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Abstract: The purpose of this paper is three-fold. First, we establish singular Trudinger–Moser inequalities with

less restrictive constraint:

sup
u∈H1(ℝ2),∫

ℝ2
(|∇u|2+V(x)u2)dx≤1∫

ℝ2

e
4𝜋

(
1− 𝛽

2

)
u2 − 1|x|𝛽 dx < +∞, (0.1)

where 0 < 𝛽 < 2, V(x) ≥ 0 and may vanish on an open set in ℝ2. Second, we consider the existence of ground

states to the following Schrödinger equations with critical exponential growth in ℝ2:

−Δu+ 𝛾u = f (u)|x|𝛽 , (0.2)

where the nonlinearity f has the critical exponential growth. In order to overcome the lack of compactness,

we develop a method which is based on the threshold of the least energy, an embedding theorem introduced

in (C. Zhang and L. Chen, “Concentration-compactness principle of singular Trudinger-Moser inequalities inℝn

and n-Laplace equations,” Adv. Nonlinear Stud., vol. 18, no. 3, pp. 567–585, 2018) and the Nehari manifold to get

the existence of ground states. Furthermore, as an application of inequality (0.1), we also prove the existence of

ground states to the following equations involving degenerate potentials in ℝ2:

−Δu+ V(x)u = f (u)|x|𝛽 . (0.3)
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1 Introduction and main results

LetΩ be a smooth bounded domain. The classical Sobolev embedding theorems state thatW
1, p
0
(Ω) ⊂ Lq(Ω) for

1 ≤ q ≤ p∗ and p < n, where p∗ = n p

n− p
is called the Sobolev exponent. However, in the limiting case p = n, some

examples show thatW 1,n
0
(Ω) ⊈ L∞(Ω). In this case, Trudinger’s inequality serves as an appropriate replacement.

Trudinger’s inequality was first established by Trudinger [1]. More precisely, he proved when p = n there exists

a constant 𝛼 > 0 such that the following inequality holds (see also Pohozaev [2] and Yudovic [3]):

sup
u∈W1,n

0
(Ω),‖∇u‖n≤1

1|Ω|∫
Ω

e𝛼|u| n
n−1
dx < ∞. (1.1)

Nevertheless, the best constant 𝛼 in (1.1) is unknown. A sharp version of inequality (1.1) was given by Moser

[4].

sup
u∈W1,n

0
(Ω),‖∇u‖n≤1

1|Ω|∫
Ω

e𝛼|u| n
n−1
dx < ∞, iff𝛼 ≤ 𝛼n := n𝜔

1

n−1
n−1, (1.2)

where 𝜔n−1 denotes the area of the surface of the unit ball in ℝn. Now, the inequality (1.2) are called

Trudinger–Moser inequalities. There are many extensions of Trudinger–Moser inequalities. One of the impor-

tant extensions is to construct Trudinger–Moser inequalities in the whole Euclidean space. Related inequalities

for the whole Euclidean space have been considered by Cao in [5] in the case n = 2 and for any dimension by do

Ó [6] and Adachi and Tanaka [7] in the subcritical case, that is 𝛼 < 𝛼n. When it comes to the critical case 𝛼 = 𝛼n,

Ruf [8] (in the case n = 2) and Li and Ruf [9] (n ≥ 3) showed that if the Dirichlet norm is replaced by the Sobolev

norm, i.e. ‖u‖W1,n(ℝn) =
(∫ℝn |∇u|n + |u|ndx) 1

n , then there holds

sup
u∈W1,n(ℝn),‖u‖

W1,n (ℝn )≤1∫ℝn

Φn

(
𝛼|u(x)| n

n−1

)
dx < ∞ iff 𝛼 ≤ 𝛼n, (1.3)

whereΦn(t) := et −
n−2∑
j=0

t j

j! .

All the proofs given above depend strictly on the Pólya-Szegö inequality and the symmetrization argument.

A symmetrization-free argument was developed by Lam and Lu in [10], [11]. Using this symmetrization-free

argument, they proved the following critical singular Trudinger–Moser inequality in ℝn:

Theorem A. ([10]) Assume n ≥ 2, 0 ≤ 𝛽 < n and 𝛾 > 0, then

sup‖u‖𝛾≤1∫
ℝn

Φn

(
𝛼
(
1− 𝛽

n

)|u(x)| n

n−1

)
|x|𝛽 dx < ∞ iff 𝛼 ≤ 𝛼n,𝛽 :=𝛼n

(
1− 𝛽

n

)
, (1.4)

where ‖u‖𝛾 := (∫ℝn |∇u|n + 𝛾|u|ndx) 1

n .

The singular Trudinger–Moser inequalities on the entire Euclidean space have also been considered in the

paper of Adimurthi and Yang [12]. When one restricts the Trudinger–Moser functionals on a function sequence

{uk}k , the Concentration-Compactness principle associatedwith the Trudinger–Moser inequalitiesmakes sense
which was first established by [13]. The Concentration-Compactness principle associated with Trudinger–Moser

inequality (1.3) was established by do Ó, de Souza and de Medeiros in [14]. Li, Lu and Zhu [15] obtained the

Concentration-Compactness principle associated with Trudinger–Moser inequalities on the entire Heisenberg
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group by applying the symmetrization-free argument. Later, Chen and Zhang [16] generalized the Concentration-

Compactness principle associated with Trudinger–Moser inequalities on the entire Euclidean Space to the

singular case:

Theorem B. ([16]) Let {uk}k be a bounded sequence in H1(ℝ2) such that ‖uk‖𝛾 = 1 and uk ⇀ u0 ≢ 0 in H1(ℝ2). If

0 < p <
1

1− ‖u0‖2𝛾 ,
then

sup
k ∫

ℝ2

e
4𝜋 p

(
1− 𝛽

2

)
u2
k − 1|x|𝛽 dx < +∞.

For more results of Trudinger–Moser inequalities and the related Concentration-Compactness principle, one

can refer to [14], [17]–[25] and the references therein.

If 𝛾 is replaced by the potential function V(x), we can easily deduce inequality (1.4) when V(x) has a positive

constant lower bound. However if V(x) vanishes on some open set ofℝ2, classical methods such as symmetriza-

tion or blow-up analysis fail. Therefore, the problem becomes fairly complicated and there are few works

devoted to it. In 2021, Chen, Lu and Zhu [26] developed a method combining a new imbedding theorem involv-

ing the degenerate potential which may vanish on some open set inℝ2 (Lemma 2.1, [26]) to derive the following

result:

Theorem C. ([26]) Assume that the potential V(x) ≥ 0 satisfies V(x) = 0 at the ball B𝛿(0) centered at the origin

with the radius 𝛿 and V(x) ≥ c0 in ℝ2∖B2𝛿(0) for some 𝛿 > 0. Then

sup
u∈H1(ℝ2),‖u‖V≤1∫

ℝ2

(
e4𝜋u

2 − 1
)
dx < ∞, (1.5)

where ‖u‖V =
(∫ℝ2 |∇u|2 + V(x)|u|2dx) 1

2 .

The first aim of this paper is to establish the singular version of Trudinger–Moser inequality (1.5).

Theorem 1.1. Assume that the potential V(x) ≥ 0 satisfies V(x) = 0 at the ball B𝛿(0) centered at the origin with

the radius 𝛿 and V(x) ≥ V0 in ℝ2∖B2𝛿(0) for some 𝛿 > 0. Then

sup
u∈H1(ℝ2),‖u‖V≤1∫

ℝ2

e
4𝜋

(
1− 𝛽

2

)
u2 − 1|x|𝛽 dx < +∞. (1.6)

Furthermore, we study the Concentration-Compactness principle associated with Trudinger–Moser

inequality (1.6).

Theorem 1.2. Let {uk}k ⊆ HV (ℝ2) such that ‖uk‖V = 1 and uk ⇀ u0 ≢ 0 in HV (ℝ2). For any

0 < p <
1

1− ‖u0‖2V ,
one has

sup
k ∫

ℝ2

e
4𝜋p

(
1− 𝛽

2

)
u2
k − 1|x|𝛽 dx < +∞.
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Trudinger–Moser inequality (1.1) and the associated Concentration-Compactness principle play an impor-

tant role in studying the existence of ground states to the following equations:

−Δu+ V(x)u = f (u)|x|𝛽 , (1.7)

where 0 ≤ 𝛽 < 2 and V(x) ≥ 0 is a degenerate potential satisfying:

(V1) V(x) = 0 at B𝛿(0) and V(x) ≥ V0 in ℝ2∖B2𝛿(0) for some positive V0 and 𝛿.
(V2) There holds

sup
x∈ℝ2

V(x) = lim|x|→∞
V(x) = 𝛾 > 0.

The nonlinear term f (t) is continuous and satisfies the following conditions:

(i) There exists some 𝛽0 > 0 such that

lim|t|→∞
f (t)

e
𝛼
(
1− 𝛽

2

)
t2
=

⎧⎪⎨⎪⎩
0, for 𝛼 > 𝛽0,

+∞, for 𝛼 < 𝛽0.

(ii) There exists 𝜇 > 2 such that 0 < 𝜇F(t) = 𝜇∫ t

0
f (s)ds ≤ t f (t) for any t ∈ ℝ. This is the well known (A-R)

condition.

(iii) There exist positive constants t0 andM0 such that F(t) ≤ M0| f (t)| when |t| ≥ t0.

(iv) f (0) = 0 and f (t) = o(t) for t sufficiently close to 0.

(v) f (t) is a C1(ℝ) function and f (t)

t
is strictly increasing in (0,+∞), and decreasing in (−∞, 0).

In order to study the existence of ground states to (1.7), we first focus on the limit equation of (1.7):

−Δu+ 𝛾u = f (u)|x|𝛽 . (1.8)

Our third main result comes as

Theorem 1.3. Assume f (t) satisfies (i)–(v) and

(vi) lim inf
t→+∞

t f (t)e−(1−
𝛽

2
)𝛽0t

2 = 𝛼0 > , where

 = inf
r>0

(2− 𝛽)2(
1− 𝛽

2

)
𝛽0r

2−𝛽
e

𝛾(2−𝛽)
4

r2 .

Then equation (1.8) admits a positive ground state solution.

By applying the Concentration-Compactness principle Theorem 1.2 and Theorem 1.3, we can derive

Theorem 1.4. Assume V(x) satisfies (V1) and (V2), f (t) satisfies (i)–(vi), then equation (1.7) admits a positive

ground state solution.

As far as we know, there aremanyworks devoted to the existence of a ground state solution to (1.7). If 𝛽 = 0

and V(x) is coercive, i.e.

V(x) ≥ C0 > 0 and additional either
1

V
∈ L1(ℝ2) or lim|x|→+∞

V(x) = +∞,

one can easily get E =
{
u ∈ H1(ℝ2): ∫ℝ2V(x)|u|2dx < +∞

}
can be compactly embedded into Lp(ℝ2)(p ≥ 1). Then

the existence of nontrivial weak solutions can be obtained by Mountain-Pass lemma, one can see [15], [27], [28]

for details. In the case V(x) is a constant, H1(ℝ2) is continuously embedded into L2(ℝ2) but the embedding is
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not compact. Ruf and Sani [29] showed that (1.7) possesses a nontrivial ground state solution by means of the

constrained minimization method on the Pohozaev manifold under the growth assumption

lim|s|→+∞
s f (s)

e4𝜋s
2 ≥ 𝛽0 > 0, for some 𝛽0.

Later, Masmoudi and Sani [30] weakened the above growth condition by combining the Pohozaev manifold

and the Trudinger–Moser inequality with exact growth in ℝ2. For more results of the existence of nontrivial

solutions, one can refer to [14]–[16], [18], [31]–[33] and the references therein.

When V(x) is the Rabinowitz type potentials:

0 < C0 = inf
ℝ2

V(x) < sup
ℝ2

V(x) = lim|x|→+∞
V(x) = 𝛾 < +∞

and the nonlinearity f (t) is of exponential growth, the existence of semiclassical state solution was obtained

by Alves and Figueiredo [34] if 𝜀 is small enough and −Δ is replaced by −𝜀2Δ. Recently, Chen, Lu and Zhu [35]
removed the smallness assumption on 𝜀 and established the existence of ground state solutions to (1.7).

Recently, Chen, Lu and Zhu [26], [36] obtained the existence of a ground state solution to quasilinear

equations involving the degenerate potentials (C0 = 0) and the critical exponential growth when 𝛽 = 0 by using

a sharpTrudinger–Moser inequalitywith degenerate potentials inℝ2. Ourwork focus on the existence of ground

state solutions to (1.7) in the case 𝛽 > 0. Due to the appearance of the singular weight, it becomes difficult to get

the existence result by the constrainedminimizationmethod based on the Pohozaevmanifold, we can not follow

the same line as [26], [29], [30], [36]. To overcome this difficulty, we first use the Moser function sequence {Mn}n
to establish the threshold of the least energy, and then we apply an embedding theorem in [16] to obtain the

convergence of ∫ℝ2
F(uk )|x|𝛽 dx. By managing a method combining the threshold of the least energy, the convergence

of ∫ℝ2
F(uk )|x|𝛽 dx and Nehari manifold, we can get the desired result.

The paper is organized as follows. Section 2 establishes the critical singular Trudinger–Moser inequality

involving the degenerate potential and the related Concentration-Compactness principle. In Section 3, we focus

on the existence of ground states of the limit equation and give the proof of Theorem 1.3. In Section 4, we prove

the existence of ground states to the Schrödinger equation (1.7) by using Theorem 1.2 and Theorem 1.3.

2 Singular Trudinger–Moser inequality involving the degenerate

potential and the related Concentration-Compactness principle

This section is devoted to studying the singular Trudinger–Moser inequality involving the degenerate poten-

tial and the related Concentration-Compactness principle. That is, presenting the proofs for Theorem 1.1 and

Theorem 1.2. Before starting the proof, we need an important embedding lemma which was established in [26].

Lemma 2.1. ([26]) Assume u ∈ H1(ℝ2) such that

∫
ℝ2

(|∇u|2 + V(x)|u|2)dx < +∞,

where V(x) satisfies (V1) and (V2). Then there exists a positive constant c depending on 𝛿 and V0 such that

∫
ℝ2

|u|2dx < c∫
ℝ2

(|∇u|2 + V(x)|u|2)dx.

Remark 2.2. Lemma 2.1 implies that the standard Sobolev space H1(ℝ2) and the space HV (ℝ2) which is defined

as the completion of C∞
c
(ℝ2) under the norm ‖u‖V are equivalent.
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Now, we are ready to start the Proof of Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, we assume u ≥ 0 is smooth and compactly supported since

C∞
c
(ℝ2) is dense in the Hilbert space HV (ℝ2). Then we split the proof into two cases. □

Case 1. If

∫
ℝ2

V(x)|u|2dx = 0.

As a consequence, one can obtain that supp u ⊆ B2𝛿(0). The classical singular Trudinger–Moser inequality

on the bounded domain (see [37]) gives that

∫
ℝ2

e
4𝜋

(
1− 𝛽

2

)
u2 − 1|x|𝛽 dx ≤ sup

𝑣∈H1(ℝ2), ∫
B2𝛿 (0)

|∇𝑣|2dx≤1 ∫
B2𝛿 (0)

e
4𝜋

(
1− 𝛽

2

)
𝑣2 − 1|x|𝛽 dx < C𝛿 . (2.1)

Case 2. If

∫
ℝ2

V(x)|u|2dx > 0.

Now, we apply the rearrangement-free method which was developed in [10], [11] and set

A(u) :=
⎛⎜⎜⎝∫ℝ2

V(x)|u|2dx⎞⎟⎟⎠
1

2

and

Ω(u) :={x ∈ ℝ2|u(x) > A(u)}.

It is easy to known that A(u) < 1. Now, we claim that

|Ω(u)| ≤ 4𝜋𝛿2 + 1

V0
,

where |Ω(u)| denotes the measure ofΩ(u). With the help of (V1), one can derive that

|Ω(u) ∩ Bc
2𝛿
(0)| ≤ ∫

Ω(u)∩Bc
2𝛿
(0)

u2

A2(u)
dx

≤
∫

Ω(u)∩Bc
2𝛿
(0)

u2dx

∫
ℝ2

V(x)|u|2dx
≤ 1

V0
.

Then it follows that |Ω(u)| ≤ |Ω(u) ∩ Bc
2𝛿
(0)|+ |B2𝛿(0)| ≤ 1

V0
+ 4𝜋𝛿2.

By splitting the integral into two parts, we have

∫
ℝ2

e
4𝜋

(
1− 𝛽

2

)
u2 − 1|x|𝛽 dx = ∫

Ω(u)

e
4𝜋

(
1− 𝛽

2

)
u2 − 1|x|𝛽 dx + ∫

ℝ2∖Ω(u)

e
4𝜋

(
1− 𝛽

2

)
u2 − 1|x|𝛽 dx

=: I1 + I2.
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For I2, direct calculations give

I2 ≤ ∫
{u(x)<1}

∞∑
k=1

(2𝜋(2− 𝛽))k

k!
u2k|x|𝛽 dx

≤ ∫
{u(x)<1}

∞∑
k=1

(2𝜋(2− 𝛽))k

k!
u2|x|𝛽 dx

≤
∞∑
k=1

(2𝜋(2− 𝛽))k

k! ∫
ℝ2

u2|x|𝛽 dx.

With the help of Theorem A, one can obtain that

∫
ℝ2

u2|x|𝛽 dx = ‖u‖2𝛾∫
ℝ2

(
u‖u‖𝛾

)2
1|x|𝛽 dx

≤ 2

2− 𝛽
‖u‖2𝛾∫

ℝ2

1|x|𝛽
⎛⎜⎜⎝exp

⎛⎜⎜⎝
(
1− 𝛽

2

)
u2

‖u‖2𝛾
⎞⎟⎟⎠− 1

⎞⎟⎟⎠dx

≤ 2

2− 𝛽
‖u‖2𝛾 sup‖u‖𝛾≤1∫

ℝ2

e

(
1− 𝛽

2

)
u2 − 1|x|𝛽 dx

≤ C‖u‖2𝛾 ,
where C is a positive constant independent of u. Summing up the above, one can apply Lemma 2.1 to derive that

I2 ≤ e
4𝜋

(
1− 𝛽

2

)
∫
ℝ2

u2|x|𝛽 dx ≤ C‖u‖2𝛾 ≤ C(1+ 𝛾c)∫
ℝ2

(|∇u|2 + V(x)u2)dx ≲ 1.

As for I1, we denote two functions 𝑣 and𝑤 inΩ(u) by

𝑣(x) := u(x)− A(u) and𝑤(x) := 𝑣(x)(1+ A2(u))
1

2 .

Then 𝑣,𝑤 ∈ H1
0
(Ω(u)) and direct calculations yield that

u2(x) ≤ 𝑤2(x)+ 1+ A2(u),

∇𝑤(x) = (1+ A2(u))
1

2∇𝑣(x).

Therefore, we get

∫
Ω(u)

|∇𝑤(x)|2dx = (1+ A2(u))∫
Ω(u)

|∇𝑣(x)|2dx

≤ (1+ A2(u))

⎛⎜⎜⎝1− ∫
ℝ2

V(x)u2dx

⎞⎟⎟⎠
< 1. (2.2)
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Therefore, one can apply the classical singular Trudinger–Moser inequality on the bounded domain to

derive that

I1 = ∫
Ω(u)

e
4𝜋

(
1− 𝛽

2

)
u2 − 1|x|𝛽 dx

≤ e
4𝜋

(
1− 𝛽

2

)
(1+A2(u))

∫
Ω(u)

e
4𝜋

(
1− 𝛽

2

)
𝑤2

|x|𝛽 dx

< C. (2.3)

Combining the estimates of I1 and I2, we see that inequality (1.6) holds. Thus, we complete the

Proof of Theorem 1.1.

Now, we prove the Concentration-Compactness principle associated with the Trudinger–Moser inequality

(1.6).

Proof of Theorem 1.2. By splitting the integral into two parts, we get

∫
ℝ2

e
4𝜋 p

(
1− 𝛽

2

)
u2
k − 1|x|𝛽 dx =

⎛⎜⎜⎜⎝∫B1(0)
+ ∫

Bc
1
(0)

⎞⎟⎟⎟⎠
e
4𝜋 p

(
1− 𝛽

2

)
u2
k − 1|x|𝛽 dx

=: I1 + I2. (2.4)

First, we estimate I1. Since p <
1

1−‖u0‖2V , there exists a 𝜀0 > 0 such that p(1+ 𝜀0) <
1

1−‖u0‖2V . Picking q = (1+
𝜀0
2
)(

2

2−𝛽 ), then p(1− 𝛽

2
)q < 1

1−‖u0‖2V and
1

q′
= 𝛽+𝜀0

2+𝜀0
> 𝛽

2
. Therefore, one can apply Hölder’s inequality to derive

that

I1 ≤ ∫
B1(0)

e
4𝜋 p

(
1− 𝛽

2

)
u2
k

|x|𝛽 dx

≤
⎛⎜⎜⎜⎝∫B1(0)

e
4𝜋 pq

(
1− 𝛽

2

)
u2
kdx

⎞⎟⎟⎟⎠

1

q ⎛⎜⎜⎜⎝∫B1(0)
|x|−𝛽q′dx

⎞⎟⎟⎟⎠

1

q′

≤ C, (2.5)

where the last inequality comes from the Concentration-Compactness principle of Trudinger–Moser inequality

involving the degenerate potential (see [26]).

As for I2, still using the Concentration-Compactness principle of Trudinger–Moser inequality involving the

degenerate potential, we have

I2 ≤ ∫
Bc
1
(0)

(
e
4𝜋 p

(
1− 𝛽

2

)
u2
k − 1

)
dx < C.

This together with inequality (2.5) gives that

sup
k ∫

ℝ2

e
4𝜋 p

(
1− 𝛽

2

)
u2
k − 1|x|𝛽 dx < +∞.

Thus, we complete the proof. □
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3 Existence of ground state solutions to the limit equation (1.8)

This section is devoted to the existence of ground state solutions to the limit equation (1.8). With direct calcula-

tions, we get its related functional and Nehari manifold:

J∞(u) =
1

2∫
ℝ2

(|∇u|2 + 𝛾u2)dx − ∫
ℝ2

F(u)|x|𝛽 dx
and

∞ =
{
u ∈ H1(ℝ2)|u ≠ 0,N∞(u) = 0

}
,

where

N∞(u) = ∫
ℝ2

(|∇u|2 + 𝛾u2)dx − ∫
ℝ2

f (u)u|x|𝛽 dx.

First, we show that∞ is not empty.

Lemma 3.1. ∞ is not an empty set.

Proof. Pick u0 ∈ H1(ℝ2) be a positive and smooth function which is compactly supported. Define a new function

h(s) by

h(s) :=N∞(su0) = s2∫
ℝ2

(|∇u0|2 + 𝛾u2
0

)
dx − ∫

ℝ2

su0 f (su0)|x|𝛽 dx.

Then it is sufficient to show that

(i) when s > 0 is sufficiently small, then h(s) > 0.

(ii) when s > 0 is large enough, there holds h(s) < 0.

For claim (i), we can deduce from assumptions (i)–(iv) on f to derive that

| f (t)| ≤ 𝜀|t|+ C𝜀t
𝜇−1

(
e
𝛽0

(
1− 𝛽

2

)
t2 − 1

)

for any positive constant 𝜀. Using this estimate, one can directly obtain that

h(s) = s2∫
ℝ2

(|∇u0|2 + 𝛾u2
0

)
dx − ∫

ℝ2

f (su0)su0|x|𝛽 dx

≥ s2∫
ℝ2

(|∇u0|2 + 𝛾u2
0

)
dx − 𝜀s2∫

ℝ2

u2
0|x|𝛽 dx − C𝜀s

𝜇∫
ℝ2

u
𝜇
0

(
e
𝛽0

(
1− 𝛽

2

)
s2u2

0 − 1

)
|x|𝛽 dx. (3.1)

Since 𝜇 > 2, we can see that h(s) > 0 for s sufficiently small. Thus we complete the proof of claim (i).

As for (ii), we first give an estimate:

t f (t) ≥ 𝜇
(
t𝜇F(1)− C

)
, (3.2)

where t ∈ ℝ and C is a constant independent of t. Through condition (ii), we have

F(t) ≥ t𝜇F(1) for t ≥ 1.

Since F is continuous, there exists some constant C1 such that

F(t) ≥ t𝜇F(1)− C1 for t ≥ 0.
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As a consequence, (3.2) follows from condition (ii). Then, we can estimate h(s):

h(s) = s2∫
ℝ2

(|∇u0|2 + 𝛾u2
0

)
dx − ∫

ℝ2

f (su0)su0|x|𝛽 dx

≤ s2∫
ℝ2

(|∇u0|2 + 𝛾u2
0

)
dx − 𝜇s𝜇F(1)∫

Ω

u
𝜇
0|x|𝛽 dx + C∫

Ω

u0|x|𝛽 dx, (3.3)

which implies that for s large enough, h(s) < 0. Therefore, we finish the proof of Lemma 3.1. □

Set

m∞ = inf{ J∞(u)|u ∈ ∞}. (3.4)

Now, we estimate the least energy m∞ which plays an important role in proving the existence of ground

states.

Lemma 3.2. There holds

m∞ <
2𝜋
𝛽0

.

Proof. Let u ∈ H1(ℝ2) be a positive function such that ‖u‖𝛾 = 1. From the argument of Lemma 3.1, one can see

that there exists a positive t0 such that

N∞(t0u) = 0.

From the definition ofm∞, we have

m∞ ≤ J∞(t0u).

Construct a sequence of Moser functions {Mn}n ⊂ H1(ℝ2) as Yang [28], then we can apply Lemma 3.3 in [28]

to derive that there exists some n0 ∈ ℕ such that

max
t≥0 J∞(tMn0

) <
2𝜋
𝛽0

,

which implies that

m∞ ≤ max
t≥0 J∞(tMn0

) <
2𝜋
𝛽0

.

Thus, we get the desired conclusion. □

Furthermore, we show thatm∞ is positive.

Lemma 3.3. There holds m∞ > 0.

Proof. Since t f (t) ≥ 𝜇F(t), we have m∞ ≥ 0. Assume on the contrary, m∞ = 0. Then there exists a sequence

{uk}k ⊆ H1(ℝ2) such that

N∞(uk) = 0 and J∞(uk)→ 0 as k→+∞.
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Therefore, direct calculations yield that

m∞ = lim
k→+∞

⎛⎜⎜⎝
1

2∫
ℝ2

(|∇uk|2 + 𝛾u2
k

)
dx − ∫

ℝ2

F(uk)|x|𝛽 dx

⎞⎟⎟⎠
= lim

k→+∞

⎛⎜⎜⎝
1

2∫
ℝ2

f (uk)uk|x|𝛽 dx − ∫
ℝ2

F(uk)|x|𝛽 dx

⎞⎟⎟⎠
≥
(
1

2
− 1

𝜇

)
lim

k→+∞∫
ℝ2

f (uk)uk|x|𝛽 dx

= lim
k→+∞

(
1

2
− 1

𝜇

)
∫
ℝ2

(|∇uk|2 + 𝛾u2
k

)
dx,

which implies that

lim
k→+∞∫

ℝ2

(|∇uk|2 + 𝛾u2
k

)
dx = 0.

Since uk ∈ ∞, one can apply the conditions (i)–(v) on f to obtain that

1 = ∫
ℝ2

f (uk)uk|x|𝛽 1‖uk‖2𝛾 dx

≤ ∫
ℝ2

1‖uk‖2𝛾
⎛⎜⎜⎜⎝
𝜀|uk|2|x|𝛽 +

C𝜀u
𝜇
k

(
e
𝛽0

(
1− 𝛽

2

)
u2
k − 1

)
|x|𝛽

⎞⎟⎟⎟⎠
dx. (3.5)

For k sufficiently large, we have ‖uk‖𝛾 ≪ 1. Let 𝑣k = uk‖uk‖𝛾 . Then singular Trudinger–Moser inequalities on
unbounded domains imply that for any 𝛼 ≤ 4𝜋(1− 𝛽

2
),

∫
ℝ2

e𝛼𝑣
2
k − 1|x|𝛽 dx =

∞∑
i=1 ∫

ℝ2

𝛼iu2i
k

i!|x|𝛽‖uk‖2i𝛾 dx ≤ C,

which yields that

∫
ℝ2

u2i
k|x|𝛽 dx ≤ Ci!‖uk‖2i𝛾

𝛼i
. (3.6)

Hölder’s inequality gives that

∫
ℝ2

u
p

k|x|𝛽 dx ≤
⎛⎜⎜⎝∫ℝ2

u2i
k|x|𝛽 dx

⎞⎟⎟⎠
𝜃⎛⎜⎜⎝∫ℝ2

u2i+2
k|x|𝛽 dx

⎞⎟⎟⎠
1−𝜃

≤ C(i+ 1)!‖uk‖ p
𝛾

𝛼 p∕2 , (3.7)

where 𝜃 ∈ [0, 1] and p = 2i𝜃 + 2(i+ 1)(1− 𝜃). Combining (3.5) with (3.7), we can use Hölder’s inequality and

Trudinger–Moser inequality to derive that

1 ≤ 1‖uk‖2𝛾 ∫
ℝ2

⎛⎜⎜⎜⎝
𝜀|uk|2|x|𝛽 +

C𝜀u
𝜇
k

(
e
𝛽0

(
1− 𝛽

2

)
u2
k − 1

)
|x|𝛽

⎞⎟⎟⎟⎠
dx
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≤ C𝜀
𝛼

+ C‖uk‖2𝛾
⎛⎜⎜⎝∫ℝ2

u
q′𝜇
k|x|𝛽 dx

⎞⎟⎟⎠
1

q′ ⎛⎜⎜⎝∫ℝ2

e
𝛽0

(
1− 𝛽

2

)
qu2

k − 1|x|𝛽 dx

⎞⎟⎟⎠
1

q

≤ C𝜀+ C‖uk‖𝜇−2𝛾 , (3.8)

where q > 1. Since lim
k→+∞

‖uk‖𝛾 = 0, (3.8) can not hold. Thereforem∞ > 0. □

Let {uk}k ⊆ H1(ℝ2) be a minimizing sequence such that

N∞(uk) = 0 and J∞(uk)→m∞ as k→+∞.

Since 0 < m∞ < 2𝜋

𝛽0
, the (A-R) condition implies that {uk}k is bounded in H1(ℝ2). Without loss of generality,

we assume uk ≥ 0. Then, up to a sequence, there exists some u ∈ H1(ℝ2) such that

uk ⇀ u in H1(ℝ2),

uk → u in L
p

loc
(ℝ2) for any p ≥ 1,

uk → u a.e in ℝ2.

Lemma 3.4. Let {uk}k be a bounded sequence in H1(ℝ2) which converges weakly to u such that

sup
k ∫

ℝ2

uk f (uk)|x|𝛽 dx < +∞, (3.9)

then

lim
k→+∞∫

ℝ2

F(uk)|x|𝛽 dx = ∫
ℝ2

F(u)|x|𝛽 dx.

Proof. By dividing the integral into two parts, we get

∫
ℝ2

F(uk)|x|𝛽 dx − ∫
ℝ2

F(u)|x|𝛽 dx

=
⎛⎜⎜⎜⎝ ∫
{|uk |≤R}

F(uk)|x|𝛽 dx − ∫
{|u|≤R}

F(u)|x|𝛽 dx
⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝ ∫
{|uk |≥R}

F(uk)|x|𝛽 dx − ∫
{|u|≥R}

F(u)|x|𝛽 dx
⎞⎟⎟⎟⎠

=: IkR + JkR. (3.10)

For IkR, we also split the integral into two parts.

IkR =
⎛⎜⎜⎜⎝ ∫
{|uk |≤R}∩Br(0)

F(uk)|x|𝛽 dx − ∫
{|u|≤R}∩Br(0)

F(u)|x|𝛽 dx
⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝ ∫
{|uk |≤R}∩Bcr(0)

F(uk)|x|𝛽 dx − ∫
{|u|≤R}∩Bcr(0)

F(u)|x|𝛽 dx
⎞⎟⎟⎟⎠

=: I1rkR + I2rkR. (3.11)

Dominated convergence theorem yields that lim
k→+∞

I1kR = 0. Now, we consider the term I2rkR. From the con-

ditions (i)–(v) on f , we can derive that

F(t) ≤ t f (t) ≤ 𝜀t2 + C𝜀t
𝜇

(
e
𝛽0

(
1− 𝛽

2

)
t2 − 1

)
.
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Since |u| < R, then

F(u) ≤
(
𝜀+ C𝜀R

𝜇−2
(
e
𝛽0

(
1− 𝛽

2

)
R2 − 1

))
u2 = C(𝛽0,R)u

2. (3.12)

Combining (3.7) with (3.12), one can apply the singular Trudinger–Moser inequality to obtain that

∫
{|uk |≤R}∩Bcr(0)

F(uk)|x|𝛽 dx ≤ C(𝛽0,R) ∫
{|uk |≤R}∩Bcr(0)

u2
k|x|𝛽 dx

≤ C(𝛽0,R)

r𝛽 ∫
{|uk |≤R}∩Bcr(0)

u2
k
dx

≤ C(𝛽0,R)

r𝛽
sup
k

‖uk‖2𝛾 . (3.13)

Therefore lim
r→+∞

lim
k→+∞

I2rkR = 0. As for JkR, we use condition (iii) and (3.9) to derive that

lim
R→+∞

lim
k→+∞ ∫

{|uk |≥R}
F(uk)|x|𝛽 dx ≤ lim

R→+∞
lim

k→+∞ ∫
{|uk |≥R}

M0 f (uk)|x|𝛽 dx

≤ lim
R→+∞

lim
k→+∞

M0

R ∫
{|uk |≥R}

uk f (uk)|x|𝛽 dx

= 0. (3.14)

Due to the absolutely continuity of the integral ∫ℝ2
F(u)|x|𝛽 dx, one can see that lim

R→+∞
lim

k→+∞
JkR = 0. Combining

the above estimates, we complete the proof of Lemma 3.4. □

If {uk}k ⊆ ∞ is aminimizing sequence form∞, the (A-R) condition gives that {uk}k is a bounded sequence
in H1(ℝ2). Then it follows that

sup
k ∫

ℝ2

uk f (uk)|x|𝛽 dx < +∞.

This together with Lemma 3.4 yields that

Corollary 3.5. Let {uk}k ⊆ ∞ be a minimizing sequence for m∞, then

lim
k→+∞∫

ℝ2

F(uk)|x|𝛽 dx = ∫
ℝ2

F(u)|x|𝛽 dx.

Lemma 3.6. Let {uk}k ⊂ ∞ be a minimizing sequence for m∞ which converges weakly to some u ≢ 0 with‖u‖𝛾 > ∫ℝ2
u f (u)|x|𝛽 dx, then

lim
k→+∞∫

ℝ2

uk f (uk)|x|𝛽 dx = ∫
ℝ2

u f (u)|x|𝛽 dx. (3.15)

Proof. Up to a sequence, we have uk → u a.e. in ℝ2. The lower semicontinuity of the norm in H1(ℝ2) yields that

lim
k→+∞

‖uk‖𝛾 ≥ ‖u‖𝛾 .
Now, we divide the proof into two cases.

Case 1: If lim
k→+∞

‖uk‖𝛾 = ‖u‖𝛾 . We apply the weak convergence of uk to obtain uk → u in H1(ℝ2). Then one

can apply the result in [16] to derive that uk strongly converges to u in L
p(ℝ2, |x|−𝛽dx) for any p ≥ 2, 0 < 𝛽 < 2.



C. Zhang and M. Zhu: Existence of ground states to equations with exponential growth — 629

Now, we claim that

sup
k ∫

ℝ2

(
uk f (uk)|x|𝛽

) p

dx < +∞, (3.16)

where p > 1 is chosen in such a way that 𝛽 < 𝛽 p < 2. Note that t f (t) ≤ 𝜀t2 + C𝜀t
𝜇(e𝛽0(1−

𝛽

2
)t2 − 1). One can obtain

that

sup
k ∫

ℝ2

(
uk f (uk)|x|𝛽

) p

dx < Cpsup
k ∫

ℝ2

⎛⎜⎜⎜⎝
𝜀 p

u
2 p

k|x| p𝛽 +
C𝜀u

𝜇 p

k

(
e
p𝛽0

(
1− 𝛽

2

)
u2
k − 1

)
|x| p𝛽

⎞⎟⎟⎟⎠
dx. (3.17)

Then (3.16) follows from (3.6), Hölder’s inequality and the classical singular Trudinger–Moser inequality in

H1(ℝ2). By splitting the integral into three parts, we obtain that

∫
ℝ2

uk f (uk)|x|𝛽 dx − ∫
ℝ2

u f (u)|x|𝛽 dx

= ∫
Br(0)

uk f (uk)− u f (u)|x|𝛽 dx + ∫
Bcr(0)

(uk − u) f (uk)|x|𝛽 + ( f (uk)− f (u))u|x|𝛽 dx

=: Irk + IIrk + IIIrk. (3.18)

Combining the Vitali convergence theorem with (3.16), one can derive that for any r > 0,

lim
k→+∞

Irk = 0. (3.19)

For IIrk , one can manage similar progress as (3.16) to get that

sup
k ∫

ℝ2

f (uk)
p

|x|𝛽 dx < +∞, (3.20)

for any p > 1. Through Hölder’s inequality, (3.20) and uk → u in Lp(ℝ2, |x|−𝛽dx), we can obtain that
lim

k→+∞∫
Bcr(0)

||(uk − u) f (uk)
|||x|𝛽 dx

≤
⎛⎜⎜⎝supk ∫

ℝ2

f (uk)
p

|x|𝛽 dx

⎞⎟⎟⎠
1

p

lim
k→+∞

⎛⎜⎜⎝∫ℝ2

|uk − u| p′|x|𝛽 dx

⎞⎟⎟⎠
1

p′

= 0. (3.21)

As for IIIrk , one can apply Hölder’s inequality again to obtain that

∫
Bcr(0)

||( f (uk)− f (u))||u|x|𝛽 dx

≤ ∫
Bcr(0)

||u f (uk)|||x|𝛽 dx + ∫
Bcr(0)

|u f (u)||x|𝛽 dx

≤
⎛⎜⎜⎝supk ∫

ℝ2

f (uk)
p

|x|𝛽 dx

⎞⎟⎟⎠
1

p ⎛⎜⎜⎜⎝∫Bcr(0)
|u| p′|x|𝛽 dx

⎞⎟⎟⎟⎠

1

p′

+ ∫
Bcr(0)

|u f (u)||x|𝛽 dx. (3.22)
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By the absolute convergence of the integral, we have

lim
r→+∞

lim
k→+∞

IIIrk = 0. (3.23)

This together with (3.19) and (3.21) yields (3.15).

Case 2: If lim
k→+∞

‖uk‖𝛾 > ‖u‖𝛾 , define
𝑣k :=

uk
lim

k→+∞
‖uk‖𝛾 , 𝑣 := u

lim
k→+∞

‖uk‖𝛾 .
Then we show that there exists p > 1 sufficiently close to 1 such that

p lim
k→+∞

‖uk‖2𝛾 < 4𝜋

𝛽0

(
1− ‖𝑣‖2𝛾) . (3.24)

Indeed, one can use ‖u‖𝛾 > ∫ℝ2
u f (u)|x|𝛽 dx to derive that

J∞(u) =
1

2
‖u‖𝛾 − ∫

ℝ2

F(u)|x|𝛽 dx ≥ 1

2
‖u‖𝛾 − 1

𝜇∫
ℝ2

u f (u)|x|𝛽 dx > 0.

This together with J∞(uk)→m∞ andm∞ < 2𝜋

𝛽0
yields that

lim
k→+∞

‖uk‖2𝛾(1− ‖𝑣‖2𝛾) = 2m∞ + 2 lim
k→+∞∫

ℝ2

F(uk)|x|𝛽 dx − 2 J∞(u)− 2∫
ℝ2

F(u)|x|𝛽 dx
<

4𝜋
𝛽0

, (3.25)

where we have used Corollary 3.5. Now, we will show that

sup
k ∫

ℝ2

(
uk f (uk)|x|𝛽

) p

dx < +∞ and sup
k ∫

ℝ2

f (uk)
p

|x|𝛽 dx < +∞. (3.26)

where p > 1 is chosen in such a way that 𝛽 < 𝛽 p < 2 and p lim
k→+∞

‖uk‖2𝛾 < 4𝜋

𝛽0

(
1−‖𝑣‖2𝛾) . Notice that t f (t) ≤ 𝜀t2 +

C𝜀t
𝜇
(
e𝛽0t

2 − 1
)
. We get

sup
k ∫

ℝ2

(
uk f (uk)|x|𝛽

) p

dx < Cp∫
ℝ2

⎛⎜⎜⎜⎝
𝜀 p

u
2 p

k|x| p𝛽 +
C𝜀u

𝜇 p

k

(
e
p𝛽0

(
1− 𝛽

2

)
u2
k − 1

)
|x| p𝛽

⎞⎟⎟⎟⎠
dx

and

sup
k ∫

ℝ2

(
f (uk)

p

|x|𝛽
)
dx < Cp∫

ℝ2

⎛⎜⎜⎜⎝
𝜀 p

u
p

k|x|𝛽 +
C𝜀u

(𝜇−1) p
k

(
e
p𝛽0

(
1− 𝛽

2

)
u2
k − 1

)
|x|𝛽

⎞⎟⎟⎟⎠
dx.

Applying Hölder’s inequality once again, one can derive (3.26) from Theorem 1.2. Then it follows from the

similar progress as Case 1 that

lim
k→+∞∫

ℝ2

uk f (uk)|x|𝛽 dx = ∫
ℝ2

u f (u)|x|𝛽 dx,

which completes the proof. □
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Lemma 3.7. Let {uk}k ⊂ ∞ be aminimizing sequence for m∞ which converges weakly to u. Then the case u = 0

can not occur.

Proof. Suppose u = 0, then it follows from Corollary 3.5 that

lim
k→∞

‖uk‖2𝛾 = 2 lim
k→∞

J∞(uk)+ 2 lim
k→∞∫

Ω

F(uk)|x|𝛽 dx

= 2 lim
k→∞

J∞(uk) = 2m∞ <
4𝜋
𝛽0

. (3.27)

Picking p > 1 sufficiently close to 1 such that p𝛽 < 2 and p lim
k→∞

‖uk‖2𝛾 < 4𝜋

𝛽0
, manage the similar progress as

(3.16), one can use Hölder’s inequality, the Trudinger–Moser inequality in H1(ℝ2) to obtain that

sup
k ∫

ℝ2

(
uk f (uk)|x|𝛽

) p

dx < +∞ and sup
k ∫

ℝ2

f (uk)
p

|x|𝛽 dx < +∞. (3.28)

Now, we estimate the integral ∫ℝ2
uk f (uk )|x|𝛽 dx, we rewrite it as the sum of Irk , IIrk and IIIrk defined as in (3.18).

lim
k→+∞

Irk = 0 is a direct consequence of the Vitali convergence theorem and (3.28). lim
k→+∞

IIrk = 0 follows from

Hölder’s inequality, (3.28) and uk → u in Lp(ℝ2, |x|−𝛽dx). Hölder’s inequality and the absolute convergence of
the integral yields lim

r→+∞
lim

k→+∞
IIIrk = 0. Hence, we derive that

lim
k→+∞∫

ℝ2

uk f (uk)|x|𝛽 dx = lim
k→+∞∫

ℝ2

uk f (uk)− u f (u)|x|𝛽 dx = 0, (3.29)

which implies that

0 < 2m∞ = lim
k→∞∫

ℝ2

(|∇uk|2 + 𝛾|uk|2)dx = lim
k→∞∫

ℝ2

uk f (uk)|x|𝛽 dx = 0.

Thus we get a contradiction. This proves u ≠ 0. □

Now, we are in position to prove Theorem 1.3.

Proof of Theorem 1.3. Let {uk}k ⊆ ∞ be a minimizing sequence for m∞ which converges weakly to u. First,

we claim that ‖u‖2𝛾 ≤ ∫
ℝ2

u f (u)|x|𝛽 dx. (3.30)

Suppose on the contrary, in view of Lemma 3.6, we derive that

lim
k→∞∫

ℝ2

uk f (uk)|x|𝛽 dx = ∫
ℝ2

u f (u)|x|𝛽 dx. (3.31)

As a result,

‖u‖2𝛾 > ∫
ℝ2

u f (u)|x|𝛽 dx = lim
k→∞∫

ℝ2

uk f (uk)|x|𝛽 dx = lim
k→∞

‖uk‖2𝛾 ,
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which can not occur. Therefore, there exists s ∈ (0, 1] such that su ∈ ∞. Recall the definition of m∞, one can

use the monotonicity of t f (t)− 2F(t) and Corollary 3.5 to obtain that

m∞ ≤ J∞(su) =
1

2∫
ℝ2

su f (su)|x|𝛽 dx − ∫
ℝ2

F(su)|x|𝛽 dx

≤ 1

2∫
ℝ2

u f (u)|x|𝛽 dx − ∫
ℝ2

F(u)|x|𝛽 dx

≤ lim
k→∞

⎛⎜⎜⎝
1

2∫
ℝ2

uk f (uk)|x|𝛽 dx − ∫
ℝ2

F(uk)|x|𝛽 dx

⎞⎟⎟⎠
= lim

k→∞
J∞(uk) = m∞.

This implies that s = 1, therefore u ∈ ∞ and J∞(u) = m∞. The proof is completed. □

4 Existence of ground state solutions to the equations involving

the degenerate potentials

This section is devoted to the existence of ground state solutions to the following elliptic equation:

−Δu+ V(x)u = f (u)|x|𝛽 , x ∈ ℝ2, (4.1)

where V is positive satisfying (V1) and (V2), f satisfies (i)–(vi). First, we give the related functional and Nehari

manifold:

JV (u) =
1

2∫
ℝ2

(|∇u|2 + V(x)u2)dx − ∫
ℝ2

F(u)|x|𝛽 dx
and

V =
{
u ∈ H1(ℝ2)|u ≠ 0,NV (u) = 0

}
,

where

NV (u) = ∫
ℝ2

(|∇u|2 + V(x)u2)dx − ∫
ℝ2

f (u)|x|𝛽 dx.
Managing the similar progress as Lemma 3.1, we can get the following lemma.

Lemma 4.1. V is not empty.

SetmV = inf{ JV (u)|u ∈ V}. We can obtain the following relationship betweenmV andm∞.

Lemma 4.2. There holds 0 < mV < m∞.

Proof. First, we show mV < m∞. Based on the assumptions of f , one can apply Theorem 1.3 to derive that m∞
can be attained by some u∞ ∈ H1(ℝ2). Since 0 ≤ V(x) < 𝛾 , we have

∫
ℝ2

(|∇u∞|2 + V(x)u2∞)dx < ∫
ℝ2

(|∇u∞|2 + 𝛾u2∞
)
dx = ∫

ℝ2

f (u∞)u∞|x|𝛽 dx.
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Since f (t)

t
is increasing, there exists s ∈ (0, 1) such that

∫
ℝ2

(|∇(su∞)|2 + V(x)s2u2∞)dx = ∫
ℝ2

f (su∞)su∞|x|𝛽 dx.

As a result, su∞ ∈ V . Since t f (t)− 2F(t) is strictly increasing, we have

mV ≤ JV (su∞) =
1

2∫
ℝ2

f (su∞)su∞ − 2F(su∞)|x|𝛽 dx < J∞(u∞) = m∞. (4.2)

Therefore,mV < m∞. With the help of Theorem 1.1, one can carry out the similar progress as Lemma 3.3 to

derive thatmV > 0. Hence, there holds 0 < mV < m∞. □

Since 0 < mV < m∞, the (A-R) condition gives that {uk} is bounded in H1(ℝ2). Without loss of generality,

we assume uk ≥ 0. Then, up to a sequence, there exists some u ∈ H1(ℝ2) such that

uk ⇀ u in H1(ℝ2),

uk → u in L
p

loc
(ℝ2) for any p ≥ 1,

uk → u a.e in ℝ2.

Lemma 4.3. Let {uk}k ⊆ ∞ be a minimizing sequence for mV , then

lim
k→+∞∫

ℝ2

F(uk)|x|𝛽 dx = ∫
ℝ2

F(u)|x|𝛽 dx.

Proof. Since {uk}k is bounded in H1(ℝ2), then it follows from 0 < mV < m∞ < 2𝜋

𝛽0
that

sup
k ∫

ℝ2

uk f (uk)|x|𝛽 dx < +∞.

Therefore, one canuse Theorem 1.1 instead of the singular Trudinger–Moser inequality inH1(ℝ2) and follow

the same line as Lemma 3.4 to get the desired conclusion. □

Lemma 4.4. Let {uk}k ⊂ V be a minimizing sequence for mV . Assume that {uk}k is a bounded sequence in

HV (ℝ2) which converges weakly to u ≢ 0 and ‖u‖V > ∫ℝ2
u f (u)|x|𝛽 dx, then

lim
k→+∞∫

ℝ2

uk f (uk)|x|𝛽 dx = ∫
ℝ2

u f (u)|x|𝛽 dx. (4.3)

Proof. Up to a sequence, uk → u a.e. in ℝ2. The lower semicontinuity of the norm in HV (ℝ2) yields that

lim
k→+∞

‖uk‖V ≥ ‖u‖V .
Then we divide the proof into two cases.

Case 1: If lim
k→+∞

‖uk‖V = ‖u‖V . We apply the weak convergence of uk to obtain uk → u in HV (ℝ2). Since

HV (ℝ2) = H1(ℝ2), one can apply the result in [16] to derive that uk strongly converges to u in Lp(ℝ2, |x|−𝛽dx)
for any p ≥ 2, 0 < 𝛽 < 2. Thanks to Theorem 1.1, one can manage the similar progress as Case 1 in Lemma 3.6 to

derive (4.3).

Case 2: If lim
k→+∞

‖uk‖V > ‖u‖V , with a slightly modification of Case 2 in Lemma 3.6, we can apply Lemma 4.3
and Theorem 1.2 to get (4.3). Therefore we get the desired result. □
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Similar as Lemma 3.7, by Theorem 1.1 and the fact that

0 < mV < m∞ <
2𝜋
𝛽0

,

we can obtain the following

Lemma 4.5. The case u = 0 can not occur.

Remark 4.6. Lemma 4.2 plays an important role in getting the singular Trudinger–Moser inequality and

Concentration-Compactness principle for Trudinger–Moser inequality inHV (ℝ2)which are necessary in proving

Lemmas 4.4 and 4.5.

Then we are in position to show the existence of ground state solution to (4.1).

Proof of Theorem 1.4. First, we claim that

‖u‖2
V
≤ ∫

ℝ2

u f (u)|x|𝛽 dx. (4.4)

Suppose on the contrary, in view of Lemma 4.4, we derive that

lim
k→∞∫

ℝ2

uk f (uk)|x|𝛽 dx = ∫
ℝ2

u f (u)|x|𝛽 dx. (4.5)

Therefore,

‖u‖2
V
> ∫

ℝ2

u f (u)|x|𝛽 dx = lim
k→∞∫

ℝ2

uk f (uk)|x|𝛽 dx = lim
k→∞

‖uk‖2V ,
which is a contrary. Hence, there exists s ∈ (0, 1] such that su ∈ V . Recall the definition ofmV , one can use the

monotonicity of t f (t)− 2F(t) to obtain that

mV ≤ JV (su) =
1

2∫
ℝ2

su f (su)|x|𝛽 dx − ∫
ℝ2

F(su)|x|𝛽 dx

≤ 1

2∫
ℝ2

u f (u)|x|𝛽 dx − ∫
ℝ2

F(u)|x|𝛽 dx

≤ lim
k→∞

⎛⎜⎜⎝
1

2∫
ℝ2

uk f (uk)|x|𝛽 dx − ∫
ℝ2

F(uk)|x|𝛽 dx

⎞⎟⎟⎠
= lim

k→∞
JV (uk) = mV.

This implies that s = 1, therefore we have u ∈ V and JV (u) = mV . Thus Theorem 1.4 is proved. □
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