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Abstract: We present global Schauder type estimates in all variables and unique solvability results in kinetic

Hölder spaces for kinetic Kolmogorov-Fokker-Planck (KFP) equations. The leading coefficients are Hölder con-

tinuous in the x, 𝑣 variables and are merely measurable in the temporal variable. Our proof is inspired by

Campanato’s approach to Schauder estimates and does not rely on the estimates of the fundamental solution of

the KFP operator.
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1 Introduction and main result

Let d ≥ 1, x ∈ ℝd be the spatial variable, 𝑣 ∈ ℝd be the velocity variable, and denote z = (t, x, 𝑣). Throughout the

paper, T ∈ (−∞,∞], andℝ1+2d
T

:= (−∞, T ) ×ℝ2d. The goal of this article is to establish a Schauder type estimate

for the KFP equation

Pu+ b ⋅ D𝑣u+ (c + 𝜆2 )u = f , (1.1)

where

P:= 𝜕t − 𝑣 ⋅ Dx − ai j(z)D𝑣i𝑣 j
. (1.2)

The above equation appears in kinetic theory, theory of diffusion processes, and mathematical finance (see [1]

and the references therein). In particular, (1.1) with−𝑣 ⋅ Dxu replaced with 𝑣 ⋅ Dxu can be viewed as a lineariza-

tion of the Landau equation (see [2]), an important model of weakly coupled plasma. We also mention that P is

the infinitesimal generator of the Langevin diffusion process (see [3]), so that the time-reversed version of (1.1)

can be viewed as a backward Kolmogorov equation for the Langevin process.

It is a fundamental problem to establish the maximal regularity for the KFP equation in various functional

spaces such as Hölder spaces (see [4], [5], [6], [24]–[26], [34]–[36], [13]) and Lp spaces (see [14], [15], [16], [17] and

the references therein) that is analogous to the theory developed for nondegenerate equations (see, for example,

[18], [19], [20]). Such results play a crucial role in the studies of the conditional regularity of the Landau equation
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(see [7]) and boundary value problem for the Landau equation with the specular reflection boundary condition

(see [21], [22]).

The goal of the paper is to establish global Schauder estimates in t, x, 𝑣 variables for Eq. (1.1) with time

irregular leading coefficients (see Theorem 1.6). We also show how the constant on the right-hand side of the

a priori estimate (1.10) depends on the lower eigenvalue bound 𝛿 (see Assumption 1.3). This is relevant to the

linearization of the Landau equation near the global Maxwellian because for such an equation, one has

N1|𝑣|−3𝛿i j ≤ ai j(z) ≤ N2|𝑣|−1𝛿i j.
Hence, localizing to the velocity shell |𝑣| ∼ 2n, we obtain the equation of type (1.1) with 𝛿 ∼ 2−3n (see the details in

[21], [22]). Ourmethod is inspired by Campanato’s approach and does not involve any estimates of the fundamen-

tal solution to the KFP equation. See the details in Section 1.4. Previously, we have used a kernel-free approach to

prove estimates in certain weighted-mixed norm Lp spaces for the KFP equation with rough leading coefficients

(see [16], [17]).

Before we state the main result and review the relevant literature, we introduce some notation.

1.1 Notation

In this section, 𝛼 ∈ (0, 1] is a number, and G ⊂ ℝ1+2d is an open set.

– The usual Hölder space. For an open set Ω ⊂ ℝd, by C𝛼(Ω), we mean the usual Hölder space with the

seminorm

[u]C𝛼 (Ω) := sup
x,x′∈Ω:x≠x′

|u(x)− u(x′ )|
|x − x′|𝛼 ,

and the norm

‖u‖C𝛼 (Ω) := ‖u‖L∞(Ω) + [u]C𝛼 (Ω).

– Anisotropic Hölder spaces. For 𝛼 ∈ (0, 1] and an open set D ⊂ ℝ2d, we denote

[u]
C
𝛼∕3,𝛼
x,𝑣 (D)

:= sup
(xi,𝑣i )∈D:(x1,𝑣1 )≠(x2,𝑣2 )

|u(x1, 𝑣1 )− u(x2, 𝑣2 )|(|x1 − x2|1∕3 + |𝑣1 − 𝑣2|)𝛼 .
Furthermore, for an open set of the form

G = (t0, t1 ) × D, −∞ ≤ t0 < t1 ≤ ∞, (1.3)

we set

L∞C
𝛼∕3,𝛼
x,𝑣 (G) := L∞((t0, t1 ), C

𝛼∕3,𝛼
x,𝑣 (D)),

[u]
L∞C

𝛼∕3,𝛼
x,𝑣 (G)

= ess supt∈(t0,t1 )[u(t, ⋅)]C𝛼∕3,𝛼x,𝑣 (D)
,

‖u‖
L∞C

𝛼∕3,𝛼
x,𝑣 (G)

= ‖u‖L∞(G) + [u]
L∞C

𝛼∕3,𝛼
x,𝑣 (G)

.

Furthermore, we say that u ∈ ℂ2,𝛼(G) if

u,D𝑣u,D
2
𝑣
u, 𝜕tu− 𝑣 ⋅ Dxu ∈ L∞C

𝛼∕3,𝛼
x,𝑣 (G).

We stress that 𝜕tu and 𝑣 ⋅ Dxu are understood in the sense of distributions. The norm in this space is defined as

‖u‖ℂ2,𝛼 (G) := ‖u‖+ ‖D𝑣u‖+ ‖D2
𝑣
u‖+ ‖𝜕tu− 𝑣 ⋅ Dxu‖, (1.4)

where ‖ ⋅ ‖ = ‖ ⋅ ‖
L∞C

𝛼∕3,𝛼
x,𝑣 (G)

.
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– Kinetic quasi-distance and kinetic Hölder spaces.We denote

𝜌(z, z0 ) = max
{|t − t0|1∕2, |x − x0 + (t − t0 )𝑣0|1∕3, |𝑣− 𝑣0|}. (1.5)

Note that 𝜌 satisfies all the properties of the quasi-distance except the symmetry. By 𝜌̂we denote a symmetriza-

tion of 𝜌 given by

𝜌̂(z, z′ ) = 𝜌(z, z′ )+ 𝜌(z′, z). (1.6)

We introduce the kinetic Hölder seminorm

[u]C𝛼
kin
(G) := sup

z,z′∈G:z≠z′
|u(z)− u(z′ )|
𝜌𝛼(z, z′ )

(1.7)

and the kinetic Hölder space

C𝛼
kin
(G) :=

{
u ∈ L∞(G): [u]C𝛼

kin
(G) <∞

}

equipped with the norm

‖u‖C𝛼
kin
(G) = ‖u‖L∞(G) + [u]C𝛼

kin
(G).

Furthermore, for an open set of the form (1.3), we define C2,𝛼
kin
(G) to be the Banach space of all C𝛼

kin
(G)

functions u such that the norm

‖u‖C2,𝛼
kin
(G) := ‖u‖C𝛼

kin
(G) + ‖𝜕tu− 𝑣 ⋅ Dxu‖L∞C𝛼∕3,𝛼x,𝑣 (G)

+
[
D2
𝑣
u
]
C𝛼
kin
(G)

is finite.

Remark 1.1. Due to Lemma B.1 (i), replacing 𝜌(z, z′) with 𝜌̂(z, z′ ) in (1.7) yields an equivalent space.

Remark 1.2. Our definition of the spaces C𝛼
kin

and C2,𝛼
kin

is similar to those used in [9], [12]. In particular, it follows

from Remark 2.9 in [9] that the C2+𝛼
l

seminorm (see Definition 2.2 therein) is equivalent to

[𝜕tu+ 𝑣 ⋅ Dxu]C̃𝛼 (ℝ1+2d ) +
[
D2
𝑣
u
]
C̃𝛼 (ℝ1+2d )

,

where

[ f ]
C̃𝛼 (ℝ1+2d ) := sup

z,z′∈ℝ1+2d :z≠z′
|u(z)− u(z′ )|

dl(z, z
′ )

,

dl(z, z
′ ) = max{|t − t′|1∕2, |x − x′ − (t − t′ )𝑣′|1∕3, |𝑣− 𝑣′|}. (1.8)

Convention. By N = N(…) and 𝜃 = 𝜃(…), we denote constants depending only on the parameters inside

the parentheses. These constants might change from line to line. Sometimes, when it is clear what parameters

N and 𝜃 depend on, we omit them.

1.2 Main results

Assumption 1.3. The function a = (aij(z), i, j = 1,… , d) ismeasurable, and there exists some 𝛿 ∈ (0, 1) such that

ai j𝜉i𝜉 j ≥ 𝛿|𝜉|2, |a| ≤ 𝛿−1.
Assumption 1.4. The function a is of class L∞C

𝛼∕3,𝛼
x,𝑣

(
ℝ1+2d
T

)
, and for some K > 0,

[a]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
≤ K𝛿−1.
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Assumption 1.5. The functions b = (b1(z),… , bd(z)) and c = c(z) are bounded measurable such that

‖b‖
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ ‖c‖

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
≤ L

for some L > 0.

Definition 1.1. For s ∈ ℝ, the fractional Laplacian (−Δx )
s is defined as a Fourier multiplier with the symbol

|𝜉|2s. For s ∈ (0, 1) and u ∈ Lp(ℝd ), (−Δx )
su is understood as a distribution defined by duality as follows:

((−Δx )
su, 𝜙) = (u, (−Δx )

s𝜙), 𝜙 ∈ C∞
0
(ℝd ).

When s ∈ (0, 1∕2), for any Lipschitz function u ∈ ∪ p∈[1,∞]Lp(ℝd ), the pointwise formula

(−Δx )
su(x) = N(d, s)∫

ℝd

u(x)− u(x + y)

|y|d+2s dy (1.9)

is valid.

Theorem 1.6. Let 𝛼 ∈ (0, 1), and Assumptions 1.3–1.5 be satisfied. Then, the following assertions hold.

(i) For any u ∈ C2,𝛼
kin

(
ℝ1+2d
T

)
, we have

[
D2
𝑣
u
]
+
[
(−Δx )

1∕3u
]
+ [𝜕tu− 𝑣 ⋅ Dxu]L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ sup

(t,𝑣)∈ℝ1+d
T

[u(t, ⋅, 𝑣)]C(2+𝛼 )∕3(ℝd )

≤ N𝛿−𝜃
(
[Pu+ b ⋅ D𝑣u+ cu]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ ‖u‖L∞(ℝ1+2d

T )

)
, (1.10)

where [ ⋅ ] = [ ⋅ ]C𝛼
kin(ℝ

1+2d
T ), N = N(d, 𝛼,K, L), and 𝜃 = 𝜃 (d, 𝛼).

(ii) There exist numbers

𝜆0 = 𝛿−𝜃𝜆0(d, 𝛼,K, L) > 0, 𝜃 = 𝜃(d, 𝛼 ) > 0 (1.11)

such that for any u ∈ C2,𝛼
kin

(
ℝ1+2d
T

)
and 𝜆 ≥ 𝜆0,

𝜆2+𝛼‖u‖L∞(ℝ1+2d
T ) + 𝜆

2[u]+ 𝜆1+𝛼‖D𝑣u‖L∞(ℝ1+2d
T ) + 𝜆[D𝑣u]

+ 𝜆𝛼‖(−Δx )
1∕3u‖L∞(ℝ1+2d

T ) +
[
(−Δx )

1∕3u
]
+ 𝜆𝛼‖𝜕tu− 𝑣 ⋅ Dxu‖L∞(ℝ1+2d

T )

+ [𝜕tu− 𝑣 ⋅ Dxu]L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ 𝜆𝛼‖D2

𝑣
u‖L∞(ℝ1+2d

T ) +
[
D2
𝑣
u
]
+ sup

(t,𝑣)∈ℝ1+d
T

[u(t, ⋅, 𝑣)]C(2+𝛼 )∕3(ℝd )

≤ N𝛿−𝜃
([
Pu+ b ⋅ D𝑣u+ (c + 𝜆2 )u

]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ 𝜆𝛼‖Pu+ b ⋅ D𝑣u+ (c + 𝜆2 )u‖L∞(ℝ1+2d

T )

)
, (1.12)

where N = N(d, 𝛼,K).

(iii) For any 𝜆 ≥ 𝜆0 (see the assertion (ii)) and f ∈ L∞C
𝛼∕3,𝛼
x,𝑣

(
ℝ1+2d
T

)
, Eq. (1.1). has a unique solution u ∈

C2,𝛼
kin

(
ℝ1+2d
T

)
.

(iv) For any finite S < T and f ∈ L∞C
𝛼∕3,𝛼
x,𝑣 ((S, T ) ×ℝ2d ), the Cauchy problem

Pu+ b ⋅ D𝑣u+ (c + 𝜆2 )u = f , u(S, ⋅) ≡ 0 (1.13)

has a unique solution u ∈ C2,𝛼
kin
((S, T ) ×ℝ2d ), and, furthermore,

‖u‖+ ‖D𝑣u‖+ ‖D2
𝑣
u‖+ ‖(−Δx )

1∕3u‖+ ‖𝜕tu− 𝑣 ⋅ Dxu‖L∞C𝛼∕3,𝛼x,𝑣 (ℝ1+2d
T )
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≤ N𝛿−𝜃‖ f ‖
L∞C

𝛼∕3,𝛼
x,𝑣 ((S,T )×ℝ2d )

,

where ‖ ⋅ ‖ = ‖ ⋅ ‖C𝛼
kin
((S,T )×ℝ2d ), and N = N(d, 𝛼,K, L, T − S).

Remark 1.7. In the case when aij = aij(t) and b ≡ 0, c ≡ 0, by a scaling argument (see Lemma 2.1), we conclude

that (1.12) holds for any 𝜆 > 0. By using a compactness argument as in the proof of Theorem 1.6, one can show

that the assertion (iii) of the above theorem is also valid for any 𝜆 > 0 in that case.

Corollary 1.8 (Kinetic interpolation inequalities).For any u ∈ C2,𝛼
kin

(
ℝ1+2d
T

)
, D𝑣u ∈ C𝛼

kin

(
ℝ1+2d
T

)
, and, furthermore,

for any 𝜀 > 0,

(i) [u]C𝛼
kin(ℝ

1+2d
T ) ≤ N𝜀2([𝜕tu− 𝑣 ⋅ Dxu]L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+
[
D2
𝑣
u
]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
)

+ N𝜀2−𝛼‖𝜕tu− 𝑣 ⋅ Dxu‖L∞(ℝ1+2d
T ) + N𝜀−𝛼‖u‖L∞(ℝ1+2d

T ), (1.14)

(ii) [D𝑣u]C𝛼
kin(ℝ

1+2d
T ) ≤ N𝜀([𝜕tu− 𝑣 ⋅ Dxu]L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+
[
D2
𝑣
u
]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
)

+ N𝜀1−𝛼‖𝜕tu− 𝑣 ⋅ Dxu‖L∞(ℝ1+2d
T ) + N𝜀−1−𝛼‖u‖L∞(ℝ1+2d

T ), (1.15)

(iii) sup
(t,𝑣)∈ℝ1+d

T

[D𝑣u(t, ⋅, 𝑣)]C(1+𝛼 )∕3(ℝd
x)
≤ N sup

(t,x )∈ℝ1+d
T

[
D2
𝑣
u(t, x, ⋅)

]
C𝛼(ℝd

𝑣)

+ N sup
(t,𝑣)∈ℝ1+d

T

[u(t, ⋅, 𝑣)]C(2+𝛼 )∕3(ℝd
x)
, (1.16)

(i𝑣) sup
t1,t2∈(−∞,T ):t1≠t2

|(D𝑣u)(t1, x − (t1 − t2 )𝑣, 𝑣)− (D𝑣u)(t2, x, 𝑣)||t1 − t2|(1+𝛼 )∕2
≤ N

[
D2
𝑣
u
]
C𝛼
kin(ℝ

1+2d
T )

+ N sup
(t,𝑣)∈ℝ1+d

T

[u(t, ⋅, 𝑣)]C(2+𝛼 )∕3(ℝd
x)
, (1.17)

where N = N(d, 𝛼).

It is easy to see that C2,𝛼
kin
(G) ⊂ ℂ2,𝛼(G) for an open set G of type (1.3). The following corollary is concerned

with the opposite inclusion.

Corollary 1.9 (‘Equivalence’ of ℂ2,𝛼 and C2,𝛼
kin
). (i) For any u ∈ ℂ2,𝛼

(
ℝ1+2d
T

)
, one has u ∈ C2,𝛼

kin

(
ℝ1+2d
T

)
, and, in addi-

tion, [
D2
𝑣
u
]
C𝛼
kin(ℝ

1+2d
T )

≤ N(d, 𝛼 )([𝜕tu− 𝑣 ⋅ Dxu]L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ [Δ𝑣u]L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
). (1.18)

(ii) Let R > 0. If u ∈ ℂ2,𝛼(QR ), then, for any r ∈ (0,R), u ∈ C2,𝛼
kin
(Qr ), and[

D2
𝑣
u
]
C𝛼
kin
(Qr )

≤ N(d, 𝛼, r,R)‖u‖ℂ2,𝛼 (QR )
.

Corollary 1.10 (Interior Schauder estimate). Let R > 0 and r ∈ (0,R) be constants. For any u ∈ C2,𝛼
kin
(Q2r ),

‖𝜕tu− 𝑣 ⋅ Dxu‖L∞C𝛼∕3,𝛼x,𝑣 (Qr )
+ [u]C𝛼

kin
(Qr )

+ [D𝑣u]C𝛼
kin
(Qr )

+
[
D2
𝑣
u
]
C𝛼
kin
(Qr )

+ sup
t,𝑣∈(−r2,0)×Br

‖u(t, ⋅, 𝑣)‖C(2+𝛼 )∕3(Qr )
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≤ N𝛿−𝜃(‖Pu+ b ⋅ D𝑣u+ cu‖
L∞C

𝛼∕3,𝛼
x,𝑣 (QR )

+ ‖u‖L∞(QR )
),

where Qr = (−r2, 0) × Br3 × Br and N = N(d, 𝛼,K, L, r,R).

1.3 Related works

In this section, we give a brief overview of the literature related to the Schauder estimates for the second-order

nondegenerate parabolic equations and KFP equations.

– Classical Schauder estimates. This theory asserts that if all the coefficients and the nonhomogeneous term

are Hölder continuous with respect to all variables, then so are the second-order (spatial) derivatives of

the solution. Such estimates can be proved either by using the integral representation of solutions and the

bounds of the higher-order derivatives of the fundamental solution to the heat equation (see, for example,

[18]) or by ‘kernel-free’ methods (see [23], [19], [24], [25], [26]).

– Partial Schauder estimates for elliptic/parabolic equations.These are results saying that if the data areHölder

continuous only with respect to some variables, then so are the second-order derivatives (see [27], [28], [29],

[30]).

– Schauder estimates for parabolic equations with time irregular coefficients. In was showed in [31] that if for

the nondegenerate parabolic equation, the coefficients and the nonhomogeneous term are of class L∞,tC
𝛼
x
,

then the spatial second-order derivatives of the solution belong to the same space. Later, the author of [32]

improved this result by showing that under the same assumptions, the second-order derivatives are Hölder

continuous with respect to the space and time variables. Both papers [31], [32] are concerned with the inte-

rior Schauder estimate. The global estimate (up to the boundary)was established later in [33]. For the related

results for parabolic PDEswith unbounded nonhomogeneous terms or unbounded lower-order coefficients,

we refer the reader to [34], [35], respectively. The parabolic systems with time irregular coefficients are

treated in [36] (see also [37]).

– Schauder estimates for the KFP equations with Hölder continuous coefficients. A discussion of the Hölder

theory and related results for the KFP equation can be found in [38]. The global (partial) parabolic Schauder

estimate (cf. [31]) is established in [11] under the additional assumptions that the leading coefficients aij are

independent of time and have a limit at infinity (see also [39] and the references therein). In the case when

the leading coefficients are Hölder continuous in t, x, and 𝑣, the interior Schauder estimate was proved in

[6], [7], [12]. Later, the authors of [9] established the global Schauder estimate in theHölder space C2,𝛼
l
(ℝ1+2d ),

which is similar to C2,𝛼
kin
(ℝ1+2d ) (see Remark 1.2). However, due to the nonequivalence of the kinetic Hölder

spaces and the usual Hölder spaces, the classical theory developed in [9] does not even yield the global

estimate in the case when d = 1, a ≡ 1, b ≡ 0, c ≡ 0, and f = f (x) is smooth, say f (x) = sin(x). In particular,

Theorem 3.5 of [9] requires f ∈ C𝛼
l
(ℝ3 ) (see Definition 2.2 therein). It is easy to see that for 𝛼 ∈ (0, 1), the

C𝛼
l
(ℝ3 ) seminorm is equivalent to the one defined in (1.8), and, therefore, sin(x) does not belong to C𝛼

l
(ℝ3 ).

We mention that the authors of [9] used a kernel-free approach inspired by Safonov’s proof of the classical

Schauder estimate (see the exposition in [19]).

– Schauder estimates for the KFP equationwith irregular coefficients. The partial parabolic Schauder estimates

similar to that of [31] were investigated in [4], [5], [8]. Their results can be stated in the following general

way: under the assumptions 1.3–1.5, the L∞C
𝛼∕3,𝛼
x,𝑣 seminorm of D2

𝑣
u is controlled by the L∞C

𝛼∕3,𝛼
x,𝑣 norms of

a, b, c, and u. To elaborate,

– [8] is concerned with the interior estimate, which is applied to the well-posedness problem for the

Landau equation with a ‘rough’ initial datum,

– in [4], [5], for T <∞, the global results in L∞C
𝛼∕3,𝛼
x,𝑣

(
ℝ1+2d
T

)
and L∞C

𝛼∕3,𝛼
x,𝑣 ((0, T ) ×ℝ2d ), respectively,

were established,

– a certain interior Schauder estimate in all variables t, x, 𝑣 was proved in [4], and the authors of [8]

also commented on the possibility of deriving such an estimate from one of their main results (see the

paragraph under the formula (1.5) therein),
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– Schauder estimate for nonlocal kinetic equations. For the related results, see [23], [27], and the refer-

ences therein.

Recently, the authors of [10] established Hölder estimates for general Kolmogorov equations with time-

measurable leading coefficients by a method based on derivative bounds of the fundamental solutions of

Kolmogorov operators. Regarding the kinetic Kolmogorov-Fokker-Planck equation with vanishing initial data,

the main result in [10] (see Theorem 2.7 therein) is similar to Theorem 1.6 of our paper, although it is stated

somewhat differently. The main distinction lies in the definition of the solution space. Definition 2.3 in [10]

requires additional regularity in the 𝑣 variable (see Definition 1.4 therein) such as D𝑣u ∈ C
(1+𝛼 )∕3
x and that D𝑣u

is C(1+𝛼)∕2-Hölder continuous along the characteristics of the transport operator 𝜕t − 𝑣 ⋅ Dx . However, by using a

mollification argument, we demonstrate in (1.16)–(1.17) of Corollary 1.8 that any element of our solution space

C2+𝛼
kin

enjoys the same regularity as that stated in Definition 1.4 of [10].

We also mention the article [13], where the interior Schauder estimate for the operator (1.2) was derived

under the assumption that the leading coefficients satisfy a Dini type condition. A few remarks in order.

– The papers [4], [5], [13] are concerned with the degenerate Kolmogorov operators that are more general

than (1.2).

– The arguments of the articles [4], [5], [8] (partial Schauder estimates for the KFP equation) use the explicit

form of the fundamental solution of P.

1.4 Strategy of the proof

Themain part of the argument is the proof of the a priori estimate (1.10) for a sufficiently regular function u (see

Lemma 4.1). We remark that the C𝛼
kin

estimate of (−Δx )
1∕3u is obtained as a by-product of our argument. Never-

theless, due to Lemma 3.3, the mean-oscillation estimate of (−Δx )
1∕3u (see Proposition 3.1) plays an important

role in the proof of C𝛼
kin

estimate of D2
𝑣
u. To prove (1.10), we follow Campanato’s approach (see [36], [23]), which

enables us to reduce the problem to estimating a ‘kinetic’ Campanato type seminorm of D2
𝑣
u (see Lemma 2.2)

adapted to the symmetries of the KFP operator P (see Lemma 2.1).

First, we show how our argument works in the case when the coefficients aij depend only on the temporal

variable. Our goal is to estimate the mean-oscillation of (−Δx )
1∕3u and D2

𝑣
u over an arbitrary kinetic cylinder

Qr(z0), z0 ∈ ℝ1+2d
T

. We split u into a ‘caloric part’ uc and a remainder urem such that

Puc(z) = 𝜒 (t) in (t0 − (𝜈r)2, t0 ) ×ℝd × B𝜈r(𝑣0 ),

Purem(z) =
(
f (z)− 𝜒 (t)

)
𝜙(t, 𝑣) in (t0 − (2𝜈r)2, t0 ) ×ℝ2d,

Here

– f = Pu, 𝜒 (t) = f (t, x0 − (t − t0)𝑣0, 𝑣0),

– 𝜙 is a suitable cutoff function,

– 𝜈 ≥ 2 is a number, which we will choose later.

By using the S2 estimate (see TheoremA.2),we bound theL2 average ofD
2
𝑣
urem and (−Δx )

1∕3urem over the cylinder

Qr(z0). Furthermore, by the S2 regularity results and the pointwise formula (1.9) for the fractional Laplacians,

we prove the mean-oscillation estimate for D2
𝑣
uc and (−Δx )

1∕3uc. Combining these bounds, we obtain the mean-

oscillation inequality for D2
𝑣
u and (−Δx )

1∕3u (see Proposition 3.1). Taking 𝜈 ≥ 2 large and using the equivalence

of the Campanato and Hölder seminorms (see Lemma 2.2), we prove (1.10). We remark that the choice of the

function 𝜒 is dictated by the specific form of the kinetic cylinder Qr(z0). In the spatially homogeneous case, one

can take 𝜒 (t) = f (t, 𝑣0) (see [36]).

In the general case, we perturb the mean-oscillation estimates in Proposition 3.1 by using the method of

frozen coefficients (see Lemma 4.1) and follow the above argument.
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1.5 Additional notation and remarks. Geometric notation

Br(x0 ) =
{
𝝃 ∈ ℝd: |𝝃 − x0| < r

}
, Br = Br(0),

Qr, cr(z0 ) =
{
z:− r2 < t− t0 < 0, |𝑣− 𝑣0| < r, |x− x0 + (t− t0 )𝑣0|

1∕3 < cr
}
, (1.19)

Q̃r, cr(z0 ) =
{
z: |t− t0| < r2, |𝑣− 𝑣0| < r, |x− x0 + (t− t0 )𝑣0|

1∕3 < cr
}
, (1.20)

Q̂r(z0 ) =
{
z ∈ ℝ1+2d:𝝆̂(z, z0 ) < r

}
,

Qr, cr = Qr, cr(0), Q̃r, cr = Q̃r, cr(0), Q̃r(z0 ) = Q̃r, r(z0 ). (1.21)

Average. For a function f on ℝd and a Lebesgue measurable set A of positive finite measure, we denote its

average over A as

( f )A = ⨏ A f dx = |A|−1∫
A

f dx.

Functional spaces. For an open set G ⊂ ℝd, we set Cb(G) to be the space of all bounded uniformly continu-

ous functions on G. Furthermore, for k ∈ {1, 2,…}, we denote by Ck
b
(G) the space of all functions in Cb(G) such

that all the derivatives up to order k extend continuously toG. We also set Ck
0
(ℝd ) to be the subspace of all Ck

b
(ℝd )

functions vanishing at infinity along with all the derivatives up to order k.

Kinetic Sobolev spaces. For p ∈ [1,∞] and an open set G ⊂ ℝ1+2d,

Sp(G) :=
{
u ∈ Lp(G): 𝜕tu− 𝑣 ⋅ Dxu,D𝑣u,D

2
𝑣
u ∈ Lp(G)

}
. (1.22)

Local kinetic Sobolev spaces. By Lp;loc(G) we denote the set of all measurable functions u such that for any

𝜙 ∈ C∞
0
(G), u𝜙 ∈ Lp(G). Furthermore, we define Sp;loc(G) by (1.22) with Lp(G) replaced with Lp;loc(G).

Remark 1.11. Here we give a couple of examples of functions belonging to the spaces C𝛼
kin

(
ℝ1+2d
T

)
and

C2,𝛼
kin

(
ℝ1+2d
T

)
.

As pointed out in Section 1.3, even if u = u(x, 𝑣) is smooth in x and 𝑣, it might not be of class C𝛼
kin

(
ℝ1+2d
T

)
. On

the other hand, it is easy to prove directly that for 𝜁, 𝜉 ∈ C∞
0
(ℝd ), one has 𝜁 (x)𝜉(𝑣) ∈ C𝛼

kin

(
ℝ1+2d
T

)
. This fact also

follows from Lemma B.3. Similarly, one can also show that 𝜁 (x)𝜉(𝑣) ∈ C2,𝛼
kin

(
ℝ1+2d
T

)
.

Here is an example of a function of class C2,𝛼
kin

(
ℝ1+2d
T

)
that depends on all variables t, x, 𝑣. Let 𝜓 ∈ C3

b
(ℝd )

and denote

𝜙(z) = e−t
2

𝜓 (x + t𝑣).

We have

𝜕t𝜙− 𝑣 ⋅ Dx𝜙 = −2te−t2𝜓 (x + 𝑣t),

D𝑣i𝑣 j
𝜙(z) = t2e−t

2

(D𝑣i𝑣 j
𝜓 )(x + t𝑣).

Again, either estimating the C𝛼
kin

seminorm directly or by using Lemma B.3, we conclude that u,D2
𝑣
u, 𝜕tu− 𝑣 ⋅

Dxu ∈ C𝛼
kin

(
ℝ1+2d
T

)
.

Remark 1.12. It follows from the interpolation inequality in the usual Hölder space (see Lemma B.2) that if

u ∈ C2,𝛼
kin

(
ℝ1+2d
T

)
, then for any 𝜀 > 0, one has

‖D2
𝑣
u‖L∞(ℝ1+2d

T ) ≤ N𝜀𝛼 sup
t∈(−∞,T],x∈ℝd

[
D2
𝑣
u(t, x, ⋅)

]
C𝛼
𝑣
(ℝd )

+ N𝜀−2‖u‖L∞(ℝ1+2d
T ),
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‖D𝑣u‖L∞(ℝ1+2d
T ) ≤ N𝜀1+𝛼 sup

t∈(−∞,T],x∈ℝd

[
D2
𝑣
u(t, x, ⋅)

]
C𝛼
𝑣
(ℝd )

+ N𝜀−1‖u‖L∞(ℝ1+2d
T ),

and this is why the suprema of D𝑣u and D
2
𝑣
u are not included in the C2,𝛼

(
ℝ1+2d
T

)
norm.

Remark 1.13. The completeness of C𝛼
kin

(
ℝ1+2d
T

)
and C2,𝛼

kin

(
ℝ1+2d
T

)
follows from that of L∞

(
ℝ1+2d
T

)
and the Arzela-

Ascoli theorem.

Remark 1.14. It is easy to see that the following product rule inequality holds:

[ f g]X ≤ ‖ f ‖L∞(ℝ1+2d
T )[g]X + ‖g‖L∞(ℝ1+2d

T )[ f ]X ,

where X = C𝛼
kin

(
ℝ1+2d
T

)
or L∞C

𝛼∕3,𝛼
x,𝑣

(
ℝ1+2d
T

)
.

1.6 Organization of the paper

In Section 2, we prove some auxiliary results including the equivalence of the kinetic Hölder and Campanato

seminorms. In Section 3, we establish the mean-oscillation estimates of (−Δx )
1∕3u and D2

𝑣
uwhich constitute the

crux of the proof of Theorem 1.6.We give a proof of the aforementioned theorem in Section 4. Finally, Corollaries

1.8–1.10 are proved in Section 5.
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2 Auxiliary result

Lemma 2.1. Let p ∈ [1,∞] and u ∈ Sp,loc
(
ℝ1+2d
T

)
. For any z0 ∈ ℝ1+2d

T
and any function h on ℝ1+2d

T
, denote

z̃ =
(
r2t + t0, r

3x + x0 − r2t𝑣0, r𝑣+ 𝑣0
)
, h̃(z) = h(z̃), (2.1)

Y = 𝜕t − 𝑣 ⋅ Dx, P̃ = 𝜕t − 𝑣 ⋅ Dx − ai j(z̃)D𝑣i𝑣 j
. (2.2)

Then,

Yũ(z) = r2Yu(z̃), P̃ũ(z) = r2(Pu)(z̃).

We introduce a kinetic Campanato type seminorm

[u]2,𝛼

kin(ℝ
1+2d
T ) = sup

r>0,z0∈ℝ1+2d
T

r−𝛼(|u− (u)Qr(z0 )
|2 )1∕2

Qr(z0 )
(2.3)

(cf. Chapter 5 in [23]).

Here is a version of Campanato’s result (cf. Theorem 5.5 in [23]).

Lemma 2.2. Let 𝛼 ∈ (0, 1] and u ∈ L2,loc
(
ℝ1+2d
T

)
be a function such that

[u]2,𝛼

kin(ℝ
1+2d
T ) <∞.

Then, one has

N[u]C𝛼
kin(ℝ

1+2d
T ) ≤ [u]2,𝛼

kin(ℝ
1+2d
T ) ≤ N−1[u]C𝛼

kin(ℝ
1+2d
T ), (2.4)
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where N = N(d, 𝛼).

Proof. The second estimate follows from the definitions of the seminorms. The proof of the first bound is split

into three steps.

Step 1: replacing 𝜌with its symmetrization 𝜌̂ (see (1.5)–(1.6)). We claim that to prove (2.4), it suffices to show that

for any z1, z2 ∈ ℝ1+2d
T

,

|u(z1 )− u(z2 )| ≤ 𝜌̂𝛼(z1, z2 )sup
r>0

r−𝛼(|u− (u)
Q̂r(z0 )∩ℝ1+2d

T

|2 )1∕2
Q̂r(z0 )∩ℝ1+2d

T

. (2.5)

Assuming (2.5), by Lemma B.1 (ii), we only need to demonstrate that

sup
r>0

r−𝛼(|u− (u)
Q̂r(z0 )∩ℝ1+2d

T

|2 )1∕2
Q̂r(z0 )∩ℝ1+2d

T

≤ N(d, 𝛼 )[u]2,𝛼

kin(ℝ
1+2d
T ). (2.6)

Indeed, by Lemma B.1 (iv),

(|u− (u)
Q̂r(z0 )∩ℝ1+2d

T

|2 )1∕2
Q̂r(z0 )∩ℝ1+2d

T

≤ N
|Q̃r(z0 ) ∩ℝ1+2d

T
|2

|Q̂r(z0 ) ∩ℝ1+2d
T

|2 (|u− (u)
Q̃r(z0 )∩ℝ1+2d

T

|2 )1∕2
Q̃r(z0 )∩ℝ1+2d

T

. (2.7)

By the doubling property (see Lemma B.1 (𝑣)) and Lemma B.1 (iv),

|Q̃r(z0 ) ∩ℝ1+2d
T

|
|Q̂r(z0 ) ∩ℝ1+2d

T
| ≤

|Q̂3r(z0 ) ∩ℝ1+2d
T

|
|Q̂r(z0 ) ∩ℝ1+2d

T
|
|Q̃r(z0 ) ∩ℝ1+2d

T
|

|Q̂3r(z0 ) ∩ℝ1+2d
T

| ≤ N(d).

Hence, the left-hand side of (2.6) is dominated by

sup
r>0

r−𝛼(|u− (u)
Q̃r(z0 )∩ℝ1+2d

T

|2 )1∕2
Q̃r(z0 )∩ℝ1+2d

T

.

Next, wewill consider the case T <∞ and assume that T = 0, for the sake of simplicity. Note that if t0 < −r2,
one has

Q̃r(z0 ) ⊂ Q√
2r

(
t0 + r2, x0 − r2𝑣0, 𝑣0

)
⊂ ℝ1+2d

0
.

If t0 ≥ −r2, then,
Q̃r(z0 ) ∩ℝ1+2d

0
⊂ Q2r(0, x0 + t0𝑣0, 𝑣0 ).

Thus,

sup
r>0,z0∈ℝ1+2d

T

r−𝛼(|u− (u)
Q̃r(z0 )∩ℝ1+2d

T

|2 )1∕2
Q̃r(z0 )∩ℝ1+2d

T

≤ N(d, 𝛼 )[u]2,𝛼

kin(ℝ
1+2d
T ),

so that (2.6) holds.

Step 2: estimate of the deviation of u from its average. In the remaining steps, we follow the argument of

Theorem 5.5 in [23] closely. Here we prove that for a.e. z0 ∈ ℝ1+2d
T

, and r > 0,

|u(z0 )− (u)
Q̂r(z0 )∩ℝ1+2d

T

| ≤ r𝛼[u]2,𝛼

kin(ℝ
1+2d
T ). (2.8)

First, let rn = 2−nr and denote n(z0 ) = Q̂rn
(z0 ) ∩ℝ1+2d

T
. We claim that

|(u)n(z0 )
− (u)n+1(z0 )

| ≤ N(d) r𝛼
n+1[u]2,𝛼

kin(ℝ
1+2d
T ). (2.9)

To prove this, we note that for any Lebesgue measurable sets of finite measure A ⊂ A′,

|( f )A′ − ( f )A| ≤ |A′|
|A| (| f − ( f )A′ |)A′ ≤ |A′|

|A| (| f − ( f )A′ |2 )1∕2A′
. (2.10)
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This combined with the doubling property (see Lemma B.1 (𝑣)) and (2.6) yields (2.9). Then, by using telescoping

series and (2.9), we obtain

|(u)
Q̂r(z0 )∩ℝ1+2d

T

− (u)n+1(z0 )
| ≤

n∑
j=0

|(u) j(z0 )
− (u) j+1(z0 )

|

≤ N(d, 𝛼 )r𝛼[u]2,𝛼

kin(ℝ
1+2d
T )

n∑
j=0

2−𝛼( j+1) ≤ N(d, 𝛼 ) r𝛼[u]2,𝛼

kin(ℝ
1+2d
T ). (2.11)

Furthermore, by the Lebesgue differentiation theorem in spaces of homogeneous type (see Lemma 7 in [42]) and

Lemma B.1 (𝑣),

lim
R→0

(u)
Q̂R(z0 )∩ℝ1+2d

T

= u(z0 ) for a.e. z0 ∈ ℝ1+2d
T

.

Then, passing to the limit in (2.11) as n→∞, we prove (2.8).

Step 3: proof of (2.5). We fix any two points z1, z2 ∈ ℝ1+2d
T

satisfying (2.8) and denote r = 𝜌̂(z1, z2 ). In view of

Lemma B.1, we have Q̂r(z1 ) ⊂ Q̂4r(z2 ). Then, by the triangle inequality,

|u(z1 )− u(z2 )| ≤ |u(z1 )− (u)
Q̂r(z1 )∩ℝ1+2d

T

|+ |u(z2 )− (u)
Q̂4r(z2 )∩ℝ1+2d

T

|
+ |(u)

Q̂4r(z2 )∩ℝ1+2d
T

− (u)
Q̂r(z1 )∩ℝ1+2d

T

|=: J1 + J2 + J3. (2.12)

By (2.8), we have

J1 + J2 ≤ N(d, 𝛼 ) r𝛼[u]2,𝛼

kin(ℝ
1+2d
T ). (2.13)

Next, to estimate J3, we use an argument similar to that of (2.7). By Lemma B.1, (2.10), and the doubling

property (Lemma B.1 (𝑣)), we obtain

J3 ≤ N(d)
|Q̂4r(z2 ) ∩ℝ1+2d

T
|2

|Q̂r(z1 ) ∩ℝ1+2d
T

|2 (|u− (u)
Q̂4r(z2 )∩ℝ1+2d

T

|2 )1∕2
Q̂4r(z2 )∩ℝ1+2d

T

≤ N(d) r𝛼[u]2,𝛼

kin(ℝ
1+2d
T ). (2.14)

Combining (2.12)–(2.14), we prove (2.5) for a.e. z1, z2 ∈ ℝ1+2d
T

. By continuity argument, (2.5) holds for all z1, z2.□

3 Estimate for the model equation

In this section, we assume that the coefficients aij are independent of x, 𝑣 and satisfy Assumption 1.3. We denote

P0 = 𝜕t − 𝑣 ⋅ Dx − ai j(t)D𝑣i𝑣 j
. (3.1)

Our goal is to prove a mean-oscillation estimate for (−Δx )
1∕3u and D2

𝑣
u (see Proposition 3.1). As explained in

Section 1.4, we split u into a ‘caloric part’ uc and a remainder urem. The mean-square estimate of urem is proved

via Lemma 3.2. To estimate the mean-square oscillation of uc, we need to modify the argument of Section 5 in

[16].

Proposition 3.1. Let 𝜈 ≥ 2, 𝛼 ∈ (0, 1), r > 0 be numbers, 𝜒 = 𝜒 (t) ∈ L2,loc(ℝT ), and u ∈ S2
(
ℝ1+2d
T

)
(see (1.22)).

Then, there exists 𝜃 = 𝜃(d) > 0 and N = N(d) > 0 such for any z0 ∈ ℝ1+2d
T

,

I1 :=
(|(−Δx )

1∕3u− ((−Δx )
1∕3u)Qr(z0 )

|2)1∕2
Qr(z0 )

≤ N𝜈−1𝛿−𝜃(|(−Δx )
1∕3u− ((−Δx )

1∕3u)Q𝜈r(z0 )|2 )1∕2Q𝜈r(z0 )
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+ N𝜈1+2d𝛿−𝜃
∞∑
k=0

2−2k
(|P0u− 𝜒 |2)1∕2Q

2𝜈r,2k+1∕𝛿2(2𝜈r )(z0 )
, (3.2)

I2 :=
(|D2

𝑣
u−

(
D2
𝑣
u
)
Qr(z0 )

|2)1∕2
Qr(z0 )

≤ N𝜈−1𝛿−𝜃(|D2
𝑣
u−

(
D2
𝑣
u
)
Q𝜈r(z0 )

|2 )1∕2
Q𝜈r(z0 )

+ N𝜈−1𝛿−𝜃
∞∑
k=0

2−k(|(−Δx )
1∕3u− ((−Δx )

1∕3u)Q
𝜈r,2k𝜈r

(z0 )
|2 )1∕2

Q
𝜈r,2k𝜈r

(z0 )

+ N𝜈1+2d𝛿−𝜃
∞∑
k=0

2−k
(|P0u− 𝜒 |2)1∕2Q

2𝜈r,2k+1∕𝛿2(2𝜈r )(z0 )
. (3.3)

Definition 3.1. For−∞ ≤ T1 < T2 ≤ ∞, we write u ∈ L2; loc,x,𝑣((T1, T2 ) ×ℝ2d ) if for any 𝜁 = 𝜁 (x, 𝑣) ∈ C∞
0
(ℝ2d ),

we have u𝜁 ∈ L2((T1, T2 ) ×ℝ2d ). We define S2; loc,x,𝑣((T1, T2 ) ×ℝ2d ) in the same way as we defined S2(G) (see

(1.22)).

Lemma 3.2 (cf. Lemma 5.2 in [16]). Let

– R ≥ 1 be a number,

– u ∈ S2; loc,x,𝑣((−1, 0) ×ℝ2d ) be a function such that u1t<−1 ≡ 0, and

∞∑
k=0

2−2k−(3d∕2)k‖|u|+ |D𝑣u|‖L2(Q1,2k+1R∕𝛿2
) <∞, (3.4)

– f ∈ L2; loc,x,𝑣((−1, 0) ×ℝ2d ) be a function vanishing outside (−1, 0) ×ℝd × B1 and (−Δx )
1∕3u ∈

L2; loc,x,𝑣((−1, 0) ×ℝ2d ),

– u satisfy P0u = f in (−1, 0) ×ℝ2d.

Then, one has

‖|u|+ |D𝑣u|+ |D2
𝑣
u|‖L2((−1,0)×BR3×BR ) ≤ N(d)𝛿−1

∞∑
k=0

2−k(k−1)∕4R−k‖ f ‖
L2

(
Q
1,2k+1R∕𝛿2

), (3.5)

and, furthermore, there exists 𝜃 = 𝜃(d) > 0 such that

(|(−Δx )
1∕3u|2 )1∕2

Q1,R
≤ N(d)𝛿−𝜃

∞∑
k=0

2−2k( f 2 )
1∕2
Q
1,2kR∕𝛿2

. (3.6)

Proof. Wemay assume that the right-hand side of (3.6) is finite. Let𝜙n, n ≥ 1, be a sequence of C∞
0
(ℝ2d ) functions

satisfying 𝜙n = 1 in Q̃n and the bounds

|𝜙n| ≤ N, |D𝑣𝜙n| ≤ N∕n, |𝜕t𝜙n| ≤ N∕n2, |Dx𝜙n| ≤ N∕n3 (3.7)

with N independent of n.

Note that un := u𝜙n ∈ S2((−1, 0) ×ℝ2d ) satisfies the identities

P0un = f𝜙n + uP0𝜙n − 2(aD𝑣u) ⋅ D𝑣𝜙n=: fn, un1t<−1 ≡ 0.
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Then, by Lemma 5.2 in [16], one has

‖|un|+ |D𝑣un|+ |D2
𝑣
un|‖L2((−1,0)×BR3×BR ) ≤ N(d)𝛿−1

∞∑
k=0

2−k(k−1)∕4R−k‖ fn‖L2(Q1,2k+1R∕𝛿2
) (3.8)

and

(|(−Δx )
1∕3un|2 )1∕2Q1,R

≤ N(d)𝛿−𝜃
∞∑
k=0

2−2k
(
f 2
n

)1∕2
Q
1,2kR∕𝛿2

. (3.9)

By (3.7), for any r > 0,

‖ fn‖L2(Q1,r )
≤ ‖ f ‖L2(Q1,r )

+ N(d, 𝛿 )n−1‖|u|+ |D𝑣u|‖L2(Q1,r )
. (3.10)

Then, by using this and (3.4), and passing to the limit as n→∞ in (3.8), we prove (3.5).

Next, we prove the bound for (−Δx )
1∕3u. For any smooth cutoff function 𝜉 supported in Q1,R, we have

||||∫ u
(
(−Δx )

1∕3𝜉
)
dz
|||| = lim

n→∞

||||∫ un
(
(−Δx )

1∕3𝜉
)
dz
||||

≤ lim
n→∞

‖(−Δx )
1∕3un‖L2(Q1,R )

‖𝜉‖L2(Q1,R )
.

Finally, due to the last inequality and a duality argument, the left-hand side of (3.6) is bounded by the limit

supremum of the right-hand side of (3.9) as n→∞. Now (3.6) follows from the above, (3.10), and (3.4). □

The following ‘nonlocal’ lemma is similar to Lemma 5.5 of [16] and Lemma 3.8 in [17]. In the present authors’

opinion, such ‘nonlocal’ lemmas are the technical novelties of the papers [16], [17], and the current article.

Lemma 3.3. Let u ∈ S2((−4, 0) ×ℝ2d ) be a function satisfying P0u = 0 a.e. in (−1, 0) ×ℝd × B1. Then, the follow-

ing assertions hold.

(i) We have (−Δx )
1∕3u ∈ S2,loc((−1, 0) ×ℝd × B1 ), and

P0(−Δx )
1∕3u = 0 a.e. in (−1, 0) ×ℝd × B1.

(ii) For any r ∈ (0, 1),

‖Dxu‖L2(Qr )
≤ N(d, r)𝛿−4

∞∑
k=0

2−k(|(−Δx )
1∕3u− ((−Δx )

1∕3u)Q
1,2k+2

|2 )1∕2
Q
1,2k+2

, (3.11)

where Q1,2k is defined in (1.19).

Proof. First, multiplying u by a suitable cutoff function 𝜙 = 𝜙(t) and using Corollary A.3, we conclude that

(−Δx )
1∕3u ∈ L2((−1, 0) ×ℝ2d ), and hence, the series on the right-hand side of (3.11) converges.

(i) Let u𝜀 be the mollification of u in the x variable with the standard mollifier and note that 𝜕tu𝜀 ∈
L2; loc,x,𝑣((−4, 0) ×ℝ2d ). Furthermore, let 𝜁 be either u𝜀 or 𝜕tu𝜀, or D

2
𝑣
u𝜀. Then, by the formula (1.9), for

a.e. t, 𝑣 ∈ (−1, 0) × B1,

– 𝜁 (t, ⋅, 𝑣) ∈ Ck
b
(ℝd ), k ∈ {1, 2…},

– (−Δx )
1∕3𝜁 is a well defined function given by (1.9) with u replaced with 𝜁 ,

– (−Δx )
1∕3Au𝜀(t, ⋅, 𝑣) ≡ A(−Δx )

1∕3u𝜀(t, ⋅, 𝑣), A = 𝜕t,D2
𝑣
.

By the above facts, we conclude

P0(−Δx )
1∕3u𝜀 = 0 a.e. in (−1, 0) ×ℝd × B1. (3.12)
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Consequently, by the interior S2 estimate (see Lemma A.5), for any 0 < r < 1,

‖|(𝜕t − 𝑣 ⋅ Dx )(−Δx )
1∕3u𝜀|+ |D2

𝑣
(−Δx )

1∕3u𝜀|‖L2(Qr )
≤ N‖(−Δx )

1∕3u‖L2(Q1 )
,

where N = N(d, 𝛿, r). Passing to the limit as 𝜀→ 0 in the above inequality and in (3.12), we prove the

assertion (i).

(ii) We inspect the argument of Lemma 5.5 in [16]. In the sequel,N = N(d, r). Let 𝜂 ∈ C∞
0
(Q̃(r+1)∕2 ) be a function

such that 𝜂 = 1 in Qr and denote

g = (−Δx )
1∕3u𝜀 − ((−Δx )

1∕3u𝜀 )Q1,4
.

We decompose 𝜂2Dxu𝜀 in the following way:

𝜂2Dxu𝜀 = 𝜂(g + Comm),

where

g = x(−Δx )
1∕6(g𝜂 ), Comm = 𝜂Dxu𝜀 −x(−Δx )

1∕6(g𝜂 ),

andx = Dx(−Δx )
−1∕2 is the Riesz transform.

Estimate of g. By (3.12),
P0(g𝜂 ) = gP0𝜂 − 2(aD𝑣𝜂 ) ⋅ D𝑣g in (−1, 0) ×ℝd × B1.

Then, by Theorem A.2 and the fact that |a| ≤ 𝛿−1, we have
‖(−Δx )

1∕3(g𝜂 )‖L2(ℝ1+2d
0 ) ≤ N𝛿−1‖|gP0𝜂|+ |(aD𝑣𝜂 ) ⋅ D𝑣g|‖L2(ℝ1+2d

0 )

≤ N𝛿−2‖|g|+ |D𝑣g|‖L2(Q(r+1)∕2 )
.

Furthermore, by (3.12) and the interior S2 estimate in Lemma A.5, the last term is bounded by

N𝛿−4‖g‖L2(Q1 )
.

Finally, due to the Lp-boundedness of the Riesz transform and the Hörmander-Mikhlin inequality, we have

‖g‖L2(Qr )
≤ N(d)‖|(−Δx )

1∕3(𝜂g )|+ |𝜂g|‖L2(ℝ1+2d
0 )

≤ N𝛿−4‖g‖L2(Q1 )
. (3.13)

Estimate of Comm. We denote = Dx(−Δx )
−1∕3. Since u𝜀 ∈ C2

0
(ℝd ) (see the definition in Section 1.5) for a.e.

t, 𝑣 ∈ (−1, 0) × B1 and x ∈ ℝd, by Lemma B.5 (ii),

Dxg(z) ≡ (−Δx )
1∕3g(z).

Hence, we have

Comm = 𝜂(g )−(𝜂g ).

By the explicit representation of (see Lemma B.5 (i)) and the oddness of the kernel y|y|−d−4∕3, and the fact that
𝜂(t, ⋅, 𝑣) vanishes outside

(
r+1
2

)3
, for any z ∈ Qr, we have

Comm(z) = ∫
(
𝜂(t, x, 𝑣)− 𝜂(t, x − y, 𝑣)

)
g(t, x − y, 𝑣)

y

|y|d+4∕3 dy = J1 + J2

:= ∫
|y|<8

(
𝜂(t, x, 𝑣)− 𝜂(t, x − y, 𝑣)

)
g(t, x − y, 𝑣)

y

|y|d+4∕3 dy+ 𝜂(t, x, 𝑣)
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⋅
∞∑
k=2 ∫

23(k−1)<|y|<23k

(
(−Δx )

1∕3u𝜀(t, x − y, 𝑣)− ((−Δx )
1∕3u𝜀 )Q

1,2k

)
y

|y|d+4∕3 dy.

By the Minkowski inequality,

‖ J1‖L2(Qr )
≤ N(d, r)‖g‖L2(Q1,4 )

. (3.14)

By the Cauchy-Schwartz inequality, for any z ∈ Qr,

| J2(z)| ≤ N(d)

∞∑
k=2

2−k

(
⨏ 23(k−1)<|y|<23k |||(−Δx )

1∕3u𝜀(t, x − y, 𝑣)− ((−Δx )
1∕3u𝜀 )Q

1,2k

|||
2
dy

)1∕2

.

Then, by using Minkowski inequality again, we get

‖ J2‖L2(Qr )
≤ N(d)

∞∑
k=2

2−k
(|(−Δx )

1∕3u𝜀 − ((−Δx )
1∕3u𝜀 )Q

1,2k
|2)1∕2

Q
1,2k

. (3.15)

Finally, combining (3.13)–(3.15), we obtain (3.11) with u replaced with u𝜀. Passing to the limit as 𝜀→ 0, we

prove (3.11). □

Lemma 3.4 (Lemma 5.6 (i) in [16]). Let u ∈ S2,loc((−1, 0) ×ℝ2d ) be a function such that P0u = 0 in (−1, 0) ×ℝd ×
B1. Then for any m, l ≥ 0 and j = 0, 1, there exists 𝜃 = 𝜃(d, j, l,m) > 0 such that for any R ∈ (1∕2, 1],

‖𝜕 j
t
Dl
x
Dm
𝑣
u‖L∞(Q1∕2 )

≤ N(d, j, l,m,R)𝛿−𝜃‖u‖L2(QR )
.

Lemma 3.5. Let u ∈ S2,loc((−4, 0) ×ℝ2d ) be a function such that P0u(z) = 𝜒 in (−1, 0) ×ℝd × B1, where𝜒 = 𝜒 (t).
Then, for any l,m ≥ 0 and j = 0, 1 such that j + l +m ≥ 1, there exists 𝜃 = 𝜃(d, j, l,m) > 0 such that

‖𝜕 j
t
Dl
x
Dm+2
𝑣

u‖L∞(Q1∕2 )
≤ N(d, j, l,m)𝛿−𝜃

(‖D2
𝑣
u−

(
D2
𝑣
u
)
Q1
‖L2(Q1 )

+ ‖Dxu‖L2(Q1 )

)
. (3.16)

Proof . Step 1: L2 estimate of derivatives. Here we will show that for j ∈ {0, 1} and l +m ≥ 1, and 1∕2 ≤ r <

R ≤ 1,

‖𝜕 j
t
Dl
x
Dm
𝑣
u‖L2(Qr )

≤ N𝛿−𝜃(‖D𝑣u‖L2(QR )
+ ‖Dxu‖L2(QR )

). (3.17)

To do that, we follow the argument of Lemma 5.6 in [16]. By mollifying u in the x variable, we may assume that

u is smooth as a function of x.

Case 1: j = 0 = l,m ≥ 1. We will show that for anym ≥ 1,

‖Dm
𝑣
u‖L2(Qr )

≤ N𝛿−𝜃(‖Dxu‖L2(QR )
+ ‖D𝑣u‖L2(QR )

), (3.18)

where N = N(d, r,R). We prove this inequality by induction. Obviously, the estimate holds for m = 1. Further-

more, for any multi-index 𝛼 of orderm ≥ 1, one has

P0
(
D𝛼
𝑣
u
)
=

∑
𝛼: 𝛼<𝛼,|𝛼|=m−1

c𝛼D
𝛼
𝑣
D𝛼−𝛼
x

u. (3.19)

By the interior S2 estimate in Lemma A.5, for r < r1 < R,

‖Dm+1
𝑣

u‖L2(Qr )
≤ N𝛿−2(‖Dm

𝑣
u‖L2(Qr1

) + ‖Dm−1
𝑣

Dxu‖L2(Qr1
) ). (3.20)

Note that the first term on the right-hand side of (3.20) is bounded by the right-hand side in the equality (3.18) by

the induction hypothesis. To handle the second term, note that for any nonempty multi-index 𝛽 ,

P0

(
D
𝛽
x u

)
= 0 in (−1, 0) ×ℝd × B1. (3.21)
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Then, by Lemma 3.4, for some r1 < r2 < 1,

‖Dm−1
𝑣

Dxu‖L2(Qr1
) ≤ N𝛿−𝜃‖Dxu‖L2(Qr2

). (3.22)

Thus, the inequality (3.18) is valid. To make this argument rigorous, one can use the method of finite difference

quotients.

Case j = 0, l ≥ 1,m ≥ 0. Arguing as in (3.22) and using (3.21) and Lemma 3.4, we get

‖Dm
𝑣
Dl
x
u‖L2(Qr )

≤ N𝛿−𝜃‖Dxu‖L2(QR )
. (3.23)

Case 3: j = 1, l +m ≥ 1. Note that the function U = D
𝛽
xD

𝛼
𝑣
u, where |𝛼| = m and |𝛽| = l, satisfies the identity

(see (3.19))

𝜕tU = 𝑣 ⋅ DxU + ai jD𝑣i𝑣 j
U + 1m≥1

∑
𝛼: 𝛼<𝛼,|𝛼|=m−1

c𝛼D
𝛼
𝑣
D
𝛼−𝛼+𝛽
x u in (−1, 0) ×ℝd × B1. (3.24)

The above formula combined with (3.18) and (3.23) yields

‖𝜕tDm
𝑣
Dl
x
u‖L2(Qr )

≤ N𝛿−𝜃(‖D𝑣u‖L2(QR )
+ ‖Dxu‖L2(QR )

).

Thus, (3.17) holds.

Step 2: L∞ estimate of derivatives. By (3.17) and the Sobolev embedding theorem, for any l,m ≥ 0 such that

l +m ≥ 1,

‖Dl
x
Dm
𝑣
u‖L∞(Qr )

≤ N𝛿−𝜃(‖D𝑣u‖L2(QR )
+ ‖Dxu‖L2(QR )

). (3.25)

To estimate 𝜕tD
l
x
Dm
𝑣
u, we use (3.24) and (3.25):

‖𝜕 j
t
Dl
x
Dm
𝑣
u‖L∞(Qr )

≤ N𝛿−𝜃(‖D𝑣u‖L2(QR )
+ ‖Dxu‖L2(QR )

), j ∈ {0, 1}, l +m ≥ 1. (3.26)

Step 3: proof of (3.16). Observe that

P0(u− 𝑣 ⋅ (D𝑣u)Q1
) = 𝜒 in (−1, 0) ×ℝd × B1.

Then, by (3.26) and the Poincaré inequality,

‖𝜕 j
t
Dl
x
Dm
𝑣
u‖L∞(Q1∕2 )

≤ N𝛿−𝜃(‖D2
𝑣
u‖L2(Q1 )

+ ‖Dxu‖L2(Q1 )
), (3.27)

where j ∈ {0, 1} and eitherm ≥ 2 or l ≥ 1. Finally, we denote

U1 = u− (1∕2)𝑣T
(
D2
𝑣
u
)
Q1
𝑣

and observe that

D2
𝑣
U1 = D2

𝑣
u−

(
D2
𝑣
u
)
Q1
, 𝜕

j

t
Dl
x
Dm+2
𝑣

U1 = 𝜕
j

t
Dl
x
Dm+2
𝑣

u, j +m+ l ≥ 1,

P0U1(z) = 𝜒 (t)+ ai j(t)(D𝑣i𝑣 j
u)Q1

, z ∈ (−1, 0) ×ℝd × B1.

By the above identities, the desired estimate (3.16) follows from (3.27) with U1 in place of u. □

Lemma 3.6. Invoke the assumptions of Lemma 3.5 and assume, additionally, that u(z) = u1(z)+ u2(t, 𝑣), where

– u1 ∈ S2((−4, 0) ×ℝ2d ) satisfies P0u1 = 0 in (−1, 0) ×ℝd × B1,

– u2, 𝜕tu2,D
2
𝑣
u2 ∈ L2,loc((−4, 0) ×ℝd ), and u2 satisfies

𝜕tu2 − ai j(t)D𝑣i𝑣 j
u2 = 𝜒 (t) in (−1, 0) × B1.
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Then, for any j ∈ {0, 1} and l,m ≥ 0 such that j + l +m ≥ 1, there exists 𝜃 = 𝜃(d, j, l,m) > 0 such that

‖𝜕 j
t
Dl
x
Dm+2
𝑣

u‖L∞(Q1∕2 )
≤ N𝛿−𝜃‖D2

𝑣
u−

(
D2
𝑣
u
)
Q1
‖L2(Q1 )

+ N𝛿−𝜃
∞∑
k=0

2−k(|(−Δx )
1∕3u− ((−Δx )

1∕3u)Q
1,2k
|2 )1∕2

Q
1,2k
, (3.28)

where N = N(d, j, l,m).

Proof. The desired assertion follows from (3.16) in Lemma 3.5 and (3.11) in Lemma 3.3. □

Proof of Proposition 3.1. We may assume that the series involving P0u in (3.2) converges. Denote f = P0u. We

split u into the ‘caloric’ part and a remainder and estimate each of the terms (see Section 1.4). After that, we

prove the desired bounds of I1 and I2.

‘Remainder’ term. Let 𝜙 = 𝜙(t, 𝑣) ∈ C∞
0
((t0 − (2𝜈r)2, t0 + (2𝜈r)2 ) × B2𝜈r(𝑣0 )) be a function such that 𝜙 = 1

on (t0 − (𝜈r)2, t0) × B𝜈r(𝑣0),

– u1 be the unique S2((t0 − (2𝜈r)2 ) ×ℝ2d ) solution to the Cauchy problem

P0u1(z) = f (z)𝜙(t, 𝑣), u(t0 − (2𝜈r)2, ⋅) = 0 (3.29)

(see Definition A.1 and Theorem A.2 (iii)),

– u2 = u2(t, 𝑣) be the unique solution in the usual parabolic Sobolev spaceW
1,2

2
((t0 − (2𝜈r)2, t0 ) ×ℝd ) to the

initial-value problem

𝜕tu2(t, 𝑣)− ai j(t)D𝑣i𝑣 j
u2(t, 𝑣) = −𝜒 (t)𝜙(t, 𝑣), u2(t0 − (2𝜈r)2, ⋅) ≡ 0 (3.30)

(see, for example, Theorem 2.5.2 in [20]). We set

urem(z) = u1(z)+ u2(t, 𝑣).

Next, we use a scaling argument. By ũrem, f̃ , 𝜙, and P̃0 we denote the functions and the operator defined

by (2.1) and (2.2), respectively, with 2𝜈r in place of r. Then, by Lemma 2.1, ũrem ∈ S2; loc,x,𝑣((−1, 0) ×ℝ2d ) (see

Definition 3.1) solves the Cauchy problem

P̃0ũrem(z) = (2𝜈r)2
(
f̃ (z)− 𝜒 (t)

)
𝜙(t, 𝑣), ũrem(−1, ⋅) ≡ 0.

Furthermore, by Lemma 3.2, there exists some 𝜃 = 𝜃(d) > 0 such that for any R ≥ 1,

(|D2
𝑣
ũrem|2)1∕2Q1,R

≤ N(2𝜈r)2𝛿−𝜃
∞∑
k=0

2−k
2∕8( |̃f − 𝜒 |2 )1∕2

Q
1,(2k+1∕𝛿2 )R

, (3.31)

(|(−Δx )
1∕3ũrem|2 )1∕2Q1,R

≤ N(2𝜈r)2𝛿−𝜃
∞∑
k=0

2−2k( |̃f − 𝜒 |2 )1∕2
Q
1,(2k+1∕𝛿2 )R

. (3.32)

Next, note that for any 𝜘, c > 0 and A = (−Δx )
1∕3 or D2

𝑣
u,

(|Aurem|2)1∕2Q𝜘,c𝜘 (z0 )
= (2𝜈r)−2

(|Aũrem|2)1∕2Q𝜘∕(2𝜈r ),c𝜘∕(2𝜈r )
.

Combining (3.31)–(3.32) with the above identity, we obtain for any R ≥ 1,

(|D2
𝑣
urem|2)1∕2Q2𝜈r,(2𝜈r )R(z0 )

≤ N𝛿−𝜃
∞∑
k=0

2−k
2∕8Fk(R), (3.33)
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(|(−Δx )
1∕3urem|2 )1∕2Q2𝜈r,(2𝜈r )R(z0 )

≤ N𝛿−𝜃
∞∑
k=0

2−2kFk(R), (3.34)

where

Fk(R) = (| f − 𝜒 |2 )1∕2
Q
2𝜈r,(2k+1∕𝛿2 )R(2𝜈r )(z0 )

.

‘Caloric’ term. Denote uc = u− urem ∈ S2,loc((−4, 0) ×ℝ2d ). Let P0 be the operator given by (2.2) with 𝜈r in

place of r. For a function h on ℝ1+2d, by h we denote the function defined by (2.1) with 𝜈r in place of r. Then, by

Lemma 2.1,

P0uc(z) = (𝜈r)2𝜒 (t) in (−1, 0) ×ℝd × B1. (3.35)

Note that

– uc(z) = u1(z)+ u2(t, 𝑣), where u1 = u− u1, u2 = −u2, and u1 and u2 are defined by (3.29) and (3.30),

respectively;

– the conditions of Lemma 3.6 are satisfied due to (3.35) and the facts that u1 ∈ S2((−4, 0) ×ℝ2d ), and u2 ∈
W 1,2

2
((−4, 0) ×ℝd ).

Then, by this lemma, the bound (3.28) holds with u replaced with uc. Consequently, for any 𝜈 ≥ 2, we have

(|D2
𝑣
uc −

(
D2
𝑣
uc
)
Q1∕𝜈

|2 )1∕2
Q1∕𝜈

≤ sup
z1,z2∈Q1∕𝜈

|D2
𝑣
uc(z1 )− D2

𝑣
uc(z2 )|

≤ N𝜈−1𝛿−𝜃(|D2
𝑣
uc −

(
D2
𝑣
uc
)
Q1
|2 )1∕2

Q1

+ N𝜈−1𝛿−𝜃
∞∑
k=0

2−k(|(−Δx )
1∕3uc − ((−Δx )

1∕3uc )Q
1,2k
|2 )1∕2

Q
1,2k
. (3.36)

Furthermore, by (3.35) and Lemma 3.3 (i), we have (−Δx )
1∕3uc ∈ S2,loc((−1, 0) ×ℝd × B1 ), and the identity

P0(−Δx )
1∕3u = 0 in (−1, 0) ×ℝd × B1

is valid. Hence, by Lemma 3.4,

(|(−Δx )
1∕3uc − ((−Δx )

1∕3uc )Q1∕𝜈
|2 )1∕2

Q1∕𝜈
≤ sup

z1,z2∈Q1∕𝜈

|(−Δx )
1∕3uc(z1 )− (−Δx )

1∕3uc(z2 )|
≤ N𝜈−1𝛿−𝜃(|(−Δx )

1∕3uc − ((−Δx )
1∕3uc )Q1

|2 )1∕2
Q1
. (3.37)

Combining (3.36)–(3.37) with the identity

(|Auc − (Auc )Q𝜘,c𝜘 (z0 )|2 )1∕2 = (𝜈r)−2
(|Auc − (Auc )Q𝜘∕(2𝜈r ),c𝜘∕(2𝜈r ) |2

)1∕2
Q𝜘∕(2𝜈r ),c𝜘∕(2𝜈r )

,

A = (−Δx )
1∕3,D2

𝑣
,

we obtain

(|D2
𝑣
uc −

(
D2
𝑣
uc
)
Qr(z0 )

|2 )1∕2
Qr(z0 )

≤ N𝜈−1𝛿−𝜃(|D2
𝑣
uc −

(
D2
𝑣
uc
)
Q𝜈r(z0 )

|2 )1∕2
Q𝜈r(z0 )

+ N𝜈−1𝛿−𝜃
∞∑
k=0

2−k
(|(−Δx )

1∕3uc

− ((−Δx )
1∕3uc )Q

𝜈r,2k𝜈r
(z0 )

|2)1∕2
Q
𝜈r,2k𝜈r

(z0 )
, (3.38)

(|(−Δx )
1∕3uc − ((−Δx )

1∕3uc )Qr(z0 )
|2 )1∕2

Qr(z0 )
≤ N𝜈−1𝛿−𝜃(|(−Δx )

1∕3uc − ((−Δx )
1∕3uc )Q𝜈r(z0 )|2 )1∕2Q𝜈r(z0 )

. (3.39)
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Estimate of I1. First, note that by (3.34) with R = 1,

(|(−Δx )
1∕3urem|2 )1∕2Qr(z0 )

≤ N𝜈1+2d(|(−Δx )
1∕3urem|2 )1∕2Q2𝜈r(z0 )

≤ N𝜈1+2d𝛿−𝜃
∞∑
k=0

2−2kFk(1).

This combined with (3.39) and the triangle inequality give the desired estimate:

(|(−Δx )
1∕3u− ((−Δx )

1∕3u)Qr(z0 )
|2)1∕2

Qr(z0 )
≤ N𝜈−1𝛿−𝜃(|(−Δx )

1∕3u− ((−Δx )
1∕3u)Q𝜈r(z0 )|2 )1∕2Q𝜈r(z0 )

+ N𝜈1+2d𝛿−𝜃(|(−Δx )
1∕3urem|2 )1∕2Q2𝜈r(z0 )

≤ N𝛿−𝜃(|(−Δx )
1∕3u− ((−Δx )

1∕3u)Q𝜈r(z0 )|2 )1∕2Q𝜈r(z0 )

+ N𝜈1+2d𝛿−𝜃
∞∑
k=0

2−2kFk(1).

Estimate of I2. By (3.33) with R = 1,

(|D2
𝑣
urem|2)1∕2Qr(z0 )

≤ N𝛿−𝜃𝜈1+2d
∞∑
k=0

2−k
2∕8Fk(R),

and hence, by the triangle inequality, we only need to estimate I2 with u replaced with uc.

Next, by using (3.38), we get

(|D2
𝑣
uc −

(
D2
𝑣
uc
)
Qr(z0 )

|2 )1∕2
Qr(z0 )

≤ N𝜈−1𝛿−𝜃(|D2
𝑣
u−

(
D2
𝑣
u
)
Q𝜈r(z0 )

|2 )1∕2
Q𝜈r(z0 )

+ N𝜈−1𝛿−𝜃

×
∞∑
k=0

2−k(|(−Δx )
1∕3u− ((−Δx )

1∕3u)Q
𝜈r,2k𝜈r

(z0 )
|2 )1∕2

Q
𝜈r,2k𝜈r

(z0 )

+ N𝜈−1𝛿−𝜃( J1 + J2 ), (3.40)

where

J1 =
(|D2

𝑣
urem|2)1∕2Q𝜈r(z0 )

, J2 =
∞∑
k=0

2−k(|(−Δx )
1∕3urem|2 )1∕2Q

𝜈r,2k𝜈r
(z0 )

.

The term J1 is estimated in (3.33) with R = 1. Furthermore, using (3.34) with R = 2k gives

J2 ≤ N(d)

∞∑
l=0

2−2l
∞∑
k=0

2−kFl(2
k ).

Noticing that Fl(2
k) = Fl+k(1) and changing the index of summation k→ k + l, we obtain

J2 ≤ N(d)

∞∑
k=0

2−kFk(1). (3.41)

Combining the inequalities (3.40)–(3.41), (3.33), we prove the estimate of I2 in (3.3) with u replaced with uc. As

was mentioned above, this implies the desired bound of I2. □
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4 Proof of Theorem 1.6

In this section, we first show a few intermediate results and then prove Theorem 1.6.

Lemma 4.1. For any 𝛼 ∈ (0, 1) and u ∈ ℂ𝛼
(
ℝ1+2d
T

)
∩ S2

(
ℝ1+2d
T

)
(see (1.4) and (1.22)), we have

[
D2
𝑣
u
]
+
[
(−Δx )

1∕3u
] ≤ N𝛿−𝜃

(
[Pu]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ ‖u‖L∞(ℝ1+2d

T )

)
, (4.1)

where N = N(d, 𝛼,K) > 0 and 𝜃 = 𝜃(d, 𝛼) > 0.

Proof. The idea is to perturb the mean-oscillation estimates in Proposition 3.1 to bound the Campanato’s semi-

norms (see (2.3)) of (−Δx )
1∕3u and D2

𝑣
u. In this proof, if not specified, we assume N = N(d, 𝛼,K).

Step 1: freezing the coefficients.We fix some z0 ∈ ℝ1+2d
T

. For any function h on ℝ1+2d
T

, denote

h(t) = h(t, x0 − (t − t0 )𝑣0, 𝑣0 ), 0 = 𝜕t − 𝑣 ⋅ Dx − ai j(t)D𝑣i𝑣 j
.

By the identity

0u− Pu = Pu− Pu− (ai j − ai j )D𝑣i𝑣 j
u

and Proposition 3.1 with a replaced with a and 𝜒 = Pu, there exists 𝜃0 = 𝜃0(d) > 0 such that

(|(−Δx )
1∕3u− ((−Δx )

1∕3u)Qr(z0 )
|2)1∕2

Qr(z0 )
≤ N𝜈−1𝛿−𝜃0 (|(−Δx )

1∕3u− ((−Δx )
1∕3u)Q𝜈r(z0 )|2 )1∕2Q𝜈r(z0 )

+ N𝜈1+2d𝛿−𝜃0 ( J1 + J2 ), (4.2)

(|D2
𝑣
u−

(
D2
𝑣
u
)
Qr(z0 )

|2)1∕2
Qr(z0 )

≤ N𝜈−1𝛿−𝜃0 (|D2
𝑣
u−

(
D2
𝑣
u
)
Q𝜈r(z0 )

|2 )1∕2
Q𝜈r(z0 )

+ N𝜈−1𝛿−𝜃0
∞∑
k=0

2−k
(|(−Δx )

1∕3u

− ((−Δx )
1∕3u)Q

𝜈r,2k𝜈r
(z0 )

|2)1∕2
Q
𝜈r,2k𝜈r

(z0 )

+ N𝜈1+2d𝛿−𝜃0 ( J1 + J2 ), (4.3)

where N = N(d), and

J1 =
∞∑
k=0

2−k
(|Pu− Pu|2)1∕2

Q
2𝜈r,(2k+1∕𝛿2 )(2𝜈r )(z0 )

,

J2 =
∞∑
k=0

2−k
(|(ai j − ai j )D𝑣i𝑣 j

u|2)1∕2
Q
2𝜈r,(2k+1∕𝛿2 )(2𝜈r )(z0 )

.

Next, by Lemma B.4 (i) and Assumption 1.4,

J1 ≤ N[Pu]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
𝛿−2𝛼(𝜈r)𝛼, (4.4)

J2 ≤ N𝛿−2𝛼[a]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
‖D2

𝑣
u‖L∞(ℝ1+2d

T )(𝜈r)
𝛼

≤ N𝛿−1−2𝛼‖D2
𝑣
u‖L∞(ℝ1+2d

T )(𝜈r)
𝛼 . (4.5)
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Step 2: Campanato type argument. Estimate of (−Δx )
1∕3u. Denote

𝜓1(r) =
⎛⎜⎜⎜⎝ ∫
Qr(z0 )

|(−Δx )
1∕3u− ((−Δx )

1∕3u)Qr(z0 )
|2 dz

⎞⎟⎟⎟⎠

1∕2

. (4.6)

Note that 𝜓 1 is a nondecreasing function bounded by ‖(−Δx )
1∕3u‖L2(ℝ1+2d

T ), which is finite due to Corollary A.3

and the fact that u ∈ S2
(
ℝ1+2d
T

)
. Multiplying (4.2) by |Qr|1∕2 = cdr

1+2d and using (4.4)–(4.5) give

𝜓1(r) ≤ N𝛿−𝜃0𝜈−2−2d𝜓1(𝜈r)+ N𝛿−𝜃(𝜈r)1+2d+𝛼(A+ B),

where 𝜃 = 𝜃(d) > 0,

A = [Pu]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
, B = ‖D2

𝑣
u‖L2(ℝ1+2d

T ).

Let 𝛼̃ = (1+ 𝛼 )∕2 ∈ (𝛼, 1). Taking 𝜈 large so that N𝜈𝛼̃−1𝛿−𝜃0 = 1, we have

𝜓1(r) ≤ 𝜈−(1+2d+𝛼̃ )𝜓1(𝜈r)+ N𝛿−𝜃(𝜈r)1+2d+𝛼(A+ B).

By a standard iteration argument (cf. Lemma 5.13 of [23]), we get

𝜓1(r) ≤ N𝛿−𝜃r1+2d+𝛼(A+ B).

The latter combined with Lemma 2.2 yields

[
(−Δx )

1∕3u
]
C𝛼
kin(ℝ

1+2d
T )

≤ N𝛿−𝜃(A+ B). (4.7)

Estimate of D2
𝑣
u. Let 𝜓 2 be the function defined by (4.6) with (−Δx )

1∕3u replaced with D2
𝑣
u. Note that by Lemma

B.4 (ii) and (4.7), the second term on the right-hand side of (4.3) is bounded by

N𝜈−1+𝛼𝛿−𝜃r𝛼
[
(−Δx )

1∕3u
]
C𝛼
kin(ℝ

1+2d
T )

≤ N𝛿−𝜃(𝜈r)𝛼(A+ B).

Then, multiplying (4.3) by |Qr|1∕2 and using the above inequality combined with (4.4)–(4.5), we get
𝜓2(r) ≤ N𝛿−𝜃0𝜈−2−2d𝜓2(𝜈r)+ N𝛿−𝜃(𝜈r)1+2d+𝛼(A+ B).

As above, we conclude that [
D2
𝑣
u
]
C𝛼
kin(ℝ

1+2d
T )

≤ N𝛿−𝜃(A+ B).

Adding the last inequality to (4.7) gives

[
(−Δx )

1∕3u
]
C𝛼
kin(ℝ

1+2d
T )

+
[
D2
𝑣
u
]
C𝛼
kin(ℝ

1+2d
T )

≤ N𝛿−𝜃(A+ B).

By using the interpolation inequality in Remark 1.12, we may replace B with ‖u‖L∞(ℝ1+2d
T ) in the last estimate,

which proves (4.1). □

Lemma 4.2. For any𝛼 ∈ (0, 1), there exists𝜆0 as in (1.11) such that for any𝜆 ≥ 𝜆0 andu ∈ ℂ𝛼
(
ℝ1+2d
T

)
∩ S2

(
ℝ1+2d
T

)
,

(1.12) holds.

Proof . Step 1: case when b ≡ 0, c ≡ 0. We use S. Agmon’s method to derive (1.12) from (4.1). In particular, by

this method, we are able to prove the bounds of Dk
𝑣
u, k = 0, 1, 2. These estimates imply the validity of (1.12) for

(−Δx )
1∕3u and 𝜕tu− 𝑣 ⋅ Dxu.



H. Dong and T. Yastrzhembskiy: Global Schauder estimates for KFP equations — 443

Agmon’s method (cf. Lemma 6.3.8 in [20]). Denote

x̂ = (x1,… , xd+1 ), 𝑣̂ = (𝑣1,… , 𝑣d+1 ), ẑ = (t, x̂, 𝑣̂),

P̂(ẑ) = 𝜕t −
d+1∑
i=1
𝑣iDxi

−
d∑

i, j=1
ai j(z)D𝑣i𝑣 j

− D𝑣d+1𝑣d+1 .

Let 𝜁 be a smooth cutoff function on ℝ such that 𝜁 (y) = 1 for y ∈ (−1, 1) and denote for k ≥ 1,

Û(ẑ) = u(z) cos(𝜆𝑣d+1 + 𝜋∕4)𝜁 (𝑣d+1∕k)𝜁
(
xd+1∕k3

)
.

We choose such Û due to the following technical reasons:

– Û ∈ ℂ𝛼(ℝ1+2(d+1)
T

) ∩ S2(ℝ
1+2(d+1)
T

), so that Lemma 4.1 can be applied to Û .

– 𝜁
(
xd+1∕k3

)
𝜁 (𝑣d+1∕k) and all its partial derivatives are of class C𝛼kin(ℝ

1+2(d+1)
T

) (see Remark 1.11). This fact is

used in the estimate (4.12) below.

Computing directly, we get

𝜆2Û(ẑ) = 𝜆2u(z)𝜁 (𝑣d+1∕k) cos(𝜆𝑣d+1 + 𝜋∕4)𝜁
(
xd+1∕k3

)
= −D𝑣d+1𝑣d+1 Û(ẑ)+ u(z)𝜁

(
xd+1∕k3

)(
k−2𝜁 ′′(𝑣d+1∕k) cos(𝜆𝑣d+1 + 𝜋∕4)

− 2𝜆k−1𝜁 ′(𝑣d+1∕k) sin(𝜆𝑣d+1 + 𝜋∕4)
)
, (4.8)

J :=𝜆D𝑣i u(z) sin(𝜆𝑣d+1 + 𝜋∕4)𝜁 (𝑣d+1∕k)𝜁
(
xd+1∕k3

)
= −D𝑣d+1𝑣i Û(ẑ)+ k−1D𝑣i u(z)𝜁

′(𝑣d+1∕k)𝜁
(
xd+1∕k3

)
cos(𝜆𝑣d+1 + 𝜋∕4). (4.9)

We will extract the estimates of u and D𝑣u from the above identities.

Estimate of u,D𝑣u. By the product rule inequality in Remark 1.14, for any h1, h2 ∈ C𝛼
kin

(
ℝ1+2d
T

)
or

L∞C
𝛼∕3,𝛼
x,𝑣

(
ℝ1+2d
T

)
, and any 𝜆 > 1, we have

[
h1(𝜆

2⋅, 𝜆3⋅, 𝜆⋅)h2
]
X
≤ N(h1, 𝛼 )([h2]X + 𝜆𝛼‖h2‖L∞(ℝ1+2d

T ) ), (4.10)

where X is either C𝛼
kin

(
ℝ1+2d
T

)
or L∞C

𝛼∕3,𝛼
x,𝑣

(
ℝ1+2d
T

)
. Furthermore, for k, 𝜆 ≥ 1, one has

N1𝜆
𝛼 ≤ [cos(𝜆 ⋅+𝜋∕4)𝜁 (⋅∕k)]C𝛼 (ℝ) ≤ N−1

1
𝜆𝛼 (4.11)

and a similar bound holds with sine instead of cosine, where N1 = N1(𝛼, 𝜁 ). Combining (4.8)–(4.11) gives

𝜆2[u]C𝛼
kin(ℝ

1+2d
T ) + 𝜆[D𝑣u]C𝛼kin(ℝ1+2d

T ) + 𝜆
𝛼‖𝜆2|u|+ 𝜆|D𝑣u|‖L∞(ℝ1+2d

T )

≤ N𝜆2[Û]C𝛼
kin
(ℝ1+2(d+1)

T
) + N[ J]C𝛼

kin
(ℝ1+2(d+1)

T
)

≤ N
[
D2

𝑣̂
Û
]
C𝛼
kin
(ℝ1+2(d+1)

T
)
+ N𝜆𝛼k−1(‖u‖C𝛼

kin(ℝ
1+2d
T ) + ‖D𝑣u‖C𝛼

kin(ℝ
1+2d
T ) ), (4.12)

where N = N(d, 𝛼).

Estimate of D2

𝑣̂
Û . Since Û ∈ ℂ𝛼(ℝ1+2(d+1)

T
) ∩ S2(ℝ

1+2(d+1)
T

), by Lemma 4.1,

[
D2

𝑣̂
Û
]
C𝛼
kin
(ℝ1+2(d+1)

T
)
≤ N𝛿−𝜃

(
[P̂Û(ẑ)]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2(d+1)

T
)
+ ‖Û‖L∞(ℝ1+2(d+1)

T
)

)
, (4.13)



444 — H. Dong and T. Yastrzhembskiy: Global Schauder estimates for KFP equations

where

P̂Û(ẑ) = 𝜁 (𝑣d+1∕k)𝜁
(
xd+1∕k3

)
cos(𝜆𝑣d+1 + 𝜋∕4)(Pu(z)+ 𝜆2u(z))

− u(z)𝜁
(
xd+1∕k3

)(
k−2𝜁 ′′(𝑣d+1∕k) cos(𝜆𝑣d+1 + 𝜋∕4)

− 2k−1𝜆𝜁 ′(𝑣d+1∕k) sin(𝜆𝑣d+1 + 𝜋∕4)
)

− u(z)(𝑣d+1𝜁 (𝑣d+1∕k)k−3𝜁 ′
(
xd+1∕k3

)
) cos

(
𝜆1∕2𝑣d+1 + 𝜋∕4

)
. (4.14)

By (4.11), (4.13)–(4.14), and (4.10), for 𝜆, k ≥ 1,

𝜆𝛼‖D2
𝑣
u‖L∞(ℝ1+2d

T ) +
[
D2
𝑣
u
]
C𝛼
kin(ℝ

1+2d
T )

≤ N
[
D2

𝑣̂
Û
]
C𝛼
kin
(ℝ1+2(d+1)

T
)

≤ N𝛿−𝜃([Pu+ 𝜆2u]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ ‖u‖L∞(ℝ1+2d

T ) )

+ N𝛿−𝜃𝜆𝛼(‖Pu+ 𝜆2u‖L∞(ℝ1+2d
T ) + k−1‖u‖

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
), (4.15)

where N = N(d, 𝛼) > 0.

Combining (4.12) with (4.15) and sending k→∞, we get

𝜆2[u]C𝛼
kin(ℝ

1+2d
T ) + 𝜆[D𝑣u]C𝛼kin(ℝ1+2d

T ) +
[
D2
𝑣
u
]
C𝛼
kin(ℝ

1+2d
T )

+ 𝜆2+𝛼‖u‖L∞(ℝ1+2d
T ) + 𝜆

1+𝛼‖D𝑣u‖L∞(ℝ1+2d
T ) + 𝜆

𝛼‖D2
𝑣
u‖L∞(ℝ1+2d

T )

≤ N𝛿−𝜃([Pu+ 𝜆2u]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ ‖u‖L∞(ℝ1+2d

T ) )

+ N𝛿−𝜃𝜆𝛼‖Pu+ 𝜆2u‖L∞(ℝ1+2d
T ).

By taking 𝜆 ≥ 𝜆0 ≥ max{1, (2N𝛿−𝜃 )1∕(2+𝛼 )}, wemay drop the term involving the Lt,x,𝑣∞ -norm of u on the r.h.s. and

obtain the bounds for u,D𝑣u, and D
2
𝑣
u.

Estimates of the transport term. By the identity

𝜕tu− 𝑣 ⋅ Dxu = (P + 𝜆2 )u− ai jD𝑣i𝑣 j
u− 𝜆2u (4.16)

and Assumptions 1.3–1.4, and the product rule inequality, we get

[𝜕tu− 𝑣 ⋅ Dxu]L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
≤ [(P + 𝜆2 )u]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )

+ N𝛿−1‖D2
𝑣
u‖

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ 𝜆2[u]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
,

and the right-hand is bounded by that of (1.12). Similarly, we can bound the L∞ norm of the transport term.

Estimates of (−Δx )
1∕3u and the C

(2+𝛼 )∕3
x seminorm. First, due to Lemma 4.1 and the estimates of u in (1.12),

we get

[
(−Δx )

1∕3u
]
C𝛼
kin(ℝ

1+2d
T )

≤ N𝛿−𝜃
(
[Pu+ 𝜆2u]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ 𝜆2[u]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ ‖u‖L∞(ℝ1+2d

T )

)

≤ N𝛿−𝜃
(
[Pu+ 𝜆2u]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ 𝜆𝛼‖Pu+ 𝜆2u‖L∞(ℝ1+2d

T )

)
.

Next, we claim that

‖(−Δx )
1∕3u‖L∞(ℝ1+2d

T ) ≤ N(d, 𝛼 )
(
𝜀𝛼

[
(−Δx )

1∕3u
]
C𝛼
kin(ℝ

1+2d
T )

+ 𝜀−2‖u‖L∞(ℝ1+2d
T )

)
, ∀ 𝜀 > 0. (4.17)

If (4.17) is true, the term 𝜆𝛼‖(−Δx )
1∕3u‖L∞(ℝ1+2d

T ) is bounded by the right-hand side of (1.12) and by using the fact

that the operator

(1+ (−Δx )
1∕3 )−1: C𝛼∕3(ℝd )→ C(2+𝛼 )∕3(ℝd )
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is bounded (see, for example Theorem 1.3 in [43]) and a scaling argument, we conclude that

sup
(t,𝑣)∈ℝ1+d

T

[u(t, ⋅, 𝑣)]C(2+𝛼∕3)(ℝd )

is also bounded by the right-hand side of (1.12).

To prove (4.17), we use a mollification argument. Let 𝜂 ∈ C∞
0
(ℝd ) be a function with the unit integral and

denote 𝜂𝜀(⋅) = 𝜀−d𝜂(⋅∕𝜀). It suffices to estimate

J1 = u ∗ (−Δx )
1∕3𝜂𝜀3 , J2 = (−Δx )

1∕3u− (−Δx )
1∕3u ∗ 𝜂𝜀3 . (4.18)

By standard arguments, we have

J1 + J2 ≤ N𝜀−2‖u‖L∞(ℝ1+2d
T ) + N sup

(t,𝑣)∈ℝ1+d
T

𝜀𝛼
[
(−Δx )

1∕3u(t, ⋅, 𝑣)
]
C𝛼∕3(ℝd

x)
, (4.19)

which gives (4.17).

Step 2: adding the lower-order terms. By using (1.12) and the triangle inequality, we obtain (1.12) with the

right-hand side replaced with

N𝛿−𝜃
[
Pu+ b ⋅ D𝑣u+ (c + 𝜆2 )u

]
X

+ N𝛿−𝜃𝜆𝛼
(‖Pu+ b ⋅ D𝑣u+ (c + 𝜆2 )u‖L∞(ℝ1+2d

T ) + ‖b ⋅ D𝑣u‖X + ‖cu‖X
)
,

where X = L∞C
𝛼∕3,𝛼
x,𝑣

(
ℝ1+2d
T

)
. By the product rule inequality (see Remark 1.14) and Assumption 1.5,

‖b ⋅ D𝑣u‖X + ‖cu‖X ≤ L(‖D𝑣u‖X + ‖u‖X ). (4.20)

For sufficiently large 𝜆 ≥ 𝜆0 with 𝜆0 as in (1.11), the terms on the right-hand side of (4.20) can be absorbed into
the left-hand side of (1.12). □

Proof of Theorem 1.6. We prove the assertions in the following order: (iii), (ii), (iv), and (i). In particular, we will

see that (ii) is an immediate corollary of (iii).

Proof of (iii) and (ii).Uniqueness.We only need to show that in the case when f ≡ 0, any solution u of class

C2,𝛼
kin

(
ℝ1+2d
T

)
must be identically 0. Let 𝜙 ∈ C∞

0
(ℝ1+2d ) be a function such that 𝜙 = 1 on Q̃1 and denote 𝜙n(z) =

𝜙(t∕n2, x∕n3, 𝑣∕n). Then, un := u𝜙n ∈ S2(ℝ1+2d ) satisfies

Pun + b ⋅ D𝑣un + (c + 𝜆2 )un = uP𝜙n − 2(aD𝑣𝜙n ) ⋅ D𝑣u+ (b ⋅ D𝑣𝜙n )u=: fn.

Then by Lemma 4.2 and the product rule inequality in Remark 1.14, for any 𝜆 ≥ 𝜆0,
‖u𝜙n‖L∞(ℝ1+2d

T ) ≤ N‖ fn‖ ≤ Nn−1(‖u‖+ ‖D𝑣u‖),
where ‖ ⋅ ‖ is the L∞C𝛼∕3,𝛼x,𝑣

(
ℝ1+2d
T

)
norm, and N = N(d, 𝛼,K, L, 𝛿, 𝜆). Passing to the limit as n→∞ in the above

inequality gives u ≡ 0.

Existence. Proof by a compactness argument. Let 𝜂 = 𝜂(x, 𝑣) ∈ C∞
0
(ℝ2d ), 𝜉 ∈ C∞

0

(
ℝ1+2d
T

)
be functions such

that ∫ 𝜂 dxd𝑣 = 1, and 𝜉(z) ∈ [0, 1] ∀z, 𝜉 = 1 on Q̃1, and denote for n ≥ 1,

𝜂n(x, 𝑣) = n4d𝜂(n3x, n𝑣), 𝜉n(z) = 𝜉(t∕n2, x∕n3, 𝑣∕n),

hn = h ∗ 𝜂n, where h = a, b, c,

fn = ( f ∗ 𝜂n )𝜉n.
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Note that an, bn, cn, fn satisfy the assumptions of Corollary A.4, and furthermore, by the product rule inequality

(see Remark 1.14),

[ fn]L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
≤ [ f ]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ N(𝜉 )n−𝛼‖ f ‖L∞(ℝ1+2d

T ).

Hence, by Corollary A.4, the equation

Pun + b ⋅ D𝑣un + (c + 𝜆2 )un = fn

has a unique solution ℂ2,𝛼
(
ℝ1+2d
T

)
∩ S2

(
ℝ1+2d
T

)
. Then, by Lemma 4.2 there exists 𝜆0 as in (1.11) such that for any

𝜆 ≥ 𝜆0,
𝜆2+𝛼‖un‖L∞(ℝ1+2d

T ) + 𝜆
2[un]+ 𝜆1+𝛼‖D𝑣un‖L∞(ℝ1+2d

T )

+ 𝜆[D𝑣un]+ 𝜆𝛼‖|D2
𝑣
un|+ |(−Δx )

1∕3un|‖L∞(ℝ1+2d
T )

+
[
D2
𝑣
un
]
+
[
(−Δx )

1∕3un
]
+ sup

(t,𝑣)∈ℝ1+d
T

[un(t, ⋅, 𝑣)]C(2+𝛼 )∕3(ℝd )

≤ N𝛿−𝜃
(
[ fn]L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ 𝜆𝛼‖ fn‖L∞(ℝ1+2d

T )

)

≤ N𝛿−𝜃
(
[ f ]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ (𝜆𝛼 + n−𝛼 )‖ f ‖L∞(ℝ1+2d

T )

)
, (4.21)

where [⋅] is the C𝛼
kin

(
ℝ1+2d
T

)
seminorm and N = N(d, 𝛼,K).

Using the Arzela-Ascoli theorem and Cantor’s diagonal argument, from (4.21) we conclude that there exists

u ∈ C2,𝛼
kin

(
ℝ1+2d
T

)
solving (1.13), and, furthermore, (1.12) holds with Pu+ b ⋅ D𝑣u+ (c + 𝜆2)u replacedwith f for all

the terms on the left-hand side excluding the transport term. The latter is estimated as in the proof of Lemma 4.2

(see p. 25) by using Eq. (1.1). Thus, (iii) is true. Moreover, the a priori estimate proved for the solution of (1.1)

combined with the uniqueness part implies the validity of the assertion (ii).

Proof of (iv). The assertion is derived in a standard way by using (ii) and an exponential weight in the

temporal variable.

Proof of (i). Note that (1.10) does not follow from (1.12) by setting 𝜆 = 𝜆0 in (1.12). Indeed, the latter gives an
estimate weaker than (1.10) since it has extra terms involving [u]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
and ‖Pu+ b ⋅ D𝑣u+ cu‖L∞(ℝ1+2d

T ).

To avoid this issue, we prove that (4.1) in Lemma 4.1 still holds if u ∈ C2,𝛼
kin

(
ℝ1+2d
T

)
.

Step 1.We claim that Proposition 3.1 still holds if u ∈ C2,𝛼
kin

(
ℝ1+2d
T

)
. Instead of repeating its proof, we list some

places therein that need to be modified.

– Note that f = P0u ∈ L∞C
𝛼∕3,𝛼
x,𝑣

(
ℝ1+2d
T

)
and that by Theorem 1.6 (iv), the Cauchy problem (3.29) has a unique

solution u1 ∈ C2,𝛼
kin
((t0 − (2𝜈r)2, t0 ) ×ℝ2d ).

– We need to show that Lemma 3.3 still holds for u ∈ C2,𝛼
kin
((−4, 0) ×ℝ2d ), which would also imply that

Lemma 3.6 is valid for such u. First, by Theorem 1.6, (−Δx )
1∕3u ∈ C𝛼

kin
((−1, 0) ×ℝ2d ) (cf. the proof of

Corollary A.3), and then, due to Lemma B.4 (ii), the series on the right-hand side of (3.11) converges. Sec-

ond, it follows from u ∈ C2,𝛼
kin
((−4, 0) ×ℝ2d ) that (3.12) holds. The rest of the argument is the same as that of

Lemma 3.3.

Step 2: proof of (1.10). The argument is the same as that of Lemma 4.1 with one modification: we do not need

to use an iteration argument to conclude that (−Δx )
1∕3u,D2

𝑣
u ∈ C𝛼

kin

(
ℝ1+2d
T

)
(see Step 2 therein) since the latter

follows from the definition of C2,𝛼
kin

(
ℝ1+2d
T

)
and Theorem 1.6 (ii). Furthermore, multiplying (4.2)–(4.3) by r−𝛼 , tak-

ing supremum over r > 0, and then taking 𝜈 sufficiently large, we conclude that (1.10) holds for (−Δx )
1∕3u and

D2
𝑣
u. The C

(2+𝛼 )∕3
x seminorm of u is estimated in the same way as in the proof of Lemma 4.2 (see p. 25). Finally, as

in the proof of Lemma 4.2, we extract the estimate of the transport term from the identity (4.16) by the product

rule inequality and the standard interpolation inequality. □
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5 Proof of Corollaries 1.8–1.10

Proof of Corollary 1.8. By a scaling argument, it suffices to prove the estimate in the case when 𝜀 = 1.

(i) By (1.12) with aij = 𝛿ij, b = 0, c = 0, and 𝜆 = 1 (see Remark 1.7), we have

[u]C𝛼
kin(ℝ

1+2d
T ) + [D𝑣u]C𝛼

kin(ℝ
1+2d
T ) +

[
D2
𝑣
u
]
C𝛼
kin(ℝ

1+2d
T )

+ sup(t,𝑣)∈ℝ1+d
T
‖u(t, ⋅, 𝑣)‖C(2+𝛼 )∕3(ℝd )

≤ N(‖𝜕tu− 𝑣 ⋅ Dxu‖+ ‖u‖+ ‖Δ𝑣u‖),
where ‖ ⋅ ‖ stands for the L∞C𝛼∕3,𝛼x,𝑣

(
ℝ1+2d
T

)
norm.

(ii) By interpolating between C
(2+𝛼 )∕3
x and Cb and between C

2+𝛼
𝑣

and Cb, we may replace the last two terms on

the right-hand side of the last inequality with

N
[
D2
𝑣
u
]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ N‖u‖L∞(ℝ1+2d

T ).

(iii) By using translation, it suffices to estimate

|D𝑣u(0, x1, 0)− D𝑣u(0, x2, 0)|.
To this end, we will use a mollification argument (cf. (4.17)–(4.19)). Let 𝜂 ∈ C∞

0
(ℝd ) be a radial function

such that ∫ℝd𝜂 d𝑣 = 1 and denote 𝜂𝜀(⋅) = 𝜀−d𝜂(⋅∕𝜀). Then, by the triangle inequality it suffices to estimate

Ji = ∫
ℝd

(D𝑣u(0, xi, 𝑣)− D𝑣u(0, xi, 0)) 𝜂𝜀(𝑣) d𝑣, i = 1, 2,

J3 = ∫
ℝd

(D𝑣u(0, x1, 𝑣)− D𝑣u(0, x2, 𝑣)) 𝜂𝜀(𝑣) d𝑣.

Estimate of J3. Integrating by parts and using C
(2+𝛼 )∕3
x -regularity in (1.10), we get

| J3| ≤ 𝜀−1|x1 − x2|(2+𝛼 )∕3 sup
𝑣∈ℝd

[u(0, ⋅, 𝑣)]C(2+𝛼 )∕3(ℝd
x)
.

Estimate of Ji, i = 1, 2. By the fundamental theorem of calculus,

| Ji| = 𝜀
|||||||∫ℝd

(𝜂i )𝜀(𝑣)

1

∫
0

(D𝑣𝑣i u)(0, xi, 𝜃𝑣) d𝜃 d𝑣

|||||||
, (5.1)

where 𝜂i(𝑣) = 𝑣i𝜂(𝑣). We note that since 𝜂 is radial, one has ∫ℝd𝜂i d𝑣 = 0, and hence,

| Ji| = 𝜀
|||||||∫ℝd

(𝜂i )𝜀(𝑣)

1

∫
0

(
(D𝑣𝑣i u)(0, xi, 𝜃𝑣)− (D𝑣𝑣i u)(0, xi, 0)

)
d𝜃 d𝑣

|||||||
≤ N𝜀1+𝛼

[
D2
𝑣
u(0, ⋅, 0)

]
C𝛼(ℝd

𝑣)
. (5.2)

Gathering the above estimates gives

|D𝑣u(0, x1, 0)− D𝑣u(0, x2, 0)|
≤ N(d, 𝛼 )

(
𝜀−1|x1 − x2|(2+𝛼 )∕3 sup

𝑣∈ℝd

[u(0, ⋅, 𝑣)]C(2+𝛼 )∕3(ℝd
x)
+ 𝜀1+𝛼

[
D2
𝑣
u(0, xi, ⋅)

]
C𝛼(ℝd

𝑣)

)
.

Setting 𝜀 = |x1 − x2|1∕3 in the above inequality, we obtain the desired estimate (1.16).
(iv) By translation and scaling (see Lemma 2.2), we only need to estimate
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|D𝑣u(t1, 0, 0)− D𝑣(t2, 0, 0)|,
where t1 = 1, t2 = 0. As in the proof of the assertion (iii), we will use a mollification argument. The integrals

Jk, k = 1, 2, 3, need to be modified as follows:

i = ∫
ℝd

(D𝑣u(ti, 0, 𝑣)− D𝑣u(ti, 0, 0)) 𝜂(𝑣) d𝑣, i = 1, 2,

3 = ∫
ℝd

(D𝑣u(1, 0, 𝑣)− D𝑣u(0, 0, 𝑣)) 𝜂(𝑣) d𝑣.

Next, repeating the argument in (5.1)–(5.2), we get

|i| ≤ N
[
D2
𝑣
u(ti, 0, ⋅)

]
C𝛼(ℝd

𝑣)
, i = 1, 2.

For 3, it suffices to estimate

3,1 = ∫
ℝd

(u(1, 0, 𝑣)− u(1,−𝑣, 𝑣)) D𝑣𝜂 d𝑣,

3,2 = ∫
ℝd

(u(1,−𝑣, 𝑣)− u(0, 0, 𝑣)) D𝑣𝜂 d𝑣.

By using the C
(2+𝛼 )∕3
x -regularity in (1.10),

|3,1| ≤ N sup
𝑣∈ℝd

[u(1, ⋅, 𝑣)]C(2+𝛼 )∕3(ℝd
x)
. (5.3)

Furthermore, by the fundamental theorem of calculus, we get

3,2 = ∫
ℝd

D𝑣𝜂(𝑣)

1

∫
0

((𝜕t − 𝑣 ⋅ Dx )u)(𝜃,−𝜃𝑣, 𝑣) d𝜃d𝑣.

By using the fact that ∫ℝdD𝑣𝜂 d𝑣 = 0, and the C
𝛼∕3,𝛼
x,𝑣 regularity of u, we obtain

|3,2| =
|||||||∫ℝd

D𝑣𝜂(𝑣)

1

∫
0

((
(𝜕t − 𝑣 ⋅ Dx )u

)
(𝜃,−𝜃𝑣, 𝑣)−

(
(𝜕t − 𝑣 ⋅ Dx )u

)
(𝜃, 0, 0)

)
d𝜃d𝑣

|||||||
≤ N[(𝜕t − 𝑣 ⋅ Dx )u]L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
.

Combining these estimates, we conclude that (1.17) holds. □

Proof of Corollary 1.9. (i) We denote f = (𝜕t − 𝑣 ⋅ Dx)u−Δ𝑣u. Since f ∈ L∞C
𝛼∕3,𝛼
x,𝑣

(
ℝ1+2d
T

)
, by Theorem 1.6 (iii),

we have u ∈ C2+𝛼
kin

(
ℝ1+2d
T

)
. Furthermore, applying Theorem 1.6 (ii) with aij = 𝛿ij, b = 0, c = 0, and 𝜆→ 0 (see

Remark 1.7), we prove (1.18).

(ii) Let𝜙 ∈ C∞
0
(Q̃(r+R)∕2 ) be a function such that𝜙 = 1 on Qr. Then, by the first assertion, u𝜙 ∈ C2,𝛼

kin

(
ℝ1+2d
T

)
.

Hence, by (1.10) and the product rule inequality (see Remark 1.14), we have

[
D2
𝑣
u
]
C𝛼
kin
(Qr )

≤ N[(𝜕t − 𝑣 ⋅ Dx )(u𝜙)]L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )

+ N[Δ𝑣(u𝜙)]L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ N‖u𝜙‖L∞(ℝ1+2d

T )

≤ N
(‖𝜕tu− 𝑣 ⋅ Dxu‖+ ‖u‖+ ‖D𝑣u‖+ ‖D2

𝑣
u‖) = N‖u‖ℂ2,𝛼 (Q2 )

,
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where by ‖ ⋅ ‖ we mean the L∞C𝛼∕3,𝛼x,𝑣 (Q2 ) norm. □

Proof of Corollary 1.10. The proof is standard (cf. Theorem 7.1.1 in [19]). Let 𝜉 ∈ C∞
loc
(ℝ) be a function such that

𝜉 = 0 if t ≥ 1, and 𝜉 = 1 if t ≤ 0. We denote

f = Pu+ b ⋅ D𝑣u+ cu,

r0 = r, rn = r + (R− r)

n∑
k=1

2−k, n ≥ 1,

𝜁n(t, 𝑣) = 𝜉
(
22(n+1)(R− r)−2

(
−r2

n
− t

))
𝜉
(
2(n+1)(R− r)−1(|𝑣|− rn )

)
× 𝜉

(
23(n+1)(R− r)−3

(|x|− r3
n

))
,

and note that 𝜁n is a smooth function such that 𝜁n = 1 on Qrn
, and 𝜁n = 0 on ℝ1+2d

0
∩ Qc

rn+1
.

Next, u𝜁n satisfies the identity

(
P + b ⋅ D𝑣 + c + 𝜆2

)
(u𝜁n ) = f 𝜁n + u(P𝜁n + b ⋅ D𝑣𝜁n )− 2(aD𝑣u) ⋅ D𝑣𝜁n + 𝜆2u𝜁n.

Then, by Theorem 1.6 (ii), for any 𝜆 ≥ 𝜆0,
𝜆2‖u𝜁n‖C𝛼

kin(ℝ
1+2d
T ) + 𝜆‖D𝑣(u𝜁n )‖C𝛼kin(ℝ1+2d

T ) + ‖D2
𝑣
(u𝜁n )‖C𝛼

kin(ℝ
1+2d
T )

+ ‖(𝜕t − 𝑣 ⋅ Dx )(u𝜁n )‖L∞C𝛼∕3,𝛼x,𝑣 (ℝ1+2d
T )

+ sup
(t,𝑣)∈ℝ1+d

T

‖u𝜁n(t, ⋅, 𝑣)‖C(2+𝛼 )∕3(ℝd )

≤ N𝛿−𝜃𝜆𝛼
4∑

k=1
Ik, (5.4)

where

I1 = ‖ f 𝜁n‖, I2 = ‖u(P𝜁n + b ⋅ D𝑣𝜁n )‖, I3 = ‖(aD𝑣u) ⋅ D𝑣𝜁n‖, I4 = 𝜆2‖u𝜁n‖,
and ‖ ⋅ ‖ is the L∞C𝛼∕3,𝛼x,𝑣

(
ℝ1+2d
T

)
norm.

We now estimate the terms Ik, k = 1− 4. In the sequel,N = N(d, 𝛼,K, L, r,R). By the product rule inequality

(cf. Remark 1.14),

I1 ≤ N‖ f ‖
L∞C

𝛼∕3,𝛼
x,𝑣 (Qrn+1 )

‖𝜁n‖L∞C𝛼∕3,𝛼x,𝑣 (ℝ1+2d
0 )

≤ N2n𝛼‖ f ‖
L∞C

𝛼∕3,𝛼
x,𝑣 (Qrn+1 )

.

Arguing as above and using Assumptions 1.3–1.5 give

I2 ≤ N𝛿−12(3+𝛼 )n‖u‖
L∞C

𝛼∕3,𝛼
x,𝑣 (Qrn+1 )

,

I3 ≤ N𝛿−12(1+𝛼 )n‖D𝑣u‖L∞C𝛼∕3,𝛼x,𝑣 (Qrn+1 )
,

I4 ≤ N2𝛼n𝜆2‖u‖
L∞C

𝛼∕3,𝛼
x,𝑣 (Qrn+1 )

.

We now denote

An = ‖D2
𝑣
u‖C𝛼

kin
(Qrn

), Bn = sup
t,𝑣∈(−r2n,0)×Brn

‖u(t, ⋅, 𝑣)‖C(2+𝛼 )∕3(Qrn
),

Cn = ‖D𝑣u‖C𝛼
kin
(Qrn

)

and we set

𝜆 = 2𝛽n𝜆1(d, 𝛼,K, L, 𝛿, r) ≥ 𝜆0, (5.5)
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where 𝛽 > 2 and 𝜆1 > 1 will be determined later. Note that 4𝛽 > max{𝛼𝛽 + 3+ 𝛼, 𝛼 + (2+ 𝛼)𝛽}. Combining
(5.4)–(5.5) gives

[u]C𝛼
kin
(Qr )

+ ‖𝜕tu− 𝑣 ⋅ Dxu‖L∞C𝛼∕3,𝛼x,𝑣 (Qr )
+ An + Bn + 𝜆12𝛽nCn

≤ N𝛿−𝜃
(
𝜆𝛼
1
2(𝛼+𝛼𝛽 )n‖ f ‖

L∞C
𝛼∕3,𝛼
x,𝑣 (QR )

+ 𝜆2+𝛼
1

24𝛽n‖u‖
L∞C

𝛼∕3,𝛼
x,𝑣 (Qrn+1 )

+ 𝜆𝛼
1
2(1+𝛼+𝛼𝛽 )nCn+1

)
. (5.6)

By the standard interpolation inequality (see Lemma B.2), for 𝜀 ∈ (0, 1), we have

‖u‖
L∞C

𝛼∕3,𝛼
x,𝑣 (Qrn+1 )

≤ N𝜀2(An+1 + Bn+1 )+ N𝜀−𝛼‖u‖L∞(Qrn+1 )
.

Furthermore, we take

𝜀 = 𝜀0𝜆
−(2+𝛼 )∕2
1

(N𝛿−𝜃 )−1∕22−2𝛽n, 𝛽 > max
{
1+ 𝛼
1− 𝛼 , 2

}
,

where 𝜀0 ∈ (0, 1) will be determined later, so that

N𝛿−𝜃𝜆2+𝛼
1

24𝛽n‖u‖
L∞C

𝛼∕3,𝛼
x,𝑣 (Qrn+1 )

≤ 𝜀2
0
(An+1 + Bn+1 )+ N𝜀−𝛼

0
𝛿−𝜃𝜆

(2+𝛼 )(1+𝛼∕2)
1

2(4+2𝛼 )𝛽n‖u‖L∞(QR ),
(5.7)

𝛽 > 1+ 𝛼 + 𝛼𝛽 . (5.8)

We multiply both sides of (5.6) by 2−6𝛽n and sum over n ∈ {0, 1, 2,…}. Due to (5.7)–(5.8), we get

[u]C𝛼
kin
(Qr )

+ ‖𝜕tu− 𝑣 ⋅ Dxu‖L∞C𝛼∕3,𝛼x,𝑣 (Qr )
+

∞∑
n=0

2−6𝛽n(An + Bn )+ 𝜆1
∞∑
n=0

2−5𝛽nCn

≤ N𝛿−𝜃
(
𝜆𝛼
1
‖ f ‖

L∞C
𝛼∕3,𝛼
x,𝑣 (QR )

+ 𝜀−𝛼
0
𝜆
(2+𝛼 )(1+𝛼∕2)
1

‖u‖L∞(QR )

)

+ 𝜀2
0
26𝛽

∞∑
n=1

2−6𝛽n(An + Bn )+ N𝛿−𝜃25𝛽𝜆𝛼
1

∞∑
n=1

2−5𝛽nCn. (5.9)

Taking 𝜆1 > 1 large so that

𝜆1 − 25𝛽N𝛿−𝜃𝜆𝛼
1
> 𝜆1∕2 and 𝜀0 = 2−3𝛽−1,

we may drop the last two terms on the right-hand side of (5.9). The desired assertion is proved. □
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Appendix A. S2 regularity results for the KFP equations

Definition A.1. We say that u ∈ S2
(
ℝ1+2d
T

)
is a solution to (1.1) if the identity

𝜕tu− 𝑣 ⋅ Dxu = ai jD𝑣i𝑣 j
u− b ⋅ D𝑣u− (c + 𝜆2 )u (A.1)
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holds in L2
(
ℝ1+2d
T

)
. Furthermore, for finite S < T , u ∈ S2((S, T ) ×ℝ2d ) is a solution to the Cauchy problem (1.13) if

(A.1) holds in L2((S, T ) ×ℝ2d ) with 𝜆 = 0, and there exists U ∈ S2
(
ℝ1+2d
T

)
such that U ≡ u on (S, T ) ×ℝ2d, U ≡ 0

on (−∞, T ) ×ℝ2d.

Theorem A.1 (see Theorem 2.6 of [16]). Let 𝛼 ∈ (0, 1], a be a function satisfying Assumptions 1.3–1.4 and b, c ∈
L∞

(
ℝ1+2d
T

)
. Then, there exists 𝜆0 > 1 as in (1.11) such that for any 𝜆 ≥ 𝜆0 and f ∈ L2

(
ℝ1+2d
T

)
, Eq. (1.1) has a unique

solution u ∈ S2
(
ℝ1+2d
T

)
.

Theorem A.2 (see Theorem 4.1 of [16]). Let a = aij(t) be a function satisfying Assumption 1.3 and recall the nota-

tion (3.1). Then, the following assertions hold.

(i) For any 𝜆 ≥ 0 and u ∈ S2
(
ℝ1+2d
T

)
,

𝜆2‖u‖+ 𝜆‖D𝑣u‖+ ‖D2
𝑣
u‖+ ‖(−Δx )

1∕3u‖+ ‖D𝑣(−Δx )
1∕6u‖ ≤ 𝛿−1‖P0u+ 𝜆2u‖,

where ‖ ⋅ ‖ = ‖ ⋅ ‖L2(ℝ1+2d
T ). Furthermore, for any 𝜆 ≠ 0, the equation

(
P0 + 𝜆2

)
u = f

has a unique solution u ∈ S2
(
ℝ1+2d
T

)
.

(iii) For any finite numbers S < T and f ∈ L2((S, T ) ×ℝ2d ), the Cauchy problem (1.13) with P = P0, b ≡ 0, and

c ≡ 0 has a unique solution u ∈ S2((S, T ) ×ℝ2d ). In addition,

‖|u|+ |D𝑣u|+ |D2
𝑣
u|+ |(−Δx )

1∕3u|+ |D𝑣(−Δx )
1∕6u|+ |𝜕tu− 𝑣 ⋅ Dxu|‖ ≤ N(d, T − S)𝛿−1‖ f ‖,

where ‖ ⋅ ‖ = ‖ ⋅ ‖L2((S,T )×ℝ2d ).

Corollary A.3. For any u ∈ S2
(
ℝ1+2d
T

)
, we have (−Δx )

1∕3u ∈ L2
(
ℝ1+2d
T

)
.

Proof. Let f = 𝜕tu− 𝑣 ⋅ Dxu−Δ𝑣u ∈ L2
(
ℝ1+2d
T

)
. Applying Theorem A.2 with aij ≡ 𝛿ij, we prove the desired

assertion.

Corollary A.4. Invoke the assumption of Theorem A.1 and assume, additionally, that

Dn
𝑣
Dm
x
h ∈ Cb

(
ℝ1+2d
T

)
, ∀n,m ≥ 0, h = a, b, c, f ,

and Dn
𝑣
Dm
x
f ∈ L2

(
ℝ1+2d
T

)
, ∀n,m ≥ 0. Then, Dn

𝑣
Dm
x
u ∈ Cb

(
ℝ1+2d
T

)
∩ L2

(
ℝ1+2d
T

)
for n,m ≥ 0.

Proof. To make the argument presented below rigorous, one needs to use the method of finite-difference quo-

tients. By using an induction argument similar to that used in the proof of Lemma 3.5, one can show that for any

multi-indexes 𝛼 and 𝛽 , one has U = D𝛼
𝑣
D
𝛽
x u ∈ S2

(
ℝ1+2d
T

)
, so that

(
P + b ⋅ D𝑣 + c + 𝜆2

)
U =: F ∈ L2

(
ℝ1+2d
T

)
.

Wemultiply the above identity byU , integrate overℝ1+2d
s

, and note that the term containing 𝑣 ⋅ Dx|U|2 vanishes.
We conclude that

∫
ℝ2d

U2(s, x, 𝑣) dxd𝑣 <∞ a.e. s ∈ (−∞, T ).

An application of the Sobolev embedding theorem finishes the proof of this assertion. □
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Lemma A.5 (Interior S2 estimate, see Lemma 4.5 in [16]). Let a = a(t) satisfy Assumption 1.3,𝜆 ∈ ℝ, and 0 < r <

R be numbers. Then, for any u ∈ S2,loc
(
ℝ1+2d
0

)
,

‖𝜕tu− 𝑣 ⋅ Dxu‖L2(Qr )
+ 𝛿−2(r2 − r1 )

−1‖D𝑣u‖L2(Qr )
+ ‖D2

𝑣
u‖L2(Qr )

≤ N(d)𝛿−1‖P0u+ 𝜆2u‖L2(QR )
+ N(d)𝛿−4R(R− r)−3‖u‖L2(QR )

,

where P0 is defined by (3.1).

Appendix B

Lemma B.1 (Lemma 3.1 in [16]). Let r > 0 be a number. Then, the following assertions hold.

(i) For any z, z0 ∈ ℝ1+2d,

𝜌(z, z0 ) ≤ 2𝜌(z0, z).

(ii) For any z, z0, z1 ∈ ℝ1+2d,

𝜌(z, z0 ) ≤ 2(𝜌(z, z1 )+ 𝜌(z1, z0 )).

(iii) The function 𝜌̂ (see (1.6)) is a (symmetric) quasi-distance.

(iv) One has

Q̂r(z0 ) ⊂ Q̃r(z0 ) ⊂ Q̂3r(z0 ),

where Q̃r(z0 ) and Q̂r(z0 ) are defined in (1.20) and (1.21), respectively.

(v) For T ∈ (−∞,∞],

|Q̂2r(z0 ) ∩ℝ1+2d
T

|
|Q̂r(z0 ) ∩ℝ1+2d

T
| ≤ N(d),

so that the triple
(
ℝ1+2d
T

, 𝜌̂, dz
)
(with the induced topology if T <∞) is a space of homogeneous type.

For the proof of the following inequality see, for instance, Lemma 6.3.1 in [19].

Lemma B.2 (Standard interpolation inequality in Hölder spaces). LetΩ be either ℝd or a bounded domain with

a smooth boundary, u ∈ Ck+𝛼(Ω), k ∈ {0, 1,…}, 𝛼 ∈ [0, 1] be the usual Hölder space. Then, for any j = 0, 1,… , k,

and 𝛽 ∈ [0, 1] such that j + 𝛽 < k + 𝛼 and any 𝜀 > 0, one has

[Dju]C𝛽 (Ω) ≤ N(𝜀k+𝛼− j−𝛽 [u]Ck+𝛼 (Ω) + (1+ 𝜀− j−𝛽 )‖u‖L∞(Ω) ),

where N = N(d, k, 𝛼, j, 𝛽, Ω). In the case when Ω = ℝd, one can replace the factor 1+ 𝜀− j−𝛽 with 𝜀− j−𝛽 on the

right-hand side of the above inequality.

Lemma B.3. Let 𝛼 ∈ (0, 1] and u ∈ L∞C
𝛼∕3,𝛼
x,𝑣

(
ℝ1+2d
T

)
be a function such that 𝜕tu− 𝑣 ⋅ Dxu ∈ L∞

(
ℝ1+2d
T

)
. Then,

u ∈ C𝛼
kin

(
ℝ1+2d
T

)
, and furthermore, for any 𝜀 > 0, one has

[u]C𝛼
kin(ℝ

1+2d
T ) ≤ [u]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ 𝜀2−𝛼‖𝜕tu− 𝑣 ⋅ Dxu‖L∞(ℝ1+2d

T ) + 𝜀
−𝛼‖u‖L∞(ℝ1+2d

T ). (B.1)

Proof.We note that by using Lemma 2.1 and a scaling argument, we only need to prove the assertionswith 𝜀 =
1. Furthermore, due to the presence of the Lt,x,𝑣∞ -norm of u on the r.h.s. of (B.1) and translation, it suffices to estimate

the increment of u(z)− u(0)with z satisfying 𝜌(z, 0) ≤ 1, so that |t|, |x|, |𝑣| < 1.We denote 𝜕tu− 𝑣 ⋅ Dxu = f . Then,

by the fundamental theorem of calculus,

u(z) = u(0, x + t𝑣, 𝑣)+
t

∫
0

f (t′, x + (t − t′ )𝑣, 𝑣) dt′.



H. Dong and T. Yastrzhembskiy: Global Schauder estimates for KFP equations — 453

We then obtain

|u(0)− u(z)| ≤ |u(0, x + t𝑣, 𝑣)− u(0)|+
t

∫
0

| f (t′, x + (t − t′ )𝑣, 𝑣)| dt′

≤ [u]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
(|x + t𝑣|1∕3 + |𝑣|)𝛼 + t𝛼∕2‖ f ‖L∞(ℝ1+2d

T )

≤ (
2[u]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
+ ‖ f ‖L∞(ℝ1+2d

T )

)
𝜌𝛼(0, z),

and, thus, (B.1) is valid. □

Lemma B.4. Let 𝛼 ∈ (0, 1), c ≥ 1, r > 0, z0 ∈ ℝ1+2d
T

, f and h be measurable functions such that [ f ]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
,

[h]C𝛼
kin(ℝ

1+2d
T ) <∞, and 𝜒 (t) := f (t, x0 − (t − t0)𝑣0, 𝑣0). Then, the following assertions hold.

(i)

∞∑
k=0

2−k(| f − 𝜒 |2 )1∕2
Q
r,2kcr

(z0 )
≤ N[ f ]

L∞C
𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
(cr)𝛼,

(ii)

∞∑
k=0

2−k(|h− (h)Q
r,2kcr

(z0 )
|2 )1∕2

Q
r,2kcr

(z0 )
≤ N[h]C𝛼

kin(ℝ
1+2d
T )(cr)

𝛼, (B.2)

where N = N(𝛼).

Proof. (i) Denote A = [ f ]
L∞C

𝛼∕3,𝛼
x,𝑣 (ℝ1+2d

T )
and note that for any z ∈ Qr,2kcr(z0 ), we have

| f (t, x, 𝑣)− f (t, x0 − (t − t0 )𝑣0, 𝑣0 )| ≤ A(|x − x0 + (t − t0 )𝑣0|1∕3 + |𝑣− 𝑣0|)𝛼
≤ A(2kc)𝛼((2kc)−1|x − x0 + (t − t0 )𝑣0|1∕3 + |𝑣− 𝑣0|)𝛼 ≤ NA(2kc)𝛼r𝛼 .

Then, the series on the left-hand side of (B.2) is less then

NA(cr)𝛼
∞∑
k=0

2(−1+𝛼 )k ≤ NA(cr)𝛼,

and hence, (B.2) is true.

(ii) For any z1, z2 such that zi ∈ Qr,2kcr(z0 ), i = 1, 2, by Lemma B.1 (i) and (ii), one has

|h(z1 )− h(z2 )| ≤ N[h]C𝛼
kin(ℝ

1+2d
T )(𝜌

𝛼(z1, z0 )+ 𝜌𝛼(z2, z0 )) ≤ N[h]C𝛼
kin(ℝ

1+2d
T )(2

kcr)𝛼 .

The last inequality and the fact that

(|h− (h)G|2 )G ≤ ⨏ G⨏ G|h(z1 )− h(z2 )|2 dz1dz2
imply the validity of the assertion (ii). □

Lemma B.5. Let s ∈ (0, 1∕2).
(i) For any Schwartz function u, the following pointwise formula holds:

Dx(−Δx )
−su(x) = N(d, s) p.v.∫ u(x − y)

y

|y|d−2s+2 dy.
This formula is also valid for u ∈ C1

0
(ℝd ).

(ii) For any u ∈ C2
0
(ℝd ), one has (

Dx(−Δx )
−s)((−Δx )

su
) ≡ Dxu.
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