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Abstract: The Willmore flow is the negative gradient flow of the Willmore energy. In this paper, we consider a

special kind of solutions to Willmore flow, which we call solitons, and investigate their geometric properties.
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1 Introduction

Let Σ be a closed (i.e. compact without boundary) m-dimensional manifold, and f :Σ × I → ℝn+1 be a family of

immersions of Σ depending on t ∈ I. Themean curvature flow is the differential equation

ft = ⃖⃖⃗H,

where ⃖⃖⃗H is the mean curvature vector. The mean curvature flow is the negative gradient flow of the volume

functional and was first introduced by Huisken [1]. Many authors have studied the mean curvature flow, so it

would be impossible to mention all the results. We refer the readers to Refs. [2]–[5] and the references therein

for results related to the mean curvature floblackw. On the other hand, there are studies on the singularities

of the mean curvature flow which occur for nonconvex initial data. It was proved in Refs. [6], [7] that, after

appropriate rescaling near the singularity, Σ approaches a soliton of the mean curvature flow.

More precisely, there are two kinds of solitons to the mean curvature flow. We say that Σ is a translator

if Σ − t ⃖⃗V is a solution to the mean curvature flow for some fixed nonzero vector ⃖⃗V ∈ ℝn+1. Therefore, Σ is a

translator if
⃖⃖⃗H = − ⃖⃗V⊥.

On the other hand,we say thatΣ is a shrinker (respectively expander) if
√
−tΣ for t< 0 (respectively

√
tΣ for

t> 0) is a solution to themean curvature flow. Therefore, geometrically a shrinkerΣ (respectively an expander)

is a self-similar shrinking solution (respectively a self-similar expanding solution) by the mean curvature flow.

One can check that Σ is a shrinker (respectively expander) if

⃖⃖⃗H = − 1

2
f ⊥

(
respectively ⃖⃖⃗H = 1

2
f ⊥
)
.

It was proved in Refs. [6], [7] that the translators arise as blow-up limits of the mean curvature flow

about Type-II singularities, while the self-shrinkers arise as blow-up limits of the mean curvature flow about
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Type-I singularities. See Refs. [8]–[13] and the references therein for research related to the solitons to the mean

curvature flow.

Since there is no natural Willmore energy of higher dimensional hypersurfaces in ℝn+1, we consider sur-

faces in ℝ3 case only. Let Σ be a closed surface and f :Σ→ ℝ3 be an immersion of Σ. The Willmore energy is

given by (see Ref. [14] for example)

( f ) = 1

4∫
Σ

|⃖⃖⃗H|2,
where ⃖⃖⃗H is the mean curvature vector. A critical point of the Willmore energy is called aWillmore surface. The

famous Willmore conjecture asserts that the infimum of the Willmore energy among all immersed tori in ℝ3

was strictly attained by the Clifford torus. This was studied extensively (see Refs. [15]–[20] for example), and

was finally solved by Marques and Neves in Ref. [21]. For some geometric properties of Willmore surfaces, for

example, see Refs. [22]–[25].

Now, let f :Σ × I → ℝ3 be a family of immersions of Σ depending on t. TheWillmore flow is the differential

equation

ft = −W( f ),

where

W( f ) = Δg
⃖⃖⃗H + Q(

⚬
A)⃖⃖⃗H.

Here, Q(
⚬
A) acts linearly on normal vectors along f by the formula (using summation with respect to a

g-orthonormal basis {ei})

Q(
⚬
A)𝜙 = ⟨⚬A(ei, e j), 𝜙⟩⚬A(ei, e j),

and
⚬
A is the traceless second fundamental form. TheWillmore flow is the negative gradient flow of theWillmore

energy, and it is a fourth-order flow. TheWillmore flowhas been studied bymany authors. See Refs. [26]–[33] and

the references therein for results related to the Willmore flow. See also Refs. [34]–[39] for other variants of the

Willmore flow. Convergence of the Willmore flow has been obtained under various assumptions on the initial

condition. For instance, in Ref. [33], Simonett showed that the solutions of the Willmore flow exist globally and

converge to a standard sphere provided that they are initially close to a sphere. In Ref. [29], Kuwert and Schätzle

showed that if the L2-norm of
⚬
A is sufficiently small initially, then theWillmore flow exists smoothly for all times

and converges to a round sphere. In Ref. [40], Kuwert and Schätzle showed that the Willmore flow of a sphere

in ℝ3 with initial energy at most 8𝜋 exists globally and converges to a round sphere.

However, in general, we do not know much about convergence of the Willmore flow. Quoted from P. 92

in Ref. [41] “It is an open question whether or not the Willmore flow can develop singularities in finite time.”

Numerical evidence has been provided in Ref. [41], showing that the Willmore flow can develop singularities in

finite time.

Since we do not know whether the Willmore flow converges in general, we would like to construct some

special solutions to the Willmore flow, which we call solitons to the Willmore flow. Inspired by the mean cur-

vature flow described above, we consider two types of solitons: Willmore translators and Willmore self-similar

solutions (Willmore shrinkers and Willmore expanders). More precisely, we say that Σ is aWillmore translator

to the Willmore flow if Σ − t ⃖⃗V is a solution to the Willmore flow. Therefore, Σ is a Willmore translator if

W( f ) = ⃖⃗V⊥, (1)

for somefixednonzero vector ⃖⃗V . By scaling,wemay assume that | ⃖⃗V| = 1. Geometrically, it translateswith respect

to − ⃖⃗V -direction without deformation by the Willmore flow. Since Σ has codimension 1, we can defineW(f ) by

W(f )N so that

⟨W( f ),N⟩ = W( f ) = ΔgH + |⚬A|2H,
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where N is the unit normal vector field of Σ and H is the scalar-valued mean curvature of the surface Σ. As a
result, the Willmore translator (1) takes the form

ΔgH + |⚬A|2H = ⟨ ⃖⃗V ,N⟩. (2)

On the other hand, we say that Σ is aWillmore shrinker (respectivelyWillmore expander) to the Willmore

flow if
4
√
−tΣ for t < 0 (respectively

4
√
tΣ for t > 0) is a solution to the Willmore flow. Therefore, geometrically

a Willmore shrinker Σ (respectively a Willmore expander) is a self-similar shrinking solution (respectively a

self-similar expanding solution) by the Willmore flow. One can check that

W(𝜆 f ) = 𝜆−3W( f ),

for any nonzero constant 𝜆. So, Σ is a Willmore shrinker (respectively Willmore expander) if

W( f ) = 1

4
f ⊥

(
respectivelyW( f ) = − 1

4
f ⊥
)
. (3)

In particular, the Willmore shrinker (respectively Willmore expander) takes the form

ΔgH + |⚬A|2H = 1

4
⟨ f ,N⟩ (

respectively ⟨W( f ),N⟩ = − 1

4
⟨ f ,N⟩). (4)

The elastic energy of a regular curve in ℝ2 is a one-dimensional analogue of the Willmore energy. As a

result, its L2-gradient flow, the elastic flow, can be seen as one-dimensional analogue of the Willmore flow. In

view of this, we define and study the solitons to the elastic flow, which is the one-dimensional analogue of the

Willmore soliton. It is well-known that the Willmore energy of surfaces of revolution is connected to the elastic

energy of curves in the hyperbolic half-plane. This has been used in the study of the Willmore flow of tori.

See Refs. [42], [43].

In Section 2, we write down some examples and nonexamples of Willmore translators and Willmore self-

similar solutions. For example, we see that the plane is the only surface which is both aWillmore translator and

Willmore self-similar solution. See Section 2.1. We also see that the circular cylinder with a particular radius is

a Willmore expander. See Section 2.3.

In Section 3, by analyzing the differential Equations (2) and (4) respectively satisfied byWillmore translators

andWillmore self-similar solutions, we provide some results related toWillmore translators andWillmore self-

similar solutions in ℝ3.

In Section 4, we study the Willmore translator which is rotationally symmetric.

In Section 5, we study the Willmore solitons which are given by a graph of a function. In this case, the

differential Equations (1) and (3) reduce to a fourth-order ordinary differential equation. By studying the solution

of this fourth-order ordinary differential equation, we are able to find some new examples ofWillmore solitons.

In Section 6, we study the ruled surfaces which areWillmore translators orWillmore self-similar solutions.

In Section 7, we define and study the solitons to the elastic flow, which is the one-dimensional analogue of

the Willmore soliton.

2 Examples

In this section, we give some examples and nonexamples of Willmore translators and Willmore self-similar

solutions (Willmore shrinkers and Willmore expanders).
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2.1 Plane

A plane is both a Willmore translator and a Willmore self-similar solution. In fact, this property gives a charac-

terization of the plane:

Proposition 2.1. If Σ ⊂ ℝ3 is both a Willmore translator and a Willmore self-similar solution, then it must be a

plane which is parallel to ⃖⃗V.

Proof. Since Σ is both a Willmore translator and a Willmore self-similar solution,

⃖⃗V⊥ = W( f ) = ± 1

4
f ⊥.

We get ⟨ f ∓ 4 ⃖⃗V ,N⟩ = 0, then Σ is a cone with center ±4 ⃖⃗V . It is clear that every conical surface is singular
at the center except for planes. Since Σ is a smooth conical surface, Σ has to be a plane that is parallel to ⃖⃗V . □

2.2 Sphere

A round sphere Σ of radius r > 0 is neither a Willmore translator nor a Willmore self-similar solution, because

W(f ) ≡ 0 for the round immersion f of Σ and it is impossible for ⃖⃗V⊥ ≡ 0 or f ⊥≡ 0 on the round sphere.

2.3 Circular cylinder

Suppose Σ is the circular cylinder of radius a > 0 in ℝ3. Then the immersion of Σ is given by

f (x1, x2) = (a cos x1, a sin x1, x2).

Then the induced metric g is given by gi j =
⟨

𝜕 f

𝜕xi
, 𝜕 f

𝜕x j

⟩
, which gives

g11 = a2, g12 = g21 = 0, g22 = 1. (5)

The outward unit normal is given by

N = (cos x1, sin x1, 0). (6)

Since the second fundamental form is given by Ai j =
⟨

𝜕2 f

𝜕xi𝜕x j
,N
⟩
, we have

A11 = −a, A12 = A21 = A22 = 0. (7)

By (5) and (7), we can compute the mean curvature and the square norm of the second fundamental form:

H = gi jAi j = − 1

a
and |A|2 = gi jgklAikA jl =

1

a2
. (8)

Hence, we have

|⚬A|2 = |A|2 − 1

2
H2 = 1

2a2
. (9)

It follows from (8) and (9) that

W( f ) = ΔgH + |⚬A|2H = − 1

2a3
. (10)

Moreover, it follows from (6) that ⟨ f ,N⟩ = a. (11)

Therefore, it is impossible for Σ to be a Willmore shrinker, because

W( f ) = − 1

2a3
≠ 1

4
a = 1

4
⟨ f ,N⟩,
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by (10) and (11). On the other hand, if Σ is a Willmore expander, it follows from (10) and (11) that

W( f ) = − 1

2a3
= − 1

4
a = − 1

4
⟨ f ,N⟩.

Solving a gives a = 4
√
2. That is to say, the cylinder of radius

4
√
2 in ℝ3 is a Willmore expander. On the other

hand, for any constant unit vector ⃖⃗V = (𝑣1, 𝑣2, 𝑣3) in ℝ3, we can compute

⟨ ⃖⃗V ,N⟩ = 𝑣1 cos x1 + 𝑣2 sin x1, (12)

by (6). Therefore, it is impossible for Σ to be translating soliton, since

W( f ) = − 1

2a3
≠ 𝑣1 cos x1 + 𝑣2 sin x1 = ⟨ ⃖⃗V ,N⟩,

by (10) and (12). It also follows by Proposition 2.1.

3 Some rigidity results of Willmore solitons

In this section, we prove some results related to Willmore translators and Willmore self-similar solutions. We

do this by analyzing the differential Equations (2) and (4) satisfied by Willmore translators and Willmore self-

similar solutions respectively, since we consider the case whenΣ is a surface inℝ3. First, we have the following:

Theorem 3.1. There are no closed (compact without boundary) Willmore translators or Willmore self-similar

solutions in ℝ3.

Proof. Suppose Σ is a closed Willmore translator with respect to ⃖⃗V . Since Willmore energy is invariant by

translation, we have

∫
Σ

|W( f )|2 = ∫
Σ

⟨W( f ), ⃖⃗V⟩ = d

dt
( f + t ⃖⃗V)

||||t=0 = 0,

whereW( f ) = ⃖⃗V⊥. Hence, ⃖⃗V⊥ ≡ 0 onΣ. This contradicts to the fact that there exists at least two points onΣ such

that | ⃖⃗V⊥| = 1. Similarly, let Σ be a closed Willmore self-similar solution. Since Willmore energy is invariant by

dilations, we have

∫
Σ

|W( f )|2 = ±∫
Σ

⟨W( f ), f ⟩ = ± d

dt
( f + tV)

||||t=0 = 0,

whereW( f ) = ± 1

4
f ⊥. So, f ⊥ ≡ 0 on Σ. But it is obvious that f ⊥ ≠ 0 at either maximum point or minimum point

of |f | on Σ. □

In view of Theorem 3.1, Willmore translators and Willmore self-similar solutions must be noncompact.

Theorem 3.2. If Σ is a Willmore expander to Willmore flow and a self-shrinker to mean curvature flow or vice

versa in ℝ3, satisfying:

(i) the mean curvature is bounded,

(ii) the traceless second fundamental form satisfies |⚬A|2 < 1∕2,
(iii) the Gaussian curvature of Σ is bounded,

then Σmust be a plane.

Proof. Since Σ is a Willmore expander to Willmore flow and a self-shrinker to mean curvature flow, we have

4ΔgH + 4|⚬A|2H = 2H = −⟨ f ,N⟩ (= ⟨ f ,N⟩ respectively),
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In either cases, we have

2ΔgH + (2|⚬A|2 − 1)H = 0. (13)

Since H is bounded by assumption, supΣH is finite. Since the Gaussian curvature of Σ is bounded by

assumption, we can apply the Omori-Yau maximum principle (c.f. Section 2.2 in Ref. [44]) to conclude that there

exists a sequence of points {xk} ⊂ Σ such that

H(xk) > sup
Σ
H − 1

k
and ΔgH(xk) <

1

k
.

Combining this with (13) and the assumption that |⚬A|2 < 1∕2, we obtain

2

k
> 2ΔgH = (1− 2|⚬A|2)H > (1− 2|⚬A|2)(sup

Σ
H − 1

k

)
at xk .

In particular, we have

2

k
> (1− 2|⚬A|2)(sup

Σ
H − 1

k

)
at xk .

Letting k→∞ and using the assumption that |⚬A|2 < 1∕2, we obtain supΣH ≤ 0. Similarly, by considering

infΣH, we can use the Omori-Yau maximum principle as above to prove that infΣH ≥ 0. Hence, we must have H

≡ 0, that is, ⟨f , N⟩= 0. Then Σ is a cone centered at the origin. It is clear that every conical surface is singular at

the center except for planes. Since Σ is a smooth conical surface, Σ is a plane. □

Theorem 3.3. If Σ is a translating soliton for both mean curvature flow and Willmore flow in ℝ3 satisfying:

(i) the translating directions to solitons are opposite,

(ii) the traceless second fundamental form satisfies |⚬A|2 < 1,

then Σ is a plane which is parallel to ⃖⃗V.

Proof. Because of the assumption (i), if Σ is a translating soliton with respect to − ⃖⃗V -direction to Willmore flow

and one with respect to ⃖⃗V -direction to mean curvature flow, we have

ΔgH + |⚬A|2H = ⟨ ⃖⃗V ,N⟩ = H,

which gives

ΔgH + (|⚬A|2 − 1)H = 0.

With this, we can proceed as in the proof of Theorem 3.2 to conclude that H ≡ 0 if the mean curvature H is

bounded and the Ricci curvature of Σ is bounded from below. We note that −1 ≤ H ≤ 1 from H = ⟨ ⃖⃗V ,N⟩. Since
|⚬A|2 = H( p)2

2
− 2K(p) and −1 ≤ H ≤ 1, we have K ≥ − 1

4
. On Σ, H = ⟨ ⃖⃗V ,N⟩ = 0. Therefore, Σ is a plane which is

parallel to ⃖⃗V . □

4 Rotationally symmetric surfaces

In this section, we study the Willmore translator which is rotationally symmetric.

More precisely, we let ⃖⃗V be a unit vector inℝ3. Every planarWillmore translator for theWillmore flowwith

the direction ⃖⃗V is parallel to ⃖⃗V . We regard a plane as a rotational surface with respect to the rotational axis l,

then ⃖⃗V is orthogonal to l.

Theorem 4.1. Let Σ ⊂ be a nonplanar Willmore translator for the Willmore flow in ℝ3 with a direction ⃖⃗V. If Σ is

rotationally symmetric with the axis l, then ⃖⃗V is parallel to l.
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Proof. By applying an isometry of ℝ3, we may set the rotational axis l is the z-axis. Since Σ is rotationally sym-

metric, for a unit-speed planar curve (x(u), 0, z(u)), u ∈ I, Σ is parametrized by f (u, v) = (x(u) cos v, x(u) sin v,

z(u)), (u, 𝑣) ∈ I ×ℝ. Let x′(u) = cos 𝜃(u) and z′(u) = sin 𝜃(u) for some function 𝜃(u). By a direct computation,

H = 𝜃′(u)+ z′(u)
x(u)

, |⚬A|2 = 1

2

(
𝜃′(u)− z′(u)

x(u)

)2

.

Since the mean curvature function H only depends on u,

ΔgH = 1

x(u)

[
𝜕
𝜕u

(x(u)𝜃′′(u))+ 𝜕2

𝜕u2

(
z′(u)
x(u)

)]
.

Then, the Willmore translator equation with the direction ⃖⃗V = (𝑣1, 𝑣2, 𝑣3) is

⟨ ⃖⃗V ,N⟩ = ⟨(𝑣1, 𝑣2, 𝑣3), (−z′(u) cos 𝑣,−z′(u) sin 𝑣, x′(u))⟩ = −ΔgH − |⚬A|2H. (14)

Because the right-hand side of (14) −ΔgH − |⚬A|2H =: −𝑤(u) only depends on u, we have

𝑣1z
′(u) cos 𝑣+ 𝑣2z

′(u) sin 𝑣− 𝑣3x
′(u)−𝑤(u) = 0,

for all (u, 𝑣) ∈ I ×ℝ. Since the functions {cos v, sin v, 1} are linearly independent, we have

𝑣1z
′(u) = 𝑣2z

′(u) = 0,

for all u ∈ I. Therefore, we have either ⃖⃗V is parallel to z-axis or z(u) = z0. When z(u) = z0, Σ is a plane which

contradicts to that Σ is nonplanar. □

According to Theorem 4.1, for any nonplanar rotational Willmore translator with direction ⃖⃗V , the direction

vector ⃖⃗V is parallel to the rotational axis. Wemay assume that ⃖⃗V = (0, 0, 1) and the rotational axis is z-axis. Then,

the equation for a rotational Willmore translator with the direction e3 satisfies by the following differential

equation:

−x′(u) = 1

x(u)

[
𝜕
𝜕u

(x(u)𝜃′′(u))+ 𝜕2

𝜕u2

(
z′(u)
x(u)

)]
+ 1

2

(
𝜃′(u)− z′(u)

x(u)

)2(
𝜃′(u)+ z′(u)

x(u)

)
, (15)

with x′(u)2 + z′(u)2 = 1 and x′(u) = cos 𝜃(u). For numerical solutions of (15), see, Figure 1.

Figure 1: Three generators of rotationally symmetric surfaces with initial condition (x(0), x′(0), x′′(0), x′′′(0)).
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5 Graphic surfaces

In this section, we study the Willmore solitons which are given by the graph of a function. To this end, suppose

that Σ is a graph of u:Ω ⊂ ℝ2 → ℝ. Then f :Ω→ ℝ3 given by

f (x1, x2) =
(
x1, x2, u(x1, x2)

)
is an emdedding of Σ. The (upward) unit normal is given by

N =
(
−u1,−u2, 1

)√
1+ |∇u|2 , (16)

where ui = 𝜕u

𝜕xi
. The induced metric is

gi j =
⟨
𝜕 f
𝜕xi

,
𝜕 f
𝜕x j

⟩
= 𝛿i j + uiu j. (17)

From (17), we can find its inverse

gi j = 𝛿i j −
uiu j

1+ |∇u|2 . (18)

By (16), we can compute the second fundamental form

Ai j =
⟨

𝜕2 f
𝜕xi𝜕x j

,N

⟩
=

ui j√
1+ |∇u|2 , (19)

where ui j = 𝜕2u

𝜕xi𝜕x j
. It follows from (18) and (19) that the mean curvature is given by

H = gi jAi j = div

(
∇u√

1+ |∇u|2
)
. (20)

5.1 The case when u = u(x1)

Now we assume that u is a function depending only on x1, i.e. u = u(x1). By (17) and (18), we have

(gi j) =
[
1+ (u′)2 0

0 1

]
and (gi j) =

⎡⎢⎢⎣
1

1+ (u′)2
0

0 1

⎤⎥⎥⎦. (21)

On the other hand, it follows from (19) and (20) that

Ai j =
⎧⎪⎨⎪⎩

u′′√
1+ (u′)2

, if i = j = 1;

0, otherwise.

(22)

and

H = u′′

(1+ (u′)2)
3

2

. (23)

By (21) and (22), we can compute

|A|2 = gi jgklAikA jl =
(u′′)2

(1+ (u′)2)3
. (24)
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Combining (23) and (24), we get

|⚬A|2 = |A|2 − 1

2
H2 = 1

2

(u′′)2

(1+ (u′)2)3
. (25)

By (21) and (23), we can also compute

ΔgH = 1

1+ (u′)2
H′′ − u′u′′

(1+ (u′)2)2
H′. (26)

It follows from (23) that

H′ = u′′′

(1+ (u′)2)
3

2

− 3u′(u′′)2

(1+ (u′)2)
5

2

,

H′′ = u(4)

(1+ (u′)2)
3

2

− 9u′u′′u′′′ + 3(u′′)3

(1+ (u′)2)
5

2

+ 15(u′)2(u′′)3

(1+ (u′)2)
7

2

.

(27)

Substituting (27) into (26) yields

ΔgH = u(4)

(1+ (u′)2)
5

2

− 10u′u′′u′′′ + 3(u′′)3

(1+ (u′)2)
7

2

+ 18(u′)2(u′′)3

(1+ (u′)2)
9

2

. (28)

Combining (23), (25) and (28), we obtain

W( f ) = 1

(1+ (u′)2)
9

2

[
u(4)(1+ (u′)2)2 −

(
10u′u′′u′′′ + 3(u′′)3

)
(1+ (u′)2)+ 18(u′)2(u′′)3 + 1

2
(u′′)3

]
. (29)

By (16), we have

⟨ ⃖⃗V ,N⟩ = 1√
1+ (u′)2

(
𝑣3 − 𝑣1u

′), (30)

where ⃖⃗V = (𝑣1, 𝑣2, 𝑣3). It follows from (2), (29) and (30) that Σ is a Willmore translator if

u(4)(1+ (u′)2)2 −
(
10u′u′′u′′′ + 3(u′′)3

)
(1+ (u′)2)+ 18(u′)2(u′′)3 + 1

2
(u′′)3

= (1+ (u′)2)4
(
𝑣3 − 𝑣1u

′). (31)

For numerical solutions of (31), see, Figures 2–4.

On the other hand, by (16), we compute

⟨ f ,N⟩ = 1√
1+ (u′)2

(
u− x1u

′) (32)

Figure 2: Willmore translators inℝ3 w.r.t. ⃖⃗V = (1, 0, 0) with the initial conditions (u(0), u′(0), u′′(0), u′′′(0)); blue k = 3, red k = 5, green

k = 7.
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Figure 3: Willmore translators inℝ3 w.r.t. ⃖⃗V = (0, 1, 0) with the initial conditions (u(0), u′(0), u′′(0), u′′′(0)); blue k = 3, red k = 5, green

k = 7.

Figure 4: Willmore translators inℝ3 w.r.t. ⃖⃗V = (0, 1, 0) with the initial conditions (u(0), u′(0), u′′(0), u′′′(0)); blue k = 3, red k = 5, green

k = 7.

It follows from (4), (29) and (32) that Σ is a Willmore expander (a Willmore shrinker respectively) if

u(4)(1+ (u′)2)2 −
(
10u′u′′u′′′ + 3(u′′)3

)
(1+ (u′)2)+ 18(u′)2(u′′)3 + 1

2
(u′′)3

= − 1

4
(1+ (u′)2)4

(
u− x1u

′) (
= 1

4
(1+ (u′)2)4

(
u− x1u

′) respectively). (33)

In particular, the case ⃖⃗V = (0, 1, 0) is reduced to the elastic equation in Section 7.

For numerical solutions of (33), see, Figure 5.

Figure 5: Willmore expanders in ℝ3 with the initial condi-

tions (u(0), u′(0), u′′(0), u′′′(0)); blue k = 3, red k = 5, green

k = 7.
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6 Ruled surface

In this section, we study the Willmore soliton which is a ruled surface.

6.1 Vertical cylindrical surfaces

Suppose Σ is a vertical cylindrical surface in ℝ3, that is, ⟨ ⃖⃗V ,N⟩ ≡ 0 on Σ. Without loss of generality, we may

assume that ⃖⃗V = (0, 0, 1). Then the immersion of Σ is given by

f (x1, x2) = 𝛼(x1)+ x2 ⃖⃗V ,

where 𝛼(x1) is a unit speed planar curve on xy-plane. Then the induced metric g is gi j =
⟨

𝜕 f

𝜕xi
, 𝜕 f

𝜕x j

⟩
= 𝛿i j. Taking

the unit normalN = ⃖⃗V × 𝛼′, the second fundamental formAi j =
⟨

𝜕2 f

𝜕xi𝜕x j
,N
⟩
isA11 = 𝜅, A12 =A21 =A22 = 0. Here,

𝜅 is the signed curvature of the curve 𝛼. The mean curvature and the square norm of the second fundamental

form:

H = gi jAi j = 𝜅 and |A|2 = gi jgklAikA jl = 𝜅2.

Since |⚬A|2 = |A|2 − 1

2
H2 = 𝜅2

2
,

we have,

W( f ) = ΔgH + |⚬A|2H = 𝜅′′ + 𝜅3

2
.

Therefore, the vertical cylindrical surface Σ is a Willmore translator if the curvature 𝜅 of 𝛼 satisfies

𝜅′′ + 𝜅3

2
= 0. (34)

If 𝜅 = const., i.e. 𝛼 is a circle, it cannot be a solution of 𝜅′′ + 𝜅3

2
= 0. This coincides with the fact that any

circular cylinder cannot be a Willmore translator.

More generally, we consider ruled surfaces with ⟨N, ⃖⃗V⟩ ≠ 0.

6.2 Ruled surfaces

Kim and the second author have classified in Ref. [45] the translating solitons for themean curvature flowwhich

are ruled surfaces inℝ3. In this section, we study theWillmore translators for theWillmore flowwhich are ruled

surfaces in ℝ3.

Suppose Σ is a ruled surface in ℝ3. Then the immersion of Σ is given by

f (u, 𝑣) = 𝛼(u)+ 𝑣𝛽(u), (35)

where 𝛼(u) is a unit speed curve on Σ and 𝛽(u) is on the unit circle that is perpendicular to 𝛼′(u). Hereafter, a

prime ′ denotes a derivative of a function with respect to u. We find

𝜕 f
𝜕u

= 𝛼′ + 𝑣𝛽′ and
𝜕 f
𝜕𝑣

= 𝛽 .

From this, we can compute the induced metric

g11 = 1+ 2𝑣⟨𝛼′, 𝛽′⟩+ 𝑣2|𝛽′|2, g12 = g21 = 0, g22 = 1. (36)

The unit normal is given by

N = (𝛼′ + 𝑣𝛽′) × 𝛽√
g11

= 𝛼′ × 𝛽 + 𝑣𝛽′ × 𝛽√
g11

. (37)
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Since
𝜕2 f
𝜕u2

= 𝛼′′ + 𝑣𝛽′′,
𝜕2 f
𝜕u𝜕𝑣

= 𝛽′ and
𝜕2 f
𝜕𝑣2

= 0,

the second fundamental form is given by

A11 = ⟨N, 𝛼′′ + 𝑣𝛽′′⟩
= ⟨𝛼′ × 𝛽, 𝛼′′⟩+ 𝑣⟨𝛼′ × 𝛽, 𝛽′′⟩+ 𝑣⟨𝛽′ × 𝛽, 𝛼′′⟩+ 𝑣2⟨𝛽′ × 𝛽, 𝛽′′⟩√

g11
,

A12 = A21 = ⟨N, 𝛽′⟩ = ⟨𝛼′ × 𝛽, 𝛽′⟩√
g11

,

A22 = 0.

(38)

Differentiating (38), we get

𝜕A11
𝜕u

= ⟨𝛼′ × 𝛽, 𝛼′′⟩′ + 𝑣⟨𝛼′ × 𝛽, 𝛽′′⟩′ + 𝑣⟨𝛽′ × 𝛽, 𝛼′′⟩′ + 𝑣2⟨𝛽′ × 𝛽, 𝛽′′⟩′√
g11

− ⟨𝛼′ × 𝛽, 𝛼′′⟩+ 𝑣⟨𝛼′ × 𝛽, 𝛽′′⟩+ 𝑣⟨𝛽′ × 𝛽, 𝛼′′⟩+ 𝑣2⟨𝛽′ × 𝛽, 𝛽′′⟩
2g

3

2

11

𝜕g11
𝜕u

,

𝜕2A11
𝜕u2

= ⟨𝛼′ × 𝛽, 𝛼′′⟩′′ + 𝑣⟨𝛼′ × 𝛽, 𝛽′′⟩′′ + 𝑣⟨𝛽′ × 𝛽, 𝛼′′⟩′′ + 𝑣2⟨𝛽′ × 𝛽, 𝛽′′⟩′′√
g11

− 3

2

⟨𝛼′ × 𝛽, 𝛼′′⟩′ + 𝑣⟨𝛼′ × 𝛽, 𝛽′′⟩′ + 𝑣⟨𝛽′ × 𝛽, 𝛼′′⟩′ + 𝑣2⟨𝛽′ × 𝛽, 𝛽′′⟩′
g

3

2

11

𝜕g11
𝜕u

+ ⟨𝛼′ × 𝛽, 𝛼′′⟩+ 𝑣⟨𝛼′ × 𝛽, 𝛽′′⟩+ 𝑣⟨𝛽′ × 𝛽, 𝛼′′⟩+ 𝑣2⟨𝛽′ × 𝛽, 𝛽′′⟩
g

5

2

11

⋅
3

4

(
𝜕g11
𝜕u

)2

− ⟨𝛼′ × 𝛽, 𝛼′′⟩+ 𝑣⟨𝛼′ × 𝛽, 𝛽′′⟩+ 𝑣⟨𝛽′ × 𝛽, 𝛼′′⟩+ 𝑣2⟨𝛽′ × 𝛽, 𝛽′′⟩
2g

3

2

11

𝜕2g11
𝜕u2

.

(39)

From (38), we can compute the mean curvature:

H = A11
g11

. (40)

It follows from (36) and (38) that

|A|2 = (g11)2(A11)
2 + 2g11g22(A12)

2 = A2
11

g2
11

+ 2A2
12

g11
.

Hence, the squared norm of the traceless second fundamental form is given by

|⚬A|2 = |A|2 − 1

2
H2 = A2

11

2g2
11

+ 2A2
12

g11
. (41)

From (40), we have

𝜕H
𝜕u

= 1

g11

𝜕A11
𝜕u

− A11
g2
11

𝜕g11
𝜕u

,
𝜕H
𝜕𝑣

= 1

g11

𝜕A11
𝜕𝑣

− A11
g2
11

𝜕g11
𝜕𝑣

,

𝜕2H
𝜕u2

= 1

g11

𝜕2A11
𝜕u2

− 2

g2
11

𝜕g11
𝜕u

𝜕A11
𝜕u

+ 2A11
g3
11

(
𝜕g11
𝜕u

)2

− A11
g2
11

𝜕2g11
𝜕u2

,

𝜕2H
𝜕𝑣2

= 1

g11

𝜕2A11
𝜕𝑣2

− 2

g2
11

𝜕g11
𝜕𝑣

𝜕A11
𝜕𝑣

+ 2A11
g3
11

(
𝜕g11
𝜕𝑣

)2

− A11
g2
11

𝜕2g11
𝜕𝑣2

.

(42)
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From (36), we find

ΔgH = 1

g11

𝜕2H
𝜕u2

− 1

2g2
11

𝜕g11
𝜕u

𝜕H
𝜕u

+ 1

2g11

𝜕g11
𝜕𝑣

𝜕H
𝜕𝑣

+ 𝜕2H
𝜕𝑣2

. (43)

Combining (41)–(43) yields

ΔgH + |⚬A|2H = 1

g11

[
1

g11

𝜕2A11
𝜕u2

− 2

g2
11

𝜕g11
𝜕u

𝜕A11
𝜕u

+ 2A11
g3
11

(
𝜕g11
𝜕u

)2

− A11
g2
11

𝜕2g11
𝜕u2

]

− 1

2g2
11

𝜕g11
𝜕u

(
1

g11

𝜕A11
𝜕u

− A11
g2
11

𝜕g11
𝜕u

)
+ 1

2g11

𝜕g11
𝜕𝑣

(
1

g11

𝜕A11
𝜕𝑣

− A11
g2
11

𝜕g11
𝜕𝑣

)

+
[

1

g11

𝜕2A11
𝜕𝑣2

− 2

g2
11

𝜕g11
𝜕𝑣

𝜕A11
𝜕𝑣

+ 2A11
g3
11

(
𝜕g11
𝜕𝑣

)2

− A11
g2
11

𝜕2g11
𝜕𝑣2

]
+ A3

11

2g3
11

+ 2A2
12
A11

g2
11

.

(44)

On the other hand, we have

⟨N, ⃖⃗V⟩ = ⟨𝛼′ × 𝛽, ⃖⃗V⟩+ 𝑣⟨𝛽′ × 𝛽, ⃖⃗V⟩√
g11

, (45)

by (37). If Σ is a translation soliton, then (2) holds, or equivalently,

g
9

2

11

(
ΔgH + |⚬A|2H − ⟨N, ⃖⃗V⟩) ≡ 0,

which can be rewritten as

A0(u)+ A1(u)𝑣+ · · · + A9(u)𝑣
9 ≡ 0, (46)

whereAi(u) is a function of u for each i= 0, 1, . . . , 9. It follows from (36), (38), (39), (44) and (45) that the coefficients

A9(u) = |𝛽′|8⟨𝛽′ × 𝛽, ⃖⃗V⟩ and A8(u) = |𝛽′|8⟨𝛼′ × 𝛽, ⃖⃗V⟩. (47)

Indeed, in order to check (47), we can check that each term in (44), after being multiplied by g
9

2

11
, does not

contribute to the terms v8 or v9. For example, the first term
1

g2
11

𝜕2A11
𝜕u2

in (44) becomes g
5

2

11

𝜕2A11
𝜕u2

after beingmultiplied

by g
9

2

11
. Combining (36) and (39), we see that g

5

2

11

𝜕2A11
𝜕u2

only contributes to the terms vi for 0 ≤ i ≤ 6. Other terms

in (44) can be checked similarly. As a result, the only terms which contribute to the terms v8 or v9 are from

−g
9

2

11
⟨N, ⃖⃗V⟩, and (47) follows from these observations.

Now suppose that 𝛽 is not a constant vector, |𝛽′| ≠ 0 in an open interval. There is a point u= u0 such that ⃖⃗V

and 𝛽(u0) is the yz-plane. Combining (46) and (47), we obtain

⟨𝛽′ × 𝛽, ⃖⃗V⟩ = 0 and ⟨𝛼′ × 𝛽, ⃖⃗V⟩ = 0.

This gives ⟨N, ⃖⃗V⟩ = 0 by (45), which is a cylindrical surface.

Therefore, 𝛽 is a constant vector. Without loss of generality, we may assume that 𝛽 = (0, 0, 1) and ⃖⃗V =
(0, cos 𝜙, sin 𝜙) for some constant 𝜙. Hence, we can derive from (36)–(41) that

g11 = g22 = 1, g12 = g21 = 0, N = 𝛼′ × 𝛽,

A11 = ⟨𝛼′ × 𝛽, 𝛼′′⟩, A12 = A21 = A22 = 0, H = ⟨𝛼′ × 𝛽, 𝛼′′⟩,
|⚬A|2 = 1

2
⟨𝛼′ × 𝛽, 𝛼′′⟩2, ΔgH = ⟨𝛼′ × 𝛽, 𝛼′′⟩′′.

(48)
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Since the ruling vector 𝛽 is constant, we can consider that 𝛼 is contained in a plane which is perpendicular

to 𝛽 . Set 𝛼(u) = (x(u), y(u), 0). We then compute 𝛼′ = (x′, y′, 0) and 𝛼′′ = (x′′, y′′, 0), which gives

𝛼′ × 𝛽 = (y′,−x′, 0),

⟨𝛼′ × 𝛽, ⃖⃗V⟩ = −x′ cos 𝜙,

⟨𝛼′ × 𝛽, 𝛼′′⟩ = x′′y′ − x′y′′.

(49)

It follows from (48) and (49) that the equationΔgH + |⚬A|2H = ⟨N, ⃖⃗V⟩ is equivalent to
−x′ cos 𝜙 = (x′′y′ − x′y′′)′′ + 1

2
(x′′y′ − x′y′′)3. (50)

For numerical solutions of (50), see, Figure 6.

7 One dimensional analogue of the Willmore soliton

In this section, we study solitons to the elastic flow, which are the one-dimensional analogue of the Willmore

solitons.

Let 𝛾 be a regular curve in ℝ2, i.e. 𝛾 : I → ℝ2 where I is an interval in ℝ such that |𝜕s𝛾| ≠ 0. Without loss

of generality, we can assume that 𝛾 is parametrized by the arclength s, i.e. |𝜕s𝛾| = 1. The tangent vector is the

unit vector given by T = 𝜕s𝛾 . The curvature 𝜅 is defined as ⟨𝜕sT , N⟩, where N is rotated T about 90◦ in counter

clockwise. The elastic energy of 𝛾 is defined as

E(𝛾) = 1

2∫
I

𝜅2ds,

which is the one-dimensional analogue of the Willmore energy. The critical point of the elastic energy satisfies

𝜕2
s
𝜅 + 1

2
𝜅3 = 0.

As we have already seen in (34) of Section 6, this is related to the vertical cylindrical surfaces, which are

Willmore translator. The L2-gradient flow of the elastic energy is the elastic flow, which is defined as (see p. 67

of Ref. [46])

(𝜕t𝛾)
⊥ = −

(
𝜕2
s
𝜅 + 1

2
𝜅3
)
N . (51)

Here, N is the unit normal of 𝛾 , and (⋅)⊥ denotes the normal component of the 𝜕t𝛾 :

(𝜕t𝛾)
⊥ = 𝜕t𝛾 − ⟨𝜕t𝛾, T⟩T .

Figure 6: Ruled Willmore translators inℝ3 with the initial conditions (x(0), x′(0), x′′(0), x′′′(0), 𝜙).
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Therefore, the elastic flow is the one-dimensional analog of Willmore flow.

In view of these, we can define the one-dimensional analog of Willmore soliton, which is the soliton to the

elastic flow. More precisely, we say that 𝛾 is the translating soliton to the elastic flow if 𝛾 − t ⃖⃗V is a solution to the

elastic flow. In particular, 𝛾 is the translating soliton if

𝜕2
s
𝜅 + 1

2
𝜅3 = ⟨ ⃖⃗V ,N⟩. (52)

for some fixed nonzero vector ⃖⃗V . We say that 𝛾 is the shrinking self-similar solution (respectively expanding self-

similar solution) to the elastic flow if
4
√
−t𝛾 for t < 0 (respectively

4
√
t𝛾 for t > 0) is a solution to the elastic flow.

One can easily check that the curvature of 𝜆𝛾 is equal to 1/𝜆 of the curvature of 𝛾 . Therefore, 𝛾 is a shrinking

self-similar solution (respectively an expanding self-similar solution) if

𝜕2
s
𝜅 + 1

2
𝜅3 = 1

4
⟨𝛾,N⟩ (

respectively 𝜕2
s
𝜅 + 1

2
𝜅3 = − 1

4
⟨𝛾,N⟩). (53)

7.1 Examples

In this subsection, we write down some examples of the translating soliton (52) and self-similar solution (53).

It is easy to see that the straight line segment 𝛾 is both a translating soliton (52) and a self-similar solution

(53), for its curvature 𝜅 ≡ 0. Similar to Proposition 2.1, we have the following:

Proposition 7.1. If 𝛾 is both a translating soliton (52) and a self-similar solution (53), then 𝛾 is a straight line

segment.

Proof. Suppose 𝛾 is a translating soliton and an expanding self-similar solution. It suffices to prove that 𝜅 ≡ 0.

It follows from (52) and (53) that ⟨ ⃖⃗V + 1

4
𝛾,N⟩ = 0. (54)

Differentiating it with respect to s and using the formulas

𝜕s𝛾 = T, 𝜕sT = 𝜅N, and 𝜕sN = −𝜅T, (55)

we obtain

−𝜅⟨ ⃖⃗V + 1

4
𝛾, T⟩ = 0. (56)

If 𝜅 ≠ 0, then we can find some interval I such that 𝜅 ≠ 0 when s∈ I. In the following, we will consider s∈
I. Then we can deduce from (56) that ⟨ ⃖⃗V + 1

4
𝛾, T⟩ = 0. (57)

Since {T , N} are linearly independent, combining (54) and (57) gives

⃖⃗V + 1

4
𝛾 = 0.

That is, 𝛾 is a point which contradicts 𝛾 is a regular curve. Therefore, wemust have 𝜅 ≡ 0, which shows that

𝛾 is a straight line segment.

The case when 𝛾 is a translating soliton and a shrinking self-similar solution can be proved similarly. □

Suppose that 𝛾 is a circle of radius R centered at the origin, i.e. 𝛾 : [0, 2𝜋R]→ ℝ2 given by

𝛾(s) =
(
R cos

(
s

R

)
,R sin

(
s

R

))
.

Then we compute

𝜕s𝛾 = T =
(
− sin

(
s

R

)
, cos

(
s

R

))
,
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and

𝜕2
s
𝛾 =

(
− 1

R
cos

(
s

R

)
,− 1

R
sin
(
s

R

))
and N =

(
− cos

(
s

R

)
,− sin

(
s

R

))
,

which implies that the curvature 𝜅 ≡ 1

R
. Hence, we have

𝜕2
s
𝜅 + 1

2
𝜅3 = 1

2R3
,

which is constant. Moreover, if ⃖⃗V = (𝑣1, 𝑣2) is a fixed nonzero vector, then

⟨ ⃖⃗V ,N⟩ = −𝑣1 cos
(
s

R

)
− 𝑣2 sin

(
s

R

)
,

which depends only s. This shows that 𝛾 cannot satisfy (52), and as a result is not a translating soliton. On the

other hand, we have ⟨𝛾,N⟩ = −R.

This shows that

𝜕2
s
𝜅 + 1

2
𝜅3 = 1

2R3
≠ − 1

4
R = 1

4
⟨𝛾,N⟩,

which implies that 𝛾 cannot be a shrinking self-similar solution, and

𝜕2
s
𝜅 + 1

2
𝜅3 = 1

2R3
= 1

4
R = − 1

4
⟨𝛾,N⟩,

if and only if R = 4
√
2, i.e. 𝛾 is an expanding self-similar solution if and only if R = 4

√
2.

7.2 Some rigidity results

In this subsection, we prove some results related to the solitons (52) and (53).

Proposition 7.2. Suppose 𝛾 is a closed regular curve. If 𝛾 is a shrinking self-similar solution, then

∫ |𝜕s𝜅|2 = 1

2 ∫ 𝜅4 + 1

4
l(𝛾),

where l(𝛾) is the length of 𝛾 .

Proof. Since 𝜕s𝛾 = T , we have

𝜕s⟨𝛾, 𝛾⟩ = 2⟨𝛾, T⟩.
Differentiating it with respect to s and using the fact that 𝜕sT = 𝜅N , we obtain

𝜕2
s
⟨𝛾, 𝛾⟩ = 2𝜅⟨𝛾,N⟩+ 2⟨T, T⟩ = 2𝜅⟨𝛾,N⟩+ 2. (58)

Since 𝛾 is a shrinking self-similar solution, (53) holds. Combining (53) and (58), we get

𝜕2
s
⟨𝛾, 𝛾⟩ = 8𝜅𝜕2

s
𝜅 + 4𝜅4 + 2.

Since 𝛾 is closed, we can integrate it over 𝛾 and use the integration by parts to deduce that

0 = ∫ 𝜕2
s
⟨𝛾, 𝛾⟩ = 8∫ 𝜅𝜕2

s
𝜅 + 4∫ 𝜅4 + 2l(𝛾)

= −8∫ |𝜕s𝜅|2 + 4∫ 𝜅4 + 2l(𝛾),

where l(𝛾) is the length of 𝛾 . This proves the assertion. □
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Similarly, we have the following proposition.

Proposition 7.3. Suppose 𝛾 is a closed regular curve. If 𝛾 is a expanding self-similar solution, then

∫ |𝜕s𝜅|2 = 1

2 ∫ 𝜅4 − 1

4
l(𝛾),

where l(𝛾) is the length of 𝛾 .

Proof. The proof is almost the same as the proof of Proposition 7.2, except we combine (58) with 𝜕2
s
𝜅 + 1

2
𝜅3 =

− 1

4
⟨𝛾,N⟩ in this case. □

We have already seen that the circle cannot be a shrinking self-similar solution. This can also be derived

from Proposition 7.2: The circle is a closed regular curve such that 𝜅 is constant. Hence, ∫ |𝜕s𝜅|2 = 0, which does

not satisfy the equality in Proposition 7.2.

Recall that the curve shortening flow is defined as

(𝜕t𝛾)
⊥ = 𝜅N . (59)

The curve shortening flow is one-dimensional analogue of the mean curvature flow, and has been studied

extensively. See Refs. [47]–[50] and the references therein.

We say that 𝛾 is the translating soliton to the curve shortening flow if 𝛾 − t ⃖⃗V is a solution to (59). In particular,

𝛾 is the translating soliton if

𝜅 = −⟨ ⃖⃗V ,N⟩. (60)

for some fixed nonzero vector ⃖⃗V . We say that 𝛾 is the shrinking self-similar solution (respectively expanding self-

similar solution) to the curve shortening flow if
√
−t𝛾 for t < 0 (respectively

√
t𝛾 for t > 0) is a solution to the

elastic flow. In particular, 𝛾 is the shrinking self-similar solution (respectively expanding self-similar solution)

to the curve shortening flow if

𝜅 = − 1

2
⟨𝛾,N⟩ (

respectively 𝜅 = 1

2
⟨𝛾,N⟩). (61)

Abresch and Langer [51] described all solutions of the curve shortening flow which remain homothetic to

the original curve. By solving ordinary differential equation, the grim reaper is the only solution of the curve

shortening flowwhich translate with a fixed direction. More generally, Halldorsson [52] classified all self-similar

solutions to the curve shortening flow.

We have the following lemma, which can be viewed as one-dimensional analog of Theorem 3.2.

Lemma 7.4. Suppose 𝛾 is a shrinking self-similar solution to the elastic flow and an expander to curve shortening

flow or vice versa, satisfying:

(i) the 𝜕s𝜅 is integrable, and

(ii) the curvature satisfies 𝜅2 ≤ 1,

then 𝛾 must be a straight line segment.

Proof. It follows from (53) and (61) that

4𝜕2
s
𝜅 + 2𝜅3 = 2𝜅 = ⟨𝛾,N⟩,

which implies that

2𝜕2
s
𝜅 + (𝜅3 − 𝜅) = 0. (62)
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Fixed any s0, and let 𝜂 be a cut-off function supported in (s0 − 2r, s0 + 2r) such that

𝜂 = 1 on (s0 − r, s0 + r), and |𝜂′| ≤ C

r
. (63)

Now, multiplying (62) by 𝜂𝜅, integrating it and using integration by parts yields

0 = 2∫ 𝜂𝜅𝜕2
s
𝜅 + ∫ 𝜂𝜅2(𝜅2 − 1)

= −2∫ 𝜅𝜕s𝜅𝜕s𝜂 − 2∫ 𝜂(𝜕s𝜅)
2 + ∫ 𝜂𝜅2(𝜅2 − 1),

which gives

2∫ 𝜂(𝜕s𝜅)
2 + ∫ 𝜂𝜅2(1− 𝜅2) = −2∫ 𝜅𝜕s𝜅𝜕s𝜂. (64)

Now, by (63) and the assumptions that 𝜅2 ≤ 1 and 𝜕s𝜅 is integrable, we can estimate the right-hand side of

(64) by ||||−2∫ 𝜅𝜕s𝜅𝜕s𝜂
|||| ≤ C

r ∫ |𝜕s𝜅2|→ 0 as r→∞.

This together with (63) and the assumption that 𝜅2 ≤ 1 implies that the integrands of the left hand side of

(64) are zero. In particular, we must have 𝜅 ≡ 0, which shows that 𝛾 is a straight line segment. □

We also have the following lemma, which can be viewed as one-dimensional analog of Theorem 3.3.

Lemma 7.5. Let ⃖⃗V be a constant unit vector in ℝ2. Suppose 𝛾 is a translating soliton for both elastic flow with

respect to ⃖⃗V and curve shortening flow with respect to − ⃖⃗V satisfying:

(i) the 𝜕s𝜅 is integrable, and

(ii) the curvature satisfies 𝜅2 ≤ 1/2,

then 𝛾 must be a straight line segment.

Proof. It follows from (52) and (60) that

𝜕2
s
𝜅 + 1

2
𝜅3 = ⟨ ⃖⃗V ,N⟩ = 𝜅,

which gives

2𝜕2
s
𝜅 + (𝜅3 − 2𝜅) = 0.

By following the proof of Theorem 3.2 and using the assumptions that 𝜅2 ≤ 1/2, we can prove that 𝜅 ≡ 0. □

The following theorem says that the curvature of a shrinking self-similar solution must satisfy a 4th-order

ODE.

Theorem 7.6. If 𝛾 is a shrinking self-similar solution, then its curvature 𝜅 satisfies

𝜅𝜕2
s
c(𝜅)− 𝜕s𝜅𝜕sc(𝜅)+ 𝜅3c(𝜅)+ 𝜅2 = 0,

where c(𝜅) = 4𝜕2
s
𝜅 + 2𝜅3.

Proof. Since 𝛾 is a shrinking self-similar solution, it follows from (53) that

⟨𝛾,N⟩ = c(𝜅), (65)
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where c(𝜅) = 4𝜕2
s
𝜅 + 2𝜅3. Differentiating it with respect to s and using the facts that 𝜕s𝛾 = T and 𝜕sN = −𝜅T ,

we get

𝜕sc(𝜅) = ⟨T,N⟩− 𝜅⟨𝛾, T⟩ = −𝜅⟨𝛾, T⟩. (66)

Note that

𝛾 = ⟨𝛾, T⟩T + ⟨𝛾,N⟩N . (67)

Multiplying it by 𝜅 yields

𝜅𝛾 = 𝜅⟨𝛾, T⟩T + 𝜅⟨𝛾,N⟩N = −𝜕sc(𝜅)T + 𝜅c(𝜅)N,

where we have used (65) and (66). Differentiating it with respect to s gives

𝜕s𝜅𝛾 + 𝜅𝜕s𝛾 = −𝜕2
s
c(𝜅)T − 𝜕sc(𝜅)𝜕sT + 𝜕s(𝜅c(𝜅))N + 𝜅c(𝜅)𝜕sN .

Using the facts that 𝜕s𝛾 = T , 𝜕sT = 𝜅N , and 𝜕sN = −𝜅T , we can rewrite this as

𝜕s𝜅𝛾 + 𝜅T = −𝜕2
s
c(𝜅)T − 𝜅𝜕sc(𝜅)N + 𝜕s(𝜅c(𝜅))N − 𝜅2c(𝜅)T .

Combining this with (67), we have

𝜕s𝜅(⟨𝛾, T⟩T + ⟨𝛾,N⟩N)+ 𝜅T = −𝜕2
s
c(𝜅)T − 𝜅𝜕sc(𝜅)N + 𝜕s(𝜅c(𝜅))N − 𝜅2c(𝜅)T . (68)

Since {T , N} is linearly independent, it follows from (68) that

𝜕s𝜅⟨𝛾, T⟩+ 𝜅 = −𝜕2
s
c(𝜅)− 𝜅2c(𝜅),

𝜕s𝜅⟨𝛾,N⟩ = −𝜅𝜕sc(𝜅)+ 𝜕s(𝜅c(𝜅)).
(69)

In view of (65), the second equation in (69) is an identity. Multiplying the first equation in (69) by 𝜅 and using

(66), we get

−𝜕s𝜅𝜕sc(𝜅)+ 𝜅2 = −𝜅𝜕2
s
c(𝜅)− 𝜅3c(𝜅).

This proves the assertion. □

Theorem 7.6 gives us another way to see that the circle cannot be a shrinking self-similar solution. Note that

the curvature of the circle is a nonzero constant, which implies that

𝜅𝜕2
s
c(𝜅)− 𝜕s𝜅𝜕sc(𝜅)+ 𝜅3c(𝜅)+ 𝜅2 = 2𝜅6 + 𝜅2 > 0.

This together with Theorem 7.6 implies that the circle cannot be a shrinking self-similar solution.

Following the same proof of Theorem 7.6, we can also derive the following:

Theorem 7.7. If 𝛾 is an expanding self-similar solution, then its curvature 𝜅 satisfies

𝜅𝜕2
s
c(𝜅)− 𝜕s𝜅𝜕sc(𝜅)+ 𝜅3c(𝜅)− 𝜅2 = 0,

where c(𝜅) = 4𝜕2
s
𝜅 + 2𝜅3.

From Theorem 7.7, we have the following:

Corollary 7.8. If 𝛾 is an expanding self-similar solution with constant curvature, then 𝛾 is either the straight line

or the circle with radius
4
√
2.

Proof. Since 𝛾 is an expanding self-similar solution with constant curvature, it follows from Theorem 7.7 that

𝜅𝜕2
s
c(𝜅)− 𝜕s𝜅𝜕sc(𝜅)+ 𝜅3c(𝜅)− 𝜅2 = 2𝜅6 − 𝜅2 = 0.
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This implies that𝜅 = 0 or𝜅 = 1∕ 4
√
2, which corresponds respectively to the casewhen 𝛾 is either the straight

line or the circle with radius
4
√
2. □

Similarly, the following theorem says that the curvature of a translating soliton must satisfy a 4th-order

ODE.

Theorem 7.9. If 𝛾 is a translating soliton (52), then its curvature 𝜅 satisfies

𝜅𝜕2
s
d(𝜅)− 𝜕s𝜅𝜕sd(𝜅)+ 𝜅3d(𝜅) = 0,

where d(𝜅) = 𝜕2
s
𝜅 + 1

2
𝜅3.

Proof. Since 𝛾 is a translating soliton (52), we have

⟨V ,N⟩ = d(𝜅), (70)

where d(𝜅) = 𝜕2
s
𝜅 + 1

2
𝜅3. Differentiating it with respect to s and using the fact that 𝜕sN = −𝜅T , we obtain

−𝜅⟨V , T⟩ = 𝜕sd(𝜅). (71)

Note that

V = ⟨V , T⟩T + ⟨V ,N⟩N . (72)

Multiplying it by 𝜅 and using (70) and (71), we have

𝜅V = 𝜅⟨V , T⟩T + 𝜅⟨V ,N⟩N = −𝜕sd(𝜅)T + 𝜅d(𝜅)N .

Differentiating it with respect to s yields

𝜕s𝜅V = −𝜕2
s
d(𝜅)T − 𝜕sd(𝜅)𝜕sT + 𝜕s(𝜅d(𝜅))N + 𝜅d(𝜅)𝜕sN .

Using the facts that 𝜕sT = 𝜅N and 𝜕sN = −𝜅T , we can rewrite this as

𝜕s𝜅V = −𝜕2
s
d(𝜅)T − 𝜅𝜕sd(𝜅)N + 𝜕s(𝜅d(𝜅))N − 𝜅2d(𝜅)T .

Combining this with (72), we get

𝜕s𝜅(⟨V , T⟩T + ⟨V ,N⟩N) = −𝜕2
s
d(𝜅)T − 𝜅𝜕sd(𝜅)N + 𝜕s(𝜅d(𝜅))N − 𝜅2d(𝜅)T . (73)

Since {T , N} is linearly independent, it follows from (73) that

𝜕s𝜅⟨V , T⟩ = −𝜕2
s
d(𝜅)− 𝜅2d(𝜅),

𝜕s𝜅⟨V ,N⟩ = −𝜅𝜕sd(𝜅)+ 𝜕s(𝜅d(𝜅)).
(74)

In view of (70), the second equation in (74) is an identity. On the other hand, multiplying the first equation

in (74) by 𝜅 and using the (71), we have

−𝜕s𝜅𝜕sd(𝜅) = −𝜅𝜕2
s
d(𝜅)− 𝜅3d(𝜅),

which proves the assertion. □

From Theorem 7.9, we have the following:

Corollary 7.10. If 𝛾 is a translating soliton with constant curvature, then 𝛾 must be a straight line.
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Proof. Since 𝛾 is a translating soliton with constant curvature, it follows from Theorem 7.9 that

𝜅𝜕2
s
d(𝜅)− 𝜕s𝜅𝜕sd(𝜅)+ 𝜅3d(𝜅) = 1

2
𝜅6 = 0,

which implies that 𝛾 is a straight line. □

Acknowledgments: The authors thank the reviewers for their careful reading of the manuscript and their

constructive suggestions. The authors extend their gratitude to Daehwan Kim for illustrating the figures.

Research ethics: Not applicable.

Author contributions: The authors have accepted responsibility for the entire content of this manuscript and

approved its submission.

Competing interests: The authors state no conflict of interest.

Research funding: The first author was supported by the National Science and Technology Council (NSTC), Tai-

wan, with grant Number: 112-2115-M-032-006-MY2. The second author was supported by NRF grant funded by

MSIT (No. NRF-2020R1A2C1A01005698 and NRF-2021R1A4A1032418).

Data availability: Not applicable.

References

[1] G. Huisken, “Flow by mean curvature of convex surfaces into spheres,” J. Differ. Geom., vol. 20, no. 1, pp. 237−266, 1984..
[2] S. Brendle and G. Huisken, “Gerhard Mean curvature flow with surgery of mean convex surfaces inℝ3,” Invent. Math., vol. 203,

no. 2, pp. 615−654, 2016..
[3] S. Brendle and G. Huisken, “Mean curvature flow with surgery of mean convex surfaces in three-manifolds,” J. Eur. Math. Soc.,

vol. 20, no. 9, pp. 2239−2257, 2018..
[4] R. Haslhofer and B. Kleiner, “Mean curvature flow with surgery,” Duke Math. J., vol. 166, no. 9, pp. 1591−1626, 2017..
[5] H. Li and B. Wang, “The extension problem of the mean curvature flow (I),” Invent. Math., vol. 218, no. 3, pp. 721−777, 2019..
[6] G. Huisken, “Asymptotic behavior for singularities of the mean curvature flow,” J. Differ. Geom., vol. 31, no. 1, pp. 285−299, 1990..
[7] G. Huisken and C. Sinestrari, “Convexity estimates for mean curvature flow and singularities of mean convex surfaces,” Acta Math.,

vol. 183, no. 1, pp. 45−70, 1999..
[8] N. Hungerbühler and K. Smoczyk, “Soliton solutions for the mean curvature flow,” Differ. Integr. Equ., vol. 13, nos. 10−12,

pp. 1321−1345, 2000..
[9] D. Kim and J. Pyo, “Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow,” Discrete

Continuous Dyn. Syst., vol. 38, no. 11, pp. 5897−5919, 2018..
[10] D. Kim and J. Pyo, “Half-space type theorem for translating solitons of the mean curvature flow in Euclidean space,” Proc. Am. Math.

Soc. Ser. B, vol. 8, no. 1, pp. 1−10, 2021..
[11] F. Martín, A. Savas-Halilaj, and K. Smoczyk, “On the topology of translating solitons of the mean curvature flow,” Calc. Var. Partial

Differ. Equ., vol. 54, no. 3, pp. 2853−2882, 2015..
[12] K. Smoczyk, “Self-shrinkers of the mean curvature flow in arbitrary codimension,” Int. Math. Res. Not., vol. 2005, no. 48,

pp. 2983−3004, 2005..
[13] Y. L. Xin, “Translating solitons of the mean curvature flow,” Calc. Var. Partial Differ. Equ., vol. 54, no. 2, pp. 1995−2016, 2015..
[14] E. Kuwert, Y. Li, and R. Schätzle, “The large genus limit of the infimum of the Willmore energy,” Am. J. Math., vol. 132, no. 1,

pp. 37−51, 2010..
[15] J. Langer and D. Singer, “Curves in the hyperbolic plane and mean curvature of tori in 3-space,” Bull. Lond. Math. Soc., vol. 16, no. 5,

pp. 531−534, 1984..
[16] P. Li and S. T. Yau, “A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact

surfaces,” Invent. Math., vol. 69, no. 2, pp. 269−291, 1982..
[17] S. Montiel and A. Ros, “Minimal immersions of surfaces by the first eigenfunctions and conformal area,” Invent. Math., vol. 83,

no. 1, pp. 153−166, 1986..
[18] A. Ros, “The Willmore conjecture in the real projective space,” Math. Res. Lett., vol. 6, nos. 5−6, pp. 487−493, 1999..
[19] P. Topping, “Towards the Willmore conjecture,” Calc. Var. Partial Differ. Equ., vol. 11, no. 4, pp. 361−393, 2000..
[20] T. J. Willmore, “Mean curvature of Riemannian immersions,” J. Lond. Math. Soc., vol. 3, no. 2, pp. 307−310, 1971..
[21] F. C. Marques and A. Neves, “Min-max theory and the Willmore conjecture,” Ann. Math., vol. 179, no. 2, pp. 683−782, 2014.
[22] R. Bryant, “A duality theorem for Willmore surfaces,” J. Differ. Geom., vol. 20, no. 1, pp. 23−53, 1984..
[23] J. Chen and T. Lamm, “A Bernstein type theorem for entire Willmore graphs,” J. Geom. Anal., vol. 23, no. 1, pp. 456−469, 2013..



576 — P. T. Ho and J. Pyo: Solitons to the Willmore flow

[24] J. Chen and Y. Li, “Radially symmetric solutions to the graphic Willmore surface equation,” J. Geom. Anal., vol. 27, no. 1,

pp. 671−688, 2017..
[25] T. Rivière, “Analysis aspects of Willmore surfaces,” Invent. Math., vol. 174, no. 1, pp. 1−45, 2008..
[26] N. H. Abdel-All, R. A. Hussien, and S. G. Mohamed, “Willmore flow near surface of revolution,” Assiut Univ. J. Math. Comput. Sci.,

vol. 37, no. 2, pp. 15−29, 2008.
[27] S. Blatt, “A singular example for the Willmore flow,” Analysis, vol. 29, no. 4, pp. 407−430, 2009..
[28] E. Kuwert and R. Schätzle, “Gradient flow for the Willmore functional,” Commun. Anal. Geom, vol. 10, no. 2, pp. 307−339, 2002..
[29] E. Kuwert and R. Schätzle, “The Willmore flow with small initial energy,” J. Differ. Geom., vol. 57, no. 3, pp. 409−441, 2001..
[30] E. Kuwert and J. Scheuer, “Asymptotic estimates for the Willmore flow with small energy,” Int. Math. Res. Not., vol. 2021, no. 18,

pp. 14252−14266, 2021..
[31] A. Mondino and H. T. Nguyen, “A gap theorem for Willmore tori and an application to the Willmore flow,” Nonlinear Anal., vol. 102,

pp. 220−225, 2014,.
[32] F. Palmurella and T. Rivière, “The parametric approach to the Willmore flow,” Adv. Math., vol. 400, 2022, Art. no. 108257,.

[33] G. Simonett, “The Willmore flow near spheres,” Differ. Integr. Equ., vol. 14, no. 8, pp. 1005−1014, 2001..
[34] S. Blatt, “A note on singularities in finite time for the L2 gradient flow of the Helfrich functional,” J. Evol. Equ., vol. 19, no. 2,

pp. 463−477, 2019..
[35] R. Jakob, “Short-time existence of the Möbius-invariant Willmore flow,” J. Geom. Anal., vol. 28, no. 2, pp. 1151−1181, 2018..
[36] T. Koerber, “The area preserving Willmore flow and local maximizers of the Hawking mass in asymptotically Schwarzschild

manifolds,” J. Geom. Anal., vol. 31, no. 4, pp. 3455−3497, 2021..
[37] Y. Liu, “Gradient flow for the Helfrich functional,” Chin. Ann. Math. Ser. B, vol. 33, no. 6, pp. 931−940, 2012..
[38] Y. Liu and L. Cao, “Lifespan theorem and gap lemma for the globally constrained Willmore flow,” Commun. Pure Appl. Anal., vol. 13,

no. 2, pp. 715−728, 2014..
[39] J. McCoy and G. Wheeler, “Finite time singularities for the locally constrained Willmore flow of surfaces,” Commun. Anal. Geom,

vol. 24, no. 4, pp. 843−886, 2016..
[40] E. Kuwert and R. Schätzle, “Removability of point singularities of Willmore surfaces,” Ann. Math., vol. 160, no. 1, pp. 315−357, 2004..
[41] U. F. Mayer and G. Simonett, “A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with

applications to the Willmore flow,” Interfaces Free Boundaries, vol. 4, no. 1, pp. 89−109, 2002..
[42] R. Bryant and P. Griffiths, “Reduction for constrained variational problems and ∫ 𝜅2ds,” Am. J. Math., vol. 108, no. 3, pp. 525−570,

1986..

[43] A. Dall’Acqua, M. Müller, R. Schätzle, and A. Spener, “The Willmore flow of tori of revolution,” to appear in Analysis and PDEs.

[44] L. J. Alìas, P. Mastrolia, and M. Rigoli,Maximum Principles and Geometric Applications, Springer Monographs in Mathematics, Cham,

Springer, 2016, p. xvii+570.
[45] D. Kim and J. Pyo, “Translating solitons for the inverse mean curvature flow,” Results Math., vol. 74, no. 1, p. 28, 2019..

[46] C. Mantegazza, A. Pluda, and M. Pozzetta, “A survey of the elastic flow of curves and networks,” Milan J. Math., vol. 89, no. 1,

pp. 59−121, 2021..
[47] B. Andrews and P. Bryan, “Curvature bound for curve shortening flow via distance comparison and a direct proof of Grayson’s

theorem,” J. Reine Angew. Math., vol. 2011, no. 653, pp. 179−187, 2011..
[48] S. Angenent, “On the formation of singularities in the curve shortening flow,” J. Differ. Geom., vol. 33, no. 3, pp. 601−633, 1991..
[49] M. Gage and R. S. Hamilton, “The heat equation shrinking convex plane curves,” J. Differ. Geom., vol. 23, no. 1, pp. 69−96, 1986..
[50] M. A. Grayson, “The heat equation shrinks embedded plane curves to round points,” J. Differ. Geom., vol. 26, no. 2, pp. 285−314,

1987..

[51] U. Abresch and J. Langer, “The normalized curve shortening flow and homothetic solutions,” J. Differ. Geom., vol. 23, no. 2,

pp. 175−196, 1986..
[52] H. Halldorsson, “Self-similar solutions to the curve shortening flow,” Trans. Am. Math. Soc., vol. 364, no. 10, pp. 5285−5309, 2012..


	1 Introduction
	2 Examples
	2.1 Plane
	2.2 Sphere
	2.3 Circular cylinder

	3 Some rigidity results of Willmore solitons
	4 Rotationally symmetric surfaces
	5 Graphic surfaces
	5.1  The case when u tnqx3d; u(x1)

	6 Ruled surface
	6.1 Vertical cylindrical surfaces
	6.2 Ruled surfaces

	7 One dimensional analogue of the Willmore soliton
	7.1 Examples
	7.2 Some rigidity results



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


