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Abstract: This paper explores the existence and properties of basic eigenvalues and eigenfunctions associated

with the Riemannian Laplacian on closed, connected Riemannian manifolds featuring an effective isometric

action by a compact Lie group. Our primary focus is on investigating the potential existence of homeomorphic

yet not diffeomorphic smoothmanifolds that can accommodate invariantmetrics sharing commonbasic spectra.

We establish the occurrence of such scenarios for specific homotopy spheres and connected sums. Moreover, the

developed theory demonstrates that the ring of invariant admissible scalar curvature functions fails to recover

the smooth structure in many examples. We show the existence of homotopy spheres with identical rings of

invariant scalar curvature functions, irrespective of the underlying smooth structure.

Keywords: basic spectra; prescribing scalar curvature; Kazdan–Warner problem; exotic manifolds; group of

symmetries
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1 Introduction

A very classical and well-explored subject of geometric analysis is that of hearing shapes. Following [1], it

addresses the relationship between the geometry of some Riemannian manifolds and the eigenvalues of its

Laplacian operator acting on functions. Some remarkable developments are presented in [2]–[10].

Shortly, this papermainly focuses on whether two homeomorphic but not diffeomorphic smoothmanifolds

admit invariant metrics sharing the same basic spectrum (Definition 3). With this aim, we use the analytical

machinery and example constructions appearing in [11] to compare the basic spectra of two homeomorphic but

not diffeomorphic manifolds. Theorem 3 provides examples of pairs of homeomorphic but not diffeomorphic

manifolds M and M′ admitting invariant metrics gM , gM′ that can be chosen with the same basic spectrum or

not. Byproducts of the theory include showing that the ring of admissible scalar curvature functions do not dis-

tinguish smooth structures for plenty of homotopy spheres, Theorem 4. This establishes the G-invariant version

of the classical Kazdan–Warner problem [12] for some equivariantly related manifolds [11].

The geometric constructions in this paper are based on the following setup. We consider a special case of

principal (G, H)-bibundle in which G = H. Following [13], recall that a groupoid G = (G1 ⇉ G0) is a category in
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which each arrow inG1 has an inverse. LetG andH be Lie groupoids. Amanifold Pwith a leftG-action and a right

H-action which commute is called a smooth G-H-bibundle. We much benefit from the geometric constructions

in [11], [14]. To know, we look to smooth manifolds P carrying commuting free G-actions whose orbit spacesM,

M′ carry G-actions. We name this construction a ⋆-diagram; see Equation (2). They constitute an example of

principal G-bibundle (G = H).

A⋆-diagramM← P→M′ promotes a Hausdorff-Morita equivalence between the G-varietiesM andM′, as

firstly remarked in [11] and proved in [15]. We hope our geometric realizations shed light on the study of Lie

groupoid Morita equivalence via Hilsum–Skandalis maps [13], [16]. This specifies the study of leaf spaces [17],

and in the particular case of Riemannian foliations, the isospectrality question for the basic Laplacian is rather

natural [18]. For instance, it has been shown in [19] that the spectrum of the basic Laplacian of a Riemannian

foliation can be identified with the SO(q)-invariant spectrum of its Molino quotient manifoldW via the Molino

frame bundle lift (which is itself a bibundle, see, e.g., [20], [21]).

Let (X, g) be a closed, connected d-dimensional Riemannian manifold with an effective isometric action by

a compact Lie group G; (X, g) is also called a Riemannian G-manifold. Let Wk, p(X), k ∈ ℤ≥0, p ∈ [1,∞) denote

the Sobolev space recovered by smooth functions on X via taking the closure of C∞(X) with respect to the norm:

‖u‖ p

k, p
:=

k∑
j=0 ∫

X

|∇ ju| pd𝜇g,
where∇ denotes the Levi–Civita connection of g,∇ju is the jth-covariant derivative of u, and the norm |∇ju| is
computed using the tensor product metric induced by g.

Once a Haar measure on G is fixed, any element u∈Wk,p(X) can be averaged along G to produce a basic or

invariant function ū, i.e., ū(gx) = ū(x) for almost every x∈ X and every g∈G. We denote the set of such elements

byW
k, p

G
(X). Being C∞

G
(X) the set of smooth basic functions in (X, G), it can be shown (see e.g. [22, Lemma 5.4, p.

91]) that C∞
G
(X;ℝ)‖⋅‖Wk, p (M) = W

k, p

G
(X). Throughout this manuscript, we adopt the conventionW

0, p

G
(X) = L

p

G
(X).

Let −Δg := − divg(∇) be the (negative of the) Riemannian Laplacian of g. It is well known that this is a

formally self-adjoint, nonnegative elliptic operator, and in particular, its spectrum is a closed, countable, discrete,

unbounded set consisting only of eigenvalues with finite multiplicities, which can therefore be arranged as a

sequence of nonnegative real numbers 0 = 𝜆0 ≤ 𝜆1 ≤ 𝜆2 ≤ . . . ↑∞. This is known as the spectrum of (X, g).

In the present context, where (X, g) is a Riemannian G-manifold, we want to consider the subset of the spec-

trum consisting of eigenvalues that correspond to invariant eigenfunctions. Thus, we consider the G-invariant

eigenvalue problem:

Problem 1. Find (u, 𝜆) ∈ C∞
G
(X) ×ℝ such that

−Δgu = 𝜆u.

To properly guarantee the existence of a solution to Problem 1, we define:

Definition 1. Let (X) :=
{
u ∈ W 1,2(X): ∫

X
ud𝜇g = 0

}
and consider the subset G(X) consisting of invariant

functions on(X). A weak G-invariant solution for the Problem 1 is a pair (u, 𝜆) ∈ G(X) ×ℝ such that

∫
X

⟨∇u,∇𝑣⟩d𝜇g = 𝜆∫
X

u𝑣d𝜇g (1)

for every 𝑣 ∈ (X). We say that u is a basic weak eigenfunction of −Δg with basic weak eigenvalue 𝜆.

For a deep explanation of the basics related to the Laplacian spectra on manifolds, we refer the reader

to [23].
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Note that the left-hand side in equation (1) is given by

⟨u, 𝑣⟩1,2 − ∫
X

u𝑣d𝜇g.

where the inner product ⟨u,v⟩1,2 is the one associated with the norm ‖ ⋅ ‖ 1,2. It can be checked, using that X

is closed and connected, that the norm ‖u‖2 := ∫
X
|∇u|2d𝜇g defines a norm on (X) which is equivalent to the

norm ‖ ⋅ ‖ 1,2. Associated with ‖ ⋅ ‖ we have the inner product
⟨u, 𝑣⟩ :=∫

X

⟨∇u,∇𝑣⟩d𝜇g.
Hence, equation (1) is equivalent to

⟨u, 𝑣⟩ = 𝜆∫
X

u𝑣d𝜇g, ∀𝑣 ∈ (X).

On the other hand, for each fixed u ∈ G(X) the map

𝑣↦ ∫
X

u𝑣d𝜇g

defines a linear functional with domain (G(X), ‖ ⋅ ‖). The Riesz representation theorem ensures the existence

of 𝜆 > 0 and u∗
𝜆
∈ G(X) such that

⟨u∗
𝜆
, 𝑣⟩ = 𝜆∫

X

u𝑣d𝜇g ∀𝑣 ∈ G(X).

The principle of symmetric criticality of Palais [24] guarantees that the same holds for every 𝑣 ∈ (X).

Picking𝑣 = u∗
𝜆
shows thatu∗

𝜆
= u a.e. The classical regularity theory of PDEs guarantees the existence of a smooth

invariant representative u solving Problem 1, i.e., u ∈ C∞
G
(X).

Definition 2. Let (X, g) be a closed Riemannianmanifoldwith isometric effective action by a compact connected

Lie group G. Let (u, 𝜆) ∈ C∞
G
(X) ×ℝ>0 solving Problem 1. We say that 𝜆 is a basic eigenvalue of −Δg associated

with the basic eigenfunction u.

It can be also shown that the collection {𝜆} of all possible invariant eigenvalues of −Δg is increasing and

unbounded, i.e., 0< 𝜆1 ≤ 𝜆2 ≤ 𝜆3 ↑∞. To such a collection we name the basic spectrum of−Δg and denote it as

SpecG(−Δg).

Definition 3. Given two Riemannian manifolds (X, g), (X′, g′) with isometric actions by the same Lie group G,

we say that they have the same basic spectrum if SpecG(−Δg) = SpecG
(
−Δg′

)
.

Definition 3 contrasts with other already present concepts in the literature. Given a Riemannian mani-

fold X with an isometric action by a Lie group G (a Riemannian G-manifold), we know that G has a natural

representation 𝜏G on L
2(X) where for each f ∈ L2(X) the function 𝜏G(f ) := g·f is given by

(g ⋅ f )(x) := f (g−1x);

note that, since G acts via isometries, the representation 𝜏G commutes with the Laplacian Δ of M. Then, two

Riemannian G-manifolds X and X′ are said to be equivariantly isospectral (with respect to G) if there is a unitary

map U: L2(X)→ L2(X′) such that [25], [26]

(i) U⚬Δ=Δ′⚬U , that is, X and X′ are isospectral,

(ii) U ⚬ 𝜏G = 𝜏′G ⚬U , i.e., the natural representations are equivalent via U .
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The notion of isospectrality presented in Definition 3 is exactly the one appearing in [27]. In [28], Sunada studies

whether two finite groups H1, H2 acting on a smooth manifold X yield coinciding Hi-invariant spectrum on X.

Then, in [29], Sunada’s result is generalized to connected groups. Finally, Theorem 2.5 in [27] goes beyond, stating

the following:

Theorem 1. (Theorem 2.5 in [27]). Let X be a compact Riemannianmanifold and G≤ Isom(X) a compact Lie group.

Suppose that H1, H2 ≤ G are closed, representation-equivalent subgroups. Then, the Hi-invariant spectra of the

Laplacian on X are equal.

Proposition 1 combined with Example 2 show that the conclusion in Theorem 2.5 in [27] extends to every

pair of manifoldsM,M′ fitting a⋆-diagram.

Lastly, it may be the case that our appearing constructions bring insights on the following. Although two

isospectral manifolds need not be isometric, further rigidity can be questioned. For instance, the result of Tanno

in [8] ensures that any compact Riemannian manifold isospectral to a round sphere
(
Sn, ground

)
is necessarily

isometric to
(
Sn, ground

)
if n ≤ 6. Up to the smooth Poincaré conjecture in dimension 4, exotic spheres appear

precisely firstly when n = 7. It is still unknown whether round 7 spheres are spectrally unique (in the sense of

Tanno’s result), but it is known that no exotic sphere can carry a round metric. Based on our results, we are

tempted to think that the spectral-uniqueness can not occur for spheres in every dimension n ≥ 7 where an exotic

sphere exists.

2 Basic spectra of G-manifolds related by⋆-diagrams

We outline a general procedure for constructing exotic manifolds based on their classical counterparts, exten-

sively discussed in [11], [14], [30]. This is done by considering pairs of closed manifoldsM,M′ carrying effective

actions by a compact Lie group G, and fitting into a so-called ⋆-diagram M← P→M′, which essentially realize

M andM′ as quotients of a single manifold P by free commuting G-actions. Many exotic manifolds fit into these

diagrams, and one can then use this structure to compare their invariant geometries once invariant metrics

are considered. Notably, the concept of an exotic sphere originated in the 1950s with J. Milnor’s groundbreaking

work [31]. Milnor introduced a family of 7-dimensional manifolds Σ7 homeomorphic to the classical sphere S7

but not diffeomorphic.

In the diagram (2) below, which will henceforth be called a⋆-diagram, P represents a principal G-manifold

– a manifold equipped with a free action by a compact Lie group G, denoted by ∙. This action implies 𝜋 defines

a principal bundle overM with total space P. We also assume the existence of another G-action, denoted by ⋆,

which is both free and commutative with ∙. This action makes 𝜋′ a principal bundle overM′ with total space P.

We encode everything in the following:

(2)

Diagram (2) yields a principal (G, G)-bundle (shortly, a principal G-bundle), [13]. We provide some explicit

examples.

Example 1. (The Gromoll–Meyer exotic sphere). This construction first appeared in [32] and was first put in a

⋆-diagram in [33] (see also [14]). Consider the compact Lie group
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Sp(2) =
{(

a c

b d

)
∈ S7 × S7

||| ab̄+ cd̄ = 0

}
, (3)

where a, b, c, d ∈ ℍ are quaternions with their usual conjugation, multiplication, and norm. The projection 𝜋:

Sp(2)→ S7 of an element to its first row defines a principal S3-bundle with principal action:(
a c

b d

)
q̄ =

(
a cq

b dq

)
. (4)

Gromoll–Meyer [32] introduced the⋆-action

q

(
a c

b d

)
=

(
qaq qc

qbq qd

)
, (5)

whose quotient is an exotic 7-sphere. It all fits in the following diagram

(6)

■

As the next example shows, a⋆-diagram such as (2) does not always produce a different manifold.

Example 2. (Pairs of diffeomorphic manifolds via⋆-diagrams). Let M be a smooth manifold with an effective

smooth action by a compact Lie group G, which we denote by ⋅. Consider the product manifoldM × G with the

following⋆-action

g ⋆ (x, g′) := (g ⋅ x, gg′), x ∈ M, g, g′ ∈ G.

Let ∙ be the following G-action onM × G:

g ∙ (x, g′) := (x, (g′)g−1), x ∈ M, g, g′ ∈ G.

Both ∙, ⋆ are free and commuting actions on M × G. Orbit maps for such actions are, respectively, 𝜋: M

× G→M, (x, g′)↦ x, 𝜋′:M × G→M, (x, g′)↦ (g′)−1x. We can build the corresponding⋆-diagram

(7)

■

A new construction is given next, encompassing some cohomogeneity-one manifolds.

Example 3. (Cohomogeneity-one manifolds). Another class of examples are the manifolds constructed in

Grove–Ziller [34]. Given integers p+, q+, p−, q− ≡ 1 (mod 4) [34], produces a cohomogeneity-one manifold
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(P10
p−,q−, p+,q+

, (S3)3). We further assume that gcd(p−, q−) = gcd(p+, q+) = 1. Then one can observe that the sub-

actions of S3∙ = S3 × {1} × {1} and of S3
⋆
= {1} × ΔS3 are commuting and free, where ΔS3 is the diagonal in S3

× S3. They fit in the diagram

(8)

Here,M′
p−,q−, p+,q+

is the S3-bundle over S4 classified by the transition function 𝛼: S3→SO(4) defined by 𝛼(x)v

= xkvxl, where k =
(
p2− − p2+

)
∕8 and l = −

(
q2− − q2+

)
∕8. ■

As observed in [11], the actions ∙ and⋆ commute so that⋆ descends to a non-trivial action onM, as well as

∙ descends to a non-trivial actionM′. Moreover, it is possible to regardM andM′ with G-invariant Riemannian

metrics gM and gM′ , respectively, such that the metric spacesM/G andM′/G are isometric.

Lemma 1. (Corollary 5.2 in [11]). Let M← P→M′ shortly denote a⋆-diagram such as (2) with structure group G.

There exists a G× G-invariant metric g𝜔 on P that induces G-invariant Riemannian metrics gM , gM′ onM, andM′,

respectively, such that the metric spaces M/G, M′/G are isometric. Moreover, the ∙, ⋆-action fibers on P are totally
geodesic.

Sketch of the Proof. Let 𝜔: TP→ g be a connection 1-form associated with 𝜋: P → M. Proposition 5.1 in [11]

teaches uswe can assume that for any r∈G it holds𝜔rp(rX)=𝜔p(X) for any p∈P,X ∈TpP. LetQbe a bi-invariant

metric on G and gM be any G-invariant Riemannian metric on M. Regard P with the Kaluza–Klein metric

g𝜔 = 𝜋∗gM + Q⚬𝜔⊗𝜔. Since g𝜔 is G × G-invariant it yields a G-invariant Riemannian metric gM′ onM′.

One straightforwardly checks that

′′ := (T(G × G)p)⊥g𝜔 ≅ (TG𝜋(p))⊥gM ≅ (TG𝜋′(p))
⊥g

M′ , ∀p ∈ P.

Then, any geodesic orthogonal to an orbit of the ⋆-action onM can be mapped (through horizontal lifting

fromM and 𝜋′-projection) to a geodesic orthogonal to an orbit of the ∙-action onM′ with the same length. The

orbits are totally geodesic on P (for both actions) because Kaluza–Klein metrics are connection metrics. □

Any smooth G × G-invariant function 𝜙: P→ ℝ gives rise to smooth and G-invariant functions on both M

and M′ via composing 𝜙 in the right with 𝜋, 𝜋′, respectively. In fact, any smooth invariant functions on M, M′

arise in this fashion. Let gP denote an arbitrary G × G-invariant metric on P, and let gM , and gM′ be invariant

Riemannian metrics on M, M′, respectively, such that the projections 𝜋, 𝜋′ define Riemannian submersions.

Then, the horizontal Laplacians on M and M′ are related to the Laplacian in P as follows, see [35, Section 2.1.4,

p. 53]

−ΔgP
𝜙 = −ΔgM

𝜙+ d𝜙(H𝜋), (9)

−ΔgP
𝜙 = −ΔgM′𝜙+ d𝜙(H𝜋

′
), (10)

where H𝜋 stands for the mean curvature vector of the fibers according to the ∙-action on P and H𝜋 ′ to the mean
curvature vector of the fibers according to ⋆. Since the ring isomorphisms C∞

G×G(P) ≅ C∞
G
(M) ≅ C∞

G
(M′) hold,

one can identify the Sobolev spaces

W 1,2

G×G(P) ≅ W 1,2

G
(M) ≅ W 1,2

G
(M′).
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Consequently,

G×G(P) ≅ G(M) ≅ G(M
′).

Problem 2. Is there 𝜙 ∈ C∞
G×G(P) simultaneously a smooth solution to the invariant eigenvalue problems

ΔgM
𝜙 = −𝜆𝜙, ΔgM′𝜙 = −𝜆′𝜙

for some 𝜆, 𝜆′ ∈ ℝ? If so, is it true that 𝜆 = 𝜆′ Moreover, do the basic spectra Spec(−ΔgM
) and Spec

(
−ΔgM′

)
coincide?

Related to Problem 2 we prove:

Proposition 1. Let (M, gM )← (P, gP)→
(
M′, gM′

)
shortly denote a ⋆-diagram where gM , gP, gM′ are as in

Lemma 1. Let Φ be the collection of G-invariant eigenfunctions of −ΔgM
in (M, gM ). Then for each 𝜙 ∈ Φ we

have that −ΔgM′𝜙 = 𝜆′𝜙 with 𝜆′ = 𝜆 where −ΔgM
𝜙 = 𝜆𝜙. Moreover, the roles of (M, gM ) and

(
M′, gM′

)
can be

interchanged, in the sense that we can start withΦ as a set of invariant eigenfunctions in
(
M, gM′

)
for −ΔgM′ .

Proof. Let Φ be a set of invariant eigenfunctions for −ΔgM
. From the compactness of M and standard elliptic

theory,Φ constitutes an orthonormal (Hilbert) basis toG(M) and hence consists in a Schauder basis toG×G(P)

[23, p. 16]. In this manner, Φ descends to a Schauder basis to G(M
′). We now pose the following variant of

Problem 1. To find 𝜙 ∈Φ and 𝜆′ ∈ ℝ such that

𝜆′∫
M′

𝜙𝑣 = ∫
M′

g′(∇′𝜙,∇𝑣), ∀𝑣 ∈ G(M
′).

To solve this problem, we consider the functional J𝜆′ (u) := ∫ M′ |∇′u|2 − 𝜆′∫ M′u2 with domain in G(M
′)

and show that for each n ∈ ℕ, picking 𝜆′
n
= 𝜆n ∈ ℝ for 𝜆n ∈ SpecG(−Δg), then

{
𝜙n

j

}dimker(−Δg−𝜆n)

j=1
:=Φ∩ ⊂

ker(−Δg − 𝜆n) satisfies d J𝜆′n
(
𝜙n

j

)
(𝑣) = 0 ∀ j ∈ {1,… , dimker(−Δg − 𝜆n)}, ∀𝑣 ∈ G(M

′). Using that Φ is a

Schauder basis toG(M
′) it suffices to show for each n ∈ ℕ we have

∫
M′

[
gM′

(
∇′𝜙n

j
,∇′𝜙k

)
− 𝜆n𝜙n

j
𝜙k

]
= 0, ∀k ∈ ℕ, ∀ j.

Note that for each p ∈ P we have for every j, n, k that

∇′𝜙k(𝜋
′(p))⊥T𝜋′( p)G𝜋

′(p), ∇′𝜙n
j
(𝜋′(p))⊥T𝜋′( p)G𝜋

′(p),

∇𝜙k(𝜋(p))⊥T𝜋( p)G𝜋(p), ∇𝜙n
j
(𝜋(p))⊥T𝜋( p)G𝜋(p).

As appearing in the proof of Lemma 1, the orthogonal spaces to each G-orbit in (M, gM ) and
(
M′, gM′

)
are

isometric. Therefore, gM′

(
∇′𝜙n

j
,∇′𝜙k

)
= gM

(
∇𝜙n

j
,∇𝜙k

)
. Finally, using that M/G and M′/G are isometric, we

have

∫
M′∕G

[
gM′

(
∇′𝜙n

j
,∇′𝜙k

)
− 𝜆n𝜙n

j
𝜙k

]
= ∫

M∕G

[
gM

(
∇𝜙n

j
,∇𝜙k

)
− 𝜆n𝜙n

j
𝜙k

]
.

Since Φ collects the solutions of Problem 1, the version of the Fubini theorem appearing in [36, Satz 1, p.

210] can be applied to conclude the desired result. □

Definition 4. LetM←P→M′ shortly denote a⋆-diagram. To a setΦ solving Problem 1 in (M, gM ) and
(
M′, gM′

)
simultaneously we name a joint invariant eigenfunction set.
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Our next result shows that when existing a joint invariant eigenfunction set Φ necessarily gM , gM′ are

isospectral.

Proposition 2. Let M ← P → M′ shortly denote a ⋆-diagram such as (2) with structure group G where M, P

and M′ are closed and connected. Let gM , gM′ be G-invariant metrics on M, and M′, respectively, induced by a

G × G-invariant metric gP on P. Assume an existing joint invariant eigenfunction set Φ. Then the G-invariant

spectra of −ΔgM
and −ΔgM′ coincide.

Proof. Observe that the function p ↦ vol(G⋆ p)

vol(G∙ p)
is constant on P. By connectedness, this boils down to showing

that the functions p↦ vol(G⋆p) and p↦ vol(G∙p) are locally constant on P. Now, P is a principal G-bundle for

both G-actions ⋆ and ∙, so one can relate sufficiently close fibers of the star action, as well as sufficiently close

fibers of the dot action, using principal G-bundle trivializations. Combining this with the fact that the metric on

P is G × G-invariant, and using Fubini’s theorem, one can show that the volume of these sufficiently close fibers

of P is indeed the same, say equal to V ′ for the⋆-action and equal to V for the ∙ action.
On the other hand, Equation (9) ensures that any𝜙 ∈ C∞

G×G(P) which descends to solutions to the eigenvalue

problems onM andM′, respectively, can be characterized by

−𝜆𝜙+ d𝜙(H𝜋 − H𝜋
′
) = −𝜆′𝜙.

Thus, 𝜆′ = 𝜆 holds if, and only if,H𝜋 −H𝜋 ′ ∈ ker d𝜙. Fix p∈ P. Themean curvature vector along theG-orbit

through p is given by −H =∇ log vol(Gp) – [37, Lemma 5.2]. Hence,

H𝜋 − H𝜋
′ = ∇ log

(
vol(G⋆ p)

vol(G∙ p)

)
,

so

d𝜙(H𝜋 − H𝜋
′
) = ⟨∇𝜙,∇ log

(
vol(G⋆ p)

vol(G∙ p)

)⟩ = ⟨∇𝜙,∇ log
V ′

V
⟩ = 0.

Therefore,

−𝜆𝜙 = −𝜆′𝜙.
□

An appearing question is whether we can produce invariant metrics onM andM′, which are invariant and

not isospectral. We obtained the following, to be proved in Section 4.

Theorem 2. For any ⋆-diagram M← P→ M′ with compact connected structure group and M, P and M′ being

closed and connected, there exists invariant metrics g on M and g′ on M′ so that (M, g), (M′, g′) have different

basic spectrum.

The combination of Proposition 1 with Theorem 2 and some explicit realization of exotic manifolds equiv-

ariantly related to their classical counterpart allow us to show

Theorem 3. The following pair of homeomorphic but not diffeomorphic manifolds admit Riemannian metrics

invariant by the same group of isometries that can be chosen admitting the same basic spectrum or not:

1. S7, #kΣ7
GM

where Σ7
GM

is the Gromoll–Meyer exotic sphere (Example 1), k ∈ ℕ and # denote the connected

sum,

2. S8, Σ8 where Σ8 is the only 8-dimension exotic sphere,

3. S10,Σ10 whereΣ10 is a generator of the index two homotopy subgroup of 10-dimension homotopy spheres that

bound spin manifolds,

4. S4n+1, Σ4n+1 where Σ4n+1 are the known Kervaire spheres,
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5. the pair of total spaces of the bundles appearing in Example 3,

6. the classical and exotic realization of the manifolds appearing in Example 6.

With Theorem 3 in hands, it is natural to ask whether invariant geometric objects ignore the chosen smooth

structure to a fixed underlined topological space. We prove

Theorem 4. (G-invariant Kazdan–Warner problem on⋆-diagrams). Consider a ⋆-diagram M← P→M′ with G

connected. Then a basic function on M is the scalar curvature of a G-invariant metric on M if and only if it is the

scalar curvature of a G-invariant metric on M′ if and only if it lifts to the scalar curvature of a G × G-invariant

metric on P.

Corollary 1. The following pair of homeomorphic but not diffeomorphic manifolds admit the same ring of invari-

ant scalar curvature functions for a certain isometry group:

1. S7, #kΣ7
GM

where Σ7
GM

is the Gromoll–Meyer exotic sphere (Example 1), k ∈ ℕ and # denote the connected

sum,

2. S8, Σ8 where Σ8 is the only 8-dimension exotic sphere,

3. S10,Σ10 whereΣ10 is a generator of the index two homotopy subgroup of 10-dimension homotopy spheres that

bound spin manifolds,

4. S4n+1, Σ4n+1 where Σ4n+1 are the known Kervaire spheres,

5. the pair of total spaces of the bundles appearing in Example 3,

6. the classical and exotic realization of the manifolds appearing in Example 6.

In Section 3, we both prove Theorem 4 and furnish the examples appearing in Theorem 3 and Corollary 1.

3 On the realizability of scalar curvature functions

on homotopy spheres

SinceMilnor introduced the first examples of exoticmanifolds [31], many new exotic spaces have been produced.

For instance, there are uncountable many pairwise non-diffeomorphic structures on ℝ4 (see [38]); exotic man-

ifolds not bounding spin manifolds [39]; exotic projective spaces, and connected sums of exotic manifolds [11].

Following [14], [30], [33], [40], several realizations of exotic manifolds are obtained using⋆-diagrams such as (2).

This section explores the relationship between the admissibility of invariant scalar curvature functions on the

manifoldsM andM′, culminating in the proof of Theorem 4.

The first construction of exotic manifolds uses the classical Reeb’s Theorem to show that specific 7-

dimensional total spaces of sphere bundles are homeomorphic to a standard sphere. Moreover, one can recover

the smooth structure of a manifold through its space of smooth functions (see, for example, [41, Problem 1-C]).

However, in the presence of a ⋆-diagram, the set of basic functions of M and M′ are naturally identified since

they are naturally identified with the space of G × G-invariant functions on P, proving that the set of basic

functions does not recover (M, G). Theorem 4 reinforces this fact in the sense that invariant scalar curvature

functions should not distinguish smooth structures.

Proof of Theorem 4. Let M ← P → M′ be a ⋆-diagram and p ∈ P. Denote 𝜋(p) = x and 𝜋′(p) = x′. First, a

straightforward calculation shows that the isotropy groups Gx and Gx′ are isomorphic – [11, Theorem 2.2 and

Proposition 5.3]. Therefore, if G acts effectively onM, it does onM′. We now observe that if G has a non-Abelian

Lie algebra, then both (M,G), (M′,G) admit any invariant function as scalar curvature of some invariant Rieman-

nian metric. This holds since a non-Abelian Lie algebra ensures the existence of an invariant metric of positive

scalar curvature – [40], [42]. The main result in [12] ensures that any scalar curvature function is admissible
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as scalar curvature of some metric close to this positively curved metric. The arguments in [43] show that the

resulting metric is G-invariant.

Finally, if G is Abelian, then it is a torus. Therefore, we can apply [44, Theorem 2.2] to conclude that P admits

a G × G-invariant metric with positive scalar curvature if and only if bothM andM′ admit G-invariant metrics

with positive scalar curvature, as wanted. □

The remaining section presents many examples where Theorems 2–4 can be applied. We explicitly build

the examples in the statements of Theorem 3 and Corollary 1.

Example 4. (Pulling-back⋆-diagrams). Consider a⋆-diagramM←P→M′ and aG-manifoldN . Let𝜙:N→M be

aG-equivariant function.We canpull-back this⋆-diagramproducing a newquotient (𝜙∗P)/G=N′. The pull-back

construction was applied in [11], [14] to obtain the following examples:(
Σ7
k

)
: consider 𝜙: S7 → S7 as the octonionic kth fold power. Then the corresponding ⋆-diagram S7 ←𝜙∗Sp(2)→

(S7)′ yields (S7)′ diffeomorphic to the connected sum of k times Σ7
GM
;

(Σ8): there is a S3-equivariant suspension 𝜂: S8→ S7 of the Hopf map S3→ S2 whose quotient (S8)′ = 𝜂∗Sp(2)/S3 is
the only exotic 8-sphere;

(Σ10): there is a S3-equivariant suspension 𝜃: S10→ S7 of a generator of 𝜋6S
3 whose induced⋆-quotient (S10)′ is a

generator of the index two subgroup os homotopy 10-spheres that bound spin manifolds;

(Σ4n+1): the frame bundle prn: SO(2n+ 2)→S2n+1 can be also seen as a⋆-diagram: one can endow SO(2n+ 2) with

both the right and left multiplication by SO(2n + 1). In this case, M = M′ = S2n+1. However, there is a pull-

back map J𝜏 : S4n+1 → S2n+1, whose ⋆-diagram S4n+1 ← (J𝜏)∗SO(2n + 2)→ (S4n+1)′ has (S4n+1)′ diffeomorphic

to a Kervaire sphere. Moreover, one can ‘reduce’ G = SO(2n + 1) in to either U(n) or Sp(n) (supposing n odd

for the last). ■

Example 5. (Gluing and connected sums). Consider W1, W2 manifolds with boundaries and equips with G-

actions. Assume that f : 𝜕W 1 → 𝜕W2 is an equivariant diffeomorphism. Then one can produce a new manifold

W =W 1 ∪fW2 by gluingW 1,W2 via f .W thus inherits a natural smooth G-action whose restrictions toW1,W2

⊂W coincide with the original actions.

Interesting examples arise in the following way: let (M1, G), (M2, G) be closed manifolds with G-actions.

Suppose that xi ∈Mi, i= 1, 2 have the same orbit type, that is, Gx1 ,Gx2 are subgroups in the same conjugacy class

and their isotropy representations are equivalent. Then, one can remove small tubular neighborhoods of the

orbits Gx1, Gx2 and glue the boundaries together. In particular, if x1, x2 are fixed points with equivalent isotropy

representations, one can perform a connected sum.

More generally, one can consider the case where (M, G) admits an equivariant embedding of (Sk × Dl+1, G),

where G acts on Sk × Dl+1 is equipped with a linear action. In this case, one can perform surgery along𝜓 . At this

point, ⋆-diagrams become quite useful since corresponding orbits in M, M′ often have the same orbit type, as

the next lemma points out.

Lemma 2. Let M←P→M′ be a⋆-diagram and p∈ P. There is a group isomorphism𝜙: G𝜋(p)→G𝜋′(p) and a linear

isomorphism 𝜓 such that 𝜌𝜋(p) = 𝜓𝜌𝜋′(p)𝜙.

Proof. Denote 𝜋(p) = x and 𝜋′(p) = x′. For simplicity, we only prove the last assertion since the existence of 𝜙

follows by direct computation.

Note that d𝜋p, d𝜋
′ define isomorphisms between normal spaces:

TxM

TxGx

d𝜋
⟵

TpP

Tp(G × G)p

d𝜋′

→
Tx′M

′

Tx′Gx
′ .
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Moreover, since 𝜋, 𝜋′ commute with the (respective complementary) actions,

𝜌x(h)d𝜋(𝑣) → 𝜌 p(h, 𝜙(h))𝑣 ← 𝜌x′ (𝜙(h))d𝜋
′(𝑣),

inducing the desired identification. □

The isomorphism𝜙 in the examples
(
Σ7
k

)
− (Σ4n+1) are all of the form𝜙(h)= ghg−1 for g∈G only depending

on p. In such cases, every pair of points x, x′, 𝜋−1(x) ∩ (𝜋′)−1(x′) ≠ ∅, have the same orbit type.
We claim that several surgeries can be done equivariantly on the manifolds resulting in these examples.

Moreover, such surgeries can be done by keeping the ⋆-diagram apparatus. We give more details on the
(
Σ7
k

)
-

case to illustrate the assertion.

In this case, S3 acts on S7 as q(a, b)T = (qaq̄, qbq̄)T . This action is inherited from the representation 𝜌̃: S3 →

SO(8) defined by 2𝜌0⊕ 2𝜌1, where 𝜌0 and 𝜌1 stands for the trivial representation and the representation defined

by the composition of the double-cover S3 → SO(3) and the standard action of SO(3) in ℝ3. I.e., 𝜌̃ is the double

suspension of the bi-axial action of SO(3) in ℝ6, up to a double-cover.

Note that (a,b)T is a fixed point of 𝜌̃whenever a, b ∈ ℝ and consider another manifold (M7, S3) with a fixed

point p whose isotropy representation is 𝜌0 ⊕ 2𝜌1. One can produce a standard degree-one equivariant map 𝜙:

M7 → S7 by ‘wrapping’ S7 with an open ball centered at the fixed point and sending the remaining of M to the

antipodal of 𝜙(p). As in [11, Theorem 4.1], the induced⋆-diagram results inM ← 𝜙∗P→M#Σ7
k
.

To proceed with the surgery process, note that (S7, S3) admits the equivariant submanifolds below. We omit

the explicit embeddings and use the representation instead of G as the notation (M, G) to present more detailed

information. (
S1, 2𝜌0

)
×
(
D6, 2𝜌1

)
= {(a, b)T ∈ S7 | (Re(a),Re(b)) ≠ (0, 0)};(

S2, 𝜌1
)
×
(
D5, 2𝜌0⊕ 𝜌1

)
= {(a, b)T ∈ S7 | Im(a) ≠ 0};(

S3, 𝜌0⊕ 𝜌1
)
×
(
D4, 𝜌0⊕ 𝜌1

)
= {(a, b)T ∈ S7 | a ≠ 0};(

S4, 2𝜌0⊕ 𝜌1
)
×
(
D3, 𝜌1

)
= {(a, b)T ∈ S7 | (a,Re(b)) ≠ (0, 0)};(

S5, 2𝜌1
)
×
(
D2, 2𝜌0

)
= {(a, b)T ∈ S7 | (Im(a), Im(b)) ≠ (0, 0)};(

S6, 𝜌0⊕ 2𝜌1
)
×
(
D1, 𝜌0

)
= {(a, b)T ∈ S7 | (Im(a), b) ≠ (0, 0)}.

Except for S1 × D6 and S4 × D3, every submanifold above can lie in an arbitrarily small region of a fixed

Re(a). In particular, arbitrarily, many of these surgeries can be performed.

Moreover, we conclude that such surgeries can be performed by preserving infinitely many fixed points.

Therefore, the above degree-one map can be considered, producing a ⋆-diagram over the new manifold M.

Although the connected sum applied to this context seems ad-hoc, the resulting manifold (𝜙∗P)/G =M#Σ is the

same manifold one obtains by performing the same surgeries on Σ. ■

Example 6. (More connected sums). A list of manifolds whose fixed points have isotropy representations iso-

morphic to the ones of the examples
(
Σ7
k

)
− (Σ4n+1) are found in [11]. We compile it here:

Proposition 3. (Cavenaghi–Sperança). The followingmanifolds have fixed points whose isotropy representations

are isomorphic to the ones in
(
Σ7
k

)
− (Σ4n+1):

1.
(
Σ7
k

)
: any 3-sphere bundle over S4;

2. (Σ8): every 3-sphere bundle over S5 or a 4-sphere bundle over S4;

3. (Σ10):

(a) M8 × S2 with M8 as in item (ii);

(b) any 3-sphere bundle over S7, 5-sphere bundle over S5 or 6-sphere bundle over S4;

4. (Σ4m+1, U(n)):
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(a) a sphere bundle S2m ↪M4m+1 → S2m+1 associated to any multiple of O(2m + 1)↪ O(2m + 2)→ S2m+1,

the frame bundle of S2m+1

(b) a ℂPm-bundle ℂPm ↪ M4m+1 → S2m+1 associated to any multiple of the bundle of unitary frames U(m)

↪ U(m + 1)→ S2m+1

(c) M4m+1 = U(m+2)
SU(2)×U(m)

5. (Σ8r+5, Sp(r)): M × N5−k, where N is any manifold and

(a) S4r+k−1 ↪M8r+k → S4r+1 is the k-th suspension of the unitary tangent S4r−1 ↪ T1S
4r+1 → S4r+1,

(b) k = 1 and ℍPm ↪ M8m+1 → S4m+1 is the ℍPm-bundle associated to any multiple of Sp(m)↪ Sp(m + 1)

→ S4m+1

(c) k = 0 and M = Sp(m+2)
Sp(2)×Sp(m)

(d) k = 1 and M =M8m+1 is as in item (iv) ■

4 The proof of Theorem 2

In this last section, we prove Theorem 2. Let M ← P → M′ denote a ⋆-diagram with structure group G com-

pact and connected. The manifolds M, M′, and P are assumed to be closed and connected. Assume that

gM , g𝜔, gM′ are as in Lemma 1. Proposition 1 implies that the basic spectra of −ΔgM
, −ΔgM′ coincide. Let u

be a G-invariant eigenfunction associated with 𝜆1
(
gM′

)
and consider the general vertical warping metric [35,

Chapter 2] gu :=𝜋∗(gM )+ e2uQ⚬𝜔⊗𝜔, where Q is a bi-invariant metric in G and𝜔 is as in Lemma 1. Let g′ be

the Riemannian metric inM′ making 𝜋′: (P, gu)→ (M′, g′) be a Riemannian submersion. It suffices to show that

the first positive (invariant) eigenvalues 𝜆1
(
gM′

)
, 𝜆1(g

′) for −ΔgM′ and −Δg′ , respectively, are different.

Take 𝜙 ∈ C∞
G
(M′) satisfying −Δg′𝜙 = 𝜆1(g′)𝜙. Since 𝜙 lifts to a function on P and −Δg′𝜙 = −Δgu

𝜙−
d𝜙

(
H𝜋

′

gu

)
we have

−Δgu
𝜙− d𝜙

(
H𝜋

′

gu

)
= 𝜆1(g′)𝜙.

Therefore,

−∫
P

d𝜙
(
H𝜋

′

gu

)
d𝜇gu = 𝜆1(g

′)∫
P

𝜙d𝜇gu .

Equation 2.1.4 in [35, Chapter 2, p. 46] ensures that if dimG = k then H𝜋
′

gu
= −k∇guu. Consequently,

−∫
P

d𝜙
(
H𝜋

′

gu

)
d𝜇gu = k∫

P

gu
(
∇gu𝜙,∇guu

)
d𝜇gu

= k∫
P

gM′
(
∇gM′𝜙,∇gM′u

)
d𝜇gu

≤ k∫
P

|∇gM′u|gM′ |∇gM′𝜙|gM′d𝜇gu

≤ k

⎛⎜⎜⎝∫P |∇gM′u|2
gM′

d𝜇gu

⎞⎟⎟⎠
1

2 ⎛⎜⎜⎝∫P |∇gM′𝜙|2
gM′

d𝜇gu

⎞⎟⎟⎠
1

2

,

where the second equality holds because

(TG𝜋′(p))⊥g′ ≅ (T(G × G)p)⊥gu ≅ (TG𝜋(p))⊥gM ≅ (TG𝜋′(p))
⊥g

M′ , ∀p ∈ P.

Using that |∇gM′u|2
gM′

is G-invariant and applying Fubini’s Theorem for Riemannian submersions [36, Satz

1, p. 210] one gets



L. F. Cavenaghi et al.: Basic spectra of equivariantly related manifolds — 13

∫
P

|∇gM′u|2
gM′

d𝜇gu = ∫
M′

⎛⎜⎜⎝∫G |∇gM′u|2
gM′

d𝜇Q

⎞⎟⎟⎠d𝜇gM′

= volu(G)∫
M′

|∇gM′u|2
gM′

d𝜇gM′ .

The volume volu(G) is computed regarding each orbit’s induced Riemannian metric by gu. Similarly,

∫
P

|∇gM′𝜙|2
gu
d𝜇gu = volu(G)∫

M′

|∇g′𝜙|2
g′
d𝜇g′ .

Therefore, the variational characterization for the first eigenvalue ([23, Section 5]) yields

[volu(G)]
−1k

⎛⎜⎜⎝∫P |∇gM′u|2
gM′

d𝜇gu

⎞⎟⎟⎠
1

2 ⎛⎜⎜⎝∫P |∇gM′𝜙|2
gM′

d𝜇gu

⎞⎟⎟⎠
1

2

≥ k𝜆1
(
gM′

) 1

2 𝜆1(g
′)

1

2

⎛⎜⎜⎝∫M′

u2d𝜇gM′

⎞⎟⎟⎠
1

2 ⎛⎜⎜⎝∫M′

𝜙2d𝜇g′

⎞⎟⎟⎠
1

2

.

Thus,

𝜆1(g
′)1∕2

⎛⎜⎜⎝∫P 𝜙d𝜇gu
⎞⎟⎟⎠ ≤ 𝜆1

(
gM′

) 1

2 kvolu(G)

⎛⎜⎜⎝∫M′

u2d𝜇gM′

⎞⎟⎟⎠
1

2 ⎛⎜⎜⎝∫M′

𝜙2d𝜇g′

⎞⎟⎟⎠
1

2

.

Hence

(
𝜆1(g

′)

𝜆1
(
gM′

)) 1

2 ≤ kvolu(G)

⎛⎜⎜⎝∫M′

u2d𝜇gM′

⎞⎟⎟⎠
1

2 ⎛⎜⎜⎝∫P 𝜙d𝜇gu
⎞⎟⎟⎠
−1⎛⎜⎜⎝∫M′

𝜙2d𝜇g′

⎞⎟⎟⎠
1

2

= k

⎛⎜⎜⎝∫M′

u2d𝜇gM′

⎞⎟⎟⎠
1

2 ⎛⎜⎜⎝∫M′

𝜙d𝜇g′

⎞⎟⎟⎠
−1⎛⎜⎜⎝∫M′

𝜙2d𝜇g′

⎞⎟⎟⎠
1

2

.

Finally, one concludes the desired result as we can indiscriminately scale u so that the right-hand side above

is strictly lesser than 1.
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