition version of Yau’s multiplicity 1 conjecture. For n ≤ 10, Wang-Wei [35] establish a

uniform C2,𝛼 estimate for level sets of stable solutions of (1.2) in B1(0) ⊂ ℝn. Gui et al. [36] used these curvature

estimates to investigate the existence of axisymmetric solution with finite Morse index to equation (1.1) in ℝn.

They concluded that such solutions do not exist when 4 ≤ n ≤ 10. For n = 3, solutions with Morse index 0 and 1

correspond to one-dimensional solution H and two-end solutions, respectively.

Now we consider multiple-end solutions inℝ3. Alessio and Montecchiari [37] established the existence and

uniqueness of the saddle solution inℝ3, which is similar to the case of two-dimensional saddle solution. del Pino

et al. [38] constructed a family of solutions whose nodal sets converge to a large dilation of non-degenerate, com-

plete, embedded minimal surfaceM with finite total curvature. Moreover, they proved that the Morse index of

these solutions coincides with the index of the minimal surfaceM. In particular, whenM is a catenoid, the solu-

tions constructed in [38] are two-end solutions of catenoid type. Later in [39], Agudelo et al. constructed a class of

axially symmetric two-end solutions withMorse index 1, whose nodal sets are asymptotically {|z| = ±k ln |x′|},
where k ≈

√
2. We call them Toda-type solutions. In [40], Gui et al. constructed a sequence of axially symmetric

two-end solutions {uk} with k ∈
(√

2,+∞
)
, where the endpoints of the interval of parameter k correspond

to the Toda-type solutions and catenoid-type solutions mentioned above. They also proved the nonexistence of

the axially symmetric two-end solutions with k ∈
(
0,

√
2∕2

]
. More details about the entire solutions in higher

dimensions can be found in [41]–[45].

In this paper, we continue the research in [40]. We consider the Allen–Cahn equation

Δu = u3 − u, |u| < 1 in ℝ3. (1.3)

In what follows, we give the precise definition of two-end solutions to equation (1.3).

Definition 1.3. A solution u of equation (1.3) is called two-end solution with distinct, nonzero growth rates k1
and k2 if there exists R > 0, depending on u, such that

– u(x, y, z) ≠ 0 in
{|x′| = √

x2 + y2 ≤ R, |z| > R
}
,

– For any |x′| > R,

‖‖‖‖‖‖
u(x, y, ⋅)−

2∑
i=1

(−1)i−1H
(
⋅− ki ln |x′|− ci

)
− 1

‖‖‖‖‖‖L∞(ℝ)
= o(1). (1.4)

where each ci ∈ ℝ depends on u. We always assume that k1 > k2.
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Our first result is the following asymptotic estimate of the two-end solution:

Theorem 1.4 (Refined asymptotics of two-end solutions). Suppose u is a two-end solution to (1.3) with the

growth rates satisfying k1 − k2 > 2
√
2. Then, it has the following asymptotic behavior:

‖‖‖‖‖‖
u(x, y, ⋅)−

2∑
i=1

(−1)i−1H
(
⋅− ki ln |x′|− ci

)
− 1

‖‖‖‖‖‖L∞(ℝ)
= O(|x′|−2 ), as |x′|→∞. (1.5)

Moreover, it satisfies the following symmetry and monotonicity:

– k := k1 = −k2 >
√
2 and u(r, z) = u(r,−z),

–
𝜕u

𝜕z
> 0 and

𝜕u

𝜕r
< 0 in {r = |x′| > 0, z > 0}.

For small growth rates, similar to the conclusion of [40, Theorem 3], we have the following nonexistence

result:

Theorem 1.5. For any k1 ≠ k2 ∈ ℝ satisfy −
√
2

2
< k2 < k1 <

√
2

2
or k1 = −k2 =

√
2

2
, there does not exist any two-

end solution to (1.3) with k1 and k2 as the growth rates.

Notably, unlike in [40], we do not impose any symmetry assumptions on the solutions. The proof of the

theorem is based on an analysis of the relationship between the nodal set of the small-rate solution (denoted

by 𝑣, where −
√
2

2
< k2 < k1 <

√
2

2
) and the model solution uk (introduced in Theorem 1.4). Specifically, in this

case, the distance between the nodal sets of the solutions is sufficiently large, which allows us to derive the

following conclusion: uk − 𝑣 < 0 in ℝ3. By varying k, we find a value k0 >
√
2 such that the two nodal sets

just touch. Combining this with the maximum principle, we deduce uk0 ≡ 𝑣, which contradicts the condition

k0 >
√
2 > max{|k1|, |k2|}.

For small-rate solutions with rates satisfying k1 = −k2 =
√
2

2
, we analyze the Toda system satisfied by their

nodal sets, subsequently establish the non-existence of such solutions.

Thus far, the existence and symmetry of two-end solutions with k >
√
2 have been proved. Inspired by the

fact that complete, immersed, minimal surfaces which are regular at infinity and have two ends are either the

catenoid or a pair of planes (as shown in [46]), it is to be expected that there may be a classification result for

two-end solutions which is similar to the classification result for minimal surfaces. Therefore, we propose the

following conjecture:

Conjecture 1.6. Two-end solution to (1.3) with fixed k >
√
2 is unique and has Morse index one.

Remark 1.7. Here the lower bound
√
2 is related to the fact that when k is close to

√
2, the two ends of the

solution actually “interact” with each other, and the interaction is governed by the Toda system.

The organization of the paper is as follows. In Section 2, we first review some basics and then establish a

uniform curvature decay estimate for the level sets of u with k1 − k2 > 0. In Section 3, we prove an algebraic

decay estimate for the error term, which implies that the difference between u and the one-dimensional solution

H decays at an algebraic rate as |x′|→∞. This result is the basis for the proof of symmetry andmonotonicity in

Theorem 1.4. Finally, in Section 4, we show the nonexistence of two-end solutions for cases−
√
2

2
< k2 < k1 <

√
2

2

and k1 = −k2 =
√
2

2
, thereby completing the proof of Theorem 1.5.
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2 Curvature decay estimate

In this section, we assume u is a two-end solution to (1.3) with the growth rates satisfying k1 − k2 > 0. Draw-

ing inspiration from [32], we aim to establish a technical result concerning the curvature decay of level sets of u

(Theorem 2.4). Specifically, by applying the doubling lemma from [47, Lemma 5.1], we reduce the problem of esti-

mating curvature to obtain uniform estimates on the level sets of u𝜀 in the corresponding singular perturbation

equation (1.2). For notational convenience, we write A ≲ B to indicate that A ≤ CB for some positive constant C.

The notation A ≳ B is defined analogously.

We first study the asymptotic behavior of the nodal set u = {u = 0} at infinity. Using the condition

(1.4), it follows that u can be represented as the union of the following graphs outside a cylinder R0 =
{(x′, z): |x′| < R0}:

u∖R0
=

{
z = f1 = f1

(
x′; k1, k2

)
, |x′| > R0

}
∪

{
z = f2 = f2

(
x′; k1, k2

)
, |x′| > R0

}
,

where R0 = R0(k1, k2) is sufficiently large, and f1 > f2. Following a similar argument as in [40,

Lemma 6–Lemma 8], one gets:

Lemma 2.1. For i = 1, 2, we have

(1) lim|x′|→+∞
| fi(x′; k1, k2)| = +∞,

(2) lim|x′|→∞
|∇l fi

(
x′; k1, k2

)| = 0, for any 1 ≤ l ≤ 4.

Next we recall some properties about the spectrum of the one-dimensional linearized Allen–Cahn operator

 = − d2

dt2
+W ′′(H(t)).

Since H′(t) =
√
2W(H(t)) > 0 is an eigenfunction of  corresponding to eigenvalue 0, it follows that 0 is

the lowest eigenvalue, and thus H is stable. In particular, this leads to the following coerciveness result:

Proposition 2.2. There exists a constant 𝜇 > 0 such that for any 𝜑 ∈ H1(ℝ) satisfying

∫
ℝ

𝜑(t)H′(t)dt = 0,

we have

∫
ℝ

[
𝜑′(t)2 +W ′′(H(t))𝜑(t)2

]
dt ≥ 𝜇∫

ℝ

𝜑(t)2dt.

Proof. For the detailed proofs we refer the reader to [30], [48]. □

Lemma 2.3. For any solution u of (1.3), there exist constants 𝜈, C0 > 0 such that

|||u2(x)− 1
|||+ |∇u(x)|+ |||∇2u(x)

||| ≤ C0e
−𝜈d(x,u ), for all x ∈ ℝ3, (2.1)

where d(x,u ) denotes the distance between x and the nodal setu.

Proof. This type of estimates can be found in [10], [26], [49]. For simplicity, we omit the details. □

2.1 Curvature estimates

In what follows, we establish the curvature estimate for level sets of u (Theorem 2.4 and 2.6). This curvature

estimate allows us to accurately estimate the error term, specifically, the error between the real solution u and
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the one-dimensional solution H. For convenience, we denote(x) = (u)(x) to represent the enhanced second
fundamental form of the level set {u = u(x)} as follows:

 = ∇
(

∇u
|∇u|

)
(x).

Then one can check that

|(u)|2 =
⎧⎪⎨⎪⎩

||∇2u||2 − |∇|∇u||2
|∇u|2 , if |∇u| ≠ 0,

0, otherwise.

=
{ ||2 + ||∇T ln|∇u|||2, if |∇u| ≠ 0,

0, otherwise.

Here (x) denotes the second fundamental form of {u = u(x)} and ∇T denotes the tangential derivative

along the level set {u = u(x)}.

Theorem 2.4. Let u be a two-end solution to (1.3) with growth rates satisfying k1 − k2 > 0. Then for any a ∈
(0, 1] ∩

(
0,

√
2(k1 − k2 )

)
, there exist two constants C̃ > 0, R̃ > R0 depending on k1, k2 and a such that

|(u)(x)| ≤ C̃

|x′|a , for x = (x′, z) ∈ {|u| ≤ 1∕2}∖R̃. (2.2)

Moreover, C̃ and R̃ depend on k1, k2 and a continuously.

Proof. Let Σ = {|u| ≤ 1∕2} be a closed set in ℝ3 and denote Γ = R̂, where R̂ > R0 such that ‖∇ fi‖C3(ℝ2∖R̂) =
o(1). Let us assume by contradiction that (2.2) does not hold. Then we have a sequence of Xn ∈ Σ∖Γ,|||

(
Xn

)|||
1∕a

dist
(
Xn,Γ

) ≥ 2n1∕a. Using the doubling lemma in [47], there exist a sequence of Yn ∈ Σ∖Γ such that

|||
(
Yn

)|||
1∕a ≥ |||

(
Xn

)|||
1∕a
,

|||
(
Yn

)|||
1∕a

dist
(
Yn,Γ

) ≥ 2n1∕a, (2.3)

|(Z)|1∕a ≤ 2
|||

(
Yn

)|||
1∕a
, for Z ∈ B(n|(Yn )|−1 )1∕a (Yn ).

Denote 𝜀n :=
|||

(
Yn

)||| and un(x) := u
(
Yn + 𝜀−1n x

)
, x ∈ B

n1∕a𝜀1−1∕an
(0). We claim that as n→∞,

𝜀n → 0 and |Yn|→∞.

To proceed, we write f instead fi and consider the local Fermi coordinates of {(x′, z): z = f (x′ )}∖R̂, which

are defined in detail in Appendix A:

X(𝜉, 𝜂, 𝜁 ) = (𝜉, 𝜂, f (𝜉, 𝜂 ))+ 𝜁 (−𝜕𝜉 f ,−𝜕𝜂 f , 1)√
1+ |∇ f |2 . (2.4)

By Lemma 2.1, these Fermi coordinates arewell-defined and smoothwithin (R̂, r̂) = {
√
𝜉2 + 𝜂2 > R̂, |𝜁 | <

r̂} for some sufficiently large r̂ > 0.We also use the fact that u is close toH(𝜁 ). By analyzing the equation satisfied

by the error term 𝜙 = u(x, y, z)− H(𝜁 ), we find that

‖𝜙‖C2 = o(1) in  (R̂+ 1, r̂ − 1) = {
√
𝜉2 + 𝜂2 > R̂+ 1, |𝜁 | < r̂ − 1}.

Recall that there exists a fixed constant c0 > 0 such that

{|u| ≤ 1∕2}∖R̂+2 ⊂  (R̂+ 1, c0 ) ⊂  (R̂+ 1, r̂ − 1).

We now proceed to calculate the curvature B(u) in (R̂+ 1, c0 ). Differentiating u twice leads to
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u𝜉 = 𝜙𝜉, u𝜂 = 𝜙𝜂, u𝜁 = H′(𝜁 )+ 𝜙𝜁 ,

u𝜉𝜉 , u𝜂𝜂, u𝜉𝜂, u𝜉𝜁 , u𝜂𝜁 = o(1), u𝜁𝜁 = H′′(𝜁 )+ o(1).

By again applying Lemma 2.1, the inverse of the induced metric is given by

g−1(𝜉, 𝜂, 𝜁 ) =
⎡⎢⎢⎢⎣

1+ o(1) o(1) o(1)

o(1) 1+ o(1) o(1)

o(1) o(1) 1

⎤⎥⎥⎥⎦
in  (R̂+ 1, c0 ).

Let the indices i, j, k, l ∈ {𝜉, 𝜂, 𝜁}. Then |∇u|2 = gijuiuj = H2(𝜁 )+ o(1). Additionally, we have

|∇|∇u‖2 = |∇|∇u|2|2
4|∇u|2 =

(
𝜕𝜁 |∇u|2)2 + o(1)

4(u2
𝜁𝜁

+ o(1))
= u2

𝜁𝜁
+ o(1),

|∇2u|2 = ∑
i, j,k,l

gi j gkluiku jl = u2
𝜁𝜁
+ o(1) in  (R̂+ 1, c0 ).

Therefore, we have |(u)|2 = o(1) in {|u| ≤ 1∕2}∖R̃, with R̃ = R̂+ 2. By (2.3), |Yn|→∞.

In Bn1∕a (0) ⊂ B
n1∕a𝜀1−1∕an

(0), un is a solution of (1.2) with the parameter 𝜀n. By the definition of  and un, one

gets |||
(
un

)||| ≤ 2a ≤ 2 in Bn1∕a (0) ∩ {|un| ≤ 1∕2},
|||

(
un

)
(0)

||| = 1, and |un(0)| ≤ 1∕2.
(2.5)

However, by Theorem 2.5 below, |(un )(0)|≪ 1 for sufficiently large n, which contradicts (2.5). □

From the above analysis we summarize that the curvature estimate of Theorem 2.4 can be reduced to the

following condition:

(H1) u𝜀(x) = u(x∕𝜀) is a solution of (1.2) in B
2
√
3
(0) with the parameter 𝜀 > 0,

(H2)
|||

(
u𝜀

)||| ≤ 2 in B
2
√
3
(0) ∩ {|u𝜀| ≤ 1∕2},

(H3) The nodal set can be represented as

u𝜀
∩ 2 = Γ𝜀

1
∪ Γ𝜀

2
= ∪1≤i≤2

{
z = f 𝜀

i
(x′ ), |x′| < 2

}
,

with f 𝜀
1
> f 𝜀

2
. Moreover, dist

(
Γ𝜀
1
,Γ𝜀

2

) ≥ 𝜀[ 1

a
(k1 − k2 )+ o(1)

]| ln 𝜀| for 𝜀 sufficiently small by Lemma 2.1

and (2.3),

(H4)
|||

(
u𝜀

)
(0)

||| = 1, and |u𝜀(0)| ≤ 1∕2.

Now we state the crucial curvature estimate in this subsection.

Theorem 2.5. Suppose {u𝜀} is a sequence of solutions satisfying (H1)–(H3) in B2(0). Then for all 𝜀 small enough,
we have

sup
{|u𝜀|≤1∕2}∩B1(0)

|||
(
u𝜀

)||| ≤ C𝜀𝛿0 ,

where 𝛿0 = min
{
1,
√
2(k1 − k2 )∕a− 1

}
> 0.

Proof. The proof of this theorem is similar to the discussions in [35, Sections 3–6]. It is worth pointing out that

the distance between different interfaces of u𝜀 in (H3) satisfies

dist
(
Γ𝜀
1
,Γ𝜀

2

) ≥ 𝜀[ 1
a
(k1 − k2 )+ o(1)

]| ln 𝜀| ≥
(
1+ 𝛿0√

2
+ o(1)

)
𝜀| ln 𝜀|.
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Therefore, the difference between u(x) := u𝜀(𝜀x) and the one-dimensional solution H can be modified to

the order of O
(
𝜀1+𝛿0

)
, which yields the desired curvature estimates. Next we divide the proof into four steps.

Step 1: Blowup. Let R = 𝜀−1 and note that u(x) = u𝜀(𝜀x). By (H1)–(H3), we obtain

(1) Δu = u3 − u in B
2
√
3R
(0),

(2) u ∩ 2R = ∪1≤i≤2 Γi = ∪1≤i≤2{z = Fi(x
′ ): |x′| < 2R}, where F1 > F2,

(3) |(u)| ≲ 𝜀, |∇Fi| ≲ 1 and |∇2Fi| ≲ 𝜀 in B22R(0) for 1 ≤ i ≤ 2,

(4) dist(Γ1,Γ2 ) ≥
[
1

a
(k1 − k2 )+ o(1)

]| ln 𝜀|.
Step 2: Approximate solution. Fix a function 𝜌 ∈ C∞

0
(−2, 2) with 𝜌 ≡ 1 in (−1, 1), |𝜌′|+ |𝜌′′| ≲ 1. We define the

one-dimensional approximate solution as in [35, Subsection 4.1]:

̄(t) := 𝜌
(

t

4| ln 𝜀|
)
H(t)+

[
1− 𝜌

(
t

4| ln 𝜀|
)]

sgnH(t), t ∈ (−∞,+∞).

Given a function hi ∈ C3(Γi), let

i

(
x′
i
, zi

)
:= ̄(

(−1)i−1
(
zi − hi

(
x′
i

)))
= ̄(

(−1)i−1(di
(
x′
i
, zi

)
− hi

(
x′
i

)
)
)
,

where
(
x′
i
, zi

)
are the Fermi coordinates with respect to Γi. Then we define the approximate solution ū in the

following way:

ū :=1 +2 + 1, in ∪1≤i≤20
i
(3R∕2) :=∪1≤i≤2

{|x′| < 3R∕2, |di| < |d j≠i| and |di| < 𝛿R}. (2.6)

Note that the second fundamental formwith respect to Γi, denoted byi, satisfies |i| ≤ 2𝜀, which implies

𝛿 < 1.

Step 3: Decay estimate of error term. Let 𝜙 := u− ū be the error between the solution u and the approx-

imate solution ū. By a similar argument as in Sections 3–6 of [35], we obtain that for any x ∈ BR(0) and

r ∈ (0,R∕60), the following estimate holds:

‖𝜙‖C2,1∕2(Br(x)) +max
1≤i≤2‖Hi,0 +Δi,0hi‖C1∕2(Γi∩Br(x)) +max

1≤i≤2‖hi‖C2,1∕2(Γi∩Br(x))
≲ 𝜀2 +max

1≤i≤2 max
Γi∩Br+50| ln 𝜀|2 (x)

e−
√
2Di , (2.7)

where Hi,0, Δi,0 and Di are defined similarly as in Subsection 3.1. The term 𝜀2 on the right hand depends on

|(u)| ≲ 𝜀 (or || ≲ 𝜀). Then we can take a = 1 if
√
2(k1 − k2 ) > 1 and a <

√
2(k1 − k2 ) if

√
2(k1 − k2 ) ≤ 1.

Combining Di ≥ 1

a
(k1 − k2 )| ln 𝜀| with (2.7), we deduce that

‖𝜙‖C2,1∕2(Br(x)) +max
1≤i≤2‖Hi,0 +Δi,0hi‖C1∕2(Γi∩Br(x)) +max

1≤i≤2‖hi‖C2,1∕2(Γi∩Br(x)) ≲ 𝜀1+𝛿0 ,
where 𝛿0 = min

{
1,
√
2(k1 − k2 )∕a− 1

}
> 0.

Step 4: Decay estimate of .Recall that (x1, y1, z1) are the Fermi coordinateswith respect toΓ1. Hence there

exists a fixed constant c0 > 0 such that0
1
(R) ∩ {|u| ≤ 1∕2} ⊂0

1
(R) ∩ {|z1| ≤ c0}. Using the lower bound of

D1 and the estimates of 𝜙 and h1, we obtain

ux1 = −(h1 )x1′
1
+ 𝜙x1 + (2 )x1 = O

(
𝜀1+𝛿0

)
,

uy1 = O
(
𝜀1+𝛿0

)
, uz1 = ′

1
+ 𝜙z1 + (2 )z1 ,

ux1x1 = −(h1 )x1x1′
1
+ (h1 )

2
x1
′′

1
+ 𝜙x1x1 + (2 )x1x1 = O

(
𝜀1+𝛿0

)
,

uy1 y1 , ux1 y1 , ux1z1 , uy1z1 = O
(
𝜀1+𝛿0

)
,

uz1z1 = ′′
1
+ 𝜙z1z1 + (2 )z1z1 .
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Therefore, we have

|∇u|2 = u2
z1
+ O

(
𝜀2+2𝛿0

)
,

and

|∇|∇u‖2 = |∇|∇u|2|2
4|∇u|2 = 1

4|∇u|2
[(
𝜕z1 |∇u|2)2 + O

(
𝜀2+2𝛿0

)]
= u2

z1z1
+ O

(
𝜀2+2𝛿0

)
.

On the other hand, the similar estimate holds for |∇2u|2:
|∇2u|2 = ∑

1≤ p,q,l,s≤3
g pqglsux p

1
xl
1
uxq

1
xs
1
= u2

z1z1
+ O

(
𝜀2+2𝛿0

)
,

where the induced metric g is defined similarly as in Appendix A, and gij denotes the inverse of g. Specially,

g13 = g23 = 0, and g33 = 1. Summarizing, we have

|(u)| ≲ 𝜀1+𝛿0 in {|u| ≤ 1∕2} ∩0
1
(R).

Similarly, the estimate above also holds in {|u| ≤ 1∕2} ∩0
2
(R). Upon rescaling, we then obtain |(u𝜀 )| ≲

𝜀𝛿0 in {|u𝜀| ≤ 1∕2} ∩ 1, which completes the proof. □

For any two-end solution uwith k1 − k2 >
√
2

2
, we can improve the decay order of curvature in Theorem 2.4

as follows:

Theorem 2.6. Assume u is a two-end solution to (1.3) in ℝ3 with k1 − k2 >
√
2∕2, there exists C̄ = C(k1, k2 ) and a

large constant R̄ = R(k1, k2 ) > R̃ such that

|(u)(x)| ≤ C̄|x′|−min
{
2,
√
2(k1−k2 )

}
, for x = (x′, z) ∈ {|u| ≤ 1∕2}∖

R
.

Proof. Fix x ∈ {|u| ≤ 1∕2}∖R̄. For any y ∈ B2(0), let us denote ux(y) := u
(
x+ |x′|

2
y

)
. By Theorem 2.4 (here a =

1), we have

|(ux )(y)| ≤ C, for any y ∈ {|ux| ≤ 1∕2} ∩ B2(0).

Note that ux satisfies (1.2) in B2(0) with 𝜀 = 2∕|x′|. Moreover, the distance between two interfaces of ux
satisfies

dist(Γ1,Γ2; ux ) ≥ 𝜀[1+ O
(
𝜀| ln 𝜀|)][(k1 − k2 )| ln 𝜀|+ c1 − c2 + o(1)

]
.

By a similar argument as in Theorem 2.5, we have

|(ux )(y)| ≤ C𝜀
min

{
1,
√
2(k1−k2 )−1

}
≤ C̄|x′|−min

{
1,
√
2(k1−k2 )−1

}
, for y ∈ {|ux| ≤ 1∕2} ∩ B1(0).

Rescaling back and taking y = 0, one gets

|(u)(x′, z)| ≤ C̄|x′|−min
{
2,
√
2(k1−k2 )

}
,

which completes the proof. □

3 Refined asymptotic behavior and Proof of Theorem 1.4

This section is dedicated to improving the approximationbetweenu andH andproving Theorem1.4. Throughout

this section, we assume that u is a two-end solution to (1.3) with k1 and k2 satisfying k1 − k2 ≥
√
2. In light of (1.4)

and the fact that |(x)| ≲ |x′|−2, we can use these to prove the first-order decay rate of |∇ f𝛼| as follows:
Lemma 3.1. There exist constants C

∗
= C

∗
(k1, k2) > 0 and R

∗
= R

∗
(k1, k2 ) > R̄ such that, for each 1 ≤ 𝛼 ≤ 2,

the following inequality holds:

|∇ f𝛼(x
′ )| ≤ C|x′|−1, for |x′| > R

∗
.
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Moreover, we have

∇ f𝛼(x
′ ) = k𝛼

x′

|x′|2 + o

(
1

|x′|
)
, for |x′| > R

∗
. (3.1)

Proof. For any |x′| > R̄, let e0 = x′∕|x′|. Then
|||∇ f𝛼(x

′ )−∇ f𝛼
(
x′ + te0

)||| ≤
t

∫
0

C

|x′ + se0|2 ds =
t

∫
0

C

(|x′|+ s)2
ds. (3.2)

By Lemma 2.1,∇ f𝛼 = o(1). Taking t→ +∞ in (3.2), we obtain |∇ f𝛼(x
′)| ≤ C|x′|−1.

To prove (3.1), we define G(x′) := f𝛼(x
′)− k𝛼 ln |x′|− c𝛼 , where c𝛼 is given by (1.4). Indeed, |G(x′)|→ 0 as

|x′|→∞.

Fix any |x′| = 2R ≥ 2R̄with |∇G(x′)| ≠ 0, and let e ∈ 𝕊1 such thatAngle
(
∇G(x′ ), e

) ≤ 𝜋

4
. Then for any 𝜇 ∈

(0,R], the mean value theorem yields a point x̄′ between x′ and x′ + 𝜇e such that

G
(
x′ + 𝜇e

)
− G

(
x′
)
= 𝜇𝜕eG(x̄′ ).

This leads to the key estimate:

|𝜕eG(x′)| ≤ |𝜕eG(x′ )− 𝜕eG(x̄′ )|+ |𝜕eG(x̄′ )|
≤ ‖∇2G‖L∞(B𝜇(x′))|x′ − x̄′|+ 2

𝜇
‖G‖L∞(B𝜇 (x′ ))

≤ (C̄ + 2|k𝛼|) 𝜇R2 +
2

𝜇
‖G‖L∞(BR(x′ )).

Since the angle condition gives 𝜕eG(x
′ ) ≥

√
2

2
|∇G(x′ )|. By choosing 𝜇 =

(
2‖G‖L∞ (BR (x

′ ) )

C̄+2|k𝛼 |
) 1

2
R ≤ R, we obtain

|∇G(x′ )| ≤ 4(C̄ + 2|k𝛼|) 12 ‖G‖
1

2

L∞(BR(x
′ ))
R−1 ≤ 8(C̄ + 2|k𝛼|) 12 ‖G‖

1

2

L∞(ℝ2∖BR(0))
|x′|−1.

Therefore, for any |x′| ≥ 2R̄ :=R
∗
, we establish the asymptotic decay estimate

∇ f𝛼(x
′ )− k𝛼

x′

|x′|2 = o

(
1

|x′|
)
.

□

Combining Theorem 2.6 and Lemma 3.1, we obtain

u∖R1
= ∪1≤𝛼≤2Γ𝛼 = ∪1≤𝛼≤2

{
z = f𝛼(x

′ ): |x′| > R1
}
,

where R1 ≥ R
∗
+ 1 and f1 > f2. Moreover, we have

|∇ f𝛼(x
′ )|2 + |∇2 f𝛼(x

′ )|+ |(x′, z)| ≲ |x′|−2, for (x′, z) ∈ {|u| ≤ 1∕2}∖R1
. (3.3)

3.1 Fermi coordinates

In this subsection we consider the Fermi coordinates with respect to Γ𝛼 . A neighborhood of Γ𝛼 can be

parametrized as (
x′
𝛼
, z𝛼

)
⟼ x = (x′

𝛼
, f𝛼

(
x′
𝛼

)
)+ z𝛼𝜈𝛼(x

′
𝛼
, f𝛼

(
x′
𝛼

)
).

Here, x′
𝛼
= (x𝛼, y𝛼 ) and 𝜈𝛼(x

′
𝛼
, f𝛼

(
x′
𝛼

)
) is a unit normal vector toΓ𝛼 . The term z𝛼 = d𝛼

(
x′
𝛼
, z𝛼

)
represents the

signed distance toΓ𝛼 , which is positivewhenx lies aboveΓ𝛼 . For the detailed definition of Fermi coordinates and
the expansion of the Laplace operator in terms of these coordinates, we refer the reader to Appendix A. By (3.3),

the Fermi coordinates are well-defined and smooth in the region 𝛼 :={(
x′
𝛼
, z𝛼

)
: |z𝛼| < 𝛿|x′𝛼|, |x′𝛼| > R1 + 1

}
for some 𝛿 > 1.
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Notation 3.2. We introduce some notations.

– Given the Fermi coordinates
(
x′
𝛼
, z𝛼

)
with respect to Γ𝛼 , let d𝛽

(
x′
𝛼
, z𝛼

)
denotes the distance from the point

(x′
𝛼
, f𝛼

(
x′
𝛼

)
)+ z𝛼𝜈

(
x′
𝛼

)
to Γ𝛽 . Define D𝛼

(
x′
𝛼

)
:=min𝛽≠𝛼|d𝛽(x′𝛼, 0)|.

– The covariant derivative on Γ𝛼,z𝛼 =
{
X + z𝛼𝜈

(
x′
𝛼

)
:X ∈ Γ𝛼

}
with respect to the induced metric is denoted

by∇z𝛼
or∇𝛼,z𝛼 .

– We use B𝛼
r

(
x′
𝛼

)
to denote the open ball on Γ𝛼 with center

(
x′
𝛼
, 0

)
and radius r, which is measured with

respect to intrinsic distance.

– For 𝜆 ∈ ℝ, let
𝜆

1
(r) :=

{|x′
1
| > r, |d1| < |d2|+ 𝜆 and |d1| < 𝛿|x′𝛼|},

𝜆
2
(r) :=

{|x′
2
| > r, |d2| < |d1|+ 𝜆 and |d2| < 𝛿|x′𝛼|}.

Then, for 𝛼 = 1, 2, there exist two continuous functions 𝜌±
𝛼
such that

0
𝛼
(r) =

{(
x′
𝛼
, z𝛼

)
: |x′
𝛼
| > r, 𝜌−

𝛼

(
x′
𝛼

)
< z𝛼 < 𝜌

+
𝛼

(
x′
𝛼

)}
.

In particular, 𝜌+
1

(
x′
𝛼

)
= 𝛿|x′

𝛼
| and 𝜌−

2

(
x′
𝛼

)
= −𝛿|x′

𝛼
|.

– Given X ∈ ℝ3∖R1+2, (Π𝛼(X), f𝛼(Π𝛼(X))) denotes the nearest point on Γ𝛼 to X. By the definition of

Fermi coordinates, the nearest point Π𝛼(X) for each X is unique. But sometimes we also use Π𝛼(X) for
(Π𝛼(X), f𝛼(Π𝛼(X))).

The Laplacian operator in Fermi coordinates has the following form:

Δℝ3 = Δ𝛼,z𝛼 − H𝛼
(
x′
𝛼
, z𝛼

)
𝜕z𝛼 + 𝜕z𝛼z𝛼 , in 𝛼,

where H𝛼
(
x′
𝛼
, z𝛼

)
is the mean curvature of Γ𝛼,z𝛼 andΔ𝛼,z𝛼 is the Laplace–Beltrami operator on Γ𝛼,z𝛼 . That is,

Δ𝛼,z𝛼 =
∑

1≤i, j≤2
1√

det(g𝛼
(
x′
𝛼
, z𝛼

)
)
𝜕
x
j
𝛼

(√
det(g𝛼

(
x′
𝛼
, z𝛼

)
)g

i j
𝛼

(
x′
𝛼
, z𝛼

)
𝜕xi
𝛼

)
, in 𝛼, (3.4)

here
(
x1
𝛼
, x2
𝛼

)
:= (x𝛼, y𝛼 ) = x′

𝛼
.

Similar to Lemma 8.1–8.3 in [32], we have the following results. For simplicity, we omit the details.

Lemma 3.3. For x = (x′, z) ∈ {|u| ≤ 1∕2}∖R1+2, we have |∇|C1,1∕2(B1(x)) ≲ |x′|−2.
Lemma 3.4. For any function 𝜑 ∈ C2

(
Γ𝛼∖R1+2

)
, we have

|Δ𝛼,z𝛼𝜑−Δ𝛼,0𝜑| ≲ |x′
𝛼
|−2|z𝛼|

(|∇2
𝛼,0
𝜑|+ |∇𝛼,0𝜑|

)
.

Lemma 3.5. For any X = (x′, z) ∈
{
x: dist(x,u ) ≲ ln |x′|}∖R1+4 and 𝛼 ≠ 𝛽 , we have

– distΓ𝛼 (Π𝛼 ⚬Π𝛽 (X ),Π𝛼(X )) = O(ln |x′|∕|x′|),
– |d𝛽 (Π𝛼(X))| = |d𝛼(X)− d𝛽 (X)|+ O(ln |x′|∕|x′|).

3.2 Approximate solution

We define the approximate solution as follows. Fix a function 𝜌 ∈ C∞
0
(−2, 2) with 𝜌 ≡ 1 in (−1, 1). For |x′| > 2R1,

let

H̄x′ (t) := 𝜌
(

t

4 ln |x′|
)
H(t)+

[
1− 𝜌

(
t

4 ln |x′|
)]

sgnH(t), t ∈ (−∞,+∞).

We call H̄x′ the approximate solution to the one dimensional Allen–Cahn equation. An easy computation

shows that

H̄′′
x′
−W ′(H̄x′

)
= 𝜉x′ , (3.5)
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where

spt
(
𝜉x′ (x

′, ⋅)
)
⊂ {(x′, z):−8 ln |x′| < |z| < 8 ln |x′|}, and |𝜉|+ |𝜉′|+ |𝜉′′| ≲ |x′|−4√2.

Moreover, we have

∫
ℝ

H̄′2
x′
(t)dt = 𝜎0 + O

(|x′|−8√2
)
.

Given a function h𝛼 ∈ C3(Γ𝛼), we define

𝛼(x′𝛼, z𝛼) := H̄x′
𝛼

(
(−1)𝛼−1

(
z𝛼 − h𝛼

(
x′
𝛼

)))
= H̄x′

𝛼

(
(−1)𝛼−1(d𝛼

(
x′
𝛼
, z𝛼

)
− h𝛼

(
x′
𝛼

)
)
)
,

where
(
x′
𝛼
, z𝛼

)
are the Fermi coordinates with respect to Γ𝛼 . Sometimes we ignore the subscript x′𝛼 and simply

denote H̄x′
𝛼
as H̄. Then we can define the approximate solution

ū :=1 +2 + 1, in 0
1
(3R1∕2) ∪0

2
(3R1∕2),

and define the error function 𝜙 := u− ū.

The following proposition states the existence of the small perturbation term h.

Proposition 3.6. For each 𝛼, there exists h𝛼 ∈ C3(Γ𝛼∖3R1∕2 ) satisfying ‖h𝛼‖C3(Γ𝛼∖3R1∕2) = o(1) such that

∫
ℝ

𝜙
(
x′
𝛼
, z𝛼

)′
𝛼

(
x′
𝛼
, z𝛼

)
dz𝛼 = 0, for any |x′

𝛼
| > 2R1. (3.6)

Proof. We refer to [35] for a proof of this result. □

For each 𝛽 , we define the following expressions in the Fermi coordinates with respect to Γ𝛽 :

𝜉𝛽

(
x′
𝛽
, z𝛽

)
:= 𝜉

(
(−1)𝛽−1(z𝛽 − h𝛽

(
x′
𝛽

)
)
)
,

𝛽,1
(
x′
𝛽
, z𝛽

)
:=H𝛽

(
x′
𝛽
, z𝛽

)
+Δz𝛽

h𝛽

(
x′
𝛽

)
,

𝛽,2
(
x′
𝛽
, z𝛽

)
:= |∇z𝛽

h𝛽

(
x′
𝛽

)|2.
Then 𝜙 satisfies the following equation in the Fermi coordinates with respect to Γ𝛼 :

Δz𝛼
𝜙− H𝛼

(
x′
𝛼
, z𝛼

)
𝜕z𝛼𝜙+ 𝜕z𝛼z𝛼𝜙−W ′′(𝛼 )𝜙

= W ′(ū+ 𝜙)−W ′(ū)−W ′′(ū)𝜙
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1

+ (W ′′(ū)−W ′′(𝛼 ))𝜙
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

+ W ′(ū)−
∑
1≤𝛽≤2

W ′(𝛽 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3

+ (−1)𝛼−1
[
H𝛼

(
x′
𝛼
, z𝛼

)
+Δz𝛼

h𝛼
(
x′
𝛼

)]′
𝛼

(3.7)

−′′
𝛼
|∇𝛼,z𝛼h𝛼|2 +

∑
𝛽≠𝛼

[
(−1)𝛽−1′

𝛽
𝛽,1 −′′

𝛽
𝛽,2

]
−

∑
𝛽

𝜉𝛽 , in 0
𝛼
(3R1∕2).

An easy computation shows that

1 = (3ū+ 𝜙)𝜙2, 2 = 3(ū−𝛼 )(ū+𝛼 )𝜙, 3 = 3(1 + 1)(2 + 1)(1 +2 ). (3.8)

Then for
(
x′
𝛼
, z𝛼

)
∈ 1

𝛼
(2R1 − 2), we have the following estimates:
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‖1‖C1∕2(B1(x′𝛼 ,z𝛼)) ≲ ‖𝜙‖2
C1∕2(B1(x′𝛼 ,z𝛼))

, ‖3‖C1∕2(B1(x′𝛼 ,z𝛼)) ≲ max
B𝛼
2 (x′𝛼)

e−
√
2D𝛼 ,

‖2‖C1∕2(B1(x′𝛼 ,z𝛼)) ≲ max
B𝛼
2 (x′𝛼)

e−
√
2D𝛼 + ‖𝜙‖2

C1∕2(B1(x′𝛼 ,z𝛼))
.

(3.9)

An essential observation is that we can control h𝛼 in terms of 𝜙.

Lemma 3.7. For each 𝛼 and
(
x′
𝛼
, 0

)
∈ Γ𝛼∖2R1−2 in Fermi coordinates, we have

‖h𝛼‖C2,1∕2(B𝛼1 (x′𝛼)) ≲ ‖𝜙‖C2,1∕2(B1(x′𝛼 ,0)) + sup
B𝛼
2 (x′𝛼)

e−
√
2D𝛼 , (3.10)

‖∇𝛼,0h𝛼‖C1,1∕2(B𝛼1 (x′𝛼)) ≲ ‖∇𝛼,0𝜙‖C1,1∕2(B1(x′𝛼 ,0)) (3.11)

+
(
|x′
𝛼
|−1 + max

1≤𝛾≤2‖∇𝛾,0h𝛾‖C1,1∕2(B𝛾2 (Π𝛾 (x𝛼 ,0)))
)
⋅ sup
B𝛼
2 (x′𝛼)

e−
√
2D𝛼 .

Proof. Without loss of generality wemay assume that (𝛼, 𝛽) = (1, 2) and
(
x′
𝛼
, z𝛼

)
are the Fermi coordinates with

respect to Γ𝛼 . Using u
(
x′
𝛼
, 0

)
= 0 and the definition of 𝜙, one gets

𝜙
(
x′
𝛼
, 0

)
= −

[
H(−h𝛼

(
x′
𝛼

)
)+ (2 + 1)

]
, (3.12)

which yields

|h𝛼(x′𝛼)| ≲ |𝜙(x′
𝛼
, 0

)|+ sup
B𝛼
1 (x′𝛼)

e−
√
2D𝛼 .

By differentiating (3.12), we obtain

∇𝛼,0𝜙
(
x′
𝛼
, 0

)
= H′(h𝛼

(
x′
𝛼

)
)∇𝛼,0h𝛼

(
x′
𝛼

)
+′

2
∇𝛼,0(z2 − h2 ⚬Π2 )(x

′
𝛼
, 0). (3.13)

Applying the chain rule yields

𝜕z2
𝜕x𝛼

= 𝜕z2
𝜕x

𝜕x

𝜕x𝛼
+ 𝜕z2
𝜕y

𝜕y

𝜕x𝛼
+ 𝜕z2
𝜕z

𝜕z

𝜕x𝛼
= O

(|x′
𝛼
|−1),

and similarly
𝜕z2
𝜕 y𝛼

= O
(|x′
𝛼
|−1). Therefore, we have

|∇𝛼,0h𝛼(x′𝛼)| ≲ |∇𝛼,0𝜙(x′𝛼, 0)|+
(
|x′
𝛼
|−1 + ‖∇𝛽,0h𝛽‖C1,1∕2(B𝛽

1 (Π𝛽(x𝛼 ,0))
)
)
sup
B𝛼
1 (x′𝛼)

e−
√
2D𝛼 .

Analogous calculations yield estimates for the second order derivatives and the Hölder norms. □

3.3 Projection integral

In this subsection, we deal with the projection of (3.7) onto′
𝛼
and then use Lemma 3.7 to derive an upper bound

for H𝛼
(
x′
𝛼
, 0

)
+Δ𝛼,0h𝛼

(
x′
𝛼

)
. The detailed calculations are provided in Appendix B.
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Lemma 3.8. For any x = (x′, z) ∈ 1
𝛼
(5R1∕2) and r ∈

(
0, |x′|− 2R1

)
, we have

max
1≤𝛾≤2∥H

𝛾,0 +Δ𝛾,0h𝛾∥C1∕2(Γ𝛾∩Br(x)) ≲ (|x′|− 2r)−4 + ∥𝜙∥2
C2,1∕2

(
B2r+8 ln |x′ |(x)

)

+ max
1≤𝛾≤2 sup

Γ𝛾∩B2r+8 ln |x′ |(x)
e−

√
2D𝛾 (3.14)

+ max
1≤𝛾≤2∥H

𝛾,0 +Δ𝛾,0h𝛾∥2
C1∕2

(
Γ𝛾∩B2r+8 ln |x′ |(x)

),

where H𝛾,0 = H𝛼
(
x′
𝛾
, 0

)
.

Remark 3.9. Note that the exponent−4 in the term (|x′|− 2r)−4 of this inequality is optimalwithin the condition

(3.3), where |(x′, z)| ≲ |x′|−2.

3.4 Estimates on𝝓

In this subsection, we prove the C2,1∕2 estimate for𝜙 as shown in Proposition 3.11. We divide the estimation of𝜙

into two regions: near and far from the nodal set, which correspond to the inner and outer problem respectively.

The operator corresponding to the outer problem is −Δ+
(
2+ o(1)

)
, while the inner problem requires the

orthogonality condition for 𝜙. For brevity, the detailed proofs are provided in Appendix C.

The main result is the following iterative inequality:

Proposition 3.10. There exist constants R2 > 3R1, 𝜎 < 1∕e and C > 0, such that for any r > R2,

‖𝜙‖C2,1∕2(ℝ3∖r ) + max
1≤𝛾≤2∥H

𝛾,0 +Δ𝛾,0h𝛾∥C1∕2(Γ𝛾∖r )

≤ C(r − 10 ln r)−4 + Cmax
1≤𝛾≤2 sup

Γ𝛾∖r−10 ln r

e−
√
2D𝛾

+ 𝜎
{

‖𝜙‖C2,1∕2(r−10 ln r )
+ max

1≤𝛾≤2∥H
𝛾,0 +Δ𝛾,0h𝛾∥C1∕2(Γ𝛾∖r−10 ln r )

}
.

An iteration of this inequality from r to r − 50(ln r)2 leads to Proposition 3.11. In the process, we utilize the

fact that D𝛾

(
x′
𝛾

)
=

(
1+ O

(|x′
𝛾
|−2))[(k1 − k2

)
ln |x′

𝛾
|+ c1 − c2 + o(1)

]
in Γ𝛾∖R2 .

Proposition 3.11. There exist R2 > 4R1 and C > 0, such that for all r > R2, we have

‖𝜙‖C2,1∕2(ℝ3∖r ) + max
1≤𝛾≤2∥H

𝛾,0 +Δ𝛾,0h𝛾∥C1∕2(Γ𝛾∖r ) ≤ Cr
−min

{
4,
√
2(k1−k2 )

}
. (3.15)

3.5
∑

1≤𝜶≤2 k𝜶 = 0 and symmetry

Recall that k1 − k2 ≥
√
2. We will first present the asymptotic expansions of the derivatives of u, which will be

useful for later calculations.

Lemma 3.12. There exists R3 > R2 such that for 1 ≤ 𝛼 ≤ 2 and R > R3, in0
𝛼
(R), the following holds:

ux(x
′, z) = −

[
k𝛼

x𝛼|x′
𝛼
|2 + o

(
1

|x′
𝛼
|
)]
𝜌̄
(
x′
𝛼
, z𝛼

)
H′(z𝛼 )+ O

(|x′
𝛼
|−2)+ O

(
e−

√
2|z𝛽 |

)
,

uy(x
′, z) = −

[
k𝛼

y𝛼|x′
𝛼
|2 + o

(
1

|x′
𝛼
|
)]
𝜌̄
(
x′
𝛼
, z𝛼

)
H′(z𝛼 )+ O

(|x′
𝛼
|−2)+ O

(
e−

√
2|z𝛽 |

)
,
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uz(x
′, z) = 𝜌̄

(
x′
𝛼
, z𝛼

)
H′(z𝛼 )+ O

(|x′
𝛼
|−2)+ O

(
e−

√
2|z𝛽 |

)
,

where
(
x′
𝛾
, z𝛾

)
are the Fermi coordinates with respect to Γ𝛾 , 𝜌̄

(
x′
𝛾
, z𝛾

)
:= 𝜌

(
z𝛾

4 ln |x′
𝛾
|
)
and 𝛽 ≠ 𝛼.

Proof. It suffices to show that the first equality holds in0
1
(R) with f1 replaced by f . Combining Proposition 3.11

and the lower bound on D𝛼 , for any R > R3, we have

‖𝜙‖C2,1∕2(ℝ3∖R ) +max
𝛼

‖h𝛼‖C2,1∕2(Γ𝛼∖BR(0)) + max
1≤𝛼≤2 sup

Γ𝛼∖BR(0)
e−

√
2D𝛼 ≲ R−min{4,

√
2(k1−k2 )},

Note that in0
1
(R) =

{|x′
1
| > R:−D1(x′1)

2
< z1 < 𝛿

|||x′1|||
}
, u = 1 + (2 + 1)+ 𝜙. Using the fact that

𝜕z1
𝜕x

= fx1

(
x′
1

)
⋅
(
−1+ r−2O

(
1+ |z1|)), and

𝜕z1
𝜕y

= fy1

(
x′
1

)
⋅
(
−1+ r−2O

(
1+ |z1|)),

we obtain

ux = O
(|x′

1
|−d0)+ O

(
e−

√
2z2

)
− 𝜌̄H′

1
⋅ (h1 )x1

𝜕x1
𝜕x

− 𝜌̄H′
1
⋅ (h1 )y1

𝜕y1
𝜕x

+ 𝜌̄H′
1

𝜕z1
𝜕x

= O
(|x′

1
|−d0)+ O

(
e−

√
2z2

)
+ 𝜌̄

(
x′
1
, z1

)
H′(z1 )

𝜕z1
𝜕x
,

where d0 = min{4,
√
2(k1 − k2 )}, H1 = H(z1 − h1). Similarly, we have

uy = O
(|x′

1
|−d0)+ O

(
e−

√
2z2

)
+ 𝜌̄

(
x′
1
, z1

)
H′(z1 )

𝜕z1
𝜕y
,

and

uz = O
(|x′

1
|−d0)+ O

(
e−

√
2z2

)
+ 𝜌̄

(
x′
1
, z1

)
H′(z1 )

(
1+ r−2O

(
1+ |z1|))

= O
(|x′

1
|−2)+ O

(
e−

√
2z2

)
+ 𝜌̄

(
x′
1
, z1

)
H′(z1 ).

Finally, by using (3.1), we obtain

ux = O
(|x′

1
|−min{d0,3}

)
+ O

(
e−

√
2z2

)
− 𝜌̄H′(z1 )

[
k1

x1|x′
1
|2 + o

(
1

|x′
1
|
)]

.

A similar result can be derived for uy. □

Next, we apply this lemma to show that k1 + k2 = 0 as follows:

Lemma 3.13. The equality k1 + k2 = 0 holds for any two-end solution u with k1 − k2 ≥
√
2.

Proof. To prove this lemma, we require the balancing formula for solutions of (1.3), which was introduced in

[27]:

div
((

1

2
|∇u|2 +W(u)

)
X − X(u)∇u

)
= 0,

where X is any Killing vector fields in ℝ3. Let us choose X = (0, 0, 1) and integrate the above identity over R.
This yields:

∫
𝜕R

uz

(
x

|x′|ux +
y

|x′|uy
)
dS = 0. (3.16)
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Combining Lemma 3.5 and Lemma 3.12, along with the relations |x′ − x′
1
| = O

(|z1|∕|x′1|) and z1 = (1+
O
(|x′|−2))(z− f1(x

′ )), we obtain that for any R > R3, in0
1
(R)

ux = O
(|x′|−2)+ O

(
e−

√
2(z− f1(x

′ ))e−
√
2D1

)
−

[
k1

x

|x′|2 + o

(
1

|x′|
)]
𝜌H′(z− f1(x

′ )),

where 𝜌 = 𝜌
(
z− f1(x

′ )

4 ln |x′|
)
. A similar equation holds for uy and uz. Therefore

uz

(
xux + yuy|x′|

)
= (−k1 + o(1))

𝜌2

|x′|H′2(z− f1 )+ O

(
1

|x′|2
)
𝜌H′(z− f1 )

+ O
(
𝜌e−

√
2(z− f1 )H′(z− f1 )

)
e−

√
2D1 + O

(
e−2

√
2(z− f1 )e−2

√
2D1

)
+ O(|x′|−4 ), in 0

1
(R).

Next, we calculate the integral (3.16) in the following three cases:

Case I: In 1 :=0
1
(R) ∩ {|x′| = R̂} with R̂ > R+ 1. Then

∫
1
uz

(
xux + yuy|x′|

)
dS

=
(
−k1 + o(1)

) 2𝜋

∫
0

(1+o(1))𝛿R̂

∫
− 1+o(1 )

2
[(k1−k2 ) ln R̂+c1−c2]

1

R̂
𝜌2

(
s

4 ln R̂

)
H′2(s)R̂dsd𝜃 + O

(
R̂−1

)

= −2𝜋(k1 + o(1))𝜎0 + O
(
R̂−1

)
.

The integral over 2 = 0
2
(R) ∩ {|x′| = R̂} can be calculated by a similar argument, we omit the details.

Case II: In 3 :={|x′| = R̂}∖
(
∪1≤𝛼≤20

𝛼
(R)

)
, by Lemma 2.3, we have

|||||||∫3
uz

(
xux + yuy|x′|

)
dS

|||||||
≤ ∫(

{z− f1>(1+o(1))𝛿R̂}∪{z− f2<−(1+o(1))𝛿R̂}
)
∩{|x′|=R̂}

|∇u|2

≲

2𝜋

∫
0

∑
1≤𝛼≤2∫{(−1)𝛼−1(z− f𝛼 )>(1+o(1))𝛿R̂}

R̂e−2𝜈|z− f𝛼 |

≲

+∞

∫
(1+o(1))𝛿R̂

R̂e−2𝜈sds = O
(
R̂e−2𝜈𝛿R̂

)
.

Summarizing, we have

0 = −2𝜋𝜎0
∑
1≤𝛼≤2

(
k𝛼 + o(1)

)
+ O

(
R̂−1

)
+ O

(
R̂e−2𝜈𝛿R̂

)
. (3.17)

Taking R̂→ +∞, which yields k1 + k2 = 0. □

Finally, we use the moving plane method to prove Theorem 1.4 and the proof is given in Appendix D.

4 The nonexistence of two-end solutions

In this section, we improve upon the results of [40, Theorem 3] and explore the nonexistence of two-end solu-

tions. We divide the discussion into two cases:−
√
2

2
< k2 < k1 <

√
2

2
and k1 = −k2 =

√
2

2
. For the former case, we
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primarily use the maximum principle to prove the nonexistence of two-end solutions, while for the latter case,

we prove nonexistence by analying the Toda system satisfied by the nodal set.

4.1 The case of−
√
2

2
< k2 < k1 <

√
2

2

Let’s first assume that uk is a two-end solution to (1.3) with k := k1 = −k2 <
√
2

2
. By Definition 1.3, there exists

R0 > 0 depending on uk , such that

⎧⎪⎨⎪⎩
uk

∩
{|x′| ≤ R0

}
⊂ {|z| ≤ R0},

uk
∩

{|x′| > R0
}
=

{
(x′, z): z = ki ln |x′|+ ci + o(1), |x′| > R0

}
,

(4.1)

where ci ∈ ℝ depends on uk . The following theorem asserts that such uk does not exist.

Theorem 4.1. There is no two-end solution to (1.3) with growth rate k1 = −k2 <
√
2

2
.

Proof. The proof consists of two steps.

Step 1.We first assert that there is l0 >
√
2 such that uk ≥ ul0 in ℝ3.

We begin by recalling the axially symmetric two-end solution ul, established in Theorem 1.4, where the

growth rate l is sufficiently close to
√
2. From the discussion in Subsection 4.1 of [40], we know that the axially

symmetric two-end solution u := u𝜀, which belongs to of Toda type, satisfies the following conditions:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

The growth rate of u𝜀 is close to and greater than
√
2,

u𝜀
∩ {r = |x′| ≥ 0, z ≥ 0} = {(r, z): z = f1(r)}, and f ′

1
(r) > 0,

f1(0) = −
√
2

2
ln 𝜀, where 𝜀 > 0 is a small enough constant to be determined,

f1(r) = q(r)+ O(𝜀𝛼 ) in (0, b := | ln 𝜀|∕𝜀), for some 𝛼 > 0,

f1(r) ≥ q(r)+ O(| ln 𝜀|−2 ) in (b,∞),

where q = q(r) = 1

2
√
2
ln

(1+a𝜀2r2 )2
8

−
√
2

2
ln 𝜀 and a > 0 is a fixed constant.

In the following, we will prove

uk
∩ {z ≥ 0} lies aboveu𝜀

∩ {z ≥ 0} and dist(uk
,u𝜀

)≫ 1, (4.2)

for some 𝜀−1 > R0 sufficiently large. For r = |x′| ∈ [0,R0],

q(r)− R0 ≥
√
2

2
| ln 𝜀|− R0 ≫ 1, if 𝜀 is small.

On the other hand, for r = |x′| ∈ (
R0, 𝜀

−1),
q(r)−

(
k ln |x′|+ c1

) ≥ q(0)−
(
k ln 𝜀−1 + c1

)

=
(√

2∕2− k
)| ln 𝜀|− c1 ≫ 1, if 𝜀 is small.

Finally, for unbounded regions r = |x′| ∈ [𝜀−1,+∞),

q(r)−
(
k ln |x′|+ c1

)
=

√
2

2
ln
(
1

𝜀r
+ a𝜀r

)
+

(√
2∕2− k

)
ln r − (

√
2 ln 8)∕4− c1

≥ (√
2∕2− k

)| ln 𝜀|−
√
2

4
ln
a

4
− c1 ≫ 1, if 𝜀 is small.
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Figure 1: Tubular neighborhoods of
ul0

and
uk
in the first quadrant.

By choosing 𝜀 sufficiently small, we obtain the desired result. Similar to (4.2), uk
∩ {z ≤ 0} lies below

u𝜀
∩ {z ≤ 0}. At this point, we could write ul0 instead of u𝜀, where l0 >

√
2 is the rate of ul0 .

Next, we set𝑤l0
= uk − ul0 . To prove𝑤l0

≥ 0, we decompose ℝ3 into the following five regions:

1 =
{
ul0 > 1∕

√
2
}
, 2 =

{|ul0 | < 1∕
√
2
}
, 3 =

{
ul0 < −1∕

√
2, uk > 1∕

√
2
}
,

4 =
{|uk| < 1∕

√
2
}
, 5 =

{
uk < −1∕

√
2
}
,

then 2 and 4 represent the tubular neighborhoods of ul0
and uk

, respectively, with finite width, as illus-

trated in Figure 1. It is worth noting that uk
is not necessarily a global graph with respect to variable r.

Therefore, in {r < R0}, we representuk
as an irregular curve in Figure 1.

Combining (2.1) and the fact that dist (uk
,ul0

)≫ 1, we have𝑤l0
> 0 in ∪2≤i≤4i. Thus, we only need to

prove that𝑤l0
≥ 0 in 1 ∪5. Note that𝑤l0

satisfies the following equation:

−Δ𝑤l0
+ cl0𝑤l0

= 0 in ℝ3, cl0 = u2
k
+ ukul0 + u2

l0
− 1 > 1∕2 in 1 ∪5,

𝑤l0
≥ 0 on 𝜕(1 ∪5 ), 𝑤l0

(x) ≥ 0 as x ∈ 1 ∪5 and |x|→∞.

Hence, the negative minimum point of𝑤l0
must occur outside 1 ∪5. By the strong maximum principle,

this implies𝑤l0
> 0 in ℝ3.

Step 2. Let l = sup
{
l:𝑤s ≥ 0 in ℝ3, for all s ∈ [l0, l)

}
. In the following, we will prove that l < +∞, and

𝑤
l
≡ 0 by the strong maximum principle.

According to [38], we know that ul
is closed to the catenoid

{
(r, z): l−1r = cosh

(
l−1z

)}
, for sufficiently

large l. Consequently, uk
and ul

intersect but are not tangent. In other words, 𝑤l changes its sign in ℝ3 for

sufficiently large l. Therefore l < +∞.

By the definition of l , there is a sequence l( j) > l such that l( j)→ l and 𝑤l( j) < 0 at some points. Now, we

assert that the set of negative minimum points of𝑤l( j) is bounded. Using (2.1) again, there is a positive constant

A > 0, such that for i ∈ {k, l(j)}

|ui(x)| > 1∕
√
2, provided dist

(
x,ui

)
> A.

Since l( j) >
√
2 > k, there exists a sufficiently large constant Rk,l( j) > 0 such that for 1 ≤ 𝛼 ≤ 2,

| f l( j)𝛼 (x′ )| > | f k
𝛼
(x′ )|+ 2A > 4A, for any |x′| > Rk,l( j).

Hence inΩ1:=
({

uk ⋅ ul( j) < 0
}⋃{|uk| ≤ 1∕

√
2 or |ul( j)| ≤ 1∕

√
2
})

∖Rk,l( j ) , we have𝑤l( j) > 0.

Denote the regionsΩ2 andΩ3 as shown in Figure 2:

Ω2 :=
{
uk, ul( j) > 1∕

√
2
}
, Ω3 :=

{|x′| ≥ Rk,l( j): uk, ul( j) < −1∕
√
2
}
.
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Figure 2: The regionΩ
i
in the first quadrant.

In this case,𝑤l( j) also satisfies the following equation:

−Δ𝑤l( j) + cl( j)𝑤l( j) = 0 in ℝ3, cl( j) = u2
k
+ ukul( j) + u2

l( j)
− 1 > 1∕2 in Ω2 ∪Ω3,

𝑤l( j) ≥ 0 on 𝜕(Ω2 ∪Ω3 ), 𝑤l( j)(x) ≥ 0 as x ∈ Ω2 ∪Ω3 and |x|→∞.

By a contradiction argument, it is straightforward to verify that𝑤l( j) cannot attain its negative minimum in

Ω2 ∪Ω3. Summarizing these results, we have

 :=
{
xl( j):𝑤l( j)

(
xl( j)

)
= inf𝑤l( j) < 0, j ∈ ℕ

}
⊂ ℝ3∖(∪1≤i≤3Ωi ) ⊂ BCk,l( j ) (0),

where C2
k,l( j)

= R2
k,l( j)

+
(
l( j) lnRk,l( j) + 2A

)2
. Notably, Ck,l( j) depends on k and l(j) continuously. Consequently, 

is a bounded set. Up to a subsequence, which we do not rename, xl( j) converges to a finite point x and𝑤l
(x) = 0.

Applying the strongmaximumprinciple, we conclude that𝑤
l
≡ 0 inℝ3. This implies that uk ≡ u

l
with l >

√
2 >

k, which contradicts the hypothesis (1.4). □

Remark 4.2. We emphasize that, although Theorem 4.1 only establishes the nonexistence of small-rate solutions

satisfying k1 = −k2 <
√
2

2
, the proof remains valid for solutions satisfying −

√
2

2
< k2 < k1 <

√
2

2
. Consequently,

we obtain the following corollary.

Corollary 4.3. There is no two-end solution to (1.3) with −
√
2

2
< k2 < k1 <

√
2

2
.

4.2 The case of k1 = −k2 =
√
2

2

Assume u is a two-end solution with k1 = −k2 =
√
2

2
. By Theorem 2.6 and Proposition 3.11, there exists a suffi-

ciently large constant R̄ > 0 such that

|(u)(x)| ≲ |x′|−2, in {|u| ≤ 1∕2}∖R̄,
and for any R > R̄,

‖𝜙‖C2,1∕2(ℝ3∖R ) +max
1≤i≤2‖Hi,0 +Δi,0hi‖C1∕2(Γi∖BR(0)) ≲ R−2. (4.3)

The following theorem also asserts that such u does not exist.

Theorem 4.4. There is no two-end solution to (1.3) with k1 − k2 =
√
2.

To prove this theorem, we need to recalculate the projection of (3.7) and derive the exact Toda system.
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Lemma 4.5. There is a sufficiently large R4 > R3, such that for 1 ≤ i ≤ 2 and in Γi∖BR4 (0),

Hi,0 +Δi,0hi = (−1)i 16
𝜎0
e−

√
2Di

(
x′
i

)
+ O

(
e−

3

2

√
2Di

(
x′
i

))

= (−1)i
(
16e

√
2(c2−c1 )∕𝜎0 + o(1)

)|x′
i
|−2,

where c1 and c2 are defined similarly to (4.1). Moreover, we also have

Hi
(
x′
i
, 0

)
= Hi,0 = (−1)i

(
16e

√
2(c2−c1 )∕𝜎0 + o(1)

)|x′
i
|−2. (4.4)

Wewill momentarily postpone the proof of the lemma and instead demonstrate how it implies Theorem 4.4.

It should be noted that when k1 − k2 =
√
2, the right side of (4.4) has the principal term |x′

i
|−2. Integrating (4.4)

over BR∖Br ⊂ ℝ2 yields

(−1)i ∫
𝜕(BR∖Br )

∇ fi
(
x′
i

)
√
1+ |∇ fi|2

⋅ 𝜈ds =
(
32𝜋

𝜎0
e
√
2(c2−c1 ) + o(1)

)
ln
R

r
.

By Lemma 3.1, we now take R = r2 →∞, which leads to the contradiction 1 ≳∞. Therefore the proof of

Theorem 1.5 is completed by combining Corollary 4.3 with Theorem 4.4.

Finally, let’s proceed to prove Lemma 4.5.

Proof of Lemma 4.5. In view of Appendix B, it suffices to compute the projection of 3 onto ′
1
, as the integrals

of the remaining terms are of higher order. Let  = W ′(ū)−∑
1≤i≤2W ′(i ). Then

 = 3(1 + 1)(2 + 1)(1 +2 ) (4.5)

=
(
W ′′(1 )− 2

)(2 + 1
)
+ 3

(1 + 1
)(2 + 1

)2
. (4.6)

The proof will be split into three cases.

Case 1. I := ∫ − D1
2

−∞ ′
1
dz1. For z1 ∈ (−∞,−D1∕2), |′

1
| ≲ e−2

√
2|z1|e−√

2|z2| by (4.5). Applying Lemma 3.5

yields

z2 − z1 = D1

(
x′
1

)
+ O

(
ln |x′

1
|∕|x′

1
|),

hence

|I| ≲
−D1

∫
−∞

e
√
2(D1+z1+o1(1))e2

√
2z1dz1 +

− D1
2

∫
−D1

e−
√
2(D1+z1+o1(1))e2

√
2z1dz1 ≲ e−

3

2

√
2D1 ,

where o1(1) = O
(
ln |x′

1
|∕|x′

1
|).

Case 2. II := ∫ +∞
D1
2

′
1
dz1. |′

1
| ≲ e−

√
2(|z1|+|z2|)(e−√

2|z1| + e−
√
2|z2|) by (4.6). Then

|II| ≲
+∞

∫
D1
2

e−
√
2(D1+z1+o1(1))e−2

√
2z1 + e−

√
2z1e−2

√
2(D1+z1+o1(1))dz1 ≲ e−

5

2

√
2D1 .

Case 3. To calculate ∫ D1
2

− D1
2

′
1
dz1, we denote

1 = (
W ′′(1

)
− 2

)(2 + 1
)
, 2 = 3

(1 + 1
)(2 + 1

)2
.

Firstly, we estimate:
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D1
2

∫
− D1

2

|2′
1
|dz1 ≲

D1
2

∫
− D1

2

e−2
√
2|z2|e−√

2|z1|dz1 ≲ e−
√
2D1

D1
2

∫
− D1

2

e−
√
2(D1+z1+o1(1))dz1 ≲ e−

3

2

√
2D1 .

Secondly, since k1 − k2 =
√
2, we have

(
−D1

(
x′
1

)
∕2, 3D1

(
x′
1

)
∕2

)
⊂⊂

(
−3 ln |x′

1
|, 3 ln |x′

1
|). Hence for z1 ∈

(−D1∕2,D1∕2), we get

1 = H
(
z1 − h1

)
, ′

1
= H′(z1 − h1

)
,

2 + 1 = −H(D1 + z1 − h2 + o1(1))+ 1.

Therefore

D1
2

∫
− D1

2

1′
1
dz1 = −(1+ o2(1))

D1
2

∫
− D1

2

[
H′′′(z1)− 2H′(z1)][H(

D1 + z1
)
− 1

]
dz1

= −(1+ o2(1))

D1
2

∫
− D1

2

(
H′′′(z1)− 2H′(z1))

[
−2e−

√
2(D1+z1) + O

(
e−2

√
2(D1+z1)

)]
dz1, (4.7)

where o2(1) = O
(
h1
)
+ O

(
h2
)
+ o1(1). The integral of the second term is easy to estimate as follows:

|||||||||

D1
2

∫
− D1

2

3
(
H2
1
− 1

)
H′
1
e−2

√
2(D1+z1 )dz1

|||||||||
≲ e−2

√
2D1

D1
2

∫
− D1

2

e−2
√
2|z1|e−2

√
2z1dz1 ≲ D1e

−2
√
2D1 .

We now deal with the first term in (4.7). Let L = D1∕2, and applying integration by parts, we obtain

L

∫
−L

[
H′′′ − 2H′]e−√

2(D1+z1 )dz1 = e−
√
2D1

L

∫
−L

(H′′′ − 2H′ )e−
√
2z1dz1

= e−
√
2D1

{
H′′e−

√
2z1

||||
L

−L
+

√
2H′e−

√
2z1

||||
L

−L

}

= −8e−
√
2D1 + O

(
e−

3

2

√
2D1

)
.

Combining these results with (4.3) and noting that D1

(
x′
1

)
=

(
1+ O

(|x′
1
|−2))( f1 − f2 )(x

′
1
), we find

∫
ℝ

′
1
dz1 = −16e−

√
2D1(x′1) + O

(
e−

3

2

√
2D1(x′1)

)
=

(
−16e

√
2(c2−c1 ) + o(1)

)|x′
1
|−2, (4.8)

where c1 and c2 are defined similarly to (4.1). A similar conclusion holds for ∫ℝ′
2
dz2. By substituting || ≲

|x′|−2, (4.3) and (4.8) into the calculations in Appendix B, we obtain, for 1 ≤ i ≤ 2

𝜎0
(
Hi,0 +Δi,0hi

)
= (−1)i

(
16+ O

(
e−

√
2

2
Di

))
e−

√
2Di = (−1)i

(
16e

√
2(c2−c1 ) + o(1)

)|x′
i
|−2. (4.9)

Finally, using [35, Proposition 7.1] and Lemma 3.7, we have an improved estimate on the horizontal deriva-

tive,

‖∇i,0𝜙‖C1,1∕2(ℝ3∖R ) +max
1≤i≤2‖Δi,0hi‖L∞(Γi∖BR(0)) ≲ R−2−

1

3 , for R≫ 1.

Substituting this into (4.9) completes the proof of Lemma 4.5. □
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Appendix A: Fermi coordinates

Let Γ be a hypersurface embedded in ℝ3, which is parametrized as graph:

X(x′ ) = (x′, F(x′ )), Y (x′ ) =
(
I,DF(x′ )

)
, x′ = (x, y) ∈ ℝ2.

Then

g(x′ ) = Y ⋅ YT = I + DF(x′ ) ⋅ (DF(x′ ))T .

Let x′
1
= (x1, y1 ) be a local coordinates of Γ. The corresponding Fermi coordinates are defined as

x′
1
⟼ x = (x′

1
, F

(
x′
1

)
)+ z1𝜈

(
x′
1

)
, |z1| < 𝛿,

where 𝛿 > 0, 𝜈
(
x′
1

)
is a unit normal vector to Γ and z1 = dist

(
x′
1
, z1

)
is the signed distance to Γwhich is positive

when x is above Γ. Then the induced metric on Γ is defined as

gi j
(
x′
1
, 0

)
:= gi j

(
x′
1

)
= 𝛿i j + 𝜕xi

1
F
(
x′
1

)
𝜕
x
j

1

F
(
x′
1

)
, with

(
x1
1
, x2

1

)
:= (x1, y1 ) = x′

1
.

The metric restricted to Γz1
:=

{
(x′

1
, F

(
x′
1

)
)+ z1𝜈

(
x′
1

)}
is

g
(
x′
1
, z1

)
=

[
I − z1(

x′
1
, 0

)]2
⋅ g

(
x′
𝛼
, 0

)
, (A.1)

and the second fundamental form of Γz1
has the form

(
x′
1
, z1

)
=

[
I − z1(

x′
1
, 0

)]−1
⋅(

x′
1
, 0

)
. (A.2)

Here(x1, 0) denotes the second fundamental form of Γ.
Therefore, the Laplacian operator in Fermi coordinates has the following form:

Δℝ3 = ΔΓz1
− HΓz1

(
x′
1
, z1

)
𝜕z1 + 𝜕z1z1 , in {|z1| < 𝛿},

whereΔΓz1
is the Laplace–Beltrami operator on Γz1

and HΓz1
is the mean curvature of Γz1

. That is,

ΔΓz1
=

∑
1≤i, j≤2

1√
det(g

(
x′
1
, z1

)
)
𝜕
x
j

1

(√
det(g

(
x′
1
, z1

)
)gi j

(
x′
1
, z1

)
𝜕xi

1

)
,

and

HΓz1
=

∑
i=1,2

ki
1− z1ki

= HΓ
(
x′
1

)
+ z1|(

x′
1
, 0

)|2 +∑
l≥2

zl
1

∑
i=1,2

kl+1
i
.
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Appendix B: The projection of (3.7)

In the Fermi coordinates with respect to Γ𝛼 , multiplying (3.7) by′
𝛼
and integrating in z𝛼 , then we have

∫
ℝ

′
𝛼
Δz𝛼
𝜙

⏟⏟⏟
V

− H𝛼
(
x′
𝛼
, z𝛼

)′
𝛼
𝜕z𝛼𝜙

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
VI

+′
𝛼

(
𝜕z𝛼z𝛼𝜙−W ′′(𝛼 )𝜙)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
VII

dz𝛼

= ∫
ℝ

[
W ′(ū+ 𝜙)−W ′(ū)−W ′′(ū)𝜙

]′
𝛼
dz𝛼

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1

+ ∫
ℝ

[
W ′′(ū)−W ′′(𝛼 )]𝜙′

𝛼
dz𝛼

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2

+ ∫
ℝ

[
W ′(ū)−

∑
1≤𝛾≤2

W ′(𝛾 )
]
′
𝛼
dz𝛼

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
3

+ (−1)𝛼∫
ℝ

[
H𝛼

(
x′
𝛼
, z𝛼

)
+Δz𝛼

h𝛼
(
x′
𝛼

)]′2
𝛼
dz𝛼

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I

− ∫
ℝ

′′
𝛼
′
𝛼
|∇𝛼,zh𝛼|2dz𝛼

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
II

+ ∫
ℝ

[
(−1)𝛽′

𝛼
′
𝛽
𝛽,1 −′

𝛼
′′
𝛽
𝛽,2

]
dz𝛼

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
III

−
∑
𝛾
∫
ℝ

𝜉𝛾′
𝛼
dz𝛼

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
IV

,

where 𝛽 ≠ 𝛼. We estimate the Hölder norm of these terms one by one. For any |x′| > 5R1∕2 and T ∈(
0, |x′|− 2R1

)
,

(1) According to (3.8), we have

‖1‖C1∕2(BT (x′ )) ≲ ‖𝜙‖2
C1∕2

(
BT+8 ln |x′ |(x′,0)

), ‖3‖C1∕2(BT (x′ )) ≲ sup
B𝛼
T+1(x

′ )
e−

√
2D𝛼 ,

‖2‖C1∕2(BT (x′ )) ≲ ‖𝜙‖2
C1∕2

(
BT+8 ln |x′ |(x′,0)

) + sup
B𝛼
T+1(x

′ )
D2
𝛼
e−2

√
2D𝛼 .

(2) Since H𝛼 +Δ𝛼,z𝛼h𝛼 =
(
H𝛼,0 +Δ𝛼,0h𝛼

)
+ (H𝛼 − H𝛼,0 )+ (Δ𝛼,z𝛼 −Δ𝛼,0 )h𝛼 . Using Lemma 3.3 and 3.4, we

derive the following estimate:

‖I‖C1∕2(BT (x′ )) =
(
𝜎0 + O

(
(|x′|− T )−8

√
2
))‖H𝛼,0 +Δ𝛼,0h𝛼‖C1∕2(B𝛼

T+1(x
′
𝛼)

)

+ O
(
(|x′|− T )−4

)
+ O

(
‖h𝛼‖2C2,1∕2(B𝛼

T+1(x
′
𝛼)

)
)
.

(3) Indeed, g
i j
𝛼 = g

i j
𝛼 (x

′, 0)+ |z𝛼|O(|𝛼|), applying the orthogonality of′
𝛼
and′′

𝛼
leads to

‖II‖C1∕2(BT (x′ )) ≲ (|x′|− T )−4 + ‖h𝛼‖4C1,1∕2(B𝛼
T+1(x

′ )
).

(4) Combining′
𝛼
′
𝛽
, ′

𝛼
′′
𝛽
≲ e−

√
2D𝛼 with calculations similar to those in (2) and (3), we have

‖III‖C1∕2(BT (x′ )) ≲ (|x′|− T )−8 + sup
B𝛼
T+1(x

′ )
D4
𝛼
e−2

√
2D𝛼

+ ‖H𝛽,0 +Δ𝛽,0h𝛽‖2
C1∕2

(
B
𝛽

T+2(x
′ )
) + ‖h𝛽‖4

C2,1∕2
(
B
𝛽

T+2(x
′ )
).

(5) It is easy to see that ‖IV‖C1∕2(BT (x′ )) ≲ (|x′|− T )−4
√
2.

(6) Finally, we deal with the last three terms. Differentiating (3.6) twice with respect to x𝛼 or y𝛼 leads to

∫
ℝ

′
𝛼
𝜙i + 𝜕i′

𝛼
𝜙dz𝛼 = 0, ∫

ℝ

′
𝛼
𝜙i j +

[
𝜕i′

𝛼
𝜙 j + 𝜕 j′

𝛼
𝜙i

]
+ 𝜕i j′

𝛼
𝜙dz𝛼 = 0.

where the subscript i, j ∈ {x𝛼, y𝛼}. Therefore
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V = ∫
ℝ

′
𝛼

[
Δ𝛼,0𝜙+ |z𝛼|O(|𝛼|)

(|∇x′
𝛼
𝜙|+ |∇2

x′
𝛼

𝜙|)]dz𝛼

= (−1)𝛼+12gi j𝛼
(
x′
𝛼
, 0

)
∫
ℝ

′′
𝛼
𝜕ih𝛼𝜙 jdz𝛼 − ∫

ℝ

[′′′
𝛼
𝜕ih𝛼𝜕 jh𝛼 + (−1)𝛼′′

𝛼
𝜕i jh𝛼

]
𝜙dz𝛼

+ (−1)𝛼+1
[
𝜕i g

i j
𝛼

(
x′
𝛼
, 0

)
+ 𝜕i det g𝛼

(
x′
𝛼
, 0

)
2 det g𝛼

(
x′
𝛼
, 0

) gi j𝛼 (x′𝛼, 0)
]
∫
ℝ

′′
𝛼
𝜕 jh𝛼𝜙dz𝛼

+ ∫
ℝ

′
𝛼
O
(𝛼)|z𝛼|

(|∇x′
𝛼
𝜙|+ |∇2

x′
𝛼

𝜙|)dz𝛼,

Here the superscript i = xi
𝛼
, j = x

j
𝛼 and g

i j
𝛼 := g

xi
𝛼
x
j
𝛼

𝛼 with
(
x1
𝛼
, x2
𝛼

)
= (x𝛼, y𝛼 ) = x′

𝛼
.

By integrating by parts,

VI = ∫
ℝ

𝜙
[
𝜕z𝛼H

𝛼
(
x′
𝛼
, z𝛼

)′
𝛼
+ (−1)𝛼−1H𝛼

(
x′
𝛼
, z𝛼

)′′
𝛼

]
dz𝛼,

VII = ∫
ℝ

𝜙
[′′′
𝛼

−W ′′(𝛼 )′
𝛼

]
dz𝛼 = (−1)𝛼−1∫

ℝ

𝜙𝜉𝛼dz𝛼 .

Therefore

‖V‖C1∕2(BT (x′ )) ≲
(|x′|− T

)−4 + ‖h𝛼‖2C2,1∕2(B𝛼
T+1(x

′ )
) + ‖𝜙‖2

C2,1∕2
(
BT+8 ln |x′ |(x′,0)

),

‖VI‖C1∕2(BT (x′ )) ≲
(|x′|− T

)−4 + ‖𝜙‖2
C1∕2

(
BT+8 ln |x′ |(x′,0)

),

‖VII‖C1∕2(BT (x′ )) ≲
(|x′|− T

)−8√2 + ‖𝜙‖2
C1∕2

(
BT+8 ln |x′ |(x′,0)

).

Putting these estimates together we have

‖H𝛼,0 +Δ𝛼,0h𝛼
(
x′
𝛼

)‖C1∕2(B𝛼T (x′ )) ≲
(|x′|− T

)−4 + sup
B𝛼
T+1(x

′ )
e−

√
2D𝛼 + ‖𝜙‖2

C2,1∕2
(
BT+8 ln |x′ |(x′,0)

)

+ ‖h𝛼‖2C2,1∕2(B𝛼
T+1(x

′ )
) +

(
‖H𝛽,0 +Δ𝛽,0h𝛽‖2

C1∕2
(
B
𝛽

T+2(x
′ )
) + ‖h𝛽‖4

C2,1∕2
(
B
𝛽

T+2(x
′ )
)
)
.

Remark B.1. It is worth noting that the terms (|x′|− T)−4, (|x′|− T)−8 in the preceding estimation process are

derived from, while (|x′|− T )−4
√
2 comes from 𝜉.

Appendix C: C2,1∕2 estimate for𝝓

In this appendix we prove the C2,1∕2 estimate on 𝜙. Fix a large constant L > 0, and for each 𝛼, define

Ω1

𝛼
(r) :={|d𝛼| > L} ∩0

𝛼
(r), Ω2

𝛼
(r) :={|d𝛼| < 2L} ∩0

𝛼
(r),

Ω3

𝛼
(r) :={|d𝛼| > 2L} ∩0

𝛼
(r).

For the outer problem, the equation satisfied by 𝜙 is

−Δ𝜙+
(
2+ o(1)

)
𝜙 = other terms, in Ω1

𝛼
(2R1 ).



W. Liang and J. Yang: Qualitative properties of two-end solutions — 895

In this case, we use the coercive property of the operator−Δ+ 2 to obtain the C1,1∕2 norm of𝜙. For the inter

problem, 𝜙 satisfies the following equation:

−Δ𝜙+W ′(𝛼 )𝜙 = parallel term+ other terms, in Ω2

𝛼
(2R1 ).

To obtain theHölder norm of𝜙, we require the orthogonality condition of𝜙 and apply Proposition 2.2. Next,

we will discuss inter and outer problem separately and eventually provide the C2,1∕2 norm of 𝜙.

Throughout this section, we assume that c, C > 0 are two uniform constants, and A ≤Λ B denotes A ≤ ΛB
for some constantΛ > 0.

C.1 Outer problem

InΩ1

𝛼
(2R1 ), 𝜙 satisfies

Δz𝛼
𝜙− H𝛼𝜕z𝛼𝜙+ 𝜕z𝛼z𝛼𝜙−

(
2+ O

(
e−

√
2L
))
𝜙 = 1 + 2 + 3 + G𝛼,

where

G𝛼 = (−1)𝛼−1
[
H𝛼

(
x′
𝛼
, z𝛼

)
+Δz𝛼

h𝛼
(
x′
𝛼

)]′
𝛼
−′′

𝛼
|∇𝛼,zh𝛼|2

+
∑
𝛽≠𝛼

[
(−1)𝛽−1′

𝛽
𝛽,1 −′′

𝛽
𝛽,2

]
−

∑
𝛽

𝜉𝛽 .

Proceeding with the similar calculations as in Appendix B, we obtain for any x = (x′, z) ∈ Ω1

𝛼
(5R1∕2) and

r ∈
(
0, |x′|− 2R1

)
,

‖G𝛼‖C1∕2(Br(x)∩Ω1
𝛼
(5R1∕2)

)≤C(L)(|x′|− r)−4 + max
1≤𝛾≤2 supB

𝛾

r+1(x
′ )

e−
√
2D𝛾

+ e−
√
2L

{
‖H𝛼,0 +Δ𝛼,0h𝛼‖C1∕2(B𝛼

r+1(x
′ )
) + ‖h𝛼‖2C2,1∕2(B𝛼

r+1(x
′ )
)
}

+
∑
𝛽≠𝛼

{
‖H𝛽,0 +Δ𝛽,0h𝛽‖2

C1∕2
(
B
𝛽

r+2(x
′ )
) + ‖h𝛽‖2

C1∕2
(
B
𝛽

r+2(x
′ )
)
}
,

where C(L) > 0 is a sufficiently large constant depending on L. Combining this and Lemma 3.7, we obtain the

following estimates for the operator −Δ+ (2+ o(1)): for any x = (x′, z) ∈ Ω3

𝛼
(5R1∕2) and r ∈

(
0, |x′|− 2R1

)
∩

(0, d𝛼 − L) ∩ (0,D𝛼∕2− d𝛼 ),

‖𝜙‖C1,1∕2(Br(x)) ≤ Ce−cL‖𝜙‖L∞(𝜕Br+L∕2(x)) + C‖1 + 2 + 2 + G𝛼‖C1∕2(Br+L∕2(x))
≤ 𝜎(L)

{
‖𝜙‖C2,𝛼(Br+L(x)) + max

1≤𝛾≤2‖H𝛾,0 +Δ𝛾,0h𝛾‖C1∕2(B𝛾
r+L(x

′ )
)
}

(C.1)

+ C(L)
(|x′|− r − L

)−4 + C(L)max
1≤𝛾≤2 sup

B
𝛾

r+L(x
′ )

e−
√
2D𝛾 ,

where 𝜎(L)≪ 1 is a constant, depending on a sufficiently large constant L. The last inequality holds due to (3.11).

C.2 Inner problem

InΩ2

𝛼
(2R1 ), the equation (3.7) can be written as

Δz𝛼
𝜙− H𝛼𝜕z𝛼𝜙+ 𝜕z𝛼z𝛼𝜙−W ′′(𝛼 )𝜙 = (−1)𝛼−1

[
H𝛼,0 +Δ𝛼,0h𝛼

]′
𝛼
+ 1 + 2 + 3 + F𝛼,
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where

F𝛼 = (−1)𝛼−1
{[
H𝛼 − H𝛼,0

]
+

[
Δ𝛼,z𝛼h𝛼 −Δ𝛼,0h𝛼

]}′
𝛼

−′′
𝛼
|∇𝛼,zh𝛼|2 +∑

𝛽≠𝛼

[
(−1)𝛽−1′

𝛽
𝛽,1 −′′

𝛽
𝛽,2

]
−

∑
𝛽

𝜉𝛽 .

The estimates for 1, 2, and 3 are provided by (3.9). Following the similar arguments as in Appendix B

one can show that: for x = (x′, z) ∈ Ω2

𝛼
(5R1∕2) and r ∈

(
0, |x′|− 2R1

)
,

‖F𝛼‖C1∕2(Br(x)∩Ω2
𝛼
(5R1∕2)

)≤C(L)(|x′|− r)−4 + max
1≤𝛾≤2 supBr+1(x

′ )
e−2

√
2D𝛾

+ ‖𝜙‖2
C2,1∕2(Br+1(x))

+ max
1≤𝛾≤2‖H𝛾,0 +Δ𝛾,0h𝛾‖2C1∕2(Br+1(x′ )).

To deal with the inner problem, we introduce a new function. Taking 𝜂 ∈ C∞
0
(−4L, 4L) such that 𝜂 ≡ 1 in

(−2L, 2L), |𝜂′| ≲ L−1. Define

𝜙𝛼(x𝛼, y𝛼, z𝛼 ) := 𝜂(z𝛼 )𝜙(x𝛼, y𝛼, z𝛼 )− c𝛼(x𝛼, y𝛼 )′
𝛼
,

with

c𝛼(x𝛼, y𝛼 ) =
∫
ℝ
𝜙′

𝛼
(𝜂(z𝛼 )− 1)dz𝛼

∫
ℝ
′2
𝛼
dz𝛼

. (C.2)

By (3.6), we still have the orthogonal condition,

∫
ℝ

𝜙𝛼′
𝛼
dz𝛼 = 0, for |x′

𝛼
| > 2R1. (C.3)

By the definition of c𝛼 , we have the following estimate on c𝛼 .

Lemma C.1. For any x′
𝛼
∈ Γ𝛼∖5R1∕2, we have

|c𝛼(x′𝛼)| ≲ sup
2L<|z𝛼 |<8 ln |x′

𝛼
|
e−

√
2|z𝛼 ||𝜙(x′

𝛼
, z𝛼

)|,

|∇x′
𝛼
c𝛼

(
x′
𝛼

)| ≲ sup
2L<|z𝛼 |<8 ln |x′

𝛼
|
e−

√
2|z𝛼 | ∑

0≤l≤1
|∇l

x′
𝛼

𝜙
(
x′
𝛼
, z𝛼

)|,

|∇2
x′
𝛼

c𝛼
(
x′
𝛼

)| ≲ sup
2L<|z𝛼 |<8 ln |x′

𝛼
|
e−

√
2|z𝛼 | ∑

0≤l≤2
|∇l

x′
𝛼

𝜙
(
x′
𝛼
, z𝛼

)|.

Proof. By the definition of c𝛼 and 𝜂, we have

|c𝛼(x′𝛼)| ≲ ∫
2L<|z𝛼 |<8 ln |x′

𝛼
|
|𝜙′

𝛼
|dz𝛼 ≲ sup

2L<|z𝛼 |<8 ln |x′
𝛼
|
e−

√
2|z𝛼 ||𝜙|.

On the other hand, differentiating (C.2) in x𝛼 , one gets

𝜕x𝛼c𝛼
(
x′
𝛼

)
=

(
∫ ′2

𝛼
dz𝛼

)−1

∫
[
𝜙x𝛼′

𝛼
(𝜂 − 1)+ (−1)𝛼𝜙′′

𝛼
𝜕x𝛼h𝛼(𝜂 − 1)

]
dz𝛼

−
(
∫ ′2

𝛼
dz𝛼

)−2

∫ (−1)𝛼2′
𝛼
′′
𝛼
𝜕x𝛼h𝛼dz𝛼 ⋅ ∫ 𝜙′

𝛼
(𝜂 − 1)dz𝛼 .
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Hence

|𝜕x𝛼c𝛼(x′𝛼)| ≲∫
2L<|z𝛼 |<8 ln |x′

𝛼
|
|𝜙|(|′

𝛼
|+ |′′

𝛼
|)+ |𝜙x𝛼′

𝛼
|

≲ sup
2L<|z𝛼 |<8 ln |x′

𝛼
|
e−

√
2|z𝛼 |(|𝜙|+ |∇x𝛼

𝜙|).
Similar estimates can be derived for |𝜕y𝛼c𝛼| and |∇2

x′
𝛼

c𝛼|. □

Therefore, inΩ2

𝛼
(5R1∕2), 𝜙𝛼 satisfies the following equation:

Δz𝛼
𝜙𝛼 − H𝛼𝜕z𝛼𝜙𝛼 + 𝜕z𝛼z𝛼𝜙𝛼 −W ′′(𝛼 )𝜙𝛼 = [

(−1)𝛼−1
(
H𝛼,0 +Δ𝛼,0h𝛼

)
−Δ𝛼,0c𝛼

]′
𝛼
+ P𝛼, (C.4)

where
P𝛼 = 𝜂{1 + 2 + 3 + F𝛼} +

{
𝜙
(
−H𝛼𝜂z𝛼 + 𝜂z𝛼z𝛼

)
+ 2𝜙z𝛼 𝜂z𝛼

}
−Δz𝛼

c𝛼′
𝛼
− gi j𝜕ic𝛼𝜕 j′

𝛼
− c𝛼

[
Δ′

𝛼
−W ′′(𝛼 )′

𝛼

]
.

Multiplying (C.4) by 𝜙𝛼 and then integrating with respect to z𝛼 , we obtain

∫
ℝ

[
𝜙𝛼Δz𝛼

𝜙𝛼 − H𝛼𝜙𝛼𝜕z𝛼𝜙𝛼 + 𝜙𝛼𝜕z𝛼z𝛼𝜙𝛼 −W ′′(𝛼 )𝜙2𝛼
]
dz𝛼 = ∫

ℝ

P𝛼𝜙𝛼dz𝛼 .

Integrating by parts and applying Proposition 2.2, we have

1

2
Δ𝛼,0∫

ℝ

𝜙2
𝛼
dz𝛼 ≥ 𝜇2 ∫

ℝ

𝜙2
𝛼
dz𝛼 − C∫

ℝ

|P𝛼|2dz𝛼 − C
1

|x′
𝛼
|4 ∫

ℝ

|z𝛼|2
(|||∇𝛼,0𝜙𝛼|||

2
+ |||∇2

𝛼,0
𝜙𝛼

|||
2
)
,

where

∫
ℝ

|P𝛼|2dz𝛼 ≲ L

⎧⎪⎨⎪⎩
‖𝜙‖4

C2,1∕2(B4L(x′𝛼 ,0))
+ |x′

𝛼
|−8 + max

1≤𝛾≤2 sup
B
𝛾

1

(
x′
𝛾

) e−2
√
2D𝛾

⎫⎪⎬⎪⎭
+ Lmax

1≤𝛾≤2‖H𝛾,0 +Δ𝛾,0h𝛾‖2C1∕2(B𝛾1 (x′𝛼)) + L−1 sup
2L<|z𝛼 |<4L

[|𝜙z𝛼 |2 + |𝜙|2]

+ sup
2L<|z𝛼 |<8 ln |x′

𝛼
|+1

e−2
√
2|z𝛼 |

[|𝜙|2 + |∇x′
𝛼
𝜙|2 + |∇2

x′
𝛼

𝜙|2].
Applying the inner L∞ estimate to the operator −Δ𝛼,0 + 𝜇, and utilizing (3.14) and (C.1), we obtain the

following estimate:

sup
B1(x′𝛼)

∫
ℝ

𝜙2
𝛼
dz𝛼 ≤ Ce−cL sup

BL(x′𝛼)
∫ 𝜙2

𝛼
+ C sup

BL(x′𝛼)
∫ |P𝛼|2

+ C
(|x′
𝛼
|− L

)−4
sup
BL(x′𝛼)

∫
ℝ

|z𝛼|2
(|∇𝛼,0𝜙𝛼|2 + |∇2

𝛼,0
𝜙𝛼|2

)

≤ 𝜎(L)2‖𝜙‖2
C2,1∕2

(
B9 ln |x′𝛼 |(x

′
𝛼
,0)

) + C(L)2max
1≤𝛾≤2‖H𝛾,0 +Δ𝛾,0h𝛾‖4

C1∕2
(
B
𝛾

9 ln |x′𝛼 |(x
′
𝛼)

)

+ C(L)2
(|x′
𝛼
|− 9 ln |x′

𝛼
|)−8 + C(L)2 max

1≤𝛾≤2 sup
B
𝛾

9 ln|x′𝛼|(x′𝛼)
e−2

√
2D𝛾 .

Finally, using the C1,1∕2 estimate for (C.4), we deduce that for any
(
x′
𝛼
, 0

)
∈ Γ𝛼∖5R1∕2,

‖𝜙𝛼‖C1,1∕2(BL(x′𝛼)×{|z𝛼 |<3L∕2})
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≤ C‖𝜙𝛼‖L2(B2L(x′𝛼)×{|z𝛼 |<2L}) + C‖Δ𝜙𝛼 −W ′′(′
𝛼

)
𝜙𝛼‖L∞(B2L(x′𝛼)×{|z𝛼 |<2L})

≤ 𝜎(L)
{

‖𝜙‖
C2,1∕2

(
B2L+9 ln |x′𝛼 |(x

′
𝛼
,0)

) + max
1≤𝛾≤2‖H𝛾,0 +Δ𝛾,0h𝛾‖

C1∕2
(
B
𝛾

2L+9 ln |x′𝛼 |(x
′
𝛼)

)
}

+ C(L)
(|x′
𝛼
|− 9 ln |x′

𝛼
|)−4 + C(L) max

1≤𝛾≤2 sup
B
𝛾

2L+9 ln |x′𝛼 |(x
′
𝛼)
e−

√
2D𝛾 ,

where C > 0 is a uniform constant. Recall that 𝜙𝛼 = 𝜂𝜙− c𝛼′
𝛼
. By using outer estimate (C.1) and Lemma C.1,

for
(
x′
𝛼
, 0

)
∈ Γ𝛼∖5R1∕2

‖𝜙‖C1,1∕2(BL(x′𝛼)×{|z𝛼 |<3L∕2})
≤ C(L)

(|x′
𝛼
|− 9 ln |x′

𝛼
|)−4 + C(L)max

1≤𝛾≤2 sup
Γ𝛾∩B2L+9 ln |x′𝛼 |(x′𝛼 ,0)

e−
√
2D𝛾 (C.5)

+ 𝜎(L)
{

‖𝜙‖
C2,1∕2

(
B2L+9 ln |x′𝛼 |(x

′
𝛼
,0)

) + max
1≤𝛾≤2‖H𝛾,0 +Δ𝛾,0h𝛾‖C1∕2(Γ𝛾∩B2L+9 ln |x′𝛼 |(x

′
𝛼
,0)

)
}
,

where 𝜎(L)≪ 1. Combining (3.14), outer estimate (C.1), and inner estimate (C.5) yields the following C1,1∕2 esti-

mate: for any x = (x′, z) ∈ 0
𝛼
(3R1 ) and r ∈

(
0, |x′|− 5R1∕2

)
,

‖𝜙‖C1,1∕2(Br(x)) +max
𝛾

∥H𝛾,0 +Δ𝛾,0h𝛾∥C1∕2(Γ𝛾∩Br(x))

≤ C(L)
(|x′|− 9.5 ln |x′|)−4 + C(L) max

1≤𝛾≤2 sup
Γ𝛾∩Br+9.5 ln |x′ |(x)

e−
√
2D𝛾

+ 𝜎(L)
{

‖𝜙‖
C2,1∕2

(
Br+9.5 ln |x′ |(x)

) + max
1≤𝛾≤2‖H𝛾,0 +Δ𝛾,0h𝛾‖C1∕2(Γ𝛾∩Br+9.5 ln |x′ |(x)

)
}
,

where 𝜎(L)≪ 1 and C(L) is a constant that depends on L.

C.3 C
2,1∕2 estimate

In the end, by combining Lemma 3.8 and the Schauder estimate for (3.7), we obtain the following result. For any

x ∈ 0
𝛼
(3R1 ) and r ∈

(
0, |x′|− 5R1∕2

)
,

‖𝜙‖C2,1∕2(Br(x)) + max
1≤𝛾≤2∥H

𝛾,0 +Δ𝛾,0h𝛾∥C1∕2(Γ𝛾∩Br(x))

≤ C‖𝜙‖C1∕2(Br+1(x)) + C‖(Δ−W ′′(𝛼 ))𝜙‖C1∕2(Br+1(x))
≤ 𝜎(L)

{
‖𝜙‖

C2,1∕2
(
Br+10 ln |x′ |(x)

) +max
𝛾

‖H𝛾,0 +Δ𝛾,0h𝛾‖C1∕2(Γ𝛾∩Br+10 ln |x′ |(x)
)
}

+ C(L)

{(|x′|− 10 ln |x′|)−4 + max
1≤𝛾≤2 sup

Γ𝛾∩Br+10 ln |x′ |(x)
e−

√
2D𝛾

}
.

Consequently, 𝜙 has the iterative inequality as shown in Proposition 3.10.

Appendix D: Symmetry and monotonicity of two-end solutions

In this appendix, we outline the proof of symmetry and monotonicity of two-end solutions using the moving

plane method. Specifically, we follow the approach used in the proof of monotonicity for symmetric two-end
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solutions in [40]. To prove this result, we need the following asymptotic behavior of the solution, as provided in

Section 3:

u(x, y, z)− H(z𝛼 ) = O
(
e−

√
2|D𝛼−(−1)𝛼z𝛼 |

)
+ O

(|x′|−4), in 0
𝛼
(R). (D.1)

Proof of Theorem 1.4. Combining Lemma 3.7 and Proposition 3.11, for any r > R3, we have

max
𝛼

‖H𝛼,0‖C1∕2(Γ𝛼∖r ) ≤ Cr−4.

This implies thatΔ f𝛼(x
′ ) = O

(|x′|−4) as |x′|→∞. Thus, up to a rigid motion about the xOy plane,

f𝛼
(
x′
)
=

[
k𝛼 + O

(|x′|−2)] ln||x′ + e′
𝛼
||+ c𝛼 + O

(|x′|−2), as |x′|→∞,

for some constants a𝛼, b𝛼, c𝛼 depending on k𝛼 and e
′
𝛼
=

(
a𝛼, b𝛼

)
for 1 ≤ 𝛼 ≤ 2.

We first prove its monotonicity and symmetry in x-direction using moving plane. Define Σ𝜆 :={x =
(x, y, z): x < 𝜆}, and the reflected point

(
x′
𝜆
, z
)
= (2𝜆− x, y, z). Let

u𝜆(x, y, z) = u
(
x′
𝜆
, z
)
, and 𝜔𝜆(x, y, z) := u𝜆(x, y, z)− u(x, y, z).

In the first step, we claim that there exists a sufficiently large constant 𝜆0 > 0 such that, for any 𝜆 ≥ 𝜆0, the
following inequality holds:

𝜔𝜆(x, y, z) < 0, in Σ𝜆. (D.2)

In light of [40, Appendix A]. We primarily focus on the region {(x, y, z) ∈ Σ𝜆: |u𝜆| ≉ 1}. We first consider

the region {z > 0: |u𝜆| ≉ 1}. By applying (D.1), we obtain

𝜔𝜆(x) = H
(
z𝜆
1

)
− H(z1 )+ O

(
r−4

)
= H

(
z−

(
k1 + O

(
r−2

))
ln |x′

𝜆
+ e′

1
|− c1 + O

((
1+ |z𝜆

1
|)r−2))

− H
(
z−

(
k1 + O

(
r−2

))
ln |x′ + e′

1
|− c1 + O

(
(1+ |z1|)r−2))+ O

(
r−4

)

= −k1
2
H′(𝜉𝜆 ) ⋅ ln

(
1+ 4(𝜆− x)(𝜆+ a1 )

(x + a1 )
2 + (y+ b1 )

2

)
+ O

(
r−2

)
.

where
(
x𝜆
1
, y𝜆

1
, z𝜆

1

)
are the Fermi coordinates corresponding to

(
x′
𝜆
, z
)
, and 𝜉𝜆 lies between z𝜆

1
and z1.

If A := 4(𝜆−x )(x+a1 )
(x+a1 )2+( y+b1 )2

≥ 𝜀, then 𝜔𝜆 ≤ − k1
2
C0𝜀+ O

(
r−2

)
< 0.

If A ∈ (0, 𝜀), we consider two cases. Case 1: For x ∈
(
−∞, 𝜆− 1

]
, we have ln(1+ A) >

A

2
. Thus

𝜔𝜆 ≤ −k1H′(𝜉𝜆 )
𝜆+ a1

(x + a1 )
2 + (y+ b1 )

2
+ O

(
r−2

)
< 0,

for sufficiently large 𝜆0 > 0 and 𝜆 ≥ 𝜆0. Case 2: For x ∈ (
𝜆− 1, 𝜆

)
, by the mean value theorem, there exists

𝜉 ∈ (x, 2𝜆− x) such that

𝜔𝜆 = u(2𝜆− x, y, z)− u(x, y, z) = 𝜕xu(𝜉 ) ⋅ (2𝜆− 2x)

=
[
−H′

(
z
𝜉

1
− h𝜉

)
k1𝜉

𝜉2 + y2
+ O

(|x′|−2)
]
(𝜆− x)

≤ −C1
k1𝜆(𝜆− x)

|x′|2 + O

(
𝜆− x

|x′|2
)
< 0,

for sufficiently large𝜆0 > 0 and𝜆 ≥ 𝜆0. Similarly, we also have𝜔𝜆 < 0 in the region {z < 0: |u𝜆| ≉ 1} for𝜆 ≥ 𝜆0.
For the case {u𝜆 ≈ 1} ∪ {u𝜆 ≈ −1, u ≈ −1}, it is straightforward to see that u ≈ 1 when u𝜆 ≈ 1. Further-

more, 𝜔𝜆 satisfies the following equation:

−Δ𝜔𝜆 + c𝜆(x)𝜔𝜆 = 0, in Ω :={u𝜆 ≈ 1} ∪ {u𝜆 ≈ −1, u ≈ −1},
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where c𝜆(x) = u2
𝜆
+ u𝜆u+ u2 − 1 > 0 and lim sup|x|→∞

𝜔𝜆(x) ≤ 0. Thus, the positive maximum of 𝜔𝜆 cannot be

achieved withinΩ. Therefore, by the strong maximum principle, we have 𝜔𝜆 < 0 in Σ𝜆 for 𝜆 ≥ 𝜆0.
In the second step, we define

𝜆̄ = inf{𝜆
∗
> 0:𝜔𝜆 < 0 in Σ𝜆, for 𝜆 ∈ [𝜆

∗
, 𝜆0]}.

Following a similar argument as in [40], we deduce that 𝜆̄ = 0, which completes the proof of symmetry and

monotonicity in x-direction. The symmetry and monotonicity in y and z direction also can be proven by similar

arguments. Finally, the estimate (1.5) follows directly from [40, Proposition 5], which completes the proof. □

Remark D.1. It is worth noting thatwe can improve L∞ norm in (1.5) to the C2,1∕2 norm. In fact, letU(x′, z) := u−
H(⋅) = u(x′, z)− H

(
z− k𝛼 ln |x′|− c𝛼

)
, then one can compute that

ΔU =
1

∫
0

d

dt
W ′(tu+ (1− t)H(⋅))dt − k2

𝛼|x′|2H′′ = c̄U − k2
𝛼|x′|2H′′,

where c̄ = ∫ 1

0
W ′′(tu+ (1− t)H(⋅))dt. Hence, we have (−Δ+ c̄)U = k2

𝛼|x′|2H′′ =: P. By the Schauder estimate, for
1 ≤ 𝛼 ≤ 2 and |x′|≫ 1, we have

‖u(⋅)− H
(
z− k𝛼 ln |x′|− c𝛼

)‖C2,1∕2(B1(x)) ≲ ‖U‖L∞(B2(x)) + ‖P‖C0,1∕2(B2(x)) ≲ |x′|−2.
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