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Since the 1970s there has been a widely held belief in the mathematical physics community that “coherent
structures” and “free radiation” describe the longtime asymptotic behavior of nonlinear waves. This came to
be known as the “soliton resolution conjecture”. Roughly speaking, it says that asymptotically for largetime,
solutions of nonlinear wave equations decouple as a sum of (modulated) traveling waves and a free radiation
term (typically a solution of an associated linear equation). This is a remarkable, beautiful claim, which shows
a “simplification” of the asymptotics. The origin of this conjecture is a puzzling paradox in a numerical simula-
tion of Fermi-Pasta-Ulam at Los Alamos (the birth of scientific computing). Fermi decided that a great use of “The
Maniac”, the computer developed for the calculations in the Manhattan Project was to use it for a theoretical
scientific purpose. This is how they discovered this paradox, something that Fermi called a “minor discovery”.
In the mid 60s, M. Kruskal found an explanation for this paradox, from the existence of solitons for the KdV
equation (d,u + 03u + ud,u = 0, model wave propagation in shallow channels). Solitons are traveling wave solu-
tions, which are well localized and travel at constant speed (possibly 0). The existence of solitons for KdV was first
observed by Russell in 1835, on horseback. After Kruskal’s discovery Kruskal-Zabusky (1965) conducted another
influential numerical simulation which “showed” the emergence of solitons and multisolitons (a superposition
of solitons) for KdV. This simulation led to the soliton resolution conjecture and to the theory of integrable nonlin-
ear equations to explain the observed elastic collision of solitons. Integrable nonlinear equations can be solved
by a reduction to a collection of linear problems. It is an important class, but non-generic. They feature elas-
tic collision of solitons. Soliton resolution has been proved in a few integrable cases like KdV. The proofs are
challenging, with issues still unresolved. There have also been results in non-integrable cases, in perturbative
regimes near solitons and in parabolic settings. The phenomena seem to be “universal”. For instance soliton
resolution has been observed numerically and experimentally in the dynamics of gas bubbles in a compressible
fluid and in the formation of black holes in gravitational collapse. The mechanism for relaxation to a “coherent
structure” observed numerically and experimentally is the radiation of excess energy to spatial infinity. Proving
this in non-integrable settings is a major goal in nonlinear equations of wave propagation.
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We now turn to the progress in this direction obtained in the last 15 years for the energy critical nonlinear
wave equation (NLW):
o’u—Au=u*"?u xe€RY, teR
(u, 0w ,—g = (uy, uy) € H(RY) X L*(RN) = H
I

Ul

(NLW)

Note the critical scaling in H:

wy(x, t) = A~W-D/2 ”(% % )

is also a solution, || 1, (0)|| w =l 1(0) I3, The H norm is called the energy norm. The first results here were “below
the ground state”, with optimal size constraints, as part of the concentration compactness/rigidity theorem
method of Kenig-Merle ([1]-[3]). It was then understood that rigidity theorems (of Liouville type) classifying
“non-radiative solutions” are crucial to understand the asymptotic dynamics. In the Kenig-Merle work it was
understood that even if (NLW) is not integrable, one can use some “decoupling” related to finite speed of propa-
gation, to study these problems. Typically one would like to show that all “nonlinear objects” or all “non-radiative
solutions” are solitons. For (NLW), solutions of the nonlinear elliptic equation

AQ+1Q1"M?Q=0, QEH'®R") Q%0
are the traveling wave solutions of speed 0, while their Lorentz transforms
Q; O=0Q;(x=210), |Z|<1, ¢€ER",

are the traveling waves at speed | :ﬂ| < 1. These are all the solitons (Duyckaerts-Kenig-Merle [4], [5]). In the radial
case we only have static solutions

X2 >—N—2/2

iWA(X), W(X) = <1+ m

+W , is the “ground state”, the non-zero traveling wave of least energy. A first notion of non-dispersive solution
was that of “solutions with the compactness property in time”, i.e. solutions whose trajectory is pre-compact
up to the invariances of the equation. The concept was introduced by Martel-Merle [6] for KAV and by Kenig-
Merle [1] for NLS. For NLW classification results under energy constraints were due to Kenig-Merle [2], and in
the radial 3d case, without size constraint, by Duyckaerts-Kenig-Merle [7]. In the non-radial case with no energy
constraint this was done in [5]. However, to study “multisolitons”, as is needed for the soliton resolution, this
notion is insufficient. Results proving the resolution near the “ground state” W(x) = +1/(1 + |x|? /NN — 2))%
i.e. the least energy soliton, were obtained in [7] and [8]. The decompositions into solitons for “well chosen time
sequences” for solutions “bounded in the energy norm” (which we will assume from now on) are due to [9] in
the radial case, N = 3, and Rodriguez [10] all odd N, radial, by Cote-Kenig-Lawrie-Schlag when N = 4 [11] and
by Jia-Kenig [12], when N = 6. In 2017, Duyckaerts-Jia-Kenig-Merle [13] proved the same in the non-radial case,
N = 3,4,5. To understand the full problem, i.e. prove the decomposition for all times, Duyckaerts-Kenig-Merle
[14], [15] realized that one needs to understand the collision of solitons. One needs to prove that all collisions
are inelastic and produce radiation, which limits their number by the boundedness of the energy norm. The
approach was introduced in [14], where the full soliton resolution was proved for the radial 3 dimensional case.
This was the first such result for a non-integrable Hamiltonian pde. The method was fully developped in [16],
[17] and [15], where all odd dimensions were treated, in the radial case. A crucial object to consider is a pure
multisoliton in both time directions, that is a solution that is, asymptotically as t — +oo, a sum of decoupled
solitons without radiation. For non-integrable equations, like (NLW), it is expected that collisions are inelastic,
and should always generate radiation, ruling out pure multisolitons (Martel-Merle [18], [19] for gKdV [20], for
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NLW, N = 5). To deal with this issue [16], [17], and [15] introduced the concept of nonradiative solution. These
are solutions of NLW, defined for |x| > R + ||, R > 0 such that,

Y lim / IV, u(x,t)* dx = 0.

t— T ?

T X SR

The usefulness of this concept for (NLW) comes, using finite speed of propagation, because it can be applied by
first studying solutionsin { |x| > R + [t|}, for large R, thus restricting to small solutions, close to linear solutions.
The concept is connected usefulness of this concept forar wave equation:

t—+00
[ XI>R+|t] [x]>R

2
”(uos ul)”HR

4 ¢ lim / IV, 4, 0 dx > / Vit + 1, 0O

where u; solves the linear wave equation. The validity of (1) depends strongly on N.
0dd N: For R = 0, (1) holds V (uy, u;) € H [8]. For R > 0, the radial N = 3 case was considered first. It was
shown that () holds V (ug, u;) € Hy, (ug, uy)L (% 0). This single exceptional direction can be handled with the

scaling of the equation and corresponds to the asymptotics of W = (1+1?/3)""/2, Q — co. This leads to a strong
rigidity theorem: For any R > 0, the solitons iﬁ W(x/ A) are the only non zero, radial non radiative solutions
of NLW, in {|x| > R+ [t|}.

Remarkably, this is false for N > 5, as was shown by the authors [21]. More on this later.

This strong rigidity in the radial N = 3 case led to the full soliton resolution conjecture for (NLW), N = 3
radial [14]. For N odd, N > 5, (1) holds in the radial case, for (u,, 4;) in an % co-dimensional subspace of Hj,
(Kenig-Lawrie-Liu-Schlag [22]), which is not sufficient to deduce the strong rigidity result for (NLW) in this case,
using the scaling of the equation as in 3 d. The proof of the soliton resolution conjecture in this case is more
involved. It uses asymptotic estimates on non-radiative solutions of NLW, deduced from () and related estimates
for the linearized operator around W, together with a careful study of the modulation equations close to a
multisoliton for radial non-radiative solutions. This gives enough parameters to deal with the large dimensional
exceptional subspace for (f). It led to the full soliton resolution for NLW radial, N odd, [15]-[17].

Even N: The estimate (f) is not valid its full generality even in the R = 0, radial case. (Cote-Kenig-Schlag
[23]). Nevertheless, (1) holds, in the radial case, R = 0, and in a finite co-dimensional subspace, R > 0, for N
congruent to 0 mod 4, data (u,, 0), N congruent to 2 mod 4, data (0, ;). ([23], Duyckaerts-Kenig-Martel-Merle
[24], Li-Shen-Wei [25]). In each even dimension, for the failing cases, the failure can be seen to be a conse-
quence of an explicit radial singular resonant non-radiative solution that fails logarithmically to be in the energy
space. (NLW), for N = 4 radial, was first treated in [24]. This case is critical for the strong rigidity theorem
mentioned earlier for N = 3: for any R > 0, in the radial case, solitons are the only non-radiative solutions of
NLW in {|x| > R + |t|}. This was proved in [24] for N = 4, by a delicate analysis based on the separate study of
Uy = %[u(t) + u(—1t)], noting that the equations they satisfy are decoupled at first order. We now turn to [21],
[26]-[28] by Collot-Duyckaerts-Kenig-Merle, which first proved the soliton resolution for (NLW) when N = 6, by
introducing replacements to the false estimate () when the data are (u,, 0). In order to do this we needed to
combine the N = 4 and N odd >5 analysis, which are very different. Some of the difficulties were: Since N > 4,
we have a “large dimension” of the set of linear, non-radiative solutions in the exterior cone {|x| > R + |¢|},
which are counterexamples to (1) of the form (0, w,). This in fact leads the existence of non-trivial, non-radiative
radial solutions at the nonlinear level, different from a soliton in regions {|x| > R + |t|}, N > 5 (failure of strong
rigidity [21]). (We in fact give a complete classification of them). To rule out the possibility of these counterexam-
ples emerging from solutions in the whole space, we have a “reconnection problem”. This is highly non-trivial
and is done by contradiction, in the spirit of N = 4. Next, as opposed to N > 5, odd, we don’t have “channel
estimates” as (1) for data (u,, 0), due to the existence of the “resonant solution” (r=2, 0), that misses the energy
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space logarithmically. This blocks the proof of the asymptotics at infinity and the modulation analysis. This is
now replaced by the following new ingredient. Consider the linearized equation around W, N > 3.

(LW){af U — Auy, + Vi, =0

-

Upwye=o = (U, Uy) € H

with V = —% W4/N=2 We define

Epw=E  +E" ., EX = lim / IV, Ul dx.

out out” out t5+00
[xI2[¢]

By (1),if u; solves the free linear wave equation, N > 3isodd, then |[(uy, u)ll, < \/Jm but,for N =4 |Juy|l; <
VEouo or N =6 [lwyll;2 S 4/Egue and the full estimates fail. For (LW), for all N, AW, tAW, N > 5 are counterex-
amples to (1), where AW =x- VW + % W generates the radial kernel of —A +V = —A — % WH4/N=2 For
N > 5, odd [16], showed that in the radial case, if u;;, solves (LW), we have ||H;'I1 Ul + ||l'ILi2 Wz S VEouw
where Hf{l = [Izn((span AW)L) and HLLz = II;z((span AW)1). This fails for N even, for instance, when N = 6,
for data (u,, 0). We now remedy this: Let N = 6,

1/2

Cap 1 2
I =swp ol [ i

R<|x|<2R

Theorem (Collot-Duyckaerts-Kenig-Merle [27]).— Let ur, solve (LW), N = 6. Then:

1 1
L, wyllz + VI, Uollz S VEou

Corresponding estimates hold for all N > 5, N even.

This allowed us in [26], [28] to establish the inelastic collision of solitons and the soliton resolution
conjecture, N = 6. The last ingredient needed was:
Rigidity Theorem ([21]).— Let N = 6, u be a radial solution of NLW, bounded in energy, global in time. Then, if u
is not a soliton, ARy, ny > 0, ty ERS.LVE>tyorVi <t

[V, ulx, O1* dx > #,.

|X|=Ry+[t=t|

This is a crucial ingredient in our proof of soliton resolution. It also holds for N > 5, N odd, and for N = 4, 6.
Remark: A few months after these results were posted, Jendrej-Lawrie [29] posted a proof of soliton resolution
for radial NLW, N > 4. They did this also by showing the inelastic collision of solitons. Their approach to this
is not through rigidity theorems, but by a “no return analysis”, (as in their earlier work on equivariant wave
maps), inspired by work of Duyckaerts-Merle [30], Nakanishi-Schlag [31], Krieger-Nakanishi-Schlag [32].
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