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Abstract: It is shown that nonlinear electrodynamics of the Born–Infeld theory type may be exploited to shed

insight into a few fundamental problems in theoretical physics, including rendering electromagnetic asymmetry

to energetically excludemagnetic monopoles, achieving finite electromagnetic energy to relegate curvature sin-

gularities of charged black holes, and providing theoretical interpretation of equations of state of cosmic fluids

via k-essence cosmology. Also discussed are some nonlinear differential equation problems.
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1 Introduction

Fundamental physics thrives and even relies on nonlinearities which often lead to highly challenging non-

linear differential equation problems. For example, the free motion of a particle of mass m and velocity 𝑣 is

governed in Newtonian mechanics by the Lagrangian action function 1

2
m𝑣2 but that in Einstein’s special rela-

tivity is by mc2(1−
√
1− 𝑣2∕c2) where c is the speed of light in vacuum; in order to obtain a full description of

the quantum-mechanical motion of a charged particle, the conventional partial derivative 𝜕𝜇 with respective

to the Minkowski spacetime coordinate x𝜇 in the Schrödinger equation needs to be replaced by the gauge-

covariant derivative D𝜇 = 𝜕𝜇 − iA𝜇 , where A𝜇 is a real-valued gauge field with induced electromagnetic field

F𝜇𝜈 = 𝜕𝜇A𝜈 − 𝜕𝜈A𝜇 , giving rise to nonlinear interaction between the wave function and gauge field in the

coupled theory; the Yang–Mills gauge field theory describing weak and strong interactions between subatomic

particles is formulated in terms of matrix-valued field tensors of the form F𝜇𝜈 = 𝜕𝜇A𝜈 − 𝜕𝜈A𝜇 + [A𝜇,A𝜈],

where A𝜇 is a matrix-valued gauge field and [⋅, ⋅] the matrix commutator, introducing nonlinear self-interaction
of the gauge field; the gravitational theory of Einstein is built over a pseudo-Riemannian or Lorentzianmanifold

that relates the spacetime metric tensor to the matter presence through coupling its Ricci tensor and curvature

scalar to the matter stress tensor, which inevitably gives rise to a highly nonlinear partial differential equation

problem. Interestingly, inmany situations, evenwhen the original theoretical setups are linear and successful, it
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often becomes necessary to go beyond linear structures and stride into nonlinear realms, both formathematical

and physical reasons. For example, mathematically, although the linear Schrödinger equation enables a correct

description of the full spectral series of hydrogen or any single-electron nucleus systems, it is difficult to achieve

similar levels of understanding for the problem involving more than one electron in the system, such as helium,

lithium, and other atoms, since the linear Schrödinger equation now becomes non-separable. In order to tackle

such difficulty typically encountered in quantum many-body problems, various effective nonlinear methods

have been developed, mainly aimed at understanding ground states. These include the Hartree–Fock method

[1], the Thomas–Fermi formalism [2], [3], and the density functional theory [2], [3]. Furthermore, physically,

although the linear London equations are successful in predicting the Meissner effect, a signature phenomenon

in superconductivity, a full phenomenological description of the physics of superconductivity such as phase

transition versus temperature and applied field and onset of mixed states utilizes a mechanism called sponta-

neous symmetry breaking, which generically calls upon a quartic potential density function, resulting in the

Ginzburg–Landau theory of superconductivity [4].

This article surveys and elaborates on a few insights [5]–[7] obtained from a nonlinear theory of electro-

dynamics, known as the Born–Infeld theory [8]–[11], extending the classical linear theory of electromagnetism

of Maxwell. Originally, the Born–Infeld theory was formulated with an aim to overcome the energy divergence

problem associated with a Coulomb electric point charge as a model for electron. In contemporary theoreti-

cal physics, this theory and its various generalized forms also arise in the research on superstrings [12]–[14]

and branes [15]–[17], charged black holes [5], [7], [18]–[21], and cosmology [5], [7], [22]–[24]. See [25] for a

review on modified gravity theories inspired by the Born–Infeld formalism. In what follows, we first recall

the classical Born–Infeld theory and its generalization (Section 2) and then present three new developments

[5] based on the generalized Born–Infeld theory. These include a generic exclusion of monopoles in view of

the Stone–Weierstrass density theorem (Section 3), relegation or regularization of curvature singularities of

charged black holes (Section 4), and k-essence realization of equations of state for cosmic fluids (Section 5).

Detailed explanations of these problemswill be given in the beginning paragraphs of the respective sections sub-

sequently. In Section 6, we summarize the results and consider some nonlinear differential equation problems

of analytic interests inspired by the Born–Infeld theory.

2 Born–Infeld theory and its generalization

Consider the 4-dimensional Minkowski spacetime with temporal and spatial coordinates, x0 = t and (xi) = x,

equipped with the metric (𝜂𝜇𝜈) = diag(1,−1,−1,−1), which is used to raise and lower coordinate indices as

usual. Then the electromagnetic field F𝜇𝜈 induced from a real-valued gauge field A𝜇 may be represented in

terms of the underlying electric field E = (Ei) = (Fi0) and magnetic field B = (Bi) = (− 1

2
𝜀ijkF jk). With this

preparation, the Lagrangian action density of the Maxwell theory of electrodynamics reads

s = M = − 1

4
F𝜇𝜈F

𝜇𝜈 = 1

2
(E2 − B2). (2.1)

On the other hand, recall that, the Lagrangian function of Newtonianmechanics for themotion of a freemassive

particle is N = 1

2
m𝑣2, and that the Lagrangian function of special relativity of Einstein for the particle is

E = mc2

(
1−

√
1− 𝑣2

c2

)
= mc2

(
1−

√
1− 2

mc2
N

)
. (2.2)

In view of this connection and (2.1), Born and Infeld [8]–[11] proposed their celebrated Lagrangian free action

density to be

BI = b2

(
1−

√
1− 2

b2
M

)
= 1

𝛽

(
1−

√
1− 2𝛽s

)
, (2.3)
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where b > 0 is called the Born parameter and 𝛽 = 1∕b2. Note that this Lagrangian was originally proposed by
Born himself in [8], [9] without elaboration on its special relativity origin from (2.2), which was later carried out

in [10], [11]. For the generalized Born–Infeld theory, the Lagrangian free action density is taken to assume the

normalized form [5]

 = f (s), f (0) = 0, f ′(0) = 1, (2.4)

whose Euler–Lagrange equations are

𝜕𝜇P
𝜇𝜈 = 0, (2.5)

where the field tensor

P𝜇𝜈 = f ′(s)F𝜇𝜈 (2.6)

gives rise to the usual electric displacement field D and magnetic intensity field H through the rela-

tions D = (Di) = (Pi0) and H = (Hi) = (− 1

2
𝜀ijkP jk). Note also that, in terms of the dual of F𝜇𝜈 , namely

F̃𝜇𝜈 = 1

2
𝜀𝜇𝜈𝛼𝛽F𝛼𝛽 , there also holds the Bianchi identity 𝜕𝜇F̃

𝜇𝜈 = 0, which supplements (2.5). Besides, the relation

(2.6) may be rewritten in the form of the constitutive equations between E,B and D,H as

D = 𝜀(E,B)E, B = 𝜇(E,B)H, 𝜀(E,B) = f ′(s), 𝜇(E,B) = 1

f ′(s)
, (2.7)

where the quantities 𝜀 and 𝜇 resemble the usual dielectrics and permeability coefficients such that 𝜀𝜇 = 1

realizes the fact that the speed of light in vacuum is unity. In view of (2.5) and (2.7), we arrive at the following

equations of motion

𝜕B

𝜕t
+∇ × E = 0, ∇ ⋅ B = 0, −𝜕D

𝜕t
+∇ × H = 0, ∇ ⋅ D = 0, (2.8)

which are of the identical form of the source-free Maxwell equations among which the first two equations are

the Bianchi identity and the other two equations are given by (2.5). Moreover, the energy-momentum tensor of

the theory (2.4) may be calculated to be

T𝜇𝜈 = − f ′(s)F𝜇𝛼𝜂
𝛼𝛽F𝜈𝛽 − 𝜂𝜇𝜈 f (s), (2.9)

resulting in the Hamiltonian energy density

 = T00 = f ′(s)E2 − f (s). (2.10)

Thus, in the case of the classical Maxwell theory with f (s) = s and the Born–Infeld theory with f (s) given by

(2.3), we have

 = 1

2
(E2 + B2), (2.11)

 = 1

𝛽

⎛⎜⎜⎝ 1√
1− 𝛽(E2 − B2)

− 1

⎞⎟⎟⎠+ B2√
1− 𝛽(E2 − B2)

, (2.12)

respectively, forming interesting comparisons. In the electrostatic case of a point charge source, we have ∇ ·
D = 4𝜋q𝛿(x), giving rise to the nontrivial radial component of D:

Dr = q

r2
, r = |x| > 0, q > 0. (2.13)

Inserting (2.13) into (2.7), we obtain

Er = q

r2
; Er = q√

𝛽q2 + r4
, (2.14)

for the Maxwell and Born–Infeld cases, respectively. In view of (2.11), (2.12), and (2.14), it is seen how the diver-

gence and convergence of the energy of a point electric charge in theMaxwell theory andBorn–Infeld theory fol-

low in respective cases. The same is analogously true for amagnetostatic point charge given by∇ · B = 4𝜋g𝛿(x)

with g > 0. In other words, with regard to energy divergence and convergence of an electric or magnetic point
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charge, there is perfect symmetry between electricity and magnetism in the Maxwell theory and Born–Infeld

theory. In particular, there is no mechanism to exclude a monopole in either theory.

3 Generic exclusion of monopoles

In the previous section,wehave seen that, in bothMaxwell andBorn–Infeld theories, electric andmagnetic point

charges are given equal footings energetically, and the theories offer nomechanism to rule out the occurrence of

a magnetic point charge, i.e., a monopole [26], [27]. Although the notion of monopoles is conceptually important

in field theory physics [28]–[30], such purely magnetically charged point particles have never been observed as

isolated particles, although some forms of their simulations in condensed-matter systems have been produced

[31]. Here we show that the flexibility in its nonlinearity of the generalized Born–Infeld theorymakes it possible

to break the described electromagnetic symmetry so that a finite-energy electric point charge is maintained

but a finite-energy magnetic point charge is excluded [5]. Specifically, we shall see that such a breakdown of

electric and magnetic point charge symmetry, referred to as electromagnetic asymmetry, may be regarded as

a generic property of nonlinear electrodynamics. More precisely, it will be established that, for any nonlinear

electrodynamics governed by a polynomial function, the theory always accommodates finite-energy electric

point charges but excludes magnetic ones, although unlike what is seen in the classical Born–Infeld model, no

upper bound for electric field may be imposed in the current context. The word “generic” is used to refer to the

fact that the set of polynomials is dense in the function space of nonlinear Lagrangian functions in view of the

Stone–Weierstrass theorem [32], [33] such that any model of nonlinear electrodynamics may be approximated

in a suitable sense by a sequence of models governed by polynomials. As a consequence, one might conclude

that monopoles are generically ruled out with regard to the finite-energy condition.

To proceed, let f (s) be any nonlinearity function given in (2.4) over its maximum interval of definition with

end points a < bwhere a, bmay be finite or infinite. Let {[ak, bk]} be a sequence of compact intervals satisfying
ak → a, bk → b as k → ∞. For any 𝜀 > 0, let k0 ≥ 3 (say) be such that∑

k>k0

2−k <
𝜀

2
. (3.1)

For the interest of our problem, we should assume ak < 0 < bk for all k. For so fixed k0, since f (s) is not linear,

there is a nontrivial polynomial q(s) of the form

q(s) =
n∑
i=0

ais
i, a0,… , an ≠ 0, (3.2)

such that in terms of the usual C0-norm over Ik0 = [ak0 , bk0 ] we have

| f ′′ − q|Ik0 ≡ max
{| f ′′(s)− q(s)|: ak0 ≤ s ≤ bk0

}
<

𝜀

(|ak0 |+ bk0 )
2
, (3.3)

resulting in the bound

| f − p|Ik0 < 𝜀, p(s) = s+
n∑
i=0

ais
i+2

(i+ 1)(i+ 2)
, a0,… , an ≠ 0, (3.4)

by integration. Consequently, we have

d( f , p) ≡
∑
k≥2

2−k
| f − p|Ik

1+ | f − p|Ik < 𝜀
∑

2≤k≤k0

2−k +
∑
k>k0

2−k < 𝜀, (3.5)

in view of (3.1) and (3.4). Thus, measured by the metric d, p is in the 𝜀-neighborhood of f .
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The form of the polynomial function p(s) in (3.4) leads us to consider the nonlinearity function

f (s) = s+
n∑

k=2
aks

k, a2,… , an ∈ ℝ, an ≠ 0. (3.6)

In the electrostatic situation, s = E2∕2. Thus we may insert (3.6) into (2.7) to obtain

D =
(
1+

n∑
k=2

kak
2k−1

E2(k−1)
)
E. (3.7)

With (2.13), we see that the nontrivial radial component Er of E away from the origin is given by

Er = q

r2
, r≫ 1, (3.8)

Er =
(
2n−1q
nan

) 1

2n−1
r−

2

2n−1 , r≪ 1, (3.9)

asymptotically. It is clear that (3.8) is simply the usual Coulomb law but (3.9) is less singular than the Coulomb

law near the origin since n ≥ 2. In order to examine the energy of this point electric charge, we get from (2.10)

the Hamiltonian density

 =
(
1+

n∑
k=2

kak
2k−1

E2(k−1)
)
E2 −

(
E2

2
+

n∑
k=2

ak
2k
E2k

)
. (3.10)

Using (3.8) and (3.9) in (3.10), we arrive at the sharp estimates

 = q2

2r4
, r≫ 1;  = (2n− 1)

([
q2

2n2

]n
1

an

) 1

2n−1

r−
4n

2n−1 , r≪ 1. (3.11)

These results lead to the finiteness of the electric energy

E = 4𝜋

∞

∫
0

r2dr, (3.12)

for any n ≥ 2 as anticipated. On the other hand, for a magnetic point charge, the nontrivial radial component

of B reads Br = g∕r2. Hence, in view of this, s = −B2∕2, and (2.10) and (3.6), we have

 = g2

2r4
+

n∑
k=2

(−1)k+1akg2k
2kr4k

, (3.13)

so that  = O(r−4n) as r → 0 and  = g2∕2r4 as r → ∞, asymptotically. In particular, we conclude in view

of (3.12) that divergence of energy always occurs for a magnetic point charge for any n ≥ 2 as in the Maxwell

theory (corresponding to n = 1). In other words, we see that magnetic monopoles are energetically excluded

in any polynomial model defined by (3.6).

We summary our results of this discussion as follows.

Theorem 3.1. (Monopole exclusion theorem). Let the nonlinearity function of the generalized Born–Infeld elec-

trodynamics be defined over the interval I, which contains 0 as an interior point, and taken from the set of twice

continuously differentiable functions given by

 = { f (s) | f (0) = 0, f ′(0) = 1}, (3.14)

and equipped with the distance metric

d( f , g) =
∞∑
k=2

2−k
| f − g|Ik

1+ | f − g|Ik , (3.15)
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where Ik = [ak, bk] is a strictly monotone increasing sequence of compact intervals such that Ik → as k → ∞
and | ⋅ |Ik is the usual C0-norm. Let  be the subset of  consisting of polynomial functions which is dense in

 by the Stone–Weierstrass theorem. The nonlinear electrodynamics theory formulated with any f ∈  per-

mits finite-energy static electric point charge sources but does not permit any finite-energy static magnetic point

charge sources. In other words, the nonlinear electrodynamics theory with any f ∈  rejects magnetic monopoles

energetically.

To apply the theorem, for the classical Born–Infeld model (2.3), we may take Ik =
[
−k, 1

2𝛽

(
1− 1

k

)]
; for the

exponential model [34], [35].

fexp(s) =
1

𝛽
(e𝛽s − 1), 𝛽 > 0, (3.16)

we may use Ik = [−k, k]. It is interesting to see that although both models permit electric as well as magnetic
point charge sources but they do not permit magnetic point charge sources when approximated by the dense

subset  . On the other hand, for the arcsin-model [21], [36]

farcsin(s) =
1

𝛽
arcsin(𝛽s), 𝛽 > 0, (3.17)

we may choose Ik =
[
− 1

𝛽

(
1− 1

k

)
,
1

𝛽

(
1− 1

k

)]
. It is known that this model itself does not permit magnetic point

charge sources but only electric ones [5], [21], [36].

Thus, in sense of function-space density and exclusion of magnetic monopoles as stated in the theorem, it

is seen that we have revealed a general electromagnetic asymmetry phenomenon, which does not occur in the

Maxwell and Born–Infeld theories.

4 Relegation of curvature singularities of charged black holes

In the context of relativistic physics, mass and energy are considered equivalent. However, these quantities

exhibit themselves rather differently in general relativity, as evidenced in particular in the study of charged

black holes. For example, in the charged Reissner–Nordström black hole solution [37]–[39] situation, gravity

and electromagnetism are treated in such a way that gravitational mass is finite but electromagnetic energy is

infinite. In fact, this latter issue is associatedwith the structure of theMaxwell equations inwhich a point charge

carries an energy which is divergent at the spot where the charge resides, say, at the radial origin, r = 0, as

described in Section 2. More specifically, using (t, r, 𝜃, 𝜙) to denote the coordinates of a spherically symmetric

spacetime, then the Reissner–Nordström metric assumes the form

ds2 =
(
1− 2GM

r
+ 4𝜋GQ2

r2

)
dt2 −

(
1− 2GM

r
+ 4𝜋GQ2

r2

)−1
dr2 − r2

(
d𝜃2 + sin2 𝜃 d𝜙2

)
, (4.1)

where Q > 0 is an effective charge parameter, M > 0 the gravitational mass, G Newton’s gravitational con-

stant, and the speed of light again set to be unity. Themetric (4.1) is an example of themore general Schwarzschild

black hole metric [7]

d𝜏2 = g𝜇𝜈dx
𝜇dx𝜈 = A(r)dt2 − dr2

A(r)
− r2

(
d𝜃2 + sin2 𝜃 d𝜙2

)
, (4.2)

subject to the asymptotic flatness condition A(r) → 1 as r → ∞. For (4.2), the Brown–York quasilocal energy

[40] contained within the local region stretched to the “radial coordinate distance” r > 0 is given by

Eql(r) =
r

G

(
1−

√
A(r)

)
, (4.3)

so that the limit

Eql(∞) = lim
r→∞

Eql(r), (4.4)
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gives rise to the Arnowitt–Deser–Misner (ADM) energy or mass [37]–[39], [41]–[43] of the system in the full

space. Thus, if A(r) has the asymptotic form

A(r) = 1− 2GM

r
+ 4𝜋GQ2

r𝜎
, r≫ 1, (4.5)

resembling (4.1), where the exponent 𝜎 is an undetermined positive parameter, then the formula (4.3) leads to

Eql(r) = M − 2𝜋Q2

r𝜎−1
+ GM2

2r
− 2𝜋GQ2M

r𝜎
+ O

(
r−(2𝜎−1)

)
, r≫ 1. (4.6)

It is clear from (4.3) and (4.5) that the positivity ofEql(r) requires𝜎 ≥ 1. Consequently, if charge (either electric or

magnetic or both) contributes to the ADMmass, wemust have 𝜎 = 1, in view of (4.4) and (4.6). In particular, we

see that the effective charge of a Reissner–Nordström black hole does not contribute to the ADM mass because

now 𝜎 = 2. On the other hand, recall that the usual Kretschmann invariant [38], [44] of the metric (4.2) is given

by

K = R𝛼𝛽𝛾𝛿R
𝛼𝛽𝛾𝛿 = (r2A′′)2 + 4(rA′)2 + 4(A− 1)2

r4
, (4.7)

in terms of the Riemann tensor R𝛼𝛽𝛾𝛿 , which measures the curvature singularity of the center of the black hole.

For the Schwarzschild solution (the metric (4.1) with Q = 0), the singularity is of the type K ∼ r−6. For the

Reissner–Nordström charged black hole solution (the metric (4.1) with Q ≠ 0), on the other hand, the singular-

ity is seen to be elevated to the type K ∼ r−8, which is due to the divergence of energy of an electric ormagnetic

point charge in the linear Maxwell electrodynamics. Thus, it will be interesting to know what the Born–Infeld

theory and its generalizations can offer for theADMmass,which is a global quantity, and for the curvature singu-

larity, which is a local property, in view of the fact that these nonlinear theories of electrodynamics permit point

charges of finite energies. To get a picture onwhat resultsmay be expected, recall that the property (2.4) is aimed

at recovering the Maxwell theory asymptotically in the weak-field limit. Therefore, for charged black holes gen-

erated in the generalized Born–Infeld electrodynamics, we should still obtain the Reissner–Nordström metric

in leading-orders for r ≫ 1, which renders 𝜎 = 2 in (4.5) so that electromagnetism still does not contribute to

the ADMmass. On the other hand, the divergence of energy of a point charge in theMaxwell theory occurs at the

center of the source, r = 0, and the nonlinear electrodynamics of the Born–Infeld type serves the purpose of

removing this divergence. As a consequence, it will be seen that the curvature singularity of a charged black hole

at r = 0will also be relegated or ameliorated systematically [5]–[7]. In general, we shall see that, regarding cur-

vature singularities, finitemass and finite electromagnetic energy present themselves at an equal footing so that

we always return to the Schwarzschild singularity K ∼ r−6 for r ≪ 1. In other words, we conclude that such

a singularity relegation phenomenon is universally valid in generalized Born–Infeld theories. Furthermore, we

show that there is a critical mass-energy condition under which the Schwarzschild type curvature singularity

may further be relegated or even eliminated in a systematic way. In particular, the Bardeen black hole [18], [19],

[45], [46] and the Hayward black hole [47]–[49] belong to this category of the regular black hole solutions of the

Einstein equations coupled with the Born–Infeld type nonlinear electrodynamics for which the critical mass-

energy condition is embedded into the specialized forms of the Lagrangian or Hamiltonian densities. A common

feature shared by the Bardeen and Hayward black holes is that the form of their Lagrangian action density can

only accommodate one sector of electromagnetism, that is, either electric field or magnetic field is allowed to

be present to model a point charge, but not both, due to the sign restriction under the radical root operation,

in a sharp contrast to the classical Born–Infeld theory which accommodates both electricity and magnetism

at an equal footing. Hence it is imperative to find a nonlinear electrodynamics model that accommodates both

electric and magnetic point charges and at the same time gives rise to regular charged black hole solutions as

in the Bardeen and Hayward models. Indeed, we will see [5], [6] that such a model may be obtained by taking

the large n limit in a naturally formulated binomial model, which is a special situation of the polynomial model

considered in Section 3 in the context of the monopole exclusion mechanism. That is, the binomial model does

not allow a finite-energy magnetic point charge but its large n limit, which assumes the form of an exponential

model proposed earlier by Hendi in [34], [35] in other contexts, accommodates both electric and magnetic point
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charges, and is free of sign restriction. These general and specific issues of charged black holes are our focus in

this section.

To proceed, we now use the gravitational metric tensor g𝜇𝜈 to lower or raise coordinate indices. Then the

Equation (2.5) is replaced by its curved-space version

1√
− det(g𝛼𝛽 )

𝜕𝜇

(√
− det(g𝛼𝛽 )P

𝜇𝜈

)
= 0, (4.8)

where P𝜇𝜈 assumes the same form, (2.6), with due metric tensor modification. In this context, the energy-

momentum tensor (2.9) becomes

T𝜇𝜈 = − f ′(s)F𝜇𝛼g
𝛼𝛽F𝜈𝛽 − g𝜇𝜈 f (s). (4.9)

Hence, in terms of the Ricci tensor R𝜇𝜈 associated with g𝜇𝜈 and the trace of T𝜇𝜈 given by T = g𝜇𝜈T𝜇𝜈 , the

Einstein equation becomes

R𝜇𝜈 = −8𝜋G
(
T𝜇𝜈 −

1

2
g𝜇𝜈T

)
. (4.10)

For a centrally charged situation with spherical symmetry, it can be shown that the coupled

Equations (4.8)–(4.10) have the explicit general solution

A(r) = 1− 2GM

r
+ 8𝜋G

r

∞

∫
r

(𝜌)𝜌2 d𝜌, (4.11)

where A(r) is the metric factor given in (4.2) and M an integration constant which may be taken to be positive

to represent a mass. Here the Hamiltonian density  = T0
0
happens to assume the same form as that in the

flat-space situation such that the quantity

E =
∫



√
− det(g𝛼𝛽 ) dx = 4𝜋

∞

∫
0

(𝜌)𝜌2 d𝜌 (4.12)

is the electromagnetic energy. Consequently, since the generalized electrodynamics of the Born–Infeld type

always recovers the Maxwell theory for which Er = q∕r2 and Br = g∕r2 for r ≫ 1 when both electric and

magnetic charges are present (a dyonic point charge source), so (2.1) leads to

s = q2 − g2

2r4
, r≫ 1. (4.13)

Using (2.4) and (4.13), we arrive at

 = q2 + g2

2r4
, r≫ 1. (4.14)

Inserting (4.14) into (4.11), we obtain the result

A(r) = 1− 2GM

r
+ 4𝜋G(q2 + g2)

r2
, r≫ 1. (4.15)

Thus, asymptotically near spatial infinity, the metric factor of a charged black hole in the generalized nonlinear

electrodynamics of the Born–Infeld type is of the same form as that of the Reissner–Nordström black hole gen-

erated by the Maxwell electrodynamics as given in (4.1). Therefore, as described earlier, the ADM mass of the

so-constructed charged black hole is simply the Schwarzschild massM.

Wenext study the behavior of themetric factorA(r) near the center of themass and charges of the black hole

assuming that a finite electromagnetic energy is already achieved in (4.12). Under this assumption, substituting

(4.12) into (4.11), we have
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A(r) = 1− 2G(M − E)

r
− 8𝜋G

r

r

∫
0

(𝜌) 𝜌2 d𝜌

= 1− 2G(M − E)

r
− 2GE(r)

r
, r > 0, (4.16)

where E(r) is the electromagnetic energy contained in the spatial region extending to any radial distance r > 0.

This expression clearly indicates how the curvature singularity at r = 0 may be relegated by the local energy

E(r).

The preceding paragraphs enable us to conclude with the following theorem.

Theorem 4.1. (Curvature singularity relegation theorem). Although electromagnetism does not contribute to

the ADM mass of a charged black hole given by the generalized electrodynamics of the Born–Infeld type, a finite

electromagnetic energy generically gives rise to a relegated curvature singularity asmeasured by the Kretschmann

invariant.More precisely, let E(r) denote the electromagnetic energy contained in a spatial region around the center

of the mass and charges of the black hole within any radial distance r > 0 satisfying

E(r) = 4𝜋

r

∫
0

(𝜌)𝜌2 d𝜌 = E0r
𝜅, r≪ 1, (4.17)

in leading order, where E0 > 0 is a constant and 𝜅 is a parameter for which the condition 𝜅 ≥ 0 is assumed

to observe the finite-energy condition. For any 𝜅 ≥ 0 the curvature singularity is relegated to that of the

Schwarzschild singularity, K ∼ r−6. Besides, under the critical mass-energy condition

M = E, (4.18)

we have

K = K0r
2𝜅−6, r≪ 1, (4.19)

where K0 > 0 is a constant. Hence in this latter situation the curvature singularity at r = 0 is removed when

𝜅 ≥ 3.

The theorem is a consequence of using (4.16) and (4.17) directly in (4.7).

It will be enlightening to discuss a few examples.

First, we consider the electric point charge source situation in the classical Born–Infeld theory (2.3) for

which is given by (2.12) and (2.14) (second expression) with zero B. Then (4.17) reads

E(r) =
r

∫
0

4𝜋q2

𝜌2 +
√
𝜌4 + 𝛽q2

d𝜌 = 4𝜋qr√
𝛽
, r≪ 1. (4.20)

This gives E0 = 4𝜋q∕
√
𝛽 and𝜅 = 1 in (4.17) so that the curvature singularity is relegated toK ∼ r−4 for r ≪ 1

under the condition (4.18). Moreover, we also have

E = E(∞) = 4𝜋q
3

2

𝛽
1

4

∞

∫
0

dx

x2 +
√
x4 + 1

= 4𝜋
5

2 q
3

2

3
(
Γ
(
3

4

))2
𝛽

1

4

, (4.21)

which determines the critical mass through (4.18) to achieve the stated relegated curvature singularity.

A magnetically charged black hole in the classical Born–Infeld theory (2.3) enjoys the same properties as

an electrically charged one due to the electromagnetic symmetry of the system.

Next, we consider [5], [6] the exponential model (3.16) assuming the critical condition (4.18).
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In the electric point charge situation, (2.7) relates the nontrivial radial components of E and D by the

equation f ′
exp
(s)Er = Dr, which gives us the implicit relation

eWW = 𝛿, W = 𝛽(Er)2, 𝛿 = 𝛽(Dr)2. (4.22)

Recall that the equation eWW = x defines the classical Lambert W function [50], [51] which is analytic for

x > −e−1 and
W(x) =

∞∑
n=1

(−n)n−1
n! xn, about x = 0, (4.23)

W(x) = ln x − ln ln x + ln ln x

ln x
+ · · · , x > 3. (4.24)

In view of (4.22), we have s = W∕2𝛽 such that

 = f ′
exp
(s)(Er)2 − fexp(s) =

1

𝛽

(
e

W

2 (W − 1)+ 1
)
, W = W(𝛽[Dr]2). (4.25)

Inserting Dr = q∕r2 into (4.25) and using (4.24), we have

 = 1

𝛽

(
𝛽

1

2 q

r2

[
ln
𝛽q2

r4
− 1

]
+ 1

)
, r≪ 1, (4.26)

resulting in

E(r) = 4𝜋qr

𝛽
1

2

(
−4 ln r + 3+ ln 𝛽q2

)
+ O(r3), r≪ 1. (4.27)

In view of (4.16), (4.27), and (4.7), we obtain the sharp curvature estimate

K = 210𝜋2G2q2 ln2 r

𝛽r4
+ O(r−4), r≪ 1, (4.28)

which significantly relegates the Schwarzschild type curvature singularity as well as that in the noncritical

situation,M ≠ E, of course.

In the magnetic point charge situation, we have s = −(Br)2∕2 = −g2∕2r4 and

 = − fexp(s) =
1

𝛽

(
1− e

− 𝛽 g2

2r4

)
, (4.29)

such that

E(r) = 4𝜋

𝛽

r

∫
0

(
1− e

− 𝛽 g2

2𝜌4

)
𝜌2 d𝜌 = 4𝜋r3

3𝛽
− 2

5

4𝜋g
3

2

𝛽
1

4

F

(
2

1

4 r

𝛽
1

4 g
1

2

)
, r > 0, (4.30)

where the smooth function

F(r) =
r

∫
0

e
− 1

𝜌4 𝜌2 d𝜌 (4.31)

vanishes at r = 0 infinitely fast. That is, for anym ≥ 1, we have F(r) = o(rm) for r ≪ 1. Consequently, (4.16)

gives us

A(r) = 1− 8𝜋Gr2

3𝛽
+ 2

9

4𝜋Gg
3

2

𝛽
1

4 r
F

(
2

1

4 r

𝛽
1

4 g
1

2

)
≡ 1− 8𝜋Gr2

3𝛽
+ h(r), (4.32)

such that (4.7) renders the result

K = 24a2 + 4(h− 2ar2)h

r4
+ 4(h′ − 4ar)h′

r2
+ (h′′ − 4a)h′′, a = 8𝜋G

3𝛽
, r > 0. (4.33)

Therefore, we have

K = 29𝜋2G2

3𝛽2
+𝜔(r), (4.34)
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where 𝜔(r) is a smooth function which vanishes at r = 0 infinitely fast. In particular, the mass and charge

center is a regular point of the curvature.

It is interesting to note that in this model there is an electromagnetic asymmetry exhibited through the

curvature singularities associated with electrically and magnetically charged black holes in that the singularity

associated with electricity is ameliorated but that with magnetism completely regularized. This phenomenon is

in sharp contrast with the electromagnetic symmetry observed in the classical Born–Infeld theory (2.3), on the

other hand.

Naturally, curvature singularity may also be deteriorated beyond that of the Reissner–Nordström black

hole. For example, for the polynomial model (3.6), the Hamiltonian density of a magnetic point charge is given

by (3.13). Hence from (4.11) we have

A(r) = 1− 2GM

r
+ 8𝜋G(−1)n+1ang2n

(4n− 3)2nr2(2n−1)
, r≪ 1, (4.35)

in leading orders. From (4.35), we see that (4.7) gives us K = C0∕r8n for r ≪ 1, which indicates that the cur-

vature singularity of a magnetically charged black hole can be elevated to an arbitrarily high order in the

polynomial model as a consequence of the energy divergence associated with a magnetic point charge source

presented in Section 3. This discussion leads us to the interesting observation that, although the binomial model

pn(s) =
1

𝛽

([
1+ 𝛽s

n

]n
− 1

)
, 𝛽 > 0, (4.36)

for all n = 1, 2,… , gives rise to magnetically charged black holes with increasingly high curvature singular-

ities as n goes up, its limit as n → ∞ on the other hand, which is the exponential model (3.16), brings forth

magnetically charged black holes free of curvature singularity, rather surprisingly.

5 k-essence realization of equations of state for cosmic fluids

In cosmology, in order to obtain a theoretical interpretation of the observed accelerated expansion of the uni-

verse usually attributed to the existence of dark energy, a real scalar-wave field, referred to as quintessence,

may be introduced to give rise to a hidden propelling force [37], [52]–[55]. In such a context, quintessence is

governed canonically by the Klein–Gordon model such that the kinetic energy density term is minimal and the

potential energy density may be adjusted to render the desired dynamic evolution of the universe. When the

kinetic density term is taken to be an adjustable nonlinear function of the canonical kinetic energy density, the

scalar-wave matter is referred to as k-essence [56]–[59]. This nonlinear kinetic dynamics is of the form of the

Born–Infeld type theory and may conveniently be used to provide a field-theoretical interpretation of a given

equation of state relating the pressure and density of a cosmological fluid. Over such a meeting ground, we may

examine the cosmic fluid contents or interpretations of the Born–Infeld type models in general settings.

For generality, we consider a homogeneous and isotropic universe formulated over an (n + 1)-dimensional

spacetime with the line element

d𝜏2 = g𝜇𝜈dx
𝜇dx𝜈 = dt2 − a2(t)𝛿i jdx

idx j, (5.1)

where a(t) > 0 is the scale factor resembling the radius of the universe. The nontrivial components of the Ricci

tensor of (5.1) are

R00 =
nä

a
, R11 = … = Rnn = −aä− (n− 1)ȧ2, ȧ ≡

da

dt
. (5.2)

We are interested in the evolution of the universe propelled by k-essence realized by a real-valued scalar-matter

wave function 𝜑 governed by the Lagrangian action density

 = f (X)− V(𝜑), X = 1

2
g𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑. (5.3)
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If we stay within the domain of an extension of the Klein–Gordon model, we should impose the condition

f (0) = 0, f ′(0) = 1. However, we shall not restrict ourselves to this condition in our discussion in general

since there is no compelling incentive to preserve the Klein–Gordon model in the weak field limit, X ∼ 0. The

Euler–Lagrange equation of (5.3) reads

1√| det(g𝛼𝛽 )|𝜕𝜇
(√| det(g𝛼𝛽 )| f ′(X)𝜕𝜇𝜑)+ V ′(𝜑) = 0, (5.4)

which is to be coupled with the (n + 1)-dimensional Einstein equation

R𝜇𝜈 = −8𝜋Gn
(
T𝜇𝜈 −

g𝜇𝜈T

n− 1

)
, (5.5)

extending (4.10), where Gn is the Newton gravitational constant over an n-space, R the scalar curvature, T𝜇𝜈 the

energy-momentum tensor associated with (5.3) given by

T𝜇𝜈 = f ′(X)𝜕𝜇𝜑𝜕𝜈𝜑− g𝜇𝜈( f (X)− V(𝜑)), (5.6)

and T = g𝜇𝜈T𝜇𝜈 the trace of the energy-momentum tensor. For consistency, we assume that 𝜑 is also homoge-

neous, i.e., spatially independent. Then in view of (5.1) the equation of motion (5.4) becomes(
an f ′(X)𝜑̇

)
̇ = −anV ′(𝜑), X = 1

2
𝜑̇2, (5.7)

and the nontrivial components of (5.6) are

T00 = 𝜑̇2 f ′(X)− ( f (X)− V(𝜑)), T11 = … = Tnn = a2( f (X)− V(𝜑)), (5.8)

so that

T = 𝜑̇2 f ′(X)− (n+ 1)( f (X)− V(𝜑)). (5.9)

In view of (5.2), (5.8), and (5.9), we see that (5.5) becomes

ä

a
= −8𝜋Gn

n

([
n− 2

n− 1

]
𝜑̇2 f ′(X)+ 2

n− 1
( f (X)− V(𝜑))

)
, (5.10)

ä

a
+ (n− 1)

(
ȧ

a

)2
= 8𝜋Gn

n− 1

(
𝜑̇2 f ′(X)− 2( f (X)− V(𝜑))

)
. (5.11)

On the other hand, representing T𝜇𝜈 in terms of its cosmic fluid description characterized by the fluid density 𝜌

and pressure P following the expression

(T𝜇𝜈) = diag(𝜌, a2P,… , a2P), (5.12)

we have by (5.8) the realizations

𝜌 = 𝜑̇2 f ′(X)− ( f (X)− V(𝜑)), P = f (X)− V(𝜑). (5.13)

Furthermore, in the current context, the conservation law∇𝜈T
𝜇𝜈 = 0 is reduced into

𝜌̇+ n(𝜌+ P)
ȧ

a
= 0. (5.14)

Using (5.13)–(5.14), we obtain from (5.10)–(5.11) the Friedmann equation(
ȧ

a

)2
= 16𝜋Gn

n(n− 1)
𝜌 = 16𝜋Gn

n(n− 1)

(
𝜑̇2 f ′(X)− ( f (X)− V(𝜑))

)
. (5.15)

The evolution of the homogeneous and isotropic universe is now governed by the closed system of nonlinear

differential equations comprised of (5.7) and (5.15), which is rather complicated in general. Nevertheless, some

simple examples of the system already offer us great insight into the problem.
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For example, the Equation (5.7) allows two kinds of constant solutions: (i)𝜑 = 𝜑0 and𝜑0 is a critical point

of V such that V0 = V(𝜑0) > 0, and (ii) 𝜑 = 𝜑0 = constant and V = V0 = a positive constant. In either

situation, we have 𝜌 = V0, P = −V0,𝑤 = P∕𝜌 = −1, and (5.15) renders us the solution

a(t) = a(0)eE0t, E0 =
√

16𝜋GnV0
n(n− 1)

, a(0) > 0, t > 0, (5.16)

which fails to yield a Big Bang cosmology but gives rise to a “dark energy”, E0, responsible for the exponential

expansion pattern of the universe. In this maner, V0 is identified with the cosmological constant Λ through

Λ = 8𝜋GnV0. Generalizing this idea, we may introduce a field-dependent cosmological “constant” by setting

Λ = Λ(𝜑) = 8𝜋GnV(𝜑). (5.17)

With this and noting that, in the presence of cosmological constant Λ, the matter density 𝜌m and pres-

sure Pm are related to the effective cosmic fluid density 𝜌 and pressure P through 𝜌 = 𝜌m + Λ∕8𝜋Gn and
P = Pm − Λ∕8𝜋Gn, respectively, we obtain from (5.13) and (5.17) the realizations

𝜌m = 𝜑̇2 f ′(X)− f (X) = 2X f ′(X)− f (X), Pm = f (X). (5.18)

Consequently, we arrive at the constitutive equation

𝑤m = Pm
𝜌m

= f (X)

2X f ′(X)− f (X)
. (5.19)

In particular, in the Klein–Gordon model situation or quintessence cosmology, we have f (X) = X, so that

𝑤m = 1. In other words, the model describes stiff matter. However, in the context of k-essence cosmology, the

kinetic nonlinearity function f (X) enjoys broad freedom for choice so that it may be used to model some desired

evolution patterns of the universe.

For example, for a radiation-dominated universe, we have [60], [61] 𝑤m = 1∕n, which is implied by the

trace-zero condition, T = g𝜇𝜈T𝜇𝜈 = 0, imposed on the electromagnetic energy-momentum tensor through its

perfect fluid realization (5.12), such that (5.19) gives rise to the differential equation

2X f ′(X) = (n+ 1) f (X), (5.20)

which leads to the solution

f (X) = X
n+1
2 . (5.21)

In the physical dimension, n = 3, this gives us the quadratic model f (X) = X2.

In a general formalism, (5.19) determines how the quantities Pm and 𝜌m are related, referred to as the

equation of state of the fluid matter. Since Pm and 𝜌m are parametrized in terms of the quantity X, so is 𝑤m.

In other words, the equation of state is defined by setting 𝑤m = 𝑤m(X) in terms of the parameter X, so that

(5.19) renders us [5]

2X
d f

dX
=
(
1+ 1

𝑤m(X)

)
f , (5.22)

which is a separable equation andmay readily be integrated to yield a k-essencemodel (5.3) to realized the given

equation of state. This discussion leads to the following.

Theorem 5.1. (Realization of equation of state of cosmic fluid by k-essence). In principle, any equation of

state of a cosmic matter fluid may be realized by a k-essence wave-matter model with a suitable choice of the

nonlinearity function of the model determined by integrating a first-order separable differential equation.

The importance of this construction is that, in the course of cosmological evolution, it is realistic to have a

variable𝑤m for the equation of state rather than a constant one so that various stages of the expanding universe

may be described by cosmic fluids of suitable, respective, physical characteristics, and that𝑤m plays the role of

an interpolation parameter.
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We examine a few examples as illustrations, assuming a constant potential density for simplicity.

Consider the following fractional-powered model [5] containing the classical Born–Infeld theory with

p = 1∕2,

f (X) = 1

𝛽

(
1−

[
1− 𝛽X

p

] p)
, 0 < p < 1, 𝛽 > 0, (5.23)

for generality, which enables a Big-Bang scenario with 𝜌m → ∞, Pm → 1∕𝛽 , as t → 0, corresponding to

X → p∕𝛽 , and 𝜌m → 0, Pm → 0, as t → ∞, corresponding to X → 0. Since now

𝑤m(X) =

(
p

𝛽
− X

)(
1−

[
1− 𝛽X

p

] p)(
p

𝛽
+ [2p− 1]X

)(
1− 𝛽X

p

) p

+ X − p

𝛽

, (5.24)

we have

lim
X→ p

𝛽

𝑤m(X) = 0, lim
X→0

𝑤m(X) = 1. (5.25)

Thus the fractional-powered k-essence model gives rise to a universe evolving from a dust-dominated fluid to a

stiff-matter-dominated fluid.

In the context of the exponential model (3.16), the k-essence scalar-matter wave is governed by

f (X) = 1

𝛽
(e𝛽X − 1), 𝛽 > 0. (5.26)

With (5.26), we see that (5.19) becomes

𝑤m(X) =
1− e−𝛽X

2𝛽X − 1+ e−𝛽X
. (5.27)

The Big-Bang solutionwith expansion indicates 𝜌m, Pm → ∞ as t → 0 and 𝜌m, Pm → 0 as t → ∞, correspond-

ing to X → ∞ and X → 0, respectively, which lead to the limits

lim
X→∞

𝑤m(X) = 0, lim
X→0

𝑤m(X) = 1, (5.28)

again interpolating between dust and stiff matter fluids as in the fractional-powered model stituation.

From (3.6), we may study the polynomial model [7]

f (X) = X +
k∑
i=2

aiX
i, a2,… , ak−1 ≥ 0, ak > 0, k ≥ 2. (5.29)

As in the exponential model (5.26), the Big-Bang growth picture gives rise to the same asymptotic behavior of

the matter density and pressure such that X → ∞ as t → 0 and X → 0 as t → ∞. With (5.29), the equation of

state (5.19) becomes

𝑤m(X) =
X +

k∑
i=2

aiX
i

X +
k∑
i=2

(2i− 1)aiX
i

, (5.30)

rendering the results

lim
X→∞

𝑤m(X) =
1

2k − 1
, lim

X→0
𝑤m(X) = 1, (5.31)

independent of the coefficients in (5.29). To make sense from the first expression in (5.31), we set

1

2k − 1
= 1

n
, k ≥ 2. (5.32)

That is, we relate the expression to a radiation-dominated universe in an n-dimensional space. As a consequence,

we arrive at the conclusion

n = 2k − 1, k = 2, 3,… . (5.33)



236 — Y. Yang: Nonlinear problems inspired by the Born–Infeld theory of electrodynamics

In other words, in order that the polynomial k-essence model gives rise to a universe evolving from a radiation-

dominated fluid to a stiff-matter one, the space dimensions may only be odd. The bottom case (n, k) = (3, 2) of

the condition (5.33) was noted earlier in [7], which motivates our study here in a general dimension setting.

Recall that, according to modern cosmology, the universe after the Big Bang should go through a radiation-

dominated era in the early universe and then evolve into its matter-dominated phase in later stages. Thus a

correct k-essence model should offer such a description for the expansion of the universe. Our study above

indicates that the fractional-powered model, including the classical Born–Infeld theory, and the exponential

model both fail tomeet this requirement. However, the polynomial models successfully serve this purpose when

the dimension of the space and degree of the polynomial functions match correctly. We summary this result as

follows.

Theorem 5.2. (Dimension selection and unique determination of polynomial model). Consider the polyno-

mial k-essence model consisting of (5.3) and (5.29) propelling a homogeneous and isotropic universe through its

coupling with the Einstein equation under the line element (5.1) so that X → ∞ as t → 0, corresponding to an

infinite density-pressure beginning of the universe, or 𝜌m, Pm = ∞, and that X → 0 as t → ∞, corresponding to

a vanishing density-pressure ending of the universe, or 𝜌m = 0, Pm = 0. In order to fulfill the required scenario

that the universe starts from a radiation-dominated era in the limit t = 0 and ends at a stiff-matter-dominated

stage in the limit t = ∞, the space dimension n must be an odd integer, n = 2k − 1 = 3, 5,… , corresponding

to k = 2, 3,… . That is, in this situation, the only polynomial model that can be used to achieve such an evolu-

tionary scenario is of degree k = (n + 1)∕2 = 2, 3,… , or quadratic, cubic, . . . , nonlinearities, corresponding

to odd spatial dimensions, n = 3, 5, . . . , respectively.

We mention that another criterion for the relevance of a cosmic fluid model is whether the associated adi-

abatic squared speed of sound, c2
s
, satisfies c2

s
∈ [0, 1]. That is, whether it stays within the range of the speed of

light. For our problem, this is given in view of (5.29) by

c2
s
= dPm

d𝜌m
= f ′(X)

f ′(X)+ 2X f ′′(X)
, (5.34)

such that it is seen to satisfy the criterion.

To conclude this section, we work out an example to show how to find the corresponding k-essence model

to realize the equation of state of a given cosmic fluid model using the method described in Theorem 5.1. For

simplicity and interest, we consider the Chaplygin fluid defined by equation of state

Pm = − 𝛾

𝜌m
, 𝛾 > 0. (5.35)

Directly inserting (5.35) into (5.18), we obtain the differential equation

X( f 2)′ = f 2 − 𝛾, (5.36)

whose solution reads f (X) =
√
𝛼X + 𝛾 and is well known [5], where 𝛼 > 0 is an integration constant. It is clear

that the equation of state (5.35) is satisfied with this solution in view of (5.18).

6 Conclusions and outlook

In this article, we have seen that nonlinear structures inspired by the Born–Infeld theory of electromagnetism

may be explored to shed light on some fundamental issues of field-theoretical physics, including a monopole

exclusion mechanism given by electromagnetic asymmetry introduced by polynomial-type nonlinearity, rel-

egation of curvature singularity of a charged black hole metric as a consequence of achieving finiteness of

electromagnetic energy beyond linear theory, k-essence interpretation of the equation of state of any prescribed,

hypothetical, cosmic fluid, and determination of spacetime dimension in view of a polynomial k-essence model
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chosen. The richness of such nonlinear structures leads to many future directions, both of theoretical and tech-

nical interests, to be pursued further. Below we describe a few handily stated nonlinear differential equation

problems in hope to spark further research interests in the Born–Infeld theory related analytic studies.

6.1 Dyonic matter equations

First, recall that it was Schwinger [62] who extended the work of Dirac [27] on magnetic monopoles and the

associated charge quantization formula to the context of dyons, hypothetical point particles carrying both elec-

tric and magnetic charges, based on the Maxwell theory. Thus, it will be interesting to consider dyons in the

Born–Infeld theory as well. Unfortunately, unlike electric and magnetic point charges, it can be shown that

the theory (2.3) does not permit a finite-energy dyon [5] as a dually charged point source. Therefore, the next

question is to study continuously distributed dyonic matter in the Born–Infeld theory (2.3) given by the source

equations

∇ ⋅ D = 𝜌e(x), ∇ ⋅ B = 𝜌m(x), x ∈ ℝ3, (6.1)

where 𝜌e and 𝜌m are electric andmagnetic charge density distribution functions. In the static current-free situa-

tion, (2.8) indicates that E andH are conservative. That is, there are scalar functions𝜙 and𝜓 such that E = ∇𝜙
and H = ∇𝜓 . Inserting these into (2.7), where f (s) is given by (2.3), and using (6.1), we have

∇ ⋅
⎛⎜⎜⎝∇𝜙

√
1− 𝛽|∇𝜓 |2
1− 𝛽|∇𝜙|2 ⎞⎟⎟⎠ = 𝜌e, (6.2)

∇ ⋅
⎛⎜⎜⎝∇𝜓

√
1− 𝛽|∇𝜙|2
1− 𝛽|∇𝜓 |2 ⎞⎟⎟⎠ = 𝜌m, (6.3)

which are the Euler–Lagrange equations of the action functional

(𝜙,𝜓 ) =
∫
ℝ3

(
1

𝛽

[
1−

√
1− 𝛽|∇𝜙|2√1− 𝛽|∇𝜓 |2]+ 𝜌e𝜙+ 𝜌m𝜓

)
dx. (6.4)

See [63]–[67] for results on existence, uniqueness, and regularity of the solution to the electric sector of the

problemwhen 𝜌m = 0 and𝜓 = 0 overℝn with n ≥ 3. In the source-free situation, 𝜌e, 𝜌m ≡ 0, it is unknown

what themost general entire solutions to (6.2)–(6.3) are, which is a Bernstein or Liouville type problem. Aweaker

question in this context is what the most general solutions are under finite-action condition. See [68] for some

partial results and general formalism.

To construct finite-energy dyonically charged point sources, wemay consider the secondBorn–Infeldmodel

[10], [11] based on an invariance principle, which was actually given the item number (2) and expression (2) as

well in [10], which in the current generalized context is governed by the Lagrangian action density

 = f (s), s = 1

2
(E2 − B2)+ 𝜅2

2
(E ⋅ B)2, 𝜅 ≥ 0. (6.5)

The constitutive relation between D,H and E,B now reads(
D

B

)
= Σ(E,B)

(
E

H

)
, Σ(E,B) ≡

⎛⎜⎜⎝
f ′(s)(1+ 𝜅4(E ⋅ B)2) 𝜅2(E ⋅ B)

𝜅2(E ⋅ B)
1

f ′(s)

⎞⎟⎟⎠, (6.6)

such that the matrix Σ(E,B) contains the dielectrics and permeability information of the system and that the

property det(Σ(E,B)) = 1 resembles the constraint that the speed of light in vacuum is normalized to unity.

This theory enables us to obtain finite-energy dyonically charged point sources, thus restoring electromagnetic

symmetry in the quadratic model, in particular, and dyonically charged black holes [6], [7] with relegated cur-

vature singularities, as in the first Born–Infeld theory context, modeled over (2.3) which was given the item
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number (1) and expression (1) in [10], with either electric or magnetic charges but not both then. In this context,

some families of static dyonic matter equations of the form (6.2)–(6.3) are also derived [7], which are of analytic

challenge.

6.2 Abelian Higgs model inspired by Born–Infeld theory

Next, an interesting subject concerns theAbelianHiggsmodel subject to theBorn–Infeld electrodynamics,which

is defined by the Lagrangian action density

 = 1

𝛽

(
1−

√
1− 2𝛽M

)
+ 1

2
(D𝜇𝜙)(D

𝜇𝜙)− V(|𝜙|2), (6.7)

where 𝜙 is a complex-valued scalar field, D𝜇𝜙 = 𝜕𝜇𝜙 − iA𝜇𝜙 the gauge-covariant derivative, and V ≥ 0 a

potential density function. In the two-dimensional static limit and under the temporal gauge A0 = 0 (in the

classical Abelian Higgs theory, finite-energy condition implies the temporal gauge in two-spatial dimensions, so

that the theory must be purely magnetic without electricity. This statement is known as the Julia–Zee theorem

[69], [70]. In the Born–Infeld theory case, it is of interest to study whether the same statement would be true),

the Euler–Lagrange equations of (6.7) are

DiDi𝜙 = 2V ′(|𝜙|2)𝜙, (6.8)

𝜕 j

⎛⎜⎜⎝
Fi j√

1+ 𝛽F2
12

⎞⎟⎟⎠ = i

2
(𝜙Di𝜙− 𝜙Di𝜙), (6.9)

where i, j = 1, 2. The solutions of these equations are also the critical points of the energy functional

E(𝜙,A) =
∫
ℝ2

(
1

𝛽

[√
1+ 𝛽F2

12
− 1

]
+ 1

2
|D1𝜙|2 + 1

2
|D2𝜙|2 + V(|𝜙|2))dx, (6.10)

where A = (Ai), so that a finite-energy solution of (6.8)–(6.9) satisfies the following Derrick–Pohozaev type

identity

∫
ℝ2

(
1

𝛽

[√
1+ 𝛽F2

12
− 1

]
+ V(|𝜙|2))dx =

∫
ℝ2

F2
12√

1+ 𝛽F2
12

dx. (6.11)

As in the formalism of the Abelian Higgs theory, we assume that there is a spontaneously broken U(1) symmetry

realized by the vacuum manifold given by V = 0 at |𝜙|2 = 𝜙2
0
> 0 which may be taken to be unity for conve-

nience. That is, V(1) = 0 and 𝜙0 = 1. Now since |𝜙(x)| → 1 as |x| → ∞ for a solution of (6.8)–(6.9), we see

that

Γ = 𝜙|𝜙| : S1
R
→ S1 (6.12)

iswell definedwhenR > 0 is large enough,where S1
R
denotes the circle inℝ2 centered at the origin and of radius

R. Therefore the map Γmay be viewed as an element in the fundamental group 𝜋1(S
1) = ℤ and represented by

an integer N . In fact, this integer N is the winding number of 𝜙 around S1
R
and may be expressed by the integral

N = 1

2𝜋i∫
S1
R

d ln 𝜙. (6.13)

The continuous dependence of the right-hand side of (6.13) with respect to R indicates that this quantity is

independent of R since the left-hand side of (6.13) is an integer. Thus we arrive at the following magnetic flux

quantization condition

Φ =
∫
ℝ2

F12 dx = 2𝜋N, (6.14)
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as a consequence of the limit||||||| ∫|x|≤RF12 dx + i
∫|x|=R

d ln 𝜙

||||||| =
||||||| ∫|x|=RAi dxi + i

∫|x|=R
𝜙−1𝜕i𝜙 dxi

|||||||
≤

∫|x|=R
|𝜙−1|(|D1𝜙|+ |D2𝜙|) ds→ 0, as R→∞, (6.15)

since |D1𝜙|, |D2𝜙| → 0 as |x| → ∞ exponentially fast. The topological number N given in (6.13) or (6.14) is

called the vortex number of the solution. Conversely, we ask whether for any given N ∈ ℤ there is a solution to

the topologically constrained minimization problem

EN ≡ inf

⎧⎪⎨⎪⎩E(𝜙,A)
|||||||∫ℝ2

F12 dx = 2𝜋N

⎫⎪⎬⎪⎭. (6.16)

As in the classical Abelian Higgs theory [71], this is a difficult problem, although a self-duality structure may be

explored as discovered in [72] to offer a partial understanding of the problem. To see how, we use the identity

|D1𝜙|2 + |D2𝜙|2 = |D1𝜙± iD2𝜙|2 ± i(D1𝜙D2𝜙− D1𝜙D2𝜙), (6.17)

to rewrite the Hamiltonian density of (6.10) as

 =

(
F12 ± 1

2

√
1+ 𝛽F2

12
(|𝜙|2 − 1)

)2

2
√
1+ 𝛽F2

12

+

(√
1+ 𝛽F2

12

√
1− 𝛽

4
(|𝜙|2 − 1)2 − 1

)2

2𝛽
√
1+ 𝛽F2

12

− 1

𝛽
∓ 1

2
F12(|𝜙|2 − 1)+ 1

𝛽

√
1− 𝛽

4
(|𝜙|2 − 1)2

+ 1

2
|D1𝜙± iD2𝜙|2 ± i

2
(D1𝜙D2𝜙− D1𝜙D2𝜙)+ V(|𝜙|2). (6.18)

Besides, in view of the commutator or curvature relation (D1D2 − D2D1)𝜙 = −iF12𝜙, we see that the current
density

Ji =
i

2
(𝜙Di𝜙− 𝜙Di𝜙), i = 1, 2, (6.19)

gives rise to the vorticity field

J12 = 𝜕1 J2 − 𝜕2 J1 = i(D1𝜙D2𝜙− D1𝜙D2𝜙)− |𝜙|2F12. (6.20)

We can now choose

V(|𝜙|2) = 1

𝛽

(
1−

√
1− 𝛽

4
(|𝜙|2 − 1)2

)
, (6.21)

under the condition 𝛽 < 4. Then V(1) = 0 as desired so that theU(1)-symmetry is spontaneously broken. Using

(6.20)–(6.21) in (6.18), we have

 ≥ ± 1

2
(F12 + J12). (6.22)

Furthermore, since D1𝜙 and D2𝜙 vanish at infinity rapidly, we have ∫ℝ2 J12 dx = 0. Hence, with N = ±|N|, we
see that (6.22) leads us to the topological lower bound

E(𝜙,A) =
∫
ℝ2

dx ≥ ± 1

2∫
ℝ2

F12 dx = 𝜋|N|, (6.23)
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by (6.14) and (6.22), and this lower bound is saturated when the following Bogomol’nyi [73] type equations are

satisfied:

F12 ±
1

2

√
1+ 𝛽F2

12
(|𝜙|2 − 1) = 0, (6.24)√

1+ 𝛽F2
12

√
1− 𝛽

4
(|𝜙|2 − 1)2 − 1 = 0, (6.25)

D1𝜙± iD2𝜙 = 0. (6.26)

Similar equations also appear fruitfully in the Yang–Mills theory [74]–[82]. It is clear that (6.24) implies

(6.25) so that these two equations may be compressed into one,

F12 = ± 1− |𝜙|2
2
√
1− 𝛽

4
(|𝜙|2 − 1)2

. (6.27)

It can be shown that 𝜙 satisfies the condition 0 ≤ |𝜙|2 ≤ 1, −1∕2 ≤ F12 ≤ 1∕2, and F12 = ±1∕2 at 𝜙 = 0.

In other words, the magnetic or vorticity field F12 acquires its greatest strength ±1∕2 at the zeros of 𝜙 which

represent “vortex points”. Moreover, (6.26) implies that 𝜙 is locally holomorphic or anti-holomorphic up to a

nonvanishing smooth factor such that the zeros of𝜙 are algebraic, that is, the zeros of𝜙 are isolated, which are

p1, . . . , pk , with respective integer multiplicities, n1, . . . , nk , summing up to |N|, n1 + · · · + nk = |N|, so that a
charge N configuration indeed gives rise to an N-vortex solution. Resolving (6.26) away from p1, . . . , pk , we have

2F12 = ∓Δ|𝜙|2. Thus, using u = ln |𝜙|2 and taking account of the zeros p1, . . . , pk of 𝜙 and their respective

multiplicities n1, . . . , nk , we obtain from (6.27) the equation

Δu = eu − 1√
1− 𝛽

4
(eu − 1)2

+ 4𝜋

k∑
l=1

nl𝛿 pl (x), x ∈ ℝ2, (6.28)

subject to the boundary condition u = 0, corresponding to |𝜙|2 = 1, at infinity. For this equation, an existence

and uniqueness theorem for its solution has been established [83] which gives rise to the unique solution up to

gauge transformations to the optimization problem (6.16) with

EN = 𝜋|N|, (6.29)

where V assumes the special form (6.21), realizing prescribed zeros with associated multiplicities as point vor-

tices. Note that, when 𝛽 = 0, the equation (6.28) reduces into that in the classical Abelian Higgs theory [71], [84],

sometimes referred to as the Taubes equation [85], [86]. In a slightly more general situation where

V(|𝜙|2) = 𝜆

𝛽

(
1−

√
1− 𝛽

4
(|𝜙|2 − 1)2

)
, 𝜆 > 0, (6.30)

we may rewrite the corresponding energy functional (6.10) as E𝜆(𝜙,A) so that the quantity given in (6.16) is

denoted by E𝜆
N
. It is clear that

𝜆E1(𝜙,A) ≤ E𝜆(𝜙,A) ≤ E1(𝜙,A), 𝜆 ≤ 1;

E1(𝜙,A) ≤ E𝜆(𝜙,A) ≤ 𝜆E1(𝜙,A), 𝜆 ≥ 1. (6.31)

Consequently, in view of (6.29) or E1
N
= 𝜋|N| and (6.31), we get the energy estimate
min{1, 𝜆}𝜋|N| ≤ E𝜆

N
≤ max{1, 𝜆}𝜋|N|, (6.32)

in terms of the topological chargeN . In particular, the left-hand side of (6.32) indicates an energy gap. That is, the

interval
(
0,min{1, 𝜆}𝜋

)
does not contain any energy point of the system.
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The productive study of the self-dual system (6.24)–(6.26) suggests that we extend the method of [72] shown

above to obtain self-dual reductions for various Born–Infeld inspired Abelian Higgs models for which the

Born–Infeld electromagnetic action density (2.3) is extended to assume the general form (2.4). Apparently, the

main difficulty here is how to overcome the limitation associated with the completion-of-squares procedure

used in (6.18) in order to make the topological invariant (6.14) stand out. Any new constructions beyond (6.10)

will be interesting. See [87] for a construction of gauged harmonicmaps along the line of the Born–Infeld theory

(2.3) in a similar spirit.

Now return to the model (6.10). Using polar coordinates r, 𝜃 on ℝ2, a radially symmetric N-vortex solution

(𝜙,Ai) is given by the ansatz

𝜙(x) = u(r)eiN𝜃, Ai(x) = N𝑣(r)𝜀i j
x j

r2
, i, j = 1, 2, N ∈ ℤ, (6.33)

where u, 𝑣 are real-valued functions satisfying the regularity condition u(0) = 𝑣(0) = 0. Moreover, inserting

(6.33) into (6.10), we have

E(u, 𝑣) = 2𝜋

∞

∫
0

(
1

𝛽

[√
1+ 𝛽N2 (𝑣

′)2

r2
− 1

]
+ (u′)2

2
+ N2

2r2
u2(𝑣− 1)2 + V(u2)

)
rdr. (6.34)

In view of this and the structure of (6.34), we arrive at the full set of boundary conditions for u, 𝑣 as follows:

u(0) = 𝑣(0) = 0, u(∞) = 𝑣(∞) = 1, (6.35)

where N ≠ 0. Subject to (6.35) and varying (6.34), we get the Euler–Lagrange equations

u′′ + u′

r
= N2

r2
(𝑣− 1)2u+ 2V ′(u2)u, (6.36)

⎛⎜⎜⎝ 𝑣′

r

√
1+ 𝛽N2 (𝑣

′)2

r2

⎞⎟⎟⎠
′

= u2(𝑣− 1)

r
, (6.37)

which are also the radially reduced version of (6.8)–(6.9). It will be interesting to develop an existence theory for

the solutions to (6.36)–(6.37) as critical points of the functional (6.34) subject to the boundary condition (6.35). We

expect to recover the N-vortex solutions of the classical Abelian Higgs model [88] when 𝛽 → 0. This problem is

of independent interest.

Furthermore, a truly one-dimensional reduction (domain walls) of the problem is worth considering as

well. In this setting, we may assume that the fields 𝜙 and Ai depend on x
1 = x only, 𝜙 = f (x) is real-valued,

and A1 = 0,A2 = a(x). So (6.26) becomes f ′ ± af = 0. In the nontrivial situation, f never vanishes such that

we may assume f > 0, which gives us a = ∓(ln f )′. Besides, we have F12 = a′. In view of these, we get from

(6.27) the self-dual domain-wall equation

u′′ = eu − 1√
1− 𝛽

4
(eu − 1)2

, u = 2 ln f. (6.38)

Following [89], boundary conditions of interest describing relevant phase transition phenomena include

u(−∞) = 0, u(∞) = −∞ and u(±∞) = −∞. When 𝛽 = 0, the equation is a one-dimensional Liouville type

equation [90] and can be integrated [91]. Whether the equation may be integrated in the Born–Infeld case,

𝛽 > 0, is to be studied. More generally, subject to the same domain-wall ansatz, the Equations (6.8)–(6.9)

become

f ′′ − a2 f = 2V ′( f 2) f , (6.39)(
a′√

1+ 𝛽(a′)2

)′

= f 2a, (6.40)

and the energy (6.10) assumes the form
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E(a, f ) =
∞

∫
−∞

(
1

𝛽

[√
1+ 𝛽(a′)2 − 1

]
+ 1

2
( f ′)2 + 1

2
a2 f 2 + V( f 2)

)
dx. (6.41)

It is clear that (6.39)–(6.40) are the Euler–Lagrange equations of the energy functional (6.41). As an extension to

the Ginzburg–Landau equations for superconductivity theory, boundary value problems over a finite interval

are of interest too. For example, for the phase transition between the normal state at x = −1 and the supercon-
ducting state at x = 1 (say), wemay impose f (−1) = 0, a′(−1) = H0 > 0 (the normal magnetic phase, where

H0 represents an applied magnetic field) and f (1) = 1, a′(1) = 0 (the superconductive Meissner effect phase),

respectively.

6.3 MEMS equations based on Born–Infeld electromagnetism

Finally, we consider a nonlinear differential equation problem associated with the Born–Infeld theory inspired

formalism of electrostatic actuation arising in the study of microelectromechanical systems, known as MEMS

[92]. To proceed, recall that the Coulomb law states that the electrostatic force F between two charges, q1 and q2,

placed at a distance, r, apart is given by F(r) = q1q2∕r2. Now assume q1 and q2 are uniformly distributed over

two parallel tiny plates. If the two charges are equal in magnitude but of opposite signs, q1 = −q2 = q, and

brought together to a finite separation distance r > 0 from infinite separation, then the potential acquired is

the work done given by U(r) = ∫
∞
r
F(𝜌) d𝜌 = −q2∕r so that F(r) = −U′(r). To maintain the charges q and −q

in the two plates, an electric field is applied and measured in voltage V , which is proportional to q. Thus, with

normalization and within small separation oscillation assumption, we may take q = V such that U becomes

U = −V2∕r. When the plates are subject to deformation extended over a planar regionΩ so that r is described

by r = L + u(x) (x ∈ Ω) where L > 0 is the distance between the two plates in absence of deformation and

u(x) represents the vertical deformation amount fluctuating about u = 0, thenU is given by an integral instead:

U = −
∫
Ω

V2

L+ u
dx, Ω ⊂ ℝ2. (6.42)

On the other hand, in the situation of the Born–Infeld theory, from (2.14), we know that the force F is modified

into F(r) = −qEr = −q2∕
√
𝛽q2 + r4 such that in the absence of plate deformation, the model gives us

U(r) = −
∞

∫
r

V2√
𝛽V2 + 𝜌4

d𝜌. (6.43)

Hence, when deformation is considered, we have

U =
∞

∫
r

F(𝜌)d𝜌 = −
∫
Ω

∞

∫
L+u(x)

V2√
𝛽V2 + 𝜌4

d𝜌dx, (6.44)

replacing (6.42). Therefore, adding the stretching, bending, and elastic energies to the electrostatic potential

energy (6.44), we come up with the total elastic-electrostatic energy functional

E(u) =
∫
Ω

⎛⎜⎜⎝T2 |∇u|2 + D

2
|Δu|2 + 𝜅

2
u2 −

∞

∫
L+u(x)

V2√
𝛽V2 + 𝜌4

d𝜌

⎞⎟⎟⎠dx, (6.45)

where T > 0 is the tension constant, D > 0 relates to the Young modulus, 𝜅 > 0 the elastic constant, and

V > 0 is an effective applied voltage. Varying u in (6.45), we arrive at the following Born–Infeld theorymodified

equation:

TΔu− DΔ2u = 𝜅u+ V2√
𝛽V2 + (L+ u)4

, (6.46)
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governing the static configuration of a MEMS electric actuator, whose 𝛽 = 0 limit has been studied in [93]. Fur-

thermore, to investigate the dynamics of such a system, we may regard (6.45) as the total potential energy so

that the associated Lagrangian action functional is given by

I(u) =
∫
Ω

1

2
u2
t
dx −

∫
Ω

⎛⎜⎜⎝T2 |∇u|2 + D

2
|Δu|2 + 𝜅

2
u2 −

∞

∫
L+u(x)

V2√
𝛽V2 + 𝜌4

d𝜌

⎞⎟⎟⎠dx. (6.47)

Varying u in (6.47), we obtain the equation of motion of the system:

utt = TΔu− DΔ2u− 𝜅u− V2√
𝛽V2 + (L+ u)4

. (6.48)

A boundary condition of interest is the “pinned” or Navier boundary condition u = Δu = 0 on 𝜕Ω. The sim-
plified homogeneous case of the problem for which u is spatially independent is also of interest. In this situation,

the wave Equation (6.48) becomes a nonlinear ordinary differential equation:

ü+ 𝜅u+ V2√
𝛽V2 + (L+ u)4

= 0. (6.49)

In the Maxwell theory limit, 𝛽 = 0, it is shown in [94] that, there is an explicitly determined critical volt-

age Vc > 0, called the pull-in voltage [95], such that below Vc the equation has a periodic solution oscillating

between two “stationary” states u(0) = 0, u̇(0) = 0 and u(ts) = −us < 0, u̇(ts) = 0where ts > 0 is called the stag-

nation time [95] which gives rise to the period of the oscillation, 𝜏 = 2ts; above Vc the solution umonotonically

goes to its limiting position in finite time; and atVc, the solution umonotonically approaches its limiting position

as t → ∞. In other words, oscillatory vibration of the electric actuator occurs if and only if V < Vc. Moreover,

similar conclusions may be established when nonlinear elasticity is also considered for the system. Due to the

microscopic-scale nature of MEMS devices, it will be useful to modify the divergent Maxwell theory formalism

with the convergent Born–Infeld theory formalism to describe MEMS electric actuators. It is this consideration

that motivates a systematic study of the associated nonlinear differential equations problems such as (6.46),

(6.48), and (6.49) along [93], [94] and the references therein.
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