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Abstract: In this work, we investigate a class of quasilinear wave equations of Westervelt type with, in general,

nonlocal-in-time dissipation. They arise asmodels of nonlinear sound propagation through complexmedia with

anomalous diffusion of Gurtin–Pipkin type. Aiming at minimal assumptions on the involved memory kernels

– which we allow to be weakly singular – we prove the well-posedness of such wave equations in a general the-

oretical framework. In particular, the Abel fractional kernels, as well as Mittag-Leffler-type kernels, are covered

by our results. The analysis is carried out uniformly with respect to the small involved parameter on which the

kernels depend and which can be physically interpreted as the sound diffusivity or the thermal relaxation time.

We then analyze the behavior of solutions as this parameter vanishes, and in this way relate the equations to

their limiting counterparts. To establish the limiting problems, we distinguish among different classes of kernels

and analyze and discuss all ensuing cases.

Keywords: quasilinear wave equations; Westervelt’s equation; fractional dissipation; well-posedness; singular

limits

MSC 2020: 35L05; 35L72; 35R11

1 Introduction

The classical theory of nonlinear sound propagation is based on employing the Fourier law of heat conduction

within the system of governing equations. Using this law has drawbacks as it exhibits the following nonphysical

feature: “a disturbance at any point in the body is felt instantly at every other point” [1]. This property is often

referred to as the paradox of infinite speed of propagation.

In this work, we investigate quasilinear acoustic equations that originate from the use of the general

Gurtin–Pipkin flux law [1] in place of the Fourier one. These equations are given by

((1+ 2ku𝜀)u𝜀
t
)t − c2Δu𝜀 −K𝜀∗Δu𝜀t = f (1.1)

and can be understood as nonlocal generalizations of the classical Westervelt wave equation [2]. Here

u𝜀 = u𝜀(x, t) represents the acoustic pressure, c > 0 the speed of sound, k ∈ ℝ the nonlinearity coefficient,

*Corresponding author: Vanja Nikolić, Department of Mathematics, Radboud University, 6525 AJ Nijmegen, The Netherlands,

E-mail: vanja.nikolic@ru.nl

Barbara Kaltenbacher, Department of Mathematics, Alpen-Adria-Universität Klagenfurt, A-9020 Klagenfurt, Austria,

E-mail: barbara.kaltenbacher@aau.at

Mostafa Meliani, Department of Mathematics, Radboud University, 6525 AJ Nijmegen, The Netherlands, E-mail: mostafa.meliani@ru.nl

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International

License.

https://doi.org/10.1515/ans-2023-0139
mailto:vanja.nikolic@ru.nl
mailto:barbara.kaltenbacher@aau.at
mailto:mostafa.meliani@ru.nl


B. Kaltenbacher et al.: Quasilinear wave equations with fractional dissipation — 749

and f = f (x, t) is the sound source. The function K𝜀 = K𝜀(t) is a memory kernel and ∗ denotes the Laplace

convolution in time:

(K𝜀∗u𝜀t )(t) =
t

∫
0

K𝜀(t − s)u𝜀
t
(s) ds.

The memory kernel K𝜀 depends on the parameter 𝜀 ≪ 1 which is in practice rather small, and it is thus

important to determine the limiting behavior of solutions to (1.1) as 𝜀 ↘ 0. Different forms of the kernel K𝜀
arise in the literature and will be covered by our investigations. The choice

K𝜀 = 𝜀
1

Γ(𝛼) t
𝛼−1, 𝛼 ∈ (0, 1), (1.2)

where Γ(⋅) is the Gamma function, leads to the Westervelt equation with time-fractional damping of Djr-

bashian–Caputo-derivative type [3], [4], derived in Ref. [5]. In this case, the parameter 𝜀has the physicalmeaning

of the so-called sound diffusivity [6].

If the underlying flux law involves time-fractional relaxation, the kernels in the resulting acoustic equations

have the form

K𝜀 =
(
𝜏𝜃
𝜀

)a−b 1
𝜀b
tb−1Ea,b

(
−
(
t

𝜀

)a)
, a, b ∈ (0, 1], (1.3)

where Ea,b is the generalizedMittag-Leffler function; see (2.6) below for its definition. Here 𝜏𝜃 is a scaling param-

eter, which we discuss in detail in Section 2. In this setting, 𝜀 plays the physical role of the thermal relaxation

time. In the physics literature, it is usually denoted by 𝜏 .

The goal of the present work is to investigate wave Equations (1.1) in terms of their unique solvability and

then perform a singular limit analysis with respect to 𝜀. In particular, we wish to establish in which sense (and,

possibly, at which rate) the solutions of (1.1), supplemented by the initial conditions and homogeneous Dirichlet

boundary data, converge to the limiting problem as 𝜀 ↘ 0. We aim to perform the analysis under minimally

restrictive assumptions on the memory kernelK𝜀 that will allow us to cover the kernels in (1.2) and (1.3).

This analysis constitutes a challenging task because of the interplay of quasilinear and nonlocal evolution,

together with the non-restrictive assumptions imposed on thememory kernelK𝜀. Unlike available results in the
literature for the analysis of nonlinear wave equations with memory (see, e.g., [7], [8]), we do not require the

kernel to be smooth on [0,∞) or non-negative. Additionally, the analysis of Westervelt equation must ensure

that the leading coefficient does not degenerate; in other words, that

1+ 2ku𝜀 ≥ m > 0

holds uniformly in 𝜀. This task puts an additional strain on the analysis, as it requires obtaining 𝜀-uniform

bounds on ‖u𝜀‖L∞(L∞(Ω)) and guaranteeing their smallness.
1.1 Related works and novelty

To the best of our knowledge, this is the first rigorous work dealing with the limiting behavior of quasilinear

wave equations with dissipation of Djrbashian–Caputo-derivative-type.

The local-in-time nonlinear acoustic models, on the other hand, are by now well-studied. We refer to Refs.

[9]–[11] for the analysis of the Westervelt equation with strong damping:

((1+ 2ku𝜀)u𝜀
t
)t − c2Δu𝜀 − 𝜀Δu𝜀

t
= 0 (1.4)

on smooth bounded domains. Note that (1.4) can be cast within the family of equations in (1.1) by choosingK𝜀 =
𝜀𝛿0, where 𝛿0 is the Dirac delta distribution. With strong damping in the equation, the corresponding Dirichlet

boundary-value problem is known to be globally well-posed and the energy of the system decays exponentially

with time; see [9, Theorems 1.2 and 1.3]. In the inviscid case (𝜀 = 0), smooth solutions are expected to exist only

until a certain propagation time, after which a blow-up occurs. The local well-posedness analysis of the inviscid
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Westervelt equation with Dirichlet boundary conditions follows by the results of [12]. Numerical experiments

indicating gradient blowup for inviscid nonlinear acoustic models can be found, for example, in Ref. [13, Ch. 5].

The limiting behavior of the strongly damped Westervelt Equation (1.4) as 𝜀↘ 0 has been studied in Ref.

[14], where sufficient conditions have been determined for solutions {u𝜀}𝜀∈(0,𝜀̄) to strongly converge to the

solution of the inviscid problem at a linear rate.

We mention that local acoustic models involving more general nonlinearities or higher-order terms have

also received plenty of attention in the literature; see, for example [15]–[17], and the review paper [18]. Third-

order in time models with regular memory have also been extensively studied; see, e.g., [8], and the references

given therein.

The analysis of quasilinear models in nonlinear acoustics involving time-fractional evolution has been ini-

tiated only recently and many questions are open. The well-posedness analysis of the Westervelt equation with

fractional dissipation involving the kernel given in (1.2) can be found in Ref. [19]; the analysis in Ref. [20] allows

for certain Mittag-Leffler kernels as well. We also point out the singular limit analysis for a class of nonlocal dif-

ferential equations in Refs. [7], [21], from which we adopt certain ideas in the limit analysis with Mittag-Leffler

kernels in Section 4.

1.2 Main contributions

Our main results pertain to establishing the limiting behavior of solutions to the family of Equations (1.1) on

bounded domains, supplemented by initial conditions and Dirichlet boundary data, as 𝜀 ↘ 0. As will be shown,

the limiting behaviorwill dependon the formof the kernelK𝜀 and its dependence on𝜀, and sowewill distinguish
different classes of kernelsmotivated also by the physical background of sound propagation throughmediawith

nonlocal heat flux laws.

In case of the family of kernels given by K𝜀 = 𝜀K, where K satisfies suitable regularity and coercivity

assumptions and does not depend on 𝜀 (this case covers (1.2)), in the limit one obtains the inviscid Westervelt

equation:

((1+ 2ku)ut)t − c2Δu = f.

The solutions of (1.1) will then be shown to converge in the standard energy norm

‖u‖E :=(‖ut‖2L∞(L2(Ω)) + ‖u‖2
L∞(H1(Ω))

)1∕2
(1.5)

to the solution of the inviscid model at a linear rate; see Theorem 4.1 and Corollary 4.2 for details. For this result

to hold, sufficient smoothness of initial data is needed, namely

(u0, u1) ∈ {u0 ∈ H3(Ω) ∩ H1
0
(Ω):Δu0|𝜕Ω = 0} × (H2(Ω) ∩ H1

0
(Ω)).

Additionally smallness of data and short final time are needed to ensure uniformwell-posedness; however,

smallness of the initial conditions can be imposed in a lower-order norm than that of their regularity space; see

Theorem 3.1. This limiting result significantly generalizes [14, Theorem 4.1], where the limiting behavior of the

strongly damped Westervelt equation (obtained here by settingK = 𝜀𝛿0 in (1.1)) has been studied.
Remarkably, for Mittag-Leffler-type kernels, the limiting dissipation produces a richer family of limiting

equations, as we rigorously discuss in Section 4. For example, when a ≤ b in (1.3), the limiting equations are

given by

((1+ 2ku)ut)t − c2Δu− 𝜏a−b
𝜃

Da−b+1
t

Δu = f ,

where Da−b+1
t

denotes the Djrbashian–Caputo fractional derivative of order a− b+ 1. The details of this result

together with the convergence rate can be found in Theorem 4.1 and Proposition 4.2.

1.3 Organization of the presentation

The rest of the presentation is organized as follows. In Section 2,wemotivate this study by discussing the physical

background of these nonlocal models in the context of nonlinear acoustics and giving examples of relevant
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classes of memory kernels K𝜀. Section 3 tackles the question of the uniform well-posedness of the nonlinear

model (1.1) under suitable regularity, uniform boundedness, and coercivity assumptions on thememory kernels.

The results of this section form the basis for the rigorous study of the limiting behavior. In Section 4, we then

establish the limiting behavior of (1.1) for different classes of K𝜀. The main results of this part are contained in
Theorem 4.1 andPropositions 4.1 and 4.2. Finally,we consider concrete dependencies ofK𝜀 on𝜀motivated by the

physics of nonlinear acoustics and prove in Section 5 that these classes of kernels indeed verify our theoretical

assumptions.

1.4 Notation

In the analysis, we use the notation A ≲ B for A ≤ CBwhen the constant C > 0 does not depend on 𝜀. We denote

by

H2
♢(Ω) =H

1
0
(Ω) ∩ H2(Ω),

H3
♢(Ω) =

{
u ∈ H3(Ω) : tr𝜕Ωu = 0, tr𝜕ΩΔu = 0

}
,

the spaces of functions H2
0
(Ω) ⊂ H2

♢(Ω) ⊂ H2(Ω) and H3
0
(Ω) ⊂ H3

♢(Ω) ⊂ H3(Ω) that satisfy boundary conditions
given above.

Given final time T > 0 and p, q ∈ [1,∞], we use ‖ ⋅ ‖L p(Lq(Ω)) to denote the norm on Lp(0, T; Lq(Ω)) and‖ ⋅ ‖L p

t
(Lq(Ω)) to denote the norm on Lp(0, t; Lq(Ω)) for t ∈ (0, T). We use (⋅, ⋅)L2 for the scalar product on L

2(Ω).
We employ the following short-hand notation for the Abel kernel:

g𝛼(t) :=
1

Γ(𝛼) t
𝛼−1, 𝛼 ∈ (0, 1) (1.6)

and introduce the notational convention

g0 := 𝛿0,

where 𝛿0 is the Dirac delta distribution.

Throughout this work, D
𝜂

t
denotes the Djrbashian–Caputo fractional derivative, which is for𝑤 ∈ W1,1(0, t)

defined by

D
𝜂

t
𝑤(t) = g⌈𝜂⌉−𝜂∗D⌈𝜂⌉

t
𝑤, −1 < 𝜂 < 1;

see, for example, [22, §1] and [23, §2.4.1]. Here ⌈𝜂⌉ ∈ {0, 1} is the integer obtained by rounding up 𝜂 and D⌈𝜂⌉
t

is

the zeroth or first derivative operator.

2 Physical motivation and examples of relevant classes of kernels

In this section, we motivate different classes of memory kernels K𝜀 that will be covered by our analysis. These
kernels arise in wave models of nonlinear sound propagation through media with nonlocal heat flux laws. The

nonlocal flux laws are of the Gurtin–Pipkin type [1] given by

q(t) = −𝜅 K∗∇𝜃,

where q denotes the flux vector, 𝜃 the absolute temperature, and 𝜅 is the thermal conductivity. As discussed in

Ref. [24], different choices of the kernelK lead to a rich family of flux laws that have appeared in the literature.

2.1 Abel kernels

The choice

K = 𝜏−𝛼
𝜃
g𝛼 (2.1)
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results in the flux law involving the fractional integral:

q(t) = −𝜅𝜏−𝛼
𝜃

1

Γ(𝛼)

t

∫
0

(t − s)𝛼−1∇𝜃(s) ds, 0 < 𝛼 ≤ 1; (2.2)

see [25, Eq. (2.17)] and [26, Eq. (B.65)] for further modeling details. The constant 𝜏𝜃 > 0 in (2.1) and (2.2) serves

as a scaling factor to adjust for the dimensional inhomogeneity introduced by the fractional integral, in the way

done in Ref. [26], Appendix B.4.1.2]. We mention that some references account for this by changing the units of

the thermal conductivity 𝜅.

2.2 Exponential kernels

Choosing an exponential kernel [25, Eq. (2.21)]:

K𝜏 (t) =
1

𝜏
exp

(
− t

𝜏

)
(2.3)

leads to the heat flux law involving short-tail memory

q(t) = −𝜅
t

∫
0

1

𝜏
exp

(
− t − s

𝜏

)
∇𝜃(s) ds, (2.4)

where 𝜏 ≪ 1 is the intrinsic relaxation time of the heat flux. Assuming q(0) = 0, (2.4) can be seen as the solution

to the well-known Maxwell–Cattaneo law [27]:

q+ 𝜏qt = −𝜅∇𝜃.

2.3 Mittag-Leffler-type kernels

Exponential kernels (2.3) are, in fact, just a particular case of a large family of Mittag-Leffler memory kernels. In

nonlinear acoustics, these are motivated by the Compte–Metzler heat flux laws, put forward and investigated

in Ref. [28]:

(GFE I) (1+ 𝜏𝛼D𝛼
t
)q(t) = −𝜅𝜏1−𝛼

𝜃
D1−𝛼
t

∇𝜃;

(GFE II) (1+ 𝜏𝛼D𝛼
t
)q(t) = −𝜅𝜏𝛼−1

𝜃
D𝛼−1
t

∇𝜃;

(GFE III) (1+ 𝜏𝜕t)q(t) = −𝜅𝜏1−𝛼
𝜃

D1−𝛼
t

∇𝜃;

(GFE) (1+ 𝜏𝛼D𝛼
t
)q(t) = −𝜅∇𝜃.

Here, as before, 𝜏 is the thermal relaxation time and we have introduced the scaling 𝜏𝜃 to ensure dimen-

sional homogeneity so that 𝜅 has the usual dimension of thermal conductivity. These laws can be solved for q

and rewritten in the Gurtin–Pipkin form, as noted in Ref. [24]:

q(t) = −𝜅K𝜏∗∇𝜃

where the memory kernels are now given by

K𝜏 =
(
𝜏𝜃
𝜏

)a−b 1

𝜏b
tb−1Ea,b

(
−
(
t

𝜏

)a)
. (2.5)

We recall that the generalized Mittag-Leffler function is given by

Ea,b(t) =
∞∑
k=0

tk

Γ(ak + b)
, a > 0, t, b ∈ ℝ; (2.6)
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see, e.g., [22, Ch. 2]. For the Compte–Metzler laws, the parameters (a, b) should be chosen as in Table 1, assuming

additionally 𝛼 > 1∕2 for the first pair (law GFE I).

Note that setting a = b = 1 in (2.5) allows us to cover the exponential kernel in (2.3).

2.4 Resulting acoustic models: Westervelt’s equation and beyond

The derivation of nonlinear acoustic models based on the governing system of equations of sound motion that

involves the Gurtin–Pipkin flux law can be done following closely the steps taken in Ref. [29, §4]. The modeling

at first leads to one of the two approximations of the original governing system: the nonlocal wave equation of

Blackstock type [30, p. 20]

𝜓tt − c2(1− 2k̃𝜓t)Δ𝜓 − 𝛿K∗Δ𝜓t + 𝓁𝜕t|∇𝜓 |2 = 0 (2.7)

or the nonlocal wave equation of Kuznetsov type [31]

(1+ 2k̃𝜓t)𝜓tt − c2Δ𝜓 − 𝛿K∗Δ𝜓t + 𝓁𝜕t|∇𝜓 |2 = 0, (2.8)

where 𝛿 > 0 is the sound diffusivity and k̃, 𝓁 ∈ ℝ. The equations are expressed in terms of the acoustic velocity
potential 𝜓 = 𝜓 (x, t), which is related to the pressure by

u = 𝜚𝜓t,

where 𝜚 is the medium density. If cumulative nonlinear effects in sound propagation are dominant so that

approximation |∇𝜓 |2 ≈ c−2𝜓 2
t
holds, a nonlocal version of the Westervelt equation [2] in potential form is

obtained:

(1+ 2 ̃̃k𝜓t)𝜓tt − c2Δ𝜓 − 𝛿K∗Δ𝜓t = 0,

where ̃̃k = k̃ + c−2𝓁. Differentiating in time and using the relation u = 𝜚𝜓 t leads to the equation in the scope of

present work:

((1+ 2ku)ut)t − c2Δu− 𝛿K∗Δut = 𝜚𝛿K(t)Δ𝜓1, (2.9)

with k = ̃̃k∕𝜚, where we have relied on the following differentiation formula:

(K∗Δ𝜓t)t = K∗Δ𝜓tt +K(t)Δ𝜓1.

In case of the Mittag-Leffler kernel (2.5), we would simply haveK𝜏 above in place ofK.

2.5 Unifying the physical parameters

Since we wish to investigate the limiting behavior in 𝛿 and in 𝜏 of the resulting Westervelt equation (where in

case of 𝜏 ↘ 0,we assume 𝛿 > 0 to befixed) and the uniformwell-posedness analysis in both cases is qualitatively

the same, we unite 𝛿 and 𝜏 here into one parameter 𝜀 and consider the generalized equation:

((1+ 2ku𝜀)u𝜀
t
)t − c2Δu𝜀 −K𝜀∗Δu𝜀t = f

with suitable assumptions to be made onK𝜀 (see (A1) and (A2) below). Setting

K𝜀 = 𝜀K with K(t) = 𝜏−𝛼
𝜃
g𝛼(t)

Table 1: Parameters for the Mittag-Leffler kernels motivated by the Compte–Metzler laws.

GFE I GFE II GFE III GFE

a 𝛼 𝛼 1 𝛼

b 2𝛼 − 1 1 𝛼 𝛼
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will allow us to cover (2.9), whereas choosing

K𝜀 = 𝛿
(
𝜏𝜃
𝜀

)a−b 1
𝜀
K
(
t

𝜀

)
with K(t) = tb−1Ea,b(−ta)

covers the setting of thermal relaxation. In the latter case, we set 𝛿 = 1 without loss of generality. We analyze the

equation with a general source term f as the regularity assumptions needed for the analysis below are stronger

than what we generally have with the right-hand side in (2.9) (unless one assumes that 𝜓 1 = 0).

Wemention that using the Compte–Metzler flux laws stated as fractional ODEs in the derivation of acoustic

equations is also possible but leads to qualitatively different, higher-order in time fractional acoustic models.

We refer the interested reader to Ref. [32] for their derivation and the well-posedness analysis.

3 Uniform well-posedness analysis

The aim of this section is to establish the well-posedness of quasilinearWestervelt Equation (3.1), uniformly in 𝜀.

This result will be the basis for the later study of the limiting behavior. Throughout we assumeΩ ⊂ ℝd, where

d ∈ {1, 2, 3}, to be a bounded and C3 regular domain.We consider the following initial boundary-value problem:

⎧⎪⎪⎨⎪⎪⎩

((1+ 2ku𝜀)u𝜀
t
)t − c2Δu𝜀 −K𝜀∗Δu𝜀t = f in Ω× (0, T),

u𝜀 = 0 on 𝜕Ω× (0, T),

(u𝜀, u𝜀
t
) = (u0, u1), in Ω× {0}.

(3.1)

Before proceeding to the question of solvability,weneed to impose certain uniformregularity and coercivity

assumptions on the memory kernelK𝜀, which should be minimally restrictive.

3.1 Assumptions on the memory kernel in the analysis

Sincewewish to study the limiting behavior of the nonlinearmodels as 𝜀↘ 0, wemay focus our attention in the

analysis on an interval (0, 𝜀̄) for some fixed 𝜀̄ > 0 without loss of generality. We make the following assumption

on the kernel’s regularity and boundedness.

Above we allow for K𝜀 = 𝜀𝛿0, where 𝛿0 is the Dirac delta distribution, to cover the case of having strong
damping in the equation (i.e., −𝜀Δu𝜀

t
), although we primarily focus our attention in the analysis and presenta-

tion on K𝜀 ∈ L1(0, T). We use ‖ ⋅ ‖(0,T) to denote the total variation norm which for the examples considered

can be understood as:

‖K𝜀‖(0,T) =
⎧⎪⎨⎪⎩
𝜀 if K𝜀 = 𝜀𝛿0,

‖K𝜀‖L1(0,T) if K𝜀 ∈ L1(0, T).

In the well-posedness analysis, we will also need a coercivity assumption in order to achieve sufficient

damping from theK𝜀 term.
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Wemention that the two assumptions are verified for all classes of kernels discussed in the previous section,

but postpone the proof of this claim to Section 5.

Strategy in the well-posedness analysis

To analyze (3.1), we introduce the fixed-point mapping

 :𝜙 ↦ u𝜀,

where 𝜙 will belong to a ball in a suitable Bochner space and u𝜀 will solve the linearized problem

(m(𝜙)u𝜀
t
)t − c2Δu𝜀 −K𝜀∗Δu𝜀t = f

with the variable leading coefficient

m(𝜙) = 1+ 2k𝜙,

supplemented by the initial and boundary conditions given in (3.1). Clearly, a fixed-point of this mapping𝜙 = u𝜀

would solve the nonlinear problem. This general strategy is common in the analysis of nonlinear acousticmodels

(see, e.g., [9]), however the crucial difference here is that it has to be conducted uniformly in 𝜀.

3.2 Uniform well-posedness of a linear problem with variable principle coefficient

The well-definedness of the mapping as well as the proof of the existence of a unique fixed point rely on the

uniform well-posedness of the linear problem, which we tackle first for general smooth and non-degenerate

functionsm = m(𝜙).

Proposition 3.1. . Let 𝜀 ∈ (0, 𝜀̄). Given T > 0, let

𝜙 ∈ X𝜙 := L∞(0, T;H3
♢(Ω)) ∩W 1,∞(0, T;H2

♢(Ω)).

Assume that there existm andm, independent of 𝜀, such that

0 < m ≤ m(𝜙) = 1+ 2k𝜙(x, t) ≤ m in Ω× (0, T). (3.2)

Let assumptions (A1) and (A2) on the kernelK𝜀 hold. Furthermore, assume that the initial conditions satisfy

(u0, u1) ∈ H3
♢(Ω) × H2

♢(Ω)

and let f ∈ H1(0, T;H1
0
(Ω)). Then there exists a unique solution of the linear problem
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⎧⎪⎪⎨⎪⎪⎩

(m(𝜙)u𝜀
t
)t − c2Δu𝜀 −K𝜀∗Δu𝜀t = f in Ω× (0, T),

u𝜀 = 0 on 𝜕Ω× (0, T),

(u𝜀, u𝜀
t
) = (u0, u1), in Ω× {0},

(3.3)

such that

u𝜀 ∈  = L∞(0, T;H3
♢(Ω)) ∩W 1,∞(0, T;H2

♢(Ω)) ∩ H2(0, T;H1
0
(Ω)). (3.4)

The solution fulfills the following estimate:

‖Δu𝜀
t
‖2
L∞(L2(Ω)) + ‖∇Δu𝜀‖2

L∞(L2(Ω))

≤ C(𝜙, T) (‖Δu1‖2L2(Ω) + ‖∇Δu0‖2L2(Ω) + ‖ f ‖2
H1(H1(Ω))),

(3.5)

where the constant has the form

C(𝜙, T) = C1 exp(C2

(
1+ ‖𝜙‖X𝜙 + · · · + ‖𝜙‖6

X𝜙

)
T)

for some C1, C2 > 0 that do not depend on 𝜀.

Proof. We perform the analysis using a smooth Galerkin discretization in space; see, e.g., [33, §7] and [14,

Section 3] for details on this method. The existence of a unique approximate solution follows by reducing the

semi-discrete problem to a system of Volterra integral equations of the second kind and employing relatively

standard existence arguments, which we therefore provide in Appendix A.

The key to the proof is a uniform energy bound with respect to the discretization that must, in this context,

also be uniform in 𝜀. We follow the general testing strategy in Refs. [14], [19] with special attention paid to the

uniformity in 𝜀. For notational simplicity, we drop the discretization parameter when denoting the approximate

solution below.

Aswe cannot relymuchon the dissipationproperties of thenonlocal term in the equation,weneed sufficient

smoothness of the solution to overpower the right-hand side terms arising after testing. For this reason, we test

the (semi-discrete) problem withΔ2u𝜀
t
. After integrating over space, we arrive at

(
mu𝜀

tt
− c2Δu𝜀 −K𝜀∗Δu𝜀t +mtu

𝜀
t
, Δ2u𝜀

t

)
L2
= ( f ,Δ2u𝜀

t
)L2 . (3.6)

We note that the following identity holds:

(mu𝜀
tt
,Δ2u𝜀

t
)L2 =(mΔu𝜀

tt
,Δu𝜀

t
)L2 + (u𝜀

tt
Δm+ 2∇u𝜀

tt
⋅∇m,Δu𝜀

t
)L2

= 1

2

d

dt
(mΔu𝜀

t
,Δu𝜀

t
)L2 −

1

2
(mtΔu𝜀t ,Δu

𝜀
t
)L2 + (u𝜀

tt
Δm+ 2∇u𝜀

tt
⋅∇m,Δu𝜀

t
)L2

because u𝜀
tt
|𝜕Ω = Δu𝜀

t
|𝜕Ω = 0. Similarly, we have

(
mtu

𝜀
t
,Δ2u𝜀

t

)
L2
=(Δ(mtu

𝜀
t
),Δu𝜀

t
)L2

=(mtΔu𝜀t + 2∇mt ⋅∇u𝜀t + u𝜀
t
Δmt,Δu𝜀t )L2 .

Thus, by integrating by parts in (3.6) in space, integrating over (0, t) for t ∈ (0, T), and employing coercivity

assumption (A2), we arrive at the following energy inequality:

1

2
‖√mΔu𝜀

t
‖2
L2(Ω)

||||
t

0

+ c2

2
‖∇Δu𝜀‖2

L2(Ω)
||||
t

0

+ CA2

t

∫
0

‖(K𝜀∗∇Δu𝜀t )(s)‖2L2(Ω) ds
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≤ − 1

2

t

∫
0

(mtΔu𝜀t ,Δu
𝜀
t
)L2 ds−

t

∫
0

(
u𝜀
tt
Δm+ 2∇u𝜀

tt
⋅∇m+ 2∇mt ⋅∇u𝜀t

+ u𝜀
t
Δmt,Δu𝜀t

)
L2
ds+ ∫

Ω

∇ f ⋅∇Δu𝜀 dx
|||||||
t

0

−
t

∫
0

∫
Ω

∇ ft ⋅∇Δu𝜀 dxds, (3.7)

where we have also used that f |𝜕Ω = 0. We can estimate the first integral on the right-hand side by relying on

the embedding H2(Ω) ↪ L∞(Ω) as follows:

− 1

2

t

∫
0

(mtΔu𝜀t ,Δu
𝜀
t
)L2 ds ≤ |k|‖𝜙t‖L∞(H2(Ω))‖Δu𝜀t ‖2L2

t
(L2(Ω))

≲ ‖𝜙‖X𝜙‖Δu𝜀t ‖2L2
t
(L2(Ω)), (3.8)

where the resulting term will be handled by Grönwall’s inequality later on. Similarly,

t

∫
0

(2∇mt ⋅∇u𝜀t + u𝜀
t
Δmt,Δu𝜀t )L2 ds ≲ ‖Δmt‖L∞(L2(Ω))‖Δu𝜀t ‖2L2

t
(L2(Ω))

≲ ‖𝜙‖X𝜙‖Δu𝜀t ‖2L2
t
(L2(Ω)).

We can use Hölder’s and Young’s inequalities to estimate the f terms in (3.7):

∫
Ω

∇ f ⋅∇Δu𝜀 dx
|||||||
t

0

−
t

∫
0

∫
Ω

∇ ft ⋅∇Δu𝜀 dxds

≤ 1

c2
‖∇ f (t)‖2

L2(Ω) +
c2

4
‖∇Δu𝜀(t)‖2

L2(Ω) +
1

2
‖∇ f (0)‖2

L2(Ω) +
1

2
‖∇Δu0‖2L2(Ω)

+ ‖∇ ft‖2L2(L2(Ω)) + ‖∇Δu𝜀‖2
L2
t
(L2(Ω)), (3.9)

where the two resulting ∇Δu𝜀 terms above can be either absorbed by the left-hand side of (3.7) or handled by
Grönwall’s inequality.

It remains to estimate the u𝜀
tt
terms on the right-hand side of (3.7). To this end, we first use Hölder’s and

Young’s inequalities:

t

∫
0

(u𝜀
tt
Δm+ 2∇u𝜀

tt
⋅∇m,Δu𝜀

t
)L2 ds

≤ (‖u𝜀
tt
‖L2(L4(Ω))‖Δm‖L∞(L4(Ω)) + ‖∇u𝜀

tt
‖L2(L2(Ω))‖∇m‖L∞(L∞(Ω)))‖Δu𝜀t ‖L2(L2(Ω)).

By the embeddings H1(Ω) ↪ L4(Ω) and H2(Ω) ↪ L∞(Ω), we further have

‖Δm‖L∞(L4(Ω)) + ‖∇m‖L∞(L∞(Ω)) ≲ ‖Δ𝜙‖L∞(H1(Ω)) + ‖∇𝜙‖L∞(H2(Ω))

≲ ‖𝜙‖X𝜙
and thus

t

∫
0

(u𝜀
tt
Δm+ 2∇u𝜀

tt
⋅∇m,Δu𝜀

t
)L2 ds ≤ ‖𝜙‖X𝜙‖u𝜀tt‖L2(H1(Ω))‖Δu𝜀t ‖L2(L2(Ω)). (3.10)
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From here, we can use the (semi-discrete) PDE to further bound the u𝜀
tt
term. We first have by Poincaré’s

inequality ‖u𝜀
tt
‖L2(H1(Ω)) ≲ ‖∇u𝜀

tt
‖L2(L2(Ω)).

Then to estimate the right-hand side term, we use the (semi-discrete) PDE and the identity

m∇u𝜀
tt
+∇mu𝜀

tt
= K𝜀∗∇Δu𝜀t + c2∇Δu𝜀 −∇[mtu

𝜀
t
]+∇ f.

The uniform boundedness ofm in (3.2) allows us to conclude that

‖∇u𝜀
tt
‖L2(L2(Ω)) ≲ ‖∇m‖L∞(L∞(Ω))‖K𝜀∗Δu𝜀t + c2Δu𝜀 −mtu

𝜀
t
+ f ‖L2(L2(Ω))

+ ‖K𝜀∗∇Δu𝜀t + c2∇Δu𝜀 −∇[mtu
𝜀
t
]+∇ f ‖L2(L2(Ω)).

Further estimating the right-hand side terms leads to

‖∇u𝜀
tt
‖L2(L2(Ω)) ≲ ‖𝜙‖X𝜙(‖Δu𝜀‖L2(L2(Ω)) + ‖K𝜀‖(0,t)‖Δu𝜀t ‖L2(L2(Ω)) + ‖𝜙‖X𝜙‖u𝜀t ‖L2(L2(Ω)) + ‖ f ‖L2(L2(Ω)))

+ ‖K𝜀∗∇Δu𝜀t ‖L2(L2(Ω)) + ‖∇Δu𝜀‖L2(L2(Ω)) + ‖𝜙‖X𝜙‖u𝜀t ‖L2(L4(Ω)) + ‖𝜙‖X𝜙‖∇u𝜀t ‖L2(L2(Ω))
+ ‖∇ f ‖L2(L2(Ω)).

Thanks to assumption (A1), we have the uniform bound ‖K𝜀‖(0,t) ≤ CA1
. Going back to (3.10) and using the

estimate on∇u𝜀
tt
thus yields

t

∫
0

(u𝜀
tt
Δm+ 2∇u𝜀

tt
⋅∇m,Δu𝜀

t
)L2 ds

≲
(‖𝜙‖X𝜙 + ‖𝜙‖2

X𝜙
+ ‖𝜙‖3

X𝜙

){‖∇Δu𝜀‖L2(L2(Ω)) + ‖Δu𝜀
t
‖L2(L2(Ω))

+ ‖K𝜀∗∇Δu𝜀t ‖L2(L2(Ω)) + ‖u𝜀
t
‖L2(H1(Ω)) + ‖ f ‖L2(H1(Ω))

}‖Δu𝜀
t
‖L2(L2(Ω)). (3.11)

By employing estimates (3.8), (3.9), and (3.11) in (3.7), we arrive at

1

2
‖√mΔu𝜀

t
‖2
L2(Ω)

||||
t

0

+ c2

2
‖∇Δu𝜀‖2

L2(Ω)
||||
t

0

+ CA2

t

∫
0

‖(K𝜀∗∇Δu𝜀t )(s)‖2L2(Ω) ds
≲ (1+ ‖𝜙‖X𝜙 )‖Δu𝜀t ‖2L2

t
(L2(Ω)) + ‖∇Δu0‖2L2(Ω) + ‖ f ‖2

H1(H1(Ω))

+
(‖𝜙‖X𝜙 + ‖𝜙‖2

X𝜙
+ ‖𝜙‖3

X𝜙

)2‖Δu𝜀
t
‖2
L2
t
(L2(Ω)) + ‖∇Δu𝜀‖2

L2
t
(L2(Ω)) + ‖Δu𝜀

t
‖2
L2
t
(L2(Ω)) + ‖u𝜀

t
‖2
L2
t
(H1(Ω))

+
(‖𝜙‖X𝜙 + ‖𝜙‖2

X𝜙
+ ‖𝜙‖3

X𝜙

)‖K𝜀∗∇Δu𝜀t ‖L2t (L2(Ω))‖Δu𝜀t ‖L2t (L2(Ω)). (3.12)

Other than the last term in (3.12), all other terms on the right-hand side can be tackled using Grönwall’s

inequality. To treat the last term, we employ Young’s inequality:(‖𝜙‖X𝜙 + ‖𝜙‖2
X𝜙
+ ‖𝜙‖3

X𝜙

)‖K𝜀∗∇Δu𝜀t ‖L2(L2(Ω))‖Δu𝜀t ‖L2(L2(Ω))
≤ 𝛾‖K𝜀∗∇Δu𝜀t ‖2L2

t
(L2(Ω)) +

1

4𝛾

(‖𝜙‖X𝜙 + ‖𝜙‖2
X𝜙
+ ‖𝜙‖3

X𝜙

)2‖Δu𝜀
t
‖2
L2
t
(L2(Ω)). (3.13)

If C̃ > 0 is the hidden constant within ≲ in (3.12), we can choose 𝛾 as

𝛾 = 1

C̃
CA2

∕2.
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The term 𝛾‖K𝜀∗∇Δu𝜀t ‖2L2
t
(L2(Ω)) can be absorbed by the left-hand side of (3.12). We then use Grönwall’s

inequality for the second term on the right-hand side of (3.13) to arrive at an 𝜀-uniform estimate.

Altogether, starting from estimates (3.12) and (3.13), an application of Grönwall’s inequality leads to the final

estimate (3.5), at first in a semi-discrete setting. The bound transfers to the continuous setting through standard

weak compactness arguments, analogously to, for example, [14, Proposition 3.1]. Uniqueness of the constructed

solution can be established by testing the homogeneous problem (where f = u0 = u1 = 0) with, for example, u𝜀
t
.

We omit these details here. □

3.3 Uniform lower-order estimate

In the fixed-point analysis, we will rely on Agmon’s interpolation inequality to prove that the leading factor

m(u𝜀) = 1+ 2ku𝜀 of the nonlinear equation does not degenerate. For 𝑣 ∈ H2(Ω), the inequality is given by

‖𝑣‖L∞(Ω) ≤ CA‖𝑣‖1−d∕4L2(Ω) ‖𝑣‖d∕4H2(Ω) (d ≤ 3), (3.14)

see [34, Lemma 13.2, Ch. 13]. Using this estimate on 𝑣 = u𝜀(t) together with a bound on ‖u𝜀(t)‖L2(Ω) in terms of
data in lower-order topology, will allow us to impose data smallness in that topology insteadH3

♢(Ω) × H2
♢(Ω). We

derive this bound next.

Under the assumptions of Proposition 3.1, testing (3.3) with u𝜀
t
and using coercivity assumption (A2) leads to

the inequality

1

2
‖√mu𝜀

t
(t)‖2

L2(Ω)
||||
t

0

+ c2

2
‖∇u𝜀(t)‖2

L2(Ω)
||||
t

0

+ CA2

t

∫
0

‖(K𝜀∗∇u𝜀t )(s)‖2L2(Ω) ds

≤ 1

2

t

∫
0

(mtu
𝜀
t
, u𝜀

t
)L2 ds+

t

∫
0

( f , u𝜀
t
)L2 ds

≲ ‖𝜙t‖L∞(L∞(Ω))‖u𝜀t ‖2L2
t
(L2(Ω)) + ‖ f ‖L1(L2(Ω))‖u𝜀t ‖L∞t (L2(Ω)),

where the hidden constant does not depend on 𝜀. From here by using Young’s and Grönwall’s inequalities, we

obtain the following lower-order counterpart of (3.5):

‖u𝜀
t
‖2
L∞(L2(Ω)) + ‖u𝜀‖2

L∞(H1(Ω))

≤ C3 exp(C4(1+ ‖𝜙‖X𝜙 )T))(‖u0‖2H1(Ω) + ‖u1‖2L2(Ω) + ‖ f ‖2
L1(L2(Ω))), (3.15)

for some C3, C4 > 0 that do not depend on 𝜀. We will use this bound in the fixed-point proof to ensure the

smallness of ‖u𝜀‖L∞(L2(Ω)) ≲ ‖u𝜀‖L∞(H1(Ω)).

3.4 Fixed-point analysis

We proceed with the analysis of the nonlinear problem, where we will combine our previous results with a

fixed-point argument.

Theorem 3.1. Let k ∈ ℝ and 𝜀 ∈ (0, 𝜀̄). Let (u0, u1) ∈ H3
♢(Ω) × H2

♢(Ω) be such that

‖u0‖2H3(Ω) + ‖u1‖2H2(Ω) + ‖ f ‖2
H1(H1(Ω)) ≤ r2,

where r does not depend on 𝜀. Let assumptions (A1) and (A2) on the kernel K𝜀 hold and let f ∈ H1(0, T;H1
0
(Ω)).

Then there exist data size r0 = r0(r) > 0 and final time T = T(r), both independent of 𝜀, such that if

‖u0‖2H1(Ω) + ‖u1‖2L2(Ω) + ‖ f ‖2
L1(L2(Ω)) ≤ r2

0
,
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then there is a unique solution u𝜀 ∈  of (3.1), with  defined in (3.4), which satisfies the following estimate

uniformly in 𝜀: ‖u𝜀‖2 ≤ C(T)
(‖u0‖2H3(Ω) + ‖u1‖2H2(Ω) + ‖ f ‖2

H1(H1(Ω))

)
.

Proof. The proof follows by using the Banach fixed-point theorem on  , in the general spirit of Ref. [14,

Theorem 6.1] which considers uniform analysis in a local-in-time setting. The mapping  :𝜙 ↦ u𝜀 is defined

on the ball

𝜙 ∈  =
{
𝜙 ∈  : ‖𝜙‖ ≤ R, 4|k|‖𝜙‖L∞(L∞(Ω)) ≤ 1, (𝜙,𝜙t)|t=0 = (u0, u1)

}
with a large enough radius R > 0, which will be made precise below. The set  is non-empty as the solution of

the linear problem withm = 1 belongs to it if R is sufficiently large and r0 sufficiently small.

Let 𝜙 ∈ . Then the smoothness assumption on 𝜙 in Proposition 3.1 holds since  ⊂ X𝜙. Furthermore,

since 4|k|‖𝜙‖L∞(L∞(Ω)) ≤ 1,m does not degenerate:

1

2
= m ≤ m = 1+ 2k𝜙(x, t) ≤ m = 3

2
, (x, t) ∈ Ω× (0, T).

(1) The self-mapping property.We wish to prove that u𝜀 :=  𝜙 ∈ . Since the assumptions of Proposition 3.1
hold, we know that u𝜀 satisfies

‖u𝜀‖2 ≤ C1 exp(C2

(
1+ ‖𝜙‖X𝜙 + · · · + ‖𝜙‖6

X𝜙

)
T)(‖u0‖2H3(Ω) + ‖u1‖2H2(Ω) + ‖ f ‖2

H1(H1(Ω))).

We can guarantee that ‖u𝜀‖ ≤ R by choosing R = R(r) and T = T(r) so that

C1 exp(C2(1+ R+ · · · + R6)T)r2 ≤ R2.

Wenext show that the bound 4|k|‖u𝜀‖L∞(L∞(Ω)) ≤ 1 holds. To this end,we rely onAgmon’s interpolation

inequality (3.14) and combine it with the uniform lower-order bound in (3.15). We have

‖u𝜀‖L∞(H2(Ω)) ≲ ‖u𝜀‖ ≲ R,

and so using Agmon’s inequality leads to

‖u𝜀‖L∞(L∞(Ω)) ≤ CA‖u𝜀‖1−d∕4L∞(L2(Ω))‖u𝜀‖d∕4L∞(H2(Ω))

≤ CA

{
C3 exp(C4T(1+ R))

(‖u0‖2H1(Ω) + ‖u1‖2L2(Ω) + ‖ f ‖2
L1(L2(Ω))

)}1∕2−d∕8
Rd∕4.

We then choose data size r0 = r0(r) > 0 small enough, so that

4|k|CA{C3 exp(C4T(1+ R))r2
0

}1∕2−d∕8
Rd∕4 ≤ 1.

Then 4|k|‖u𝜀‖L∞(L∞(Ω)) ≤ 1, which was the last condition needed to conclude that u𝜀 ∈ .
(2) Strict contractivity. Take𝜙(1) and𝜙(2) in, and denote their difference by𝜙 = 𝜙(1) − 𝜙(2). Let u𝜀,(1) =  (𝜙(1))

and u𝜀,(2) =  (𝜙(2)). Their difference u = u𝜀,(1) − u𝜀,(2) ∈  then solves

(1+ 2k𝜙(1))utt − c2Δu−K𝜀∗Δut + 2k𝜙(1)
t
ūt = −2k𝜙u𝜀,(2)

tt
− 2k𝜙tu

𝜀,(2)
t

with zero initial and boundary data. Since the right-hand side of the above equation does not belong to

H1(0, T; H1(Ω)), we cannot use estimate (3.5) to prove contractivity of themapping  with respect to ‖ ⋅ ‖ .
Instead, we prove that the mapping  is strictly contractive in the space

XE :=W 1,∞(0, T; L2(Ω)) ∩ L∞(0, T;H1
0
(Ω)),
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endowed with the norm defined in (1.5). We can again use the uniform lower-order bound established in

(3.15) to conclude that

‖ut‖L∞(L2(Ω)) + ‖u‖L∞(H1(Ω))

≲ ‖− 2k𝜙u𝜀,(2)
tt

− 2k𝜙tu
𝜀,(2)
t

‖L1(L2(Ω))
≲ |k|‖𝜙‖L2(L4(Ω))‖u𝜀,(2)tt

‖L2(L4(Ω)) + |k|‖𝜙t‖L2(L2(Ω))‖u𝜀,(2)t
‖L2(L∞(Ω)).

By using the embeddings H1(Ω) ↪ L4(Ω) and H2(Ω) ↪ L∞(Ω) and the fact that u𝜀,(2) ∈ , we further infer
that ‖ut‖L∞(L2(Ω)) + ‖u‖L∞(H1(Ω)) ≲ |k|(‖𝜙‖L2(H1(Ω)) + ‖𝜙t‖L2(L2(Ω)))

≲ |k|√T(‖𝜙‖L∞(H1(Ω)) + ‖𝜙t‖L∞(L2(Ω))).
Therefore, by reducing T if needed (independently of 𝜀), we can ensure that the mapping  is strictly

contractive with respect to the energy norm (1.5).

The arguments showing that is closedwith respect to this norm are analogous to those of [14, Theorem4.1].

By the Banach fixed-point theorem, we therefore obtain a unique fixed point u𝜀 =  (u𝜀) in , which solves the
nonlinear problem. □

We note that as a byproduct of Theorem 3.1, we obtain local well-posedness for the strongly damped (K𝜀 =
𝜀𝛿0), inviscid (K𝜀 ≡ 0), and fractionally damped (K𝜀 = 𝜀g𝛼) Westervelt equations, therefore generalizing the

results of Refs. [12], [14], [19].

4 Establishing the limiting behavior for relevant classes of kernels

We next wish to determine the limiting behavior of solutions to (1.1) as 𝜀↘ 0. We begin by proving (Hölder)

continuity of the solution with respect to the memory kernel.

Theorem 4.1. Let 𝜀1, 𝜀2 ∈ (0, 𝜀̄). Under the assumptions Theorem 3.1, the following estimates hold:

‖u𝜀1 − u𝜀2‖E ≲ ‖(K𝜀1 −K𝜀2 )∗1‖1∕2L1(0,T)
, (4.1)

and ‖u𝜀1 − u𝜀2‖E ≲ ‖K𝜀1 −K𝜀2‖(0,T). (4.2)

Proof. To prove the statement, we can see the difference u = u𝜀1 − u𝜀2 as the solution to

(
(
1+ 2ku𝜀1

)
ut)t − c2Δu−K𝜀1∗Δut + 2k

(
uu

𝜀2
t

)
t
= (K𝜀1 −K𝜀2 )∗Δu

𝜀2
t

with zero initial and boundary conditions. We can test this equation with ut and proceed similarly to the proof

of contractivity in Theorem 3.1 with now m = 1+ 2ku𝜀1 . The new term compared to before is the convolution

on the right-hand side. After testing, this term can be handled using Young’s convolution inequality as follows:

t

∫
0

∫
Ω

(K𝜀1 −K𝜀2 )∗Δu
𝜀2
t
ut dxds

≲ ‖K𝜀1 −K𝜀2‖(0,T)‖Δu𝜀2t ‖L2(L2(Ω))‖ut‖L2(L2(Ω))
≲ ‖K𝜀1 −K𝜀2‖2(0,T)

‖Δu𝜀2
t
‖2
L2(L2(Ω)) + ‖ut‖2L2(L2(Ω)).



762 — B. Kaltenbacher et al.: Quasilinear wave equations with fractional dissipation

Since by Theorem 3.1, ‖Δu𝜀2
t
‖L2(L2(Ω)) ≲ ‖u𝜀2‖ is uniformly bounded, we obtain the claimed estimate by

relying on Grönwall’s inequality.

The difference of kernels term can also be treated using integration by parts in space:

t

∫
0

(((K𝜀1 −K𝜀2 )∗Δu
𝜀2
t
)(s), ut(s))L2 ds

=
t

∫
0

{
((1∗(K𝜀1 −K𝜀2 )∗Δu

𝜀2
tt
)(s), ut(s))L2 +

(
(1∗(K𝜀1 −K𝜀2 ))(s)Δu1, ut(s)

)
L2

}
ds

=
t

∫
0

{
−((1∗(K𝜀1 −K𝜀2 )∗∇u

𝜀2
tt
)(s),∇ut(s))L2 +

(
(1∗(K𝜀1 −K𝜀2 ))(s)Δu1, ut(s)

)
L2

}
ds. (4.3)

Then by Young’s convolution inequality

t

∫
0

(((K𝜀1 −K𝜀2 )∗Δu
𝜀2
t
)(s), ut(s))L2 ds

≤ ‖(K𝜀1 −K𝜀2 )∗1‖L1(0,T)(‖∇u𝜀2tt ‖L1t (L2(Ω))‖∇ut‖L∞t (L2(Ω)) + ‖Δu1‖L2(Ω)‖ut‖L1
t
(L2(Ω))

)
.

Note thatwewould not be able to absorb the term ‖∇ut‖2L∞
t
(L2(Ω)) by the left-hand side (i.e., the energy norm).

However, by Theorem 3.1, we know that the following uniform bound holds:

‖∇u𝜀2
tt
‖L1

t
(L2(Ω))‖∇ut‖L∞

t
(L2(Ω)) + ‖Δu1‖L2(Ω)‖ut‖L1

t
(L2(Ω)) ≤ C.

Proceeding otherwise as in the proof of contractivity in Theorem 3.1, we therefore obtain

‖u𝜀1 − u𝜀2‖2
E
≤ C‖(K𝜀1 −K𝜀2 )∗1‖L1(0,T)

with a constant C > 0 that is independent of 𝜀1,2, from which the claim follows. □

Observe that the main culprit for the reduced order of continuity in (4.1) (i.e., having ‖(K𝜀1 −K𝜀2 )∗1‖1∕2L1(0,T)

instead of ‖(K𝜀1 −K𝜀2 )∗1‖L1(0,T)) is the integration by parts with respect to space in (4.3). This approach was

forced by a lack of uniform bound on Δu𝜀2
tt
. We thus expect that the order can be improved in a more regular

setting in terms of data that would lead to a uniform estimate onΔu𝜀
tt
in (3.1).

Theorem 4.1 is the key to establishing the limiting behavior of solutions to (3.1) as 𝜀↘ 0 and, in particular,

the convergence rates. As they will depend on the form of the kernel K𝜀 and, in turn, its dependence on 𝜀, we
treat different classes of kernels separately.

4.1 The vanishing sound diffusivity limit with fractional-type kernels

We first discuss the setting K𝜀 = 𝜀K. Recall that a representative example of this class of kernels (up to a

constant) is

K𝜀 = 𝜀g𝛼,

where the Abel kernel is defined in (1.6) for 𝛼 ∈ (0, 1) and g0 = 𝛿0. We will prove in Section 5 that this kernel

indeed verifies assumption (A2).

Corollary 4.2. Under the assumptions of Theorem 3.1 with the kernel

K𝜀 = 𝜀K, 𝜀 ∈ (0, 𝜀̄)
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satisfying assumptions (A1) and (A2), the family of solutions {u𝜀}𝜀∈(0,𝜀̄) of (3.1) converges in the energy norm to

the solution u ≡ u0 of the initial boundary-value problem for the inviscid Westervelt equation

⎧⎪⎪⎨⎪⎪⎩

((1+ 2ku)ut)t − c2Δu = f in Ω× (0, T),

u = 0 on 𝜕Ω× (0, T),

(u, ut) = (u0, u1), in Ω× {0},

(4.4)

at a linear rate ‖u− u𝜀‖E ≲ 𝜀.
Proof. In this setting, the limiting kernel is K0 = 0, and it satisfies assumptions (A1) and (A2). By Theorem 4.1

and estimate (4.2), we then immediately have

‖u𝜀 − u‖E ≤ C𝜀‖K‖(0,T)

for some C > 0, independent of 𝜀, from which the statement follows. □

The limiting result above largely generalizes the one of Ref. [14, Theorem 4.1], whereK is the Dirac delta dis-

tribution 𝛿0. Herewe allow for a large class ofmemory kernels, thus establishing the vanishing sound diffusivity

limit for the Westervelt equation with general dissipation of time-fractional type.

4.2 The vanishing thermal relaxation time limit with Mittag-Leffler kernels

We now turn our attention to the kernels that were motivated by the presence of thermal relaxation in the heat

flux laws of the propagation medium, and have the form

K𝜀(t) =
(
𝜏𝜃
𝜀

)a−b 1
𝜀b
tb−1Ea,b

(
−
(
t

𝜀

)a)
, a, b ∈ (0, 1]. (4.5)

Before continuing with the singular limit analysis, it is helpful to recall certain properties of the Mittag-

Leffler functions, which can be found, for example, in Refs. [35], [36].

4.2.1 Properties of the Mittag-Leffler functions

We recall that the functions

t ↦ Ea,b
(
−𝜆ta

)
, a ∈ [0, 1], t > 0, 𝜆 > 0

are completely monotone for b ≥ a (and, in particular, non-negative); see [36, Corollary 3.2]. Furthermore, the

following identity holds:

tb−1Ea,b(−ta) =
d

dt

(
tbEa,b+1(−ta)

)
. (4.6)

We also recall that the Laplace transform of the Mittag-Leffler functions is given by

L
[
tb−1Ea,b(−𝜆ta)

]
(z) = za−b

za + 𝜆, a, b > 0, Re(z) > 0, 𝜆 ≥ 0; (4.7)

see [36, Lemma 3.2]. We will additionally rely on the asymptotic behavior of Mittag-Leffler functions:

Ea,b(−x) ∼
1

Γ(b− a) x
as x→∞; (4.8)

see, e.g., [36, Theorem 3.2].

In what follows, we intend to take the limit 𝜀↘ 0, while keeping 𝜏𝜃 > 0 fixed. We treat the cases a− b ≤ 0

and a− b > 0 (where additionally 𝜏𝜃∕𝜀 > 0 should be fixed) separately when discussing the limiting behavior.



764 — B. Kaltenbacher et al.: Quasilinear wave equations with fractional dissipation

4.2.2 Limiting behavior for a− b ≤ 0

If 0 < a ≤ b ≤ 1, wewill prove that solutions u𝜀 of (3.1) converge to the solution u of the following time-fractional

equation:

((1+ 2ku)ut)t − c2Δu− 𝜏a−b
𝜃

Da−b+1
t

Δu = f ,

supplemented by the same boundary and initial conditions as in (3.1). Recall that

Da−b+1
t

Δu = gb−a∗Δut.

Note also that in case a = b, the limiting equation is strongly damped.

Proposition 4.1. Let 𝜏𝜃 > 0 be fixed. Under the assumptions of Theorem 3.1, the family of solutions {u𝜀}𝜀∈(0,𝜀̄) of
(3.1) with the kernel given by

K𝜀(t) =
(
𝜏𝜃
𝜀

)a−b 1
𝜀b
tb−1Ea,b

(
−
(
t

𝜀

)a)
where a− b ≤ 0, a, b ∈ (0, 1],

converges to the solution u of

⎧⎪⎪⎨⎪⎪⎩

((1+ 2ku)ut)t − c2Δu−K0∗Δut = f in Ω× (0, T),

u = 0 on 𝜕Ω× (0, T),

(u, ut) = (u0, u1), in Ω× {0},

(4.9)

with the kernelK0 = 𝜏a−b𝜃
gb−a in the following sense:

‖u𝜀 − u‖E ≲ ‖(K𝜀 −K0)∗1‖1∕2L1(0,T)
∼ 𝜀a∕2 as 𝜀↘ 0.

Proof. By Theorem 4.1 (up to checking thatK0 satisfies (A1) and (A2)), we have

‖u𝜀 − u‖E ≤ C‖(K𝜀 −K0)∗1‖1∕2L1(0,T)

with a constant C > 0 that is independent of 𝜀. We next rely on the Laplace transform to further establish the

asymptotic behavior of the right-hand side as 𝜀↘ 0. To this end, we use (4.7) and the formula

L [K0](z) = 𝜏a−b𝜃
L [gb−a](z) = 𝜏a−b𝜃

za−b.

Without loss of generality, we assume 𝜏𝜃 = 1. Consider the Laplace transform of (K𝜀 −K0)∗1:

L [(K𝜀 −K0)∗1](z) = (L [K𝜀]− L [K0])(z)L [1](z)

=
(

za−b

(𝜀z)a + 1
− za−b

)
1

z
= −𝜀a z

a−(1+b−a)

(𝜀z)a + 1
.

From here we conclude that

((K𝜀 −K0)∗1)(t) = −tb−aEa,1+b−a
(
−
(
t

𝜀

)a)
.

On account of the non-negativity of the function t ↦ Ea,1+b−a

(
−
(
t

𝜀

)a)
(which is ensured by 1+ b− a ≥ a

due to the assumptions on a and b), we find that

‖(K𝜀 −K0)∗1‖L1(0,T) =
T

∫
0

tb−aEa,1+b−a

(
−
(
t

𝜀

)a)
dt

=T1+b−aEa,2+b−a
(
−
(
T

𝜀

)a)
.
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Then by asymptotic properties of the Mittag-Leffler functions in (4.8), we have

‖(K𝜀 −K0)∗1‖L1(0,T) = T1+b−aEa,2+b−a

(
−
(
T

𝜀

)a)

∼ T1+b−a

Γ(2+ b− 2a)

(
T

𝜀

)−a
as

T

𝜀
→∞,

which concludes the proof. □

4.2.3 Limiting behavior for a > b

We next discuss the limiting behavior of solutions to (3.1) in the remaining case for the Mittag-Leffler kernels,

which is 1 ≥ a > b > 0. To take the limit 𝜀 ↘ 0 of (3.1) with the kernel (4.5) when a > b, now we need the

following additional assumption on 𝜏𝜃 :

𝜏𝜃 = 𝜏𝜃(𝜀) and
(
𝜏𝜃
𝜀

)a−b
= 𝜌a−b = constant, (4.10)

under which the kernels have the form

K𝜀(t) = 𝜌a−b
1

𝜀

(
t

𝜀

)b−1
Ea,b

(
−
(
t

𝜀

)a)
, 1 ≥ a > b > 0.

Proposition 4.2. Under the assumptions of Theorem 3.1 and assumption (4.10), the family of solutions {u𝜀}𝜀∈(0,𝜀̄)
of (3.1) with

K𝜀(t) =
(
𝜏𝜃
𝜀

)a−b 1
𝜀b
tb−1Ea,b

(
−
(
t

𝜀

)a)
, 1 ≥ a > b > 0,

converges in the energy norm to the solution u of the inviscid problem (4.4) at the following rate:

‖u𝜀 − u‖E ≲ ‖K𝜀∗1‖1∕2L1(0,T)
∼ 𝜀(a−b)∕2 as 𝜀 ↘ 0.

The statement of Proposition 4.2 can seem at first inspection unintuitive. Indeed, with the ratio 𝜏𝜃∕𝜀 con-
stant as assumed in (4.10), we have

K𝜀(t) = 𝜌a−b
1

𝜀
K
(
t

𝜀

)
,

whereKdoes not dependon𝜀. Onewouldnaively expect that as the rescaling parameter𝜀↘ 0, the kernelwould

converge in the sense of distributions to a Diracmass at 0. Results exist in this sense; see [7], [21]. However, in our

setting, we do not requireK ≥ 0 which allows for the kernelK𝜀 to converge to the zero function even ifK ≠ 0.

Proof. The statement follows by Theorem 4.1 and the asymptotic behavior of ‖(K𝜀 −K0)∗1‖L1(0,T) =‖K𝜀∗1‖L1(0,T) as 𝜀↘ 0. To establish the latter, we note that

L [K𝜀](z) = 𝜌a−b
(𝜀z)a−b

(𝜀z)a + 1
→ 0 as 𝜀↘ 0

since a > b. Considering the identity

L [K𝜀∗1](z) = 𝜌a−b
1

z

(𝜀z)a−b

(𝜀z)a + 1
= 𝜌a−b𝜀 (𝜀z)

a−(1+b)

(𝜀z)a + 1
,

we find, using the scaling property of the Laplace transform, that

(K𝜀∗1)(t) = 𝜌a−b
(
t

𝜀

)b
Ea,b+1

(
−
(
t

𝜀

)a)
.
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Now, using a change of variable, we have

‖K𝜀∗1‖L1(0,T) = 𝜀𝜌a−b
T∕𝜀

∫
0

|tbEa,b+1(−ta)| dt.
Since b+ 1 ≥ a, the Mittag-Leffler function is completely monotone and thus non-negative. Furthermore,

identity (4.6) and asymptotics (4.8) imply that

𝜀𝜌a−b
T∕𝜀

∫
0

tbEa,b+1(−ta) dt = 𝜀𝜌a−b
(
T

𝜀

)b+1
Ea,b+2

(
−
(
T

𝜀

)a)
∼ 𝜌a−b T1+b−a

Γ(b+ 2− a)
𝜀a−b, (4.11)

which completes the proof. □

Remark 1. Assumption (4.10) means that 𝜏𝜃 should converge to zero at least as fast as 𝜀. Since (4.11) implies that

𝜀𝜌a−b
T∕𝜀

∫
0

tbEa,b+1(−ta) dt ∼ 𝜏a−b𝜃

T1+b−a

Γ(b+ 2− a)
,

one could remove this assumption by letting 𝜏𝜃 ↘ 0 and keeping 𝜀 > 0 (that is, the thermal relaxation time)

fixed.

5 Verifying the uniform boundedness and coercivity assumptions

for different classes of kernels

The remainder of this paper is devoted to proving that the different classes of kernels discussed in Section 2

and the limiting kernels K0 from the previous section indeed satisfy assumptions (A1) and (A2) imposed in the

well-posedness and singular limit analysis.

5.1 How to verify assumption (A)

For kernels that have the form K𝜀 = 𝜀K with 𝜀 ∈ (0, 𝜀̄) and K ∈ L1(0, T) ∪ {𝛿0} independent of 𝜀, we immedi-
ately obtain ‖K𝜀‖(0,T) ≤ 𝜀̄‖K‖(0,T).

The Mittag-Leffler kernels are more interesting from the point of view of obtaining the uniform L1(0, T)

bound. Since the kernels in the Gurtin–Pipkin forms of the Compte–Metzler laws can be written as

K𝜀(t) =
(
𝜏𝜃
𝜀

)a−b 1
𝜀
K
(
t

𝜀

)
, (5.1)

where

K(t) = tb−1Ea,b(−ta), (5.2)

we have ‖K𝜀‖L1(0,T) = (
𝜏𝜃
𝜀

)a−b‖K‖L1(0,T∕𝜀). (5.3)

As in the limiting analysis, we discuss different cases with respect to a and b to determine the behavior of

the right-hand side term as 𝜀↘ 0.
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– If a = b, then ‖K𝜀‖L1(0,T) = ‖K‖L1(0,T∕𝜀).
Therefore, as 𝜀↘ 0, we need to require that K ∈ L1(0,∞). Recall that in this case the Mittag-Leffler

function is completely monotone and therefore, in particular, non-negative. Furthermore, identity (4.6)

implies

‖K‖L1(0,r) =
r

∫
0

d

dt

(
tbEa,b+1(−ta)

)
dt = rbEa,b+1(−ra).

By the asymptotic behavior of Mittag-Leffler functions (4.8), we find that

tbEa,b+1(−ta) ∼
1

Γ(b+ 1− a)
tb−a as t→∞. (5.4)

This asymptotic behavior implies that ‖K‖L1(0,∞) withK given in (5.2) is finite with a = b.

Among the kernels in Section 2 motivated by the physics of nonlinear acoustics, this assumption holds

true for the exponential kernel (2.4) where (a, b) = (1, 1) and the kernel coming from the GFE law where

(a, b) = (𝛼, 𝛼); see Table 1.

– If a < b, asymptotics (5.4) is valid but the function tends to infinity. However, note that for 𝜏𝜃 > 0 fixed, we

have a uniform bound on ‖K𝜀‖L1(0,T) on account of
‖K𝜀‖L1(0,T) = (

𝜏𝜃
𝜀

)a−b‖K‖L1(0,T∕𝜀) ∼ 1

Γ(b+ 1− a)

(
T

𝜏𝜃

)b−a
as 𝜀↘ 0.

Among the kernels discussed in Section 2, the assumption a < b holds for the GFE II law, where (a, b) =
(𝛼, 1); see Table 1.

– If a > b, then in view of (5.3), inevitably

‖K𝜀‖L1(0,T) →+∞ as 𝜀 ↘ 0,

except in the trivial caseK ≡ 0. This asymptotic behavior provides amotivation for assuming the ratio 𝜏𝜃∕𝜀
to be fixed in the limiting analysis when a > b in (5.1), so that we have

‖K𝜀‖L1(0,T) = 𝜌a−b‖K‖L1(0,T∕𝜀).
The physical interpretation of this assumption is that one needs a scaling parameter, 𝜏𝜃 , to match 𝜏 on the

right-hand side of the fractional flux laws GFE I and GFE III; see Table 1. Thus if assumption (4.10) holds, we can

make direct use of asymptotics (4.8), from which we conclude

K(t) ∼ 1

Γ(b− a)
tb−1−a as t→∞.

Therefore, ‖K‖L1(0,∞) <∞.

5.2 How to verify assumption (A)

There are different ways of verifying coercivity assumption (A2); we discuss two of them here needed to tackle

different classes of kernels we have seen so far.

– Fourier approach to proving coercivity. One approach of verifying (A2), which will be used for Mittag-

Leffler kernels when a ≥ b, is to employ Fourier analysis, similarly to Ref. [37, Lemma 2.3]. To this end, let

us denote by f t the extension of a function f by zero outside ℝ∖(0, t), and by  , the Fourier transform. The
following identity holds for the Mittag-Leffler functions:

[
xb−1Ea,b(𝜆x

a)∞
]
(𝜔) = 1√

2𝜋

(𝚤𝜔)a−b

(i𝜔)a − 𝜆, 𝜆 ∈ ℝ.
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Using this formula, we can obtain the Fourier transforms of the Mittag-Leffler kernels in Section 2; see

Table 2. Let us also denote by⋆ the Fourier convolution

( f ⋆ g)(t) = ∫
ℝ

f (t − s)g(s) ds,

and by an overline the complex conjugation. Furthermore, let

𝑣(𝜔) = (K𝜀∞)(𝜔)(yt)(𝜔), m(𝜔) =
√
2𝜋∕(K𝜀∞)(𝜔).

Then using Plancherel’s theorem and the Fourier convolution theorem (see, e.g., [33, Theorems 1, 2,

Section 4.3]), we have
t

∫
0

(
(K𝜀∗y)(s), y(s)

)
L2
ds = ∫

ℝ

(
(K𝜀

∞ ⋆ yt)(s), yt(s)
)
L2
ds

=
√
2𝜋∫

ℝ

(
(K𝜀∞)(𝜔)(yt)(𝜔), (yt)(𝜔)

)
L2
d𝜔

= ∫
ℝ

m(𝜔)‖𝑣(𝜔)‖2
L2(Ω) d𝜔

= ∫
ℝ

Re(m(𝜔))‖𝑣(𝜔)‖2
L2(Ω) d𝜔,

where we have also used the fact that the left-hand side of the identity is real valued. Thus, since the real part

of the Fourier transform of a real-valued function is even, if

Re(m(𝜔)) = Re(
√
2𝜋∕K𝜀∞)(𝜔) ≥ 2𝜋 C̃a,b, 𝜔 ∈ (0,∞), (5.5)

by Plancherel’s theorem and the Cauchy–Schwarz inequality, we have

t

∫
0

(
(K𝜀∗y)(s), y(s)

)
L2
ds ≥ C̃a,b‖K𝜀∗y‖2L2

t
(L2(Ω))

for all t ∈ (0, T). Therefore, if condition (5.5) holds, the above estimate implies that assumption (A2) holds with

the constant

CK𝜀
= C̃a,b, (5.6)

where we highlight the dependence on a and b. An inspection of the last column in Table 2 and using the change

of variables 𝜀𝜔 ↦ 𝜔 yields

C̃a,b = inf
𝜔∈(0,∞)

Re(m(𝜔)) = 2𝜋
(
𝜏𝜃
𝜀

)b−a
inf

𝜔∈(0,∞)
Re((𝚤𝜔)b + (𝚤𝜔)b−a).

The infimum is attained and it is bounded away from zero for 0 < b ≤ a ≤ 1. Indeed, for a = b, we have

C̃a,a = 2𝜋 inf
𝜔∈(0,∞)

Re((𝚤𝜔)b + 1) = 2𝜋

(
inf

𝜔∈(0,∞)
cos(b𝜋∕2)𝜔b + 1

)
= 2𝜋,

Table 2: Fourier transforms of the Mittag-Leffler kernels discussed in Section 2.

K𝜀(t)
√
2𝜋 K𝜀

∞(𝜔) 1

2𝜋
m(𝜔) := 1∕(

√
2𝜋K𝜀

∞(𝜔))(
𝜏𝜃
𝜀

)a−b
1

𝜀b
tb−1Ea,b

(
−
(

t

𝜀

)a) (
𝜏𝜃
𝜀

)a−b
(𝜀𝚤𝜔)a−b

(𝜀𝚤𝜔)a+1

(
𝜏𝜃
𝜀

)b−a[
(𝜀𝚤𝜔)b + (𝜀𝚤𝜔)b−a

]
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while for 0 < b < a ≤ 1,

C̃a,b = 2𝜋
(
𝜏𝜃
𝜀

)b−a
cos((b− a)𝜋∕2)a

b

(
(a− b) cos((b− a)𝜋∕2)

b cos(b𝜋∕2)

) b−a
b

. (5.7)

Therefore, we conclude that the Mittag-Leffler kernels (5.1) with 0 < b ≤ a ≤ 1 satisfy assumption (A2) with

the coercivity constant (5.6). Recalling our discussion in Section 2, this allows us to cover the kernels originating

from the Compte–Metzler laws GFE, GFE I, and GFE III; see Table 1.

To verify (A2) for the Abel-type kernels and the kernel coming from law GFE II, we need an alternative

approach.

– Non-Fourier approach for completelymonotonekernels.Analternative approach of verifying (A2) relies

on a coercivity property from Ref. [38, Lemma B.1], combined with a result on resolvents of the first kind,

cf. [39]. This approach will be applicable on completely monotone kernels, such as the Abel kernel and the

Mittag-Leffler functions when b ≥ a.

We first revisit [38, Lemma B.1] to lower the regularity assumption on thememory kernel from Lp(0, T)

to L1(0, T).

Lemma 5.1 . (Lemma B.1 in [38] revisited)Given T ∈ (0,∞], let ∈ L1(0, T). Furthermore, assume that ≥ 0 on

(0, T) and that for all t0 ∈ (0, T) it holds

 ∈ W 1,1(t0, T), ′|[t0,T] ≤ 0 a.e.

Then
T

∫
0

(∗yt, y)L2 ds ≥ 1

2
∗‖y‖2

L2(Ω)(T)−
1

2

T

∫
0

(s) ds‖y(0)‖2
L2(Ω) (5.8)

for all y ∈ W 1,1(0, T; L2(Ω)).

Proof. Similarly to the proof of [38, Lemma B.1], we use an approximating sequence {n}n∈ℕ ⊆ W 1,1(0, T)

defined as

n(t) = max{̃n(t),𝑤(t)∕n}

for some fixed positive weight function𝑤 ∈ L1(0, T) and

̃n(t) := 1|[0,1∕n](1∕n)+ 1|[1∕n,T](t)(t).
The identity (5.8) can be shown to hold forn in place of as in the proof of [38, LemmaB.1]. It thus remains

to prove that n converges to  in the L1 norm. To do so, we can rely on Lebesgue’s dominated convergence

theorem, using pointwise convergence of Kn to K and the fact that for any n ∈ ℕ, we have 0 < n ≤ +𝑤 ∈
L1(0, T). □

Having in mind the verification of (A2), we next extend the reasoning from Ref. [19, Lemma 3.1] to a large

family of completely monotone kernels K. Completely monotone functions belong to C∞(0,∞) ⊂ W 1,1([t0, T])

for all t0 > 0 and thus satisfy the regularity assumptions of Lemma 5.1.

Let K ∈ L1
loc
(ℝ+) be completely monotone on (0,∞) and suppose K > 0 for almost all t ∈ ℝ+. By [39,

Theorem 5.5.4], K has a resolvent of the first kind which is the sum of a point mass at zero and a completely

monotone, locally integrable function:

r = A𝛿0 + f such that K∗r = 1. (5.9)

It is easy to see thatA has to be non-negative. Moreover,A = 0 if and only if limt→0K(t) = ∞. In other words,

due to the complete monotonicity, the A-term in (5.9) appears if and only ifK ∈ L∞(0, T).
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Lemma 5.2. Let K ∈ L1
loc
(ℝ+) be completely monotone, nonconstant and a.e. positive (K > 0 for almost all t ∈

ℝ+) and let

r = A𝛿0 + f

be its resolvent of the first kind. Then

t

∫
0

∫
Ω

(
K∗y

)
(s) y(s) dxds ≥ 1

2
A‖K∗y‖2

L2(Ω)(t)+ f(T)
1

2

t

∫
0

‖K∗y‖2
L2(Ω) ds

for all y ∈ L2(0, t; L2(Ω)) and t ∈ (0, T), where for T <∞ we have f(T) > 0.

Proof. We prove the inequality for y ∈ C∞([0, T]; L2(Ω)); the statement follows then by density of C∞([0, T]) in
L2(0, T). Applying Lemma 5.1 on = f yields

t

∫
0

(r∗𝑣t, 𝑣)L2 ds =
t

∫
0

(
(f∗𝑣t, 𝑣)L2 + A(𝑣t, 𝑣)L2

)
ds

≥ 1

2
A(‖𝑣(t)‖2

L2(Ω) − ‖𝑣(0)‖2
L2(Ω))+

1

2

⎛⎜⎜⎝f∗‖𝑣‖
2

L2(Ω)(t)−
t

∫
0

f ds‖𝑣(0)‖2
L2(Ω)

⎞⎟⎟⎠,
for any 𝑣 ∈ W 1,1(0, T). By picking 𝑣 = K∗y, we have that (K∗y)(0) = 0 (since y ∈ L∞(0, T)), and subsequently

that r∗𝑣t = y. We then conclude that

t

∫
0

(y,K∗y)L2 ds ≥ 12A‖K∗y‖2L2(Ω)(t)+ 1

2

(
f∗‖K∗y‖2

L2(Ω)

)
(t)

≥ 1
2
A‖K∗y‖2

L2(Ω)(t)+ inf
𝜏∈(0,T)

f(𝜏)
1

2

t

∫
0

‖K∗y‖2
L2(Ω) ds,

where by complete monotonicity inf𝜏∈(0,T)f(𝜏) = f(T).
To prove that f(T) > 0, we reason by contradiction. Suppose that f(T) = 0. From the complete monotonicity

of f and its local absolute continuity it is clear that f(t1) = 0 for all t1 ≥ T . We define T̃ = inf{t > 0 : f(t) = 0}
and use that then for all t1 > T̃: 1 = K∗r(t1) = AK(t1)+ ∫ T̃

0
K(t1 − s)f(s) ds, thus

0 =
T̃

∫
0

(
K(T̃ − s)−K(t1 − s)

)
f(s) ds+ A[K(T̃)−K(t1)], (5.10)

where by minimality in the definition of T̃ we have f > 0 on (0, T̃). Moreover, by complete monotonicity of K,
we have that A[K(T̃)−K(t1)] ≥ 0. Similarly, the factor K(T̃ − s)−K(t1 − s) is non-negative, and we conclude

from (5.10) that it actually vanishes. That is, for all t1 > T̃ , s ∈ [0, T̃] the identity K(T̃ − s) = K(t1 − s) holds,

which by setting s = T̃ , t = t1 − s implies K(t) = K(0) for all t > 0. This contradicts our assumption that K is

nonconstant. □

Lemma 5.2 implies an estimate of the type (A2) in case K𝜀 is not constant. In the special case of constant

kernels K𝜀 ≡ c𝜀 for some c𝜀 > 0, it is clear that assumption (A2) does not hold but instead the straightforward

identity
t

∫
0

∫
Ω

(
K𝜀∗y

)
(s) y(s) dxds = 1

2c𝜀
‖(K𝜀∗y)(t)‖2L2(Ω)
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holds for all y ∈ L2(0, t; L2(Ω)) (note that ‖(K𝜀∗y)(0)‖2L2(Ω) = 0). The resulting PDE in that case is actually the

inviscid Westervelt Equation (4.4) with c2 and f replaced by c2 + c𝜀 and f − c𝜀Δu(0), respectively. Its well-
posedness was already mentioned above to be a byproduct of Theorem 3.1. Also letting c𝜀 converge to some

limit, e.g., c𝜀 → 0 is technically feasible due to the uniform energy bounds from Theorem 3.1, but probably not

of high practical interest.

With b ≥ a, the Mittag-Leffler function is completely monotone and satisfies assumptions of Lemma 5.2.

Thus, recalling the kernels discussed in Section 2, we can use this result to verify the remaining case of the GFE

II kernel, where (a, b) = (𝛼, 1). For this particular kernel, the resolvent is given by

r =
(
𝜏𝜃
𝜀

)1−𝛼[
𝜀𝛿0 +

1

𝜀𝛼−1
g𝛼

]
.

One may indeed readily check that

L

[(
𝜏𝜃
𝜀

)𝛼−1 1
𝜀
E𝛼,1

(
−
(
t

𝜀

)𝛼)
∗r

]
(z) = 1∕z.

Similarly, the function 𝜀𝜏−𝛼
𝜃
g𝛼 satisfies assumptions of Lemma 5.2 and its resolvent is given by

1

𝜀
𝜏𝛼
𝜃
g1−𝛼 .

5.2.1 Results of the verification

For convenience, we compile in Table 3 the results of the verification of assumptions (A1) and (A2) for memory

kernels arising in the context of nonlinear acoustics. The last column in Table 3 provides the coercivity constant

CK𝜀
in assumption (A2) and another argument in favor of assuming the ratio 𝜏𝜃∕𝜀 to be constant for laws GFE I

and III. In that case, it is straightforward to check using Table 3 that CK𝜀
can be bounded uniformly from below

by some CA2
> 0 for 𝜀 ∈ (0, 𝜀̄).

We point out that the theoretical framework developed in this paper, in particular pertaining to the conti-

nuity of the solution with respect to a parameter-dependent kernel, K𝜀, in Theorem 4.1, can be easily used to

study the limiting behavior of the equations with respect to other physical parameters of interest. For instance,

Theorem 4.1 can be employed in studying the limiting behavior of Equation (3.1) with the Mittag-Leffler kernels

listed in Table 3 as 𝛼 ↗ 1. One can set 𝜀 = 1− 𝛼 to frame the study within the previous theory. The key remain-
ing component of such a limiting analysis would be to prove that assumptions (A1) and (A2) hold uniformly for

𝛼 in a neighborhood of 1−.

Table 3: Kernels for flux laws discussed in Section 2 and the assumptions they satisfy; C̃𝛼,2𝛼−1 > 0 and C̃1,𝛼 > 0 are constants defined in

(5.7) that can be made independent of 𝜀 (for GFE I and III, provided 𝜏𝜃∕𝜀 is constant).

Examples of kernelsK
𝜺
in nonlinear acoustics (A) (A) CK

𝜺

𝜀𝜏−𝛼
𝜃

g𝛼 ✓ ✓ 1

𝜀
𝜏𝛼
𝜃
g1−𝛼 (T)

1

𝜀
exp

(
− t

𝜀

)
✓ ✓ 2𝜋

GFE I:

(
𝜏𝜃
𝜀

)1−𝛼
1

𝜀2𝛼−1
t2𝛼−2E𝛼,2𝛼−1(−( t𝜀 )

𝛼 ) ✓ ✓ C̃𝛼,2𝛼−1

GFE II:

(
𝜏𝜃
𝜀

)𝛼−1
1

𝜀
E𝛼,1(−( t𝜀 )

𝛼 ) ✓ ✓ 𝜏1−𝛼
𝜃

g𝛼 (T)

GFE III:

(
𝜏𝜃
𝜀

)1−𝛼
1

𝜀𝛼
t𝛼−1E1,𝛼 (−( t𝜀 )) ✓ ✓ C̃1,𝛼

GFE:
1

𝜀𝛼
t𝛼−1E𝛼,𝛼 (−( t𝜀 )

𝛼 ) ✓ ✓ 2𝜋
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6 Conclusion and outlook

In this work, we have investigated a family of nonlinear Westervelt equations with general dissipation of Djr-

bashian–Caputo-derivative type. We rigorously studied them in terms of the local well-posedness and their

limiting behavior with respect to the parameter 𝜀, which may be physically interpreted as the sound diffusivity

or the thermal relaxation time. As we have seen, the limiting behavior is influenced by the dependence of the

memory kernel K𝜀 on 𝜀, and for this reason, we have considered different classes of kernels separately. The

framework developed here and leading to Theorem 4.1 allows extending the limiting study to other parameters

of interest, as long as the parameter-dependent kernels satisfy assumptions (A1) and (A2).

Futureworkwill be concernedwith the study of the limiting behavior of quasilinear equations of Kuznetsov

and Blackstock type given in (2.7) and (2.8), respectively, where we expect that the kernel assumptions will need

to be further tailored to the needs of each of these models. It would also be of interest to extend the limiting

analysis to settings with practical boundary conditions, such as Neumann or absorbing boundary conditions.

We expect that the main ideas from the current energy arguments can be adjusted but with a higher level of

technicality due to the lack of Poincaré-Friedrichs inequality. Finally, the important question of whether global

results in time can be established when the limiting problems contain dissipation (such as (4.9)) remains open.

Acknowledgments: We thank the reviewers for their careful reading of the manuscript and helpful remarks,

which have led to marked improvements. For open access purposes, the author has applied a CC BY public

copyright license to any author-accepted manuscript version arising from this submission.

Research ethics: Not applicable.

Author contributions: The authors have accepted responsibility for the entire content of this manuscript and

approved its submission.

Competing interests: The authors state no conflict of interest.

Research funding: This research was funded in part by the Austrian Science Fund (FWF) [10.55776/DOC78].

Data availability: Not applicable.

Appendix A: Unique solvability of the nonlocal semi-discrete

problem

We present here the proof of existence of a unique semi-discrete approximation of (3.3). As in Ref. [14], we may

approximate the solution by

u𝜀,n(x, t) =
n∑
i=1
𝜉n
i
(t)𝑣i(x),

where {𝑣i}∞i=1 are smooth eigenfunctions of the Dirichlet–Laplacian operator.
With Vn = span{𝑣1,… , 𝑣n}, the semi-discrete problem is given by

((1+ 2k𝜙)u𝜀,n
tt

− c2Δu𝜀,n −K𝜀∗Δu𝜀,nt + 2k𝜙tu
𝜀,n
t

− f , 𝑣 j) = 0

for all j = 1,… , n, with approximate initial conditions (u𝜀,n, u𝜀,n
t
)|t=0 = (

un
0
, un

1

)
taken as L2(Ω) projections of

(u0, u1) onto Vn. With 𝝃 =
[
𝜉n
1
𝜉n
2
… 𝜉n

n

]T
, the approximate problem can be rewritten in matrix form

𝕄m(t)𝝃tt + c2𝔻𝝃 + 𝔻K𝜀∗𝝃t +𝕄mt
(t)𝝃t = f ,

where the entries of matrices𝕄m(t) = [𝕄m,i j],𝕄mt
(t) = [𝕄mt ,i j

], 𝔻 = [𝔻i j], and vector f = [f j] are given by

𝕄m,i j(t) = ((1+ 2k𝜙)𝑣i, 𝑣 j)L2 , 𝕄mt ,i j
(t) = (2k𝜙t𝑣i, 𝑣 j)L2 ,

𝔻i j = −(Δ𝑣i, 𝑣 j)L2 , f i(t) = ( f (t), 𝑣i)L2 .
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If we introduce the vectors of coordinates of the approximate initial data in the basis:

𝝃0 =
[
𝜉n
0,1
𝜉n
0,2

… 𝜉n
0,n

]T
, 𝝃1 =

[
𝜉n
1,1
𝜉n
1,2

… 𝜉n
1,n

]T
,

then by setting 𝝁 = 𝝃tt, we have

𝝃t(t) = 1∗𝝁+ 𝝃1, 𝝃(t) = 𝝃0 + t𝝃1 + 1∗1∗𝝁.

Therefore, the semi-discrete problem can be rewritten as

𝕄m(t)𝝁+ c2𝔻
(
𝝃0 + t𝝃1 + 1∗1∗𝝁

)
+ 𝔻K𝜀∗(1∗𝝁+ 𝝃1)+𝕄mt

(t)(1∗𝝁+ 𝝃1) = f .

Since𝕄m ∈ L∞(0, T) is positive definite due to assumption (3.2), the semi-discrete problem can be further

seen as a system of Volterra integral equations:

𝝁+ K∗𝝁 = f̃ ,

with

K = 𝕄−1
m (t)

{
c2𝔻1∗1+ 𝔻K𝜀∗1+𝕄mt

(t)
}

and

f̃ = 𝕄−1
m (t)

{
−c2𝔻

(
𝝃0 + t𝝃1

)
− 𝔻K𝜀∗𝝃1 −𝕄mt

(t)𝝃1 + f (t)
}
.

By the existence theory for systems of Volterra integral equations of the second kind [39, Ch. 2, Theorem 4.5],

there is a unique solution 𝝁 ∈ L∞(0, T). Combined with initial data, from 𝝃tt = 𝝁, we can then conclude that

there exists a unique 𝝃 ∈ W2,∞(0, T) and thus un,𝜀 ∈ W2,∞(0, T; Vn).
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