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Abstract: It is shown that nonlinear electrodynamics of the Born-Infeld theory type may be exploited to shed
insight into a few fundamental problems in theoretical physics, including rendering electromagnetic asymmetry
to energetically exclude magnetic monopoles, achieving finite electromagnetic energy to relegate curvature sin-
gularities of charged black holes, and providing theoretical interpretation of equations of state of cosmic fluids
via k-essence cosmology. Also discussed are some nonlinear differential equation problems.
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1 Introduction

Fundamental physics thrives and even relies on nonlinearities which often lead to highly challenging non-
linear differential equation problems. For example, the free motion of a particle of mass m and velocity v is
governed in Newtonian mechanics by the Lagrangian action function %mu2 but that in Einstein’s special rela-

tivity is by mc2(1 — v/1 — v*/c?) where c is the speed of light in vacuum; in order to obtain a full description of
the quantum-mechanical motion of a charged particle, the conventional partial derivative 0, with respective
to the Minkowski spacetime coordinate x,, in the Schrédinger equation needs to be replaced by the gauge-
covariant derivative D, = d, — iA,, where A, is a real-valued gauge field with induced electromagnetic field
F, =9,A, — 0,4, giving rise to nonlinear interaction between the wave function and gauge field in the
coupled theory; the Yang—Mills gauge field theory describing weak and strong interactions between subatomic
particles is formulated in terms of matrix-valued field tensors of the form F,, = d,A, — 0,4, + [4,,A,],
where A, is a matrix-valued gauge field and [-, -] the matrix commutator, introducing nonlinear self-interaction
of the gauge field; the gravitational theory of Einstein is built over a pseudo-Riemannian or Lorentzian manifold
that relates the spacetime metric tensor to the matter presence through coupling its Ricci tensor and curvature
scalar to the matter stress tensor, which inevitably gives rise to a highly nonlinear partial differential equation
problem. Interestingly, in many situations, even when the original theoretical setups are linear and successful, it
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often becomes necessary to go beyond linear structures and stride into nonlinear realms, both for mathematical
and physical reasons. For example, mathematically, although the linear Schrédinger equation enables a correct
description of the full spectral series of hydrogen or any single-electron nucleus systems, it is difficult to achieve
similar levels of understanding for the problem involving more than one electron in the system, such as helium,
lithium, and other atoms, since the linear Schrédinger equation now becomes non-separable. In order to tackle
such difficulty typically encountered in quantum many-body problems, various effective nonlinear methods
have been developed, mainly aimed at understanding ground states. These include the Hartree—Fock method
[1], the Thomas—Fermi formalism [2], [3], and the density functional theory [2], [3]. Furthermore, physically,
although the linear London equations are successful in predicting the Meissner effect, a signature phenomenon
in superconductivity, a full phenomenological description of the physics of superconductivity such as phase
transition versus temperature and applied field and onset of mixed states utilizes a mechanism called sponta-
neous symmetry breaking, which generically calls upon a quartic potential density function, resulting in the
Ginzburg-Landau theory of superconductivity [4].

This article surveys and elaborates on a few insights [5]-[7] obtained from a nonlinear theory of electro-
dynamics, known as the Born-Infeld theory [8]-[11], extending the classical linear theory of electromagnetism
of Maxwell. Originally, the Born—Infeld theory was formulated with an aim to overcome the energy divergence
problem associated with a Coulomb electric point charge as a model for electron. In contemporary theoreti-
cal physics, this theory and its various generalized forms also arise in the research on superstrings [12]-[14]
and branes [15]-[17], charged black holes [5], [7], [18]-[21], and cosmology [5], [7], [22]-[24]. See [25] for a
review on modified gravity theories inspired by the Born-Infeld formalism. In what follows, we first recall
the classical Born-Infeld theory and its generalization (Section 2) and then present three new developments
[5] based on the generalized Born-Infeld theory. These include a generic exclusion of monopoles in view of
the Stone—Weierstrass density theorem (Section 3), relegation or regularization of curvature singularities of
charged black holes (Section 4), and k-essence realization of equations of state for cosmic fluids (Section 5).
Detailed explanations of these problems will be given in the beginning paragraphs of the respective sections sub-
sequently. In Section 6, we summarize the results and consider some nonlinear differential equation problems
of analytic interests inspired by the Born-Infeld theory.

2 Born-Infeld theory and its generalization

Consider the 4-dimensional Minkowski spacetime with temporal and spatial coordinates, X = tand (x!) = x,
equipped with the metric ( MV) = diag(1, —1, —1, —1), which is used to raise and lower coordinate indices as
usual. Then the electromagnetic field F,, induced from a real-valued gauge field A, may be represented in
terms of the underlying electric field E = (E') = (F°) and magnetic field B = (B') = (=] /¥ F/%). With this
preparation, the Lagrangian action density of the Maxwell theory of electrodynamics reads

=y =—1F, F"=1E B 2.1

S$= M — 1 uv - i . .

On the other hand, recall that, the Lagrangian function of Newtonian mechanics for the motion of a free massive
particleis £y = %mvz, and that the Lagrangian function of special relativity of Einstein for the particle is

£E=mcz<1—\/1—lc)j)=mc2(1—\/1—mZCz£N>. 2.2)

In view of this connection and (2.1), Born and Infeld [8]-[11] proposed their celebrated Lagrangian free action
density to be

Ly = b2<1 11— 1)22£M> - %(1 - Vi=2ps), 2.3)
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whereb > 0is called the Born parameter and f = 1/ b*. Note that this Lagrangian was originally proposed by
Born himself in [8], [9] without elaboration on its special relativity origin from (2.2), which was later carried out
in [10], [11]. For the generalized Born-Infeld theory, the Lagrangian free action density is taken to assume the
normalized form [5]

L=f@), fO=0, f0O)=1, 24
whose Euler-Lagrange equations are
9,P* =0, (2.5)
where the field tensor
PHY = fl(s)FH (2.6)

gives rise to the usual electric displacement field D and magnetic intensity field H through the rela-
tions D = (D) = (P¥) and H= (H) = (—%eikafk). Note also that, in terms of the dual of F#¥, namely
Frv = %s’”“ﬂFaﬂ, there also holds the Bianchi identity aﬂf‘”” = 0, which supplements (2.5). Besides, the relation
(2.6) may be rewritten in the form of the constitutive equations between E, B and D, H as

D = £(E,B)E, B= u(E,B)H, &£(E,B)= f'(s), wu(E,B)= 2.7)

1
JHON
where the quantities € and u resemble the usual dielectrics and permeability coefficients such that ey = 1
realizes the fact that the speed of light in vacuum is unity. In view of (2.5) and (2.7), we arrive at the following
equations of motion

%}:+V><E=o, V.B=0, —%—]?+V><H=0, V.D=0, 2.8)

which are of the identical form of the source-free Maxwell equations among which the first two equations are
the Bianchi identity and the other two equations are given by (2.5). Moreover, the energy-momentum tensor of
the theory (2.4) may be calculated to be

Tﬂv = _f/(s)FyanaﬂFvﬁ - ”,L{Vf(s)’ 2.9)
resulting in the Hamiltonian energy density
H =Ty, = f(SE* — f(s). (2.10)

Thus, in the case of the classical Maxwell theory with f(s) = s and the Born-Infeld theory with f(s) given by
(2.3), we have
M= 6+ B, @.11)

2
H=1 ! 1]+ B

b \/1- BE*—B?) \/1—ﬂ(E2—BZ),

respectively, forming interesting comparisons. In the electrostatic case of a point charge source, we have V -
D = 47q6(x), giving rise to the nontrivial radial component of D:

(2.12)

D= %, r=Ix|>0, q>0. 2.13)

Inserting (2.13) into (2.7), we obtain
=4 p=__1 (214)

r VBE + 1t

for the Maxwell and Born-Infeld cases, respectively. In view of (2.11), (2.12), and (2.14), it is seen how the diver-
gence and convergence of the energy of a point electric charge in the Maxwell theory and Born-Infeld theory fol-
low in respective cases. The same is analogously true for a magnetostatic point charge givenby V - B = 47g6(x)
with g > 0.In other words, with regard to energy divergence and convergence of an electric or magnetic point
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charge, there is perfect symmetry between electricity and magnetism in the Maxwell theory and Born-Infeld
theory. In particular, there is no mechanism to exclude a monopole in either theory.

3 Generic exclusion of monopoles

In the previous section, we have seen that, in both Maxwell and Born-Infeld theories, electric and magnetic point
charges are given equal footings energetically, and the theories offer no mechanism to rule out the occurrence of
a magnetic point charge, i.e., a monopole [26], [27]. Although the notion of monopoles is conceptually important
in field theory physics [28]-[30], such purely magnetically charged point particles have never been observed as
isolated particles, although some forms of their simulations in condensed-matter systems have been produced
[31]. Here we show that the flexibility in its nonlinearity of the generalized Born-Infeld theory makes it possible
to break the described electromagnetic symmetry so that a finite-energy electric point charge is maintained
but a finite-energy magnetic point charge is excluded [5]. Specifically, we shall see that such a breakdown of
electric and magnetic point charge symmetry, referred to as electromagnetic asymmetry, may be regarded as
a generic property of nonlinear electrodynamics. More precisely, it will be established that, for any nonlinear
electrodynamics governed by a polynomial function, the theory always accommodates finite-energy electric
point charges but excludes magnetic ones, although unlike what is seen in the classical Born-Infeld model, no
upper bound for electric field may be imposed in the current context. The word “generic” is used to refer to the
fact that the set of polynomials is dense in the function space of nonlinear Lagrangian functions in view of the
Stone—Weierstrass theorem [32], [33] such that any model of nonlinear electrodynamics may be approximated
in a suitable sense by a sequence of models governed by polynomials. As a consequence, one might conclude
that monopoles are generically ruled out with regard to the finite-energy condition.

To proceed, let f(s) be any nonlinearity function given in (2.4) over its maximum interval of definition with
end pointsa < bwhere a, b may be finite or infinite. Let {[a,, b;]} be a sequence of compact intervals satisfying
a; — a,by, > bask - oo.Foranye > 0,letk, > 3(say) be such that

—k 13
Zz <5 3.1

k>k,

For the interest of our problem, we should assume a;, < 0 < b, for all k. For so fixed k, since f(s) is notlinear,
there is a nontrivial polynomial g(s) of the form

n
qs) = Z as', ag,...,a, #0, (3.2)
=0

such that in terms of the usual C’-norm over Iy, = lay,. by, 1 we have

£

" = "(s) — ‘a, <S<b ——— 3.3
" = dly, = max{If"(6) = )l @, <8 < b } < g 7 0 63
resulting in the bound
" a;si+?

|f—p|Ik0 <6, p(S)—S+§m, ao,...,an?éo, (34)

by integration. Consequently, we have
d(f,p) = Zz—klf_ip“k <e Y k4 Yoak<e, (3.5)

k>2 1+1f =l 2<k<k, k>k,

in view of (3.1) and (3.4). Thus, measured by the metric d, p is in the e-neighborhood of f.
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The form of the polynomial function p(s) in (3.4) leads us to consider the nonlinearity function
n
fls)=s+ Z as*, a,..,a,€R, a,#0. (3.6)

In the electrostatic situation, s = E? /2. Thus we may insert (3.6) into (2.7) to obtain

<1+ Z kak EZ(k 1)) ) (37)

With (2.13), we see that the nontrivial radial component E" of E away from the origin is given by

E= r—qz, rs1, 3.8)
zn—lq ﬁ 2
Er = <na> r_m, r 1, (39)
n

asymptotically. It is clear that (3.8) is simply the usual Coulomb law but (3.9) is less singular than the Coulomb
law near the origin since n > 2. In order to examine the energy of this point electric charge, we get from (2.10)

the Hamiltonian density
_ kay cok-1) \p2 Ay 2k
= (1+ kz o i E E* — + E 195 (3.10)

Using (3.8) and (3.9) in (3.10), we arrive at the sharp estimates

q2 q2 n 1 2n-1 in
H="—-, r>1; H=(2n—1)<[] > rai, r<l (3.11)
2rt 2n?| a,
These results lead to the finiteness of the electric energy
E=4rn / Hr*dr, (3.12)

for any n > 2 as anticipated. On the other hand, for a magnetic point charge, the nontrivial radial component
of Breads B" = g/r% Hence, in view of this, s = —B?/2, and (2.10) and (3.6), we have

k+l, g2k
2r4 2( —1)tlg, g ’ 13

Zkr4k

sothat H =0(0—*") asr — 0and H = g%/2r* asr — oo, asymptotically. In particular, we conclude in view
of (3.12) that divergence of energy always occurs for a magnetic point charge for any n > 2 as in the Maxwell
theory (corresponding to n = 1). In other words, we see that magnetic monopoles are energetically excluded
in any polynomial model defined by (3.6).

We summary our results of this discussion as follows.

Theorem 3.1. (Monopole exclusion theorem). Let the nonlinearity function of the generalized Born—Infeld elec-
trodynamics be defined over the interval I, which contains 0 as an interior point, and taken from the set of twice
continuously differentiable functions given by

F={f©&)]f0=0f0=1}, (3.14)
and equipped with the distance metric
dif.9) =Y 27 7 — £l (3.15)

= 1+1f-gl,
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where I, = [ay, b,] is a strictly monotone increasing sequence of compact intervals such that I, - ask — o
and | - |, is the usual C%-norm. Let P be the subset of F consisting of polynomial functions which is dense in
F by the Stone—Weierstrass theorem. The nonlinear electrodynamics theory formulated with any f € P per-
mits finite-energy static electric point charge sources but does not permit any finite-energy static magnetic point
charge sources. In other words, the nonlinear electrodynamics theory with any f € P rejects magnetic monopoles
energetically.

To apply the theorem, for the classical Born-Infeld model (2.3), we may take I, = [—k, i (1 — %)] for the
exponential model [34], [35].
fexp®) = %(e/’s -1, p>0, (3.16)

we may use I, = [—k, k]. It is interesting to see that although both models permit electric as well as magnetic
point charge sources but they do not permit magnetic point charge sources when approximated by the dense
subset P. On the other hand, for the arcsin-model [21], [36]

farcsin(s) = % arcsin(ﬁs), ﬁ > 09 (3.17)

we may choose I;, = [—% <1 - %), % <1 - % . It is known that this model itself does not permit magnetic point
charge sources but only electric ones [5], [21], [36].

Thus, in sense of function-space density and exclusion of magnetic monopoles as stated in the theorem, it
is seen that we have revealed a general electromagnetic asymmetry phenomenon, which does not occur in the
Maxwell and Born-Infeld theories.

4 Relegation of curvature singularities of charged black holes

In the context of relativistic physics, mass and energy are considered equivalent. However, these quantities
exhibit themselves rather differently in general relativity, as evidenced in particular in the study of charged
black holes. For example, in the charged Reissner—Nordstrom black hole solution [37]-[39] situation, gravity
and electromagnetism are treated in such a way that gravitational mass is finite but electromagnetic energy is
infinite. In fact, this latter issue is associated with the structure of the Maxwell equations in which a point charge
carries an energy which is divergent at the spot where the charge resides, say, at the radial origin, r = 0, as
described in Section 2. More specifically, using (t,r, 8, ¢») to denote the coordinates of a spherically symmetric
spacetime, then the Reissner—Nordstrom metric assumes the form

2 2\ !
ds? = (1 -2 A >dt2 - <1 - M A > ar = (do? +sin’ 0dg?), @D

where Q > 0 is an effective charge parameter, M > 0 the gravitational mass, G Newton’s gravitational con-
stant, and the speed of light again set to be unity. The metric (4.1) is an example of the more general Schwarzschild
black hole metric [7]
2
dr? = g, de'dx’ = AL — % — (6% +sin’ 0 dg?), 42)
subject to the asymptotic flatness condition A(r) — 1asr — oo. For (4.2), the Brown-York quasilocal energy
[40] contained within the local region stretched to the “radial coordinate distance” r > 0 1is given by

Eqg() = £ (1= Vam). 43)

so that the limit
Eq(o0) = rliIL}qu(r), (4.4)
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gives rise to the Arnowitt—Deser—Misner (ADM) energy or mass [37]-[39], [41]-[43] of the system in the full
space. Thus, if A(r) has the asymptotic form

2G

2
AP =1 TM 4 47GQ

re

r>1, (4.5)

resembling (4.1), where the exponent ¢ is an undetermined positive parameter, then the formula (4.3) leads to

_ 27 " GM* _ 27GQ*M +0(r D),

Eq() =M re-1 2r re

r>1 (4.6)

Itis clear from (4.3) and (4.5) that the positivity of E () requires o > 1. Consequently, if charge (either electric or
magnetic or both) contributes to the ADM mass, we must have ¢ = 1, in view of (4.4) and (4.6). In particular, we
see that the effective charge of a Reissner—Nordstrém black hole does not contribute to the ADM mass because
now ¢ = 2.0n the other hand, recall that the usual Kretschmann invariant [38], [44] of the metric (4.2) is given
by
(r*A")* 4+ 4(rA’)* + 4(A — 1)
- )
in terms of the Riemann tensor R, 4,5, which measures the curvature singularity of the center of the black hole.
For the Schwarzschild solution (the metric (4.1) with ¢ = 0), the singularity is of the type K ~ r~5. For the
Reissner—Nordstrom charged black hole solution (the metric (4.1) with Q # 0), on the other hand, the singular-
ity is seen to be elevated to the type K ~ r~8 which is due to the divergence of energy of an electric or magnetic
point charge in the linear Maxwell electrodynamics. Thus, it will be interesting to know what the Born-Infeld
theory and its generalizations can offer for the ADM mass, which is a global quantity, and for the curvature singu-
larity, which is a local property, in view of the fact that these nonlinear theories of electrodynamics permit point
charges of finite energies. To get a picture on what results may be expected, recall that the property (2.4) is aimed
at recovering the Maxwell theory asymptotically in the weak-field limit. Therefore, for charged black holes gen-
erated in the generalized Born-Infeld electrodynamics, we should still obtain the Reissner—Nordstrém metric
in leading-orders for r > 1, whichrenders o = 2in (4.5) so that electromagnetism still does not contribute to
the ADM mass. On the other hand, the divergence of energy of a point charge in the Maxwell theory occurs at the
center of the source, r = 0, and the nonlinear electrodynamics of the Born-Infeld type serves the purpose of
removing this divergence. As a consequence, it will be seen that the curvature singularity of a charged black hole
atr = Owill also be relegated or ameliorated systematically [5]-[7]. In general, we shall see that, regarding cur-
vature singularities, finite mass and finite electromagnetic energy present themselves at an equal footing so that
we always return to the Schwarzschild singularity K ~ r=% for r < 1. In other words, we conclude that such
a singularity relegation phenomenon is universally valid in generalized Born-Infeld theories. Furthermore, we
show that there is a critical mass-energy condition under which the Schwarzschild type curvature singularity
may further be relegated or even eliminated in a systematic way. In particular, the Bardeen black hole [18], [19],
[45], [46] and the Hayward black hole [47]-[49] belong to this category of the regular black hole solutions of the
Einstein equations coupled with the Born-Infeld type nonlinear electrodynamics for which the critical mass-
energy condition is embedded into the specialized forms of the Lagrangian or Hamiltonian densities. A common
feature shared by the Bardeen and Hayward black holes is that the form of their Lagrangian action density can
only accommodate one sector of electromagnetism, that is, either electric field or magnetic field is allowed to
be present to model a point charge, but not both, due to the sign restriction under the radical root operation,
in a sharp contrast to the classical Born—Infeld theory which accommodates both electricity and magnetism
at an equal footing. Hence it is imperative to find a nonlinear electrodynamics model that accommodates both
electric and magnetic point charges and at the same time gives rise to regular charged black hole solutions as
in the Bardeen and Hayward models. Indeed, we will see [5], [6] that such a model may be obtained by taking
the large n limit in a naturally formulated binomial model, which is a special situation of the polynomial model
considered in Section 3 in the context of the monopole exclusion mechanism. That is, the binomial model does
not allow a finite-energy magnetic point charge but its large n limit, which assumes the form of an exponential
model proposed earlier by Hendi in [34], [35] in other contexts, accommodates both electric and magnetic point

K =R,;,;R""° = (4.7)
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charges, and is free of sign restriction. These general and specific issues of charged black holes are our focus in
this section.

To proceed, we now use the gravitational metric tensor g, to lower or raise coordinate indices. Then the
Equation (2.5) is replaced by its curved-space version

B——) (, /- det(gaﬂ)P”V> =0, “8)
4/ — det(g,p)

where P#” assumes the same form, (2.6), with due metric tensor modification. In this context, the energy-
momentum tensor (2.9) becomes

Ty =—f'F,,8F 5 — &, f(S). 4.9)
Hence, in terms of the Ricci tensor R, associated with g, and the trace of T, given by T = g**T,, the
Einstein equation becomes
1
Ry, = =87G(T, = 38 7T) (4.10)

For a centrally charged situation with spherical symmetry, it can be shown that the coupled
Equations (4.8)-(4.10) have the explicit general solution

oo

AN =1- ZGTM + % / H(p)p*dp, (4.11)
r

where A(r) is the metric factor given in (4.2) and M an integration constant which may be taken to be positive

to represent a mass. Here the Hamiltonian density H = Tg happens to assume the same form as that in the

flat-space situation such that the quantity

E= / H/—det(g,,) dx = 4n / H(p)p*dp (4.12)
0

is the electromagnetic energy. Consequently, since the generalized electrodynamics of the Born-Infeld type
always recovers the Maxwell theory for which E” = ¢/r? and B* = g/r? for r > 1 when both electric and
magnetic charges are present (a dyonic point charge source), so (2.1) leads to

2 _ g2
s= %, r>1 (4.13)
Using (2.4) and (4.13), we arrive at
_¢+g
=04 r>1 (4.14)

Inserting (4.14) into (4.11), we obtain the result

2 2
AP =1 ZC;M N 47tG(q2+g ),

r

r>1 (4.15)

Thus, asymptotically near spatial infinity, the metric factor of a charged black hole in the generalized nonlinear
electrodynamics of the Born-Infeld type is of the same form as that of the Reissner—Nordstrom black hole gen-
erated by the Maxwell electrodynamics as given in (4.1). Therefore, as described earlier, the ADM mass of the
so-constructed charged black hole is simply the Schwarzschild mass M.

We next study the behavior of the metric factor A(r) near the center of the mass and charges of the black hole
assuming that a finite electromagnetic energy is already achieved in (4.12). Under this assumption, substituting
(4.12) into (4.11), we have
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Ar)=1— %;E) - %/H(p)pzdp
0
_1_26WM=E) _2GEM) . g (4.16)

r r

where E(r) is the electromagnetic energy contained in the spatial region extending to any radial distancer > 0.
This expression clearly indicates how the curvature singularity at r = 0 may be relegated by the local energy
E®).

The preceding paragraphs enable us to conclude with the following theorem.

Theorem 4.1. (Curvature singularity relegation theorem). Although electromagnetism does not contribute to
the ADM mass of a charged black hole given by the generalized electrodynamics of the Born—Infeld type, a finite
electromagnetic energy generically gives rise to a relegated curvature singularity as measured by the Kretschmann
invariant. More precisely, let E(r) denote the electromagnetic energy contained in a spatial region around the center
of the mass and charges of the black hole within any radial distancer > 0 satisfying

.
E( =4z / H(p)ptdp = Egr, r<1, @17
0

in leading order, where E, > 0 is a constant and x is a parameter for which the condition k > 0 is assumed
to observe the finite-energy condition. For any x > 0 the curvature singularity is relegated to that of the

Schwarzschild singularity, K ~ r=5. Besides, under the critical mass-energy condition
M=E, (4.18)

we have
K=K;r*5, r<«i, (4.19)

where K, > 0 is a constant. Hence in this latter situation the curvature singularity at r = 0 is removed when
K >3

The theorem is a consequence of using (4.16) and (4.17) directly in (4.7).

It will be enlightening to discuss a few examples.

First, we consider the electric point charge source situation in the classical Born—Infeld theory (2.3) for
which H is given by (2.12) and (2.14) (second expression) with zero B. Then (4.17) reads

r

_A4rnqr

E(r) = / i2¢ g, 41
P+ Vo + B VB

0

r<i (4.20)

This gives E, = 47 q/ \/ﬁ andx = 1in(4.17) so that the curvature singularity isrelegatedto K ~ r~*forr < 1
under the condition (4.18). Moreover, we also have

(o]

E:E(OO):4E?2/ dx _ 471'%(1
B J X+ VXt +1 3(1“(%))2/3%

3
2

) (4.21)

which determines the critical mass through (4.18) to achieve the stated relegated curvature singularity.

A magnetically charged black hole in the classical Born—Infeld theory (2.3) enjoys the same properties as
an electrically charged one due to the electromagnetic symmetry of the system.

Next, we consider [5], [6] the exponential model (3.16) assuming the critical condition (4.18).
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In the electric point charge situation, (2.7) relates the nontrivial radial components of E and D by the
equation fe’Xp(s)Er = D", which gives us the implicit relation

e"W=5, W=pE?, 6=pD)> (4.22)

Recall that the equation e W = x defines the classical Lambert W function [50], [51] which is analytic for
x > —eland

X (-1
W) = Z ( n)' X", aboutx =0, (4.23)
=
W(x)=1nx—1nlnx+nnx+---, x> 3. (4.249)
In x
In view of (4.22), we have s = W /28 such that
/ )2 1 v r12
H= exp(s)(E ) = fep(8) = ﬁ<e (W =1+ 1), W = WQ@IDP). (4.25)
Inserting D" = q/r? into (4.25) and using (4.24), we have
: 2
H=2(P4|n BT 4| 4+1), r<1, (4.26)
p\ r r
resulting in
_ 4nqr 2 3
E() = i (=4Inr+3+In fg*) +007), r<i @27
2

In view of (4.16), (4.27), and (4.7), we obtain the sharp curvature estimate

10 232 42 T2
K=27CTMT o0t <, (4.28)
pri
which significantly relegates the Schwarzschild type curvature singularity as well as that in the noncritical
situation, M # E, of course.

In the magnetic point charge situation, we have s = —(B")?/2 = —g?/2r* and

_B&
H o=~ fop(®) = /13<1 _eh > 4.29)
such that
oy 08 arrd 2izgr [ 2
E(r) = i/ <1—e_2p“>p2dp= L 4”§2F< ALl ) r>o, (4.30)
ﬂ 0 ﬁ ﬁ4 ﬂ4g2
where the smooth function .
1
F(r)= / e M pldp (4.31)

0

vanishes at r = 0 infinitely fast. That is, for any m > 1, we have F(r) = o(r™) for r < 1. Consequently, (4.16)
gives us

5 9 3 1 5
A() =1 BECr | 20mGgh p( 2ir ) _ g 87GTT | e, (432)
3p pir pig: 3p
such that (4.7) renders the result
— 2 ! _ '
K =24 + 22000 AW = AaDRT | g _ gy q =876 15, 433
r 36
Therefore, we have
9 22
=27 G W), (434)

=57
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where o(r) is a smooth function which vanishes at 7 = 0 infinitely fast. In particular, the mass and charge
center is a regular point of the curvature.

It is interesting to note that in this model there is an electromagnetic asymmetry exhibited through the
curvature singularities associated with electrically and magnetically charged black holes in that the singularity
associated with electricity is ameliorated but that with magnetism completely regularized. This phenomenon is
in sharp contrast with the electromagnetic symmetry observed in the classical Born-Infeld theory (2.3), on the
other hand.

Naturally, curvature singularity may also be deteriorated beyond that of the Reissner—Nordstréom black
hole. For example, for the polynomial model (3.6), the Hamiltonian density of a magnetic point charge is given
by (3.13). Hence from (4.11) we have

2GM | 8xG(—1)*a, g™

An)=1-
") r (4n — 3)2nyr2@n-1°

r<i, (4.35)

in leading orders. From (4.35), we see that (4.7) givesus K = C,/ r3n for r < 1, which indicates that the cur-
vature singularity of a magnetically charged black hole can be elevated to an arbitrarily high order in the
polynomial model as a consequence of the energy divergence associated with a magnetic point charge source
presented in Section 3. This discussion leads us to the interesting observation that, although the binomial model

p = 1([1+ 2] -1), p>o. (4.36)
n ﬁ n
foralln = 1,2,..., gives rise to magnetically charged black holes with increasingly high curvature singular-

ities as n goes up, its limit as n — oo on the other hand, which is the exponential model (3.16), brings forth
magnetically charged black holes free of curvature singularity, rather surprisingly.

5 k-essence realization of equations of state for cosmic fluids

In cosmology, in order to obtain a theoretical interpretation of the observed accelerated expansion of the uni-
verse usually attributed to the existence of dark energy, a real scalar-wave field, referred to as quintessence,
may be introduced to give rise to a hidden propelling force [37], [52]-[55]. In such a context, quintessence is
governed canonically by the Klein—Gordon model such that the kinetic energy density term is minimal and the
potential energy density may be adjusted to render the desired dynamic evolution of the universe. When the
kinetic density term is taken to be an adjustable nonlinear function of the canonical kinetic energy density, the
scalar-wave matter is referred to as k-essence [56]—[59]. This nonlinear kinetic dynamics is of the form of the
Born-Infeld type theory and may conveniently be used to provide a field-theoretical interpretation of a given
equation of state relating the pressure and density of a cosmological fluid. Over such a meeting ground, we may
examine the cosmic fluid contents or interpretations of the Born-Infeld type models in general settings.

For generality, we consider a homogeneous and isotropic universe formulated over an (n + 1)-dimensional
spacetime with the line element

dr* = g, dxdx” = df* — a*(6)5;;dx'dx’, (5.1)

where a(t) > 0is the scale factor resembling the radius of the universe. The nontrivial components of the Ricci
tensor of (5.1) are
na . .9 . da
Ryy=—, Ry=...=R,=—-aa—Mn-Da*, a=—.
00 a 11 nn ( ) dt
We are interested in the evolution of the universe propelled by k-essence realized by a real-valued scalar-matter
wave function @ governed by the Lagrangian action density

(5.2)

L=fX)-V(p), X= %gﬂvaﬂ(pavq;. (5.3)
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If we stay within the domain of an extension of the Klein—Gordon model, we should impose the condition
f(0) = 0,f'(0) = 1. However, we shall not restrict ourselves to this condition in our discussion in general
since there is no compelling incentive to preserve the Klein—Gordon model in the weak field limit, X ~ 0. The
Euler-Lagrange equation of (5.3) reads

\/7 <\/ | det(g, )| f' (X)0" @ > + V'(p) =0, (5.4)

I det(gaﬂ) I

which is to be coupled with the (n + 1)-dimensional Einstein equation

guT
R, = —87an<Tﬂv - n"_” 1), (5.5)

extending (4.10), where G, is the Newton gravitational constant over an n-space, R the scalar curvature, T v the
energy-momentum tensor associated with (5.3) given by

= f'(X)0,99,¢ — 8,,(fX) — V(p)), (5.6)

andT = gt'T,, the trace of the energy-momentum tensor. For consistency, we assume that ¢ is also homoge-
neous, i.e., spatially independent. Then in view of (5.1) the equation of motion (5.4) becomes

(" f D) =-a"V'(p), X= %cpz, G.7)
and the nontrivial components of (5.6) are
Too = @*f'X) — (fFX) = V(@), Ty=...=T,=a(fX) —V(p), (5.8)

so that
T = @*f'(X) — (n+ D(f(X) — V(g)). (5.9)

In view of (5.2), (5.8), and (5.9), we see that (5.5) becomes

a _  8zG, 9

o=t (hm ] f'(X)+7(f(X) V@), (5.10)
a 287Gy . g p

7+("_1)< ) = (@)~ 2AfK) ~ VigD). (5.11)

On the other hand, representing T, in terms of its cosmic fluid description characterized by the fluid density p
and pressure P following the expression

(T,,) = diag(p, a®P, ... ,a’P), (5.12)
we have by (5.8) the realizations
p=@ X~ (fX) = V), P=flX)-V(p). (5.13)
Furthermore, in the current context, the conservation law V T#* = 0is reduced into
p+np+ P)g =0. (5.14)

Using (5.13)—(5.14), we obtain from (5.10)-(5.11) the Friedmann equation

(@ f'X) = (fF&X) = V(@))). (5.15)

(d)z_ 167G, _ 167G,

a) Tnn-10"" nn-1

The evolution of the homogeneous and isotropic universe is now governed by the closed system of nonlinear
differential equations comprised of (5.7) and (5.15), which is rather complicated in general. Nevertheless, some
simple examples of the system already offer us great insight into the problem.
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For example, the Equation (5.7) allows two kinds of constant solutions: (i) ¢ = ¢, and ¢, is a critical point
of V such that V, = V(g,) > 0, and (i) ¢ = ¢, = constant and V = V; =a positive constant. In either
situation, we have p = V,,P = -V, w = P/p = -1, and (5.15) renders us the solution

a®) = aOe, Ey=1/%%Y g0y 0, >0, (5.16)
nn-1)

which fails to yield a Big Bang cosmology but gives rise to a “dark energy”, E,, responsible for the exponential
expansion pattern of the universe. In this maner, V is identified with the cosmological constant A through
A = 8nG,V,. Generalizing this idea, we may introduce a field-dependent cosmological “constant” by setting

A = Alg) = 87G, V(). (517

With this and noting that, in the presence of cosmological constant A, the matter density p,, and pres-
sure P, are related to the effective cosmic fluid density p and pressure P through p = p,, + A/87G, and
P = P, — A/8zG,, respectively, we obtain from (5.13) and (5.17) the realizations

P =X = fX) =2Xf'X) = fQX), Py = fX). (5.18)
Consequently, we arrive at the constitutive equation

_ P _ f&X)
= o 22X — fX) 19
In particular, in the Klein—Gordon model situation or quintessence cosmology, we have f(X) = X, so that
w,, = 1. In other words, the model describes stiff matter. However, in the context of k-essence cosmology, the
kinetic nonlinearity function f(X) enjoys broad freedom for choice so that it may be used to model some desired
evolution patterns of the universe.

For example, for a radiation-dominated universe, we have [60], [61] w,, = 1/n, which is implied by the
trace-zero condition, T = g*'T,, = 0,imposed on the electromagnetic energy-momentum tensor through its
perfect fluid realization (5.12), such that (5.19) gives rise to the differential equation

2XF'(X) = (n+ 1) fX), (5.20)

which leads to the solution
fX=X~=. (5.21)

In the physical dimension, n = 3, this gives us the quadratic model f(X) = X%

In a general formalism, (5.19) determines how the quantities P,, and p,, are related, referred to as the
equation of state of the fluid matter. Since P,, and p,, are parametrized in terms of the quantity X, so is w,,.
In other words, the equation of state is defined by setting w,, = w,,(X) in terms of the parameter X, so that

(5.19) renders us [5]
df _ 1
ZX—dX = <1 + m(X)>f’ (5.22)

which is a separable equation and may readily be integrated to yield a k-essence model (5.3) to realized the given
equation of state. This discussion leads to the following.

Theorem 5.1. (Realization of equation of state of cosmic fluid by k-essence). In principle, any equation of
state of a cosmic matter fluid may be realized by a k-essence wave-matter model with a suitable choice of the
nonlinearity function of the model determined by integrating a first-order separable differential equation.

The importance of this construction is that, in the course of cosmological evolution, it is realistic to have a
variable w,, for the equation of state rather than a constant one so that various stages of the expanding universe
may be described by cosmic fluids of suitable, respective, physical characteristics, and that w,, plays the role of
an interpolation parameter.
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We examine a few examples as illustrations, assuming a constant potential density for simplicity.
Consider the following fractional-powered model [5] containing the classical Born—Infeld theory with

p =1/2,

p
f(X)=;<1—[1—ﬂ[;X] > 0<p<1l p>0, (5.23)

for generality, which enables a Big-Bang scenario with p,, — oo, P,, — 1/, as t — 0, corresponding to
X - p/B,and p,, - 0,P, — 0,ast — oo, corresponding to X — 0. Since now

(g._x>(1—[1—4%]p) (5.24)

(oo 5) 1

w,,X) =

we have
limw,X) =0, lmw,X) =1 (5.25)
X—»% X-0
Thus the fractional-powered k-essence model gives rise to a universe evolving from a dust-dominated fluid to a
stiff-matter-dominated fluid.
In the context of the exponential model (3.16), the k-essence scalar-matter wave is governed by

F00) = %(eﬂx ~1, p>o. (5.26)
With (5.26), we see that (5.19) becomes
1—e X
)= —— . 5.27
WnX) = o 1t e 627

The Big-Bang solution with expansion indicates p,,, P,, - oo ast — 0and p,,,P,, — 0ast — oo, correspond-
ingtoX — ocoand X — 0, respectively, which lead to the limits

lim w,(X) =0, lim w,,(X) =1, (5.28)
X—o00 X-0

again interpolating between dust and stiff matter fluids as in the fractional-powered model stituation.
From (3.6), we may study the polynomial model [7]

k
fO=X+Y aX, a,.. 4,420, >0, k>2 (5.29)
i=2

As in the exponential model (5.26), the Big-Bang growth picture gives rise to the same asymptotic behavior of

the matter density and pressure such thatX — coast —» 0andX — 0Oast — oo. With (5.29), the equation of

state (5.19) becomes
k

X+ Y aX!

Wy (X) = = , (5.30)
X+ Y Qi—DaXt
i=2

rendering the results

. 1 .
;}Epo w,X) = =1 }(1_{5[ w,X) =1, (5.31)
independent of the coefficients in (5.29). To make sense from the first expression in (5.31), we set
1 1
==, k>2 5.32
2k—1 n - (532

That is, we relate the expression to a radiation-dominated universe in an n-dimensional space. As a consequence,
we arrive at the conclusion
n=2k-1 k=23,.... (5.33)
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In other words, in order that the polynomial k-essence model gives rise to a universe evolving from a radiation-
dominated fluid to a stiff-matter one, the space dimensions may only be odd. The bottom case (n,k) = (3,2) of
the condition (5.33) was noted earlier in [7], which motivates our study here in a general dimension setting.

Recall that, according to modern cosmology, the universe after the Big Bang should go through a radiation-
dominated era in the early universe and then evolve into its matter-dominated phase in later stages. Thus a
correct k-essence model should offer such a description for the expansion of the universe. Our study above
indicates that the fractional-powered model, including the classical Born-Infeld theory, and the exponential
model both fail to meet this requirement. However, the polynomial models successfully serve this purpose when
the dimension of the space and degree of the polynomial functions match correctly. We summary this result as
follows.

Theorem 5.2. (Dimension selection and unique determination of polynomial model). Consider the polyno-
mial k-essence model consisting of (5.3) and (5.29) propelling a homogeneous and isotropic universe through its
coupling with the Einstein equation under the line element (5.1) so that X — oo ast — 0, corresponding to an
infinite density-pressure beginning of the universe, or p,,, P,, = oo, andthatX — 0ast — oo, corresponding to
a vanishing density-pressure ending of the universe, or p,, = 0,P,, = 0. In order to fulfill the required scenario
that the universe starts from a radiation-dominated era in the limitt = 0 and ends at a stiff-matter-dominated

stage in the limitt = oo, the space dimension n must be an odd integer,n = 2k — 1 = 3,5,..., corresponding
tok = 2,3,.... That is, in this situation, the only polynomial model that can be used to achieve such an evolu-
tionary scenario is of degreek = (n + 1)/2 = 2,3, ..., or quadratic, cubic, ... , nonlinearities, corresponding

to odd spatial dimensions, n =3, 5, ... , respectively.

We mention that another criterion for the relevance of a cosmic fluid model is whether the associated adi-
abatic squared speed of sound, cﬁ, satisfies c§ € [0, 1]. That is, whether it stays within the range of the speed of
light. For our problem, this is given in view of (5.29) by

2 _ APy _ f'&

6= m - f/(X) +2Xf”(X)’

(5.34)
such that it is seen to satisfy the criterion.

To conclude this section, we work out an example to show how to find the corresponding k-essence model
to realize the equation of state of a given cosmic fluid model using the method described in Theorem 5.1. For
simplicity and interest, we consider the Chaplygin fluid defined by equation of state

P, = —pl, y > 0. (5.35)

m

Directly inserting (5.35) into (5.18), we obtain the differential equation
X =f-v, (5.36)

whose solution reads f(X) = v/aX + y and is well known [5], where « > 0 1is an integration constant. It is clear
that the equation of state (5.35) is satisfied with this solution in view of (5.18).

6 Conclusions and outlook

In this article, we have seen that nonlinear structures inspired by the Born-Infeld theory of electromagnetism
may be explored to shed light on some fundamental issues of field-theoretical physics, including a monopole
exclusion mechanism given by electromagnetic asymmetry introduced by polynomial-type nonlinearity, rel-
egation of curvature singularity of a charged black hole metric as a consequence of achieving finiteness of
electromagnetic energy beyond linear theory, k-essence interpretation of the equation of state of any prescribed,
hypothetical, cosmic fluid, and determination of spacetime dimension in view of a polynomial k-essence model
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chosen. The richness of such nonlinear structures leads to many future directions, both of theoretical and tech-
nical interests, to be pursued further. Below we describe a few handily stated nonlinear differential equation
problems in hope to spark further research interests in the Born—Infeld theory related analytic studies.

6.1 Dyonic matter equations

First, recall that it was Schwinger [62] who extended the work of Dirac [27] on magnetic monopoles and the
associated charge quantization formula to the context of dyons, hypothetical point particles carrying both elec-
tric and magnetic charges, based on the Maxwell theory. Thus, it will be interesting to consider dyons in the
Born-Infeld theory as well. Unfortunately, unlike electric and magnetic point charges, it can be shown that
the theory (2.3) does not permit a finite-energy dyon [5] as a dually charged point source. Therefore, the next
question is to study continuously distributed dyonic matter in the Born-Infeld theory (2.3) given by the source
equations

V.-D=p,x, V-B=p,x), x€R’ (6.1)

where p, and p,, are electric and magnetic charge density distribution functions. In the static current-free situa-
tion, (2.8) indicates that E and H are conservative. That is, there are scalar functions ¢ and y such thatE = V¢
and H = Vy . Inserting these into (2.7), where f(s) is given by (2.3), and using (6.1), we have

. 1-pIVy* | _
V-|ve L= AIVe | = e 6.2)

_ [1=BIVP | _
V.| Vy 1= SVl = P> 6.3

which are the Euler-Lagrange equations of the action functional

avw= [ (5 [1— V1-BIVH/1- ﬂww] + 0+ oy ) (64)
RZ

See [63]-[67] for results on existence, uniqueness, and regularity of the solution to the electric sector of the
problem when p,, = 0Oandy = 0over R"withn > 3.Inthe source-free situation, p,, p,, = 0, itis unknown
what the most general entire solutions to (6.2)—(6.3) are, which is a Bernstein or Liouville type problem. A weaker
question in this context is what the most general solutions are under finite-action condition. See [68] for some
partial results and general formalism.

To construct finite-energy dyonically charged point sources, we may consider the second Born—Infeld model
[10], [11] based on an invariance principle, which was actually given the item number (2) and expression (2) as
well in [10], which in the current generalized context is governed by the Lagrangian action density

_ 1l oo K 2
L= f(s), S_E(E —B)+7(E~B), K > 0. (6.5)

The constitutive relation between D, H and E, B now reads

<D> E f'®)1+«*E-B)) «*E-B)
:Z(E,B)( ) S(E,B) = , | ©6)
’ N e )

such that the matrix X(E, B) contains the dielectrics and permeability information of the system and that the
property det(X(E,B)) = 1 resembles the constraint that the speed of light in vacuum is normalized to unity.
This theory enables us to obtain finite-energy dyonically charged point sources, thus restoring electromagnetic
symmetry in the quadratic model, in particular, and dyonically charged black holes [6], [7] with relegated cur-
vature singularities, as in the first Born—Infeld theory context, modeled over (2.3) which was given the item
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number (1) and expression (1) in [10], with either electric or magnetic charges but not both then. In this context,
some families of static dyonic matter equations of the form (6.2)—(6.3) are also derived [7], which are of analytic
challenge.

6.2 Abelian Higgs model inspired by Born-Infeld theory

Next, an interesting subject concerns the Abelian Higgs model subject to the Born-Infeld electrodynamics, which
is defined by the Lagrangian action density

_1
p

where ¢ is a complex-valued scalar field, D,¢p = d,¢ — iA,¢ the gauge-covariant derivative, and V. > 0 a
potential density function. In the two-dimensional static limit and under the temporal gauge A, = 0 (in the
classical Abelian Higgs theory, finite-energy condition implies the temporal gauge in two-spatial dimensions, so
that the theory must be purely magnetic without electricity. This statement is known as the Julia—Zee theorem
[69], [70]. In the Born-Infeld theory case, it is of interest to study whether the same statement would be true),
the Euler-Lagrange equations of (6.7) are

£ =1 (1= VI=2PLy) + L 0,H0"$) — V(L. (6.7)

DD =2V'(|p))h, (6.8)

F.. i — =
0)| ——2—|= -(¢pDip — ¢pD;), (6.9
\W+se) 2

where i,j = 1,2. The solutions of these equations are also the critical points of the energy functional
1 2 1 2, 1 2 2
E(p,A) = 5 14 pF% —1f + §|D1¢| + §|D2¢| + V(|¢|%) )dx, (6.10)
RZ

where A = (4)), so that a finite-energy solution of (6.8)-(6.9) satisfies the following Derrick—Pohozaev type

identity
1 [ 2 2 F
/< 1+ﬁF12—1] + V(|| ))dx: /7dx. (6.11)
J NP ) \/1+ BFS

As in the formalism of the Abelian Higgs theory, we assume that there is a spontaneously broken U(1) symmetry
realized by the vacuum manifold given by V = 0 at |¢|> = qb(z) > 0 which may be taken to be unity for conve-
nience. That is, V(1) = 0 and ¢, = 1. Now since |¢(x)| — 1as |x] — oo for a solution of (6.8)-(6.9), we see
that

= %: Sp— S (6.12)

iswelldefined whenR > Oislarge enough, where S}l2 denotes the circle in R? centered at the origin and of radius
R. Therefore the map I may be viewed as an element in the fundamental group r,(S") = Z and represented by
an integer N. In fact, this integer N is the winding number of ¢ around S}e and may be expressed by the integral

_ 1
N=_ - / dln ¢. (6.13)
Sk

The continuous dependence of the right-hand side of (6.13) with respect to R indicates that this quantity is
independent of R since the left-hand side of (6.13) is an integer. Thus we arrive at the following magnetic flux
quantization condition

= / Fp, dx = 27N, (6.14)
RZ
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as a consequence of the limit

/Flzdx+i/dln¢ = /Aidx,-+i/ ¢~0¢p dx;

Ix|<R [x|=R [x|=R [X|=R

< /|¢_1|(|D1¢|+|D2¢|)ds—>0, asR — oo, (6.15)

IX|=R

since |D;¢|, |D,p| — 0 as [x| — oo exponentially fast. The topological number N given in (6.13) or (6.14) is
called the vortex number of the solution. Conversely, we ask whether for any given N € Z there is a solution to
the topologically constrained minimization problem

Ey = inf{ E(¢, A) / Fy, dx = 27N}, (6.16)

RZ

As in the classical Abelian Higgs theory [71], this is a difficult problem, although a self-duality structure may be
explored as discovered in [72] to offer a partial understanding of the problem. To see how, we use the identity

ID1p* + |D,¢|> = |Dyp + iD,$|? + i(D,¢D,p — DD, ¢h), (6.17)

to rewrite the Hamiltonian density of (6.10) as

2 2
<F12 + 11 /1+ BFL (112 - 1)) (\/1+ PEAJL— LAl -1 - 1)
+

H =
2,/1+ pF% 2p+\/1+ PF%
R R PRI By AR DRI
st 2F12(|¢| D+ ; 1 4(|<l5| 1
+ 31D D, + L (0,0D,$ — DidDs) + VIIHP (6.18)
Besides, in view of the commutator or curvature relation (D,D, — D,D;)¢ = —iF;,¢, we see that the current
density _
Ji= @D~ gD =12 (6.19)
gives rise to the vorticity field
Ju=01],— 0 )i = HDN”% - sz@ ~ |pI*F. (6.20)

We can now choose

Yo i Pep—
V(|¢|2)—ﬁ<1 1 4(|q5|2 1)2), (6.21)

under the condition f < 4.Then V(1) = 0 asdesired so that the U(1)-symmetry is spontaneously broken. Using
(6.20)-(6.21) in (6.18), we have

H> i%(ﬂz + ). 6.22)

Furthermore, since D;¢ and D,¢ vanish at infinity rapidly, we have /[Rz Jip dx = 0. Hence, with N = +|N|, we
see that (6.22) leads us to the topological lower bound

E(¢, A) = /de > i%/Flz dx = 7|N], 6.23)
RZ

RZ
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by (6.14) and (6.22), and this lower bound is saturated when the following Bogomol’nyi [73] type equations are

satisfied:
1
Fy £ 5/1+ PP, (191 - D =0, (6.24)

1+ pR [1- Bagr -1 —1=0, 6.25)

D1¢ + iD2¢ = 0. (6.26)

Similar equations also appear fruitfully in the Yang-Mills theory [74]-[82]. It is clear that (6.24) implies
(6.25) so that these two equations may be compressed into one,

JORPPR Tl 627)
24/1-2(1¢12 -1

It can be shown that ¢ satisfies the condition 0 < |¢|? < 1,—-1/2 < Fj, < 1/2,and F}, = +1/2at¢ =
In other words, the magnetic or vorticity field F,, acquires its greatest strength +1/2 at the zeros of ¢ which
represent “vortex points”. Moreover, (6.26) implies that ¢ is locally holomorphic or anti-holomorphic up to a
nonvanishing smooth factor such that the zeros of ¢ are algebraic, that is, the zeros of ¢ are isolated, which are
Py, .--» Dy, With respective integer multiplicities, n,, ..., n,, summing up to |N|, n; +- - -+mn, = |N], so that a
charge N configuration indeed gives rise to an N-vortex solution. Resolving (6.26) away from p;,..., p;, we have
2F;, = FA|p|> Thus, using u = In |¢|? and taking account of the zeros p;,..., p, of ¢ and their respective
multiplicities n,, ..., n;, we obtain from (6.27) the equation

Au= +4r ) né, ), x € R?, (6.28)
\/T Z o

subject to the boundary condition u = 0, corresponding to |¢|*> = 1, at infinity. For this equation, an existence
and uniqueness theorem for its solution has been established [83] which gives rise to the unique solution up to
gauge transformations to the optimization problem (6.16) with

Ey = z|N], (6.29)

where V assumes the special form (6.21), realizing prescribed zeros with associated multiplicities as point vor-
tices. Note that, when f = 0, the equation (6.28) reduces into that in the classical Abelian Higgs theory [71], [84],
sometimes referred to as the Taubes equation [85], [86]. In a slightly more general situation where

V($lH = ;(1 -4/1- g(lqbl2 - 1)2>, A>0, (6.30)

we may rewrite the corresponding energy functional (6.10) as E*(¢), A) so that the quantity given in (6.16) is
denoted by E{. It is clear that

AE(¢,A) < EM(¢,A) < EN¢,A), A<T;
EY(¢,A) < EX@,A) < AEN (P, A), A>1 (6.31)

Consequently, in view of (6.29) or E}V = z|N| and (6.31), we get the energy estimate
min{1, A}z|N| < E* < max{1, A}z|N]|, (6.32)

in terms of the topological charge N. In particular, the left-hand side of (6.32) indicates an energy gap. That is, the
interval (0, min{1, A}7) does not contain any energy point of the system.
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The productive study of the self-dual system (6.24)-(6.26) suggests that we extend the method of [72] shown
above to obtain self-dual reductions for various Born-Infeld inspired Abelian Higgs models for which the
Born-Infeld electromagnetic action density (2.3) is extended to assume the general form (2.4). Apparently, the
main difficulty here is how to overcome the limitation associated with the completion-of-squares procedure
used in (6.18) in order to make the topological invariant (6.14) stand out. Any new constructions beyond (6.10)
will be interesting. See [87] for a construction of gauged harmonic maps along the line of the Born-Infeld theory
(2.3) in a similar spirit.

Now return to the model (6.10). Using polar coordinates r, § on R?, a radially symmetric N-vortex solution
(¢, A is given by the ansatz

P00 = ure?, A = NoMeytz, Lj=12 NEZ, (6.33)

where u, v are real-valued functions satisfying the regularity condition u(0) = v(0) = 0. Moreover, inserting
(6.33) into (6.10), we have

[se]

2 2 2
Ew,0) = 27 / (113 l\ [1+ ﬂNz% - 1] + (”2’) + DU = 1P + V(uz))rdn (6.34)

0

In view of this and the structure of (6.34), we arrive at the full set of boundary conditions for u, v as follows:
u0) =v0) =0, u(oo)=uv(c0)=1, (6.35)
where N # 0. Subject to (6.35) and varying (6.34), we get the Euler-Lagrange equations

/ 2
U’ + ”7 = %(u — DPu+2V' (), (6.36)

/

v _ wwo-1 637)

which are also the radially reduced version of (6.8)—(6.9). It will be interesting to develop an existence theory for
the solutions to (6.36)—(6.37) as critical points of the functional (6.34) subject to the boundary condition (6.35). We
expect to recover the N-vortex solutions of the classical Abelian Higgs model [88] when § — 0. This problem is
of independent interest.

Furthermore, a truly one-dimensional reduction (domain walls) of the problem is worth considering as
well. In this setting, we may assume that the fields ¢ and A; depend on x! = x only, ¢ = f(x) is real-valued,
andA; = 0,4, = a(x).So (6.26) becomes f* + af = 0.In the nontrivial situation, f never vanishes such that
we may assume f > 0, which gives us a = F(In f)’. Besides, we have F;, = a’. In view of these, we get from
(6.27) the self-dual domain-wall equation

u__
=1 u—amg (6.38)

_ Bau _ 1)
1 4(e“ 1)

Following [89], boundary conditions of interest describing relevant phase transition phenomena include
U(—o0) = 0,u(co) = —ooand u(+o0) = —oo. When f = 0, the equation is a one-dimensional Liouville type
equation [90] and can be integrated [91]. Whether the equation may be integrated in the Born-Infeld case,
p > 0, is to be studied. More generally, subject to the same domain-wall ansatz, the Equations (6.8)-(6.9)
become

f"=af =2v(ff, (6.39)

/
a 2
_ . (6.40)
< Vit ﬂ(a')Z) Ja

and the energy (6.10) assumes the form
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Ea, f) = / (; [\/1 + pa')? - 1] + %(f’)2 + %azfz + V(f2)>dx. (6.41)

It is clear that (6.39)—(6.40) are the Euler-Lagrange equations of the energy functional (6.41). As an extension to
the Ginzburg-Landau equations for superconductivity theory, boundary value problems over a finite interval
are of interest too. For example, for the phase transition between the normal state at x = —1and the supercon-
ducting state at x = 1(say), we may impose f(—1) = 0,a’(-1) = H, > 0 (the normal magnetic phase, where
H, represents an applied magnetic field) and f(1) = 1,a’(1) = 0 (the superconductive Meissner effect phase),
respectively.

6.3 MEMS equations based on Born-Infeld electromagnetism

Finally, we consider a nonlinear differential equation problem associated with the Born-Infeld theory inspired
formalism of electrostatic actuation arising in the study of microelectromechanical systems, known as MEMS
[92]. To proceed, recall that the Coulomb law states that the electrostatic force F between two charges, ¢, and g,
placed at a distance, r, apart is given by F(r) = q,q,/r*. Now assume ¢, and ¢, are uniformly distributed over
two parallel tiny plates. If the two charges are equal in magnitude but of opposite signs, ¢, = —¢, = ¢, and
brought together to a finite separation distance r > 0 from infinite separation, then the potential acquired is
the work done given by U(r) = /r°°F(p) dp = —¢*/r so that F(r) = —U’(r). To maintain the charges q and —q
in the two plates, an electric field is applied and measured in voltage V, which is proportional to q. Thus, with
normalization and within small separation oscillation assumption, we may take ¢ = V such that U becomes
U = —V?/r. When the plates are subject to deformation extended over a planar region  so that r is described
byr = L + ux) (x € Q)whereL > 0is the distance between the two plates in absence of deformation and
u(x) represents the vertical deformation amount fluctuating aboutu = 0, then U is given by an integral instead:

VZ

=— Q c R2 42

U / I+u dx, C (6.42)
Q

On the other hand, in the situation of the Born-Infeld theory, from (2.14), we know that the force F is modified

into F(r) = —qE" = —q*/+/p¢* + r* such that in the absence of plate deformation, the model gives us

ur)=— / —dp. (6.43)
L VBVt
Hence, when deformation is considered, we have
U= /F(p)dp = —/ / ——— dpdx, (6.44)
VBV +pt
r Q L+ux)

replacing (6.42). Therefore, adding the stretching, bending, and elastic energies to the electrostatic potential
energy (6.44), we come up with the total elastic-electrostatic energy functional

E(u):/ I|Vu|2+Q|Au|2+EuZ— / Ldﬂdx (6.45)
2 2 2 VBVZ + ot ’ '

Q L+u(x)

where T > 0 is the tension constant, D > 0 relates to the Young modulus, k > 0 the elastic constant, and
V > Oisaneffective applied voltage. Varying u in (6.45), we arrive at the following Born-Infeld theory modified
equation:

VZ

VAVE+ (L + w?t’

TAu— DA%u = ku + (6.46)
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governing the static configuration of a MEMS electric actuator, whose f = 0 limit has been studied in [93]. Fur-
thermore, to investigate the dynamics of such a system, we may regard (6.45) as the total potential energy so
that the associated Lagrangian action functional is given by

[5e]
1 T D K V?
Hw=/LﬁM—/ ﬁWM+me+4ﬁ—‘/4————dpm (6.47)
2t 2 2 2 N
Q Q L+ux) ﬁV +r
Varying u in (6.47), we obtain the equation of motion of the system:
2 &
U; = TAu—DA"u—ku— (6.48)

VAV + (L +wt

A boundary condition of interest is the “pinned” or Navier boundary condition u = Au = 0 on dQ. The sim-
plified homogeneous case of the problem for which u is spatially independent is also of interest. In this situation,
the wave Equation (6.48) becomes a nonlinear ordinary differential equation:

.. &

U+ KU+ ———xo==0. (6.49)

VAVE+ (L + w?

In the Maxwell theory limit, § = 0, it is shown in [94] that, there is an explicitly determined critical volt-
age V. > 0, called the pull-in voltage [95], such that below V, the equation has a periodic solution oscillating
between two “stationary” states u(0) = 0, it(0) = 0 and u(t,) = —u, < 0, i(t;) = Owheret, > 0is called the stag-
nation time [95] which gives rise to the period of the oscillation, 7 = 2t,; above V, the solution u monotonically
goes to its limiting position in finite time; and at V, the solution u monotonically approaches its limiting position
ast — oo.In other words, oscillatory vibration of the electric actuator occurs if and only if V. < V.. Moreover,
similar conclusions may be established when nonlinear elasticity is also considered for the system. Due to the
microscopic-scale nature of MEMS devices, it will be useful to modify the divergent Maxwell theory formalism
with the convergent Born-Infeld theory formalism to describe MEMS electric actuators. It is this consideration
that motivates a systematic study of the associated nonlinear differential equations problems such as (6.46),
(6.48), and (6.49) along [93], [94] and the references therein.
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