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Abstract: We classify hypersurfaces with rotational symmetry and positive constant r-th mean curvature in
H" X R. Specific constant higher order mean curvature hypersurfaces invariant under hyperbolic translation
are also treated. Some of these invariant hypersurfaces are employed as barriers to prove a Ros—Rosenberg type
theorem in H" X R: we show that compact connected hypersurfaces of constant r-th mean curvature embedded
in H" X [0, co) with boundary in the slice H" X {0} are topological disks under suitable assumptions.

Keywords: higher order mean curvature; Alexandrov reflection technique; hyperbolic space

2010 Mathematics Subject Classification: 53C42; 53A10

1 Introduction

Let M be a hypersurface in an (n + 1)-dimensional Riemannian manifold and denote by ki, ..., k,, its princi-
pal curvatures. The r-th mean curvature of M is the elementary symmetric polynomial H, in the variables k;

defined as
(:})Hr:: Y Kk, ...k

i<...<i,

We say that M is an H,-hypersurface when H, is a positive constant for some r € {1, ... ,n}. Note in particu-
lar that H; is the mean curvature of M. In his pioneering work [1], Reilly showed that H,-hypersurfaces in space
forms appear as solutions of a variational problem, thus extending the corresponding property of constant mean
curvature surfaces. Earlier; Alexandrov had dealt with higher mean curvature functions in a series of papers
[2], and later on many existence and classification results were achieved in space forms. A list of contributions
to this subject (far from exhaustive) is [3]-[16].

Studies on H,-hypersurfaces in more general ambient manifolds appeared in the literature more recently,
see for example [17]-[20]. Most notable for us are the results of Elbert and Sa Earp [21] on H,-hypersurfaces in
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H" X R, where H" is the hyperbolic space and de Lima—Manfio—dos Santos [22] on H,-hypersurfaces in N X R,
where N is a Riemannian manifold.

The goal of this paper is two-fold. Our first result is a complete classification of rotationally invariant H -
hypersurfaces in H" X R. Note that H" X R has non-constant sectional curvature, but it is symmetric enough
to allow a fruitful investigation of invariant hypersurfaces. The mean curvature case r = 1 has already been
studied by Hsiang—Hsiang in [7] and Bérard and Sa Earp [23]. A general study of H,-hypersurfaces invariant by
an ambient isometry in N X R, with N a Riemannian manifold, has been carried out by de Lima—Manfio—dos
Santos [22]. We point out that part of our classification results are included in [22], but our description and
focus are different in nature for several reasons. First, we use a parametrization that allows us to consider
and analyze hypersurfaces with singularities. In fact, we get 13 different qualitative behaviors for rotational
H,-hypersurfaces in H" X R. Moreover, we always include the case n = r, which often produces exceptional
examples. Finally, we provide detailed topological and geometric descriptions for all values of the parameters
involved.

The geometry of H,-hypersurfaces with r > 2is substantially different than that of constant mean curvature
hypersurfaces. This is mainly due to the full non-linearity of the relation among the principal curvatures, in
contrast with the quasi-linearity of the mean curvature equation. Most importantly, many singular cases arise
and need to be classified. For instance, one gets conical singularities, which are not allowed in the constant mean
curvature case. Our classification results are summarized in Tables 1-3.

We recall that H,-hypersurfaces invariant by rotations in space forms were studied by Leite and Mori [8],
[9] for the case r = 2, and Palmas [13] for any r.

Our second goal is to understand the topology of embedded H -hypersurfaces in H" X [0, co) with boundary
in the horizontal slice H* X {0}. We prove the following Ros—Rosenberg type theorem.

Theorem. Let M be a compact connected hypersurface in H" X [0, co) with constant H, > (n — r) /n and boundary
in the slice H" X {0}. When the boundary is sufficiently small and horoconvex, then M is a topological disk.

Horoconvexity of the boundary is a natural assumption in the hyperbolic space, whereas what “sufficiently
small” means will be explained more precisely in Section 6, cf. Theorem 6.1. A fundamental tool in our proof is
Alexandrov reflection tecnhique, for which one needs a tangency principle. For H,-hypersurfaces in Riemannian
manifolds, such a tangency principle is proved by Fontenele—Silva [24] under suitable assumptions. We point
out that the geometry of our hypersurfaces implies the existence of a strictly convex point, which guarantees
the validity of the tangency principle (see Remark 6.3).

Analogous results as in the above theorem for the constant mean curvature case are due to Ros—Rosenberg
in R3 [25, Theorem 1], Semmler in H® [26, Theorem 2], and Nelli-Pipoli in H* X R [27, Theorem 4.1]. For H,-
hypersurfaces in Euclidean space, Ros—Rosenberg theorem is proved by Nelli-Semmler [11, Theorem 1.2].

In order to prove our Ros—Rosenberg type theorem we also need to discuss certain H,-hypersurfaces that
are invariant under hyperbolic translation.

The structure of the paper is the following. In Section 2 we classify H,-hypersurfaces in H" X R with rota-
tional symmetry. Since the cases r even and odd exhibit substantial differences, we treat them separately in two
subsections. At the end of each one, we provide complete descriptions of the various hypersurfaces that occur,
see Theorems 2.9-2.12, 2.21-2.24, and Tables 1-3. In Section 3 we study specific translation H,-hypersurfaces, cf.
Theorem 3.5. Finally, in Section 4 and 5 we provide useful estimates and tools to be employed in Section 6, where
we prove Ros—Rosenberg’s Theorem (see Theorem 6.1).

2 Classification of rotation H -hypersurfaces

We will generally use the Poincaré model of the hyperbolic space H", n > 2. This is defined as the open ball of
Euclidean unit radius in R" centered at the origin, and is equipped with the metric g that at a point x € H" takes
the form
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2
~ 2 2 2
=2 ) (04 +dx
5 <1—||x||2>( {+oohan),

where || - || denotes the Euclidean norm, and (x;); are the standard coordinates in R". We work with the Rieman-
nian cylinder H" X R with product metric g:=g + dt?, where t is a global coordinate on the R factor.

In order to describe rotational hypersurfaces inside H" X R we follow [21]. Up to isometry of the ambient
space, a rotationally invariant hypersurface is determined by rotation of a profile curve contained in a vertical
plane through the origin inside H" X R. Let us take the plane

Vi={(g,. ... X, ) EH'"XR:x; =+ - - =X, =0},
and consider the curve parametrized by p > 0 given as
X, = tanh(p/2), t= Ap).

The function A will be determined by imposing that the rotational hypersurface generated by the profile
curve have r-th mean curvature equal to a positive constant. We already defined the r-th mean curvature in the
Introduction, but we write it here for further references.

Definition 2.1. Let ky, ..., k, be the principal curvatures of an immersed hypersurface in any Riemannian
manifold. The r-th mean curvature H, is the elementary symmetric polynomial defined as

(’r’)H,:: 3 kK, ... k.

i< <,
Rotating the curve about the line {0} X R generates a hypersurface with parametrization
R, XS" !5 H'XR, (p, &) — (tanh(p/2)é, A(p)).

The unit normal field to the immersion is

1 A
V= e 2 £1),
1+ 4%z \ 2 cosh™(p/2)
and the associated principal curvatures are
A K A

. 10 n = . 3 (1)
(1+ 2%)2 (14 22)2

ky ==k, = cotgh(p)

where A denotes the derivative of 1 with respect to p. By applying suitable vertical reflections or translations
of the hypersurface generated by the curve defined by 4, one gets several types of rotationally invariant hyper-
surfaces. Care should be taken when applying the transfomation A — —A4, as this changes the orientation of
the hypersurface. However, setting v — —v leaves the signs of each k; unchanged. Hereafter we classify those
rotationally invariant hypersurfaces with positive constant r-th mean curvature.

Specializing the expression of the r-th mean curvature to the case k; = - - - = k,,_; and k, as in (1) we find

A SN
nH, = (n — r)cotgh’(p)—=— + cotgh’ (p)—2—2..
r gh{p A+ 2 g p

a+ i3z

If we divide by cosh™1(p) and multiply by sinh™!(p) both sides of the identity, we can rewrite the above as

sinh™(p) d < o ner Ar >
n———""H.= —| sinh — ], r=1,...,n 2
cosh™'(p) " dp @ 1+ 4%»: @
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Choose now H, to be a positive constant, and define the function

P
sinh™ (1)

o= [ i
0
We can then integrate (2) once to obtain
ir
1+ 42z

where d, is an integration constant depending on r. Then one integrates again to find (up to a sign for r even)

nH,I,,(p) + d, = sinh" " (p) 3)

, 1
ﬁHr’dr(p) — / Zm(_r:}IY‘In,r‘(é) + dr)r 2 dé’ (4)
) \/ sinh ™+ (&) — (nH, I, (&) + d,)r

where p_ > 0 is the infimum of the set where the integrand function makes sense. One should think of A as a
one-parameter family of functions depending on d,. We write 45 ; as in (4) to make the dependence on H, and
d, more explicit.

Remark 2.2. When r is even, the right-hand side in (3) is non-negative, which forces the left-hand side to be
non-negative as well. In this case — satisfies (3). When r is odd, identity (3) implies that A has the same sign of
nH,I, . + d,. Moreover, —4 satisfies (3) only after changing v — —v. Lastly, critical points for 4, ; are zeros of
nH,I, . + d,. The second derivative of 454 , is computed as

. e inh"
cosh(p)sinh " ) (nH, S0P — (0 — )AL, () + d,))

A a(P) = 5)

3
r(H, I, (p) + d,)7 (sinh¥ (p) — MH, L, ,(p) + d,)7 ) :

We will refer to this expression when studying the convexity of 4, ; and its regularity up to second order.
Note that if r > 1 the second derivative of 4, ; is not defined at its critical points.

Remark 2.3. Let us discuss a few more details on I, .. It is clear that I, ,(0) = 0 and I; (0) = 0. Also, I; .(p) > 0
and I,’l’ (p) > 0forp > 0andalln > r > 1,s01, . is a non-negative increasing convex function. For all valuesn > r
we have nl, .(p) ~ p" for p — 0. Moreover, for n > r, one has the asymptotic behavior (n — rI,, .(p) = sinh""(p)

for p — +oo, whereas for n = r we have I, ,(p) = p for p — +co.

Next, we analyze ’1H,,dr as in (4) for all values of r =1, ...,n, H, > 0, and d, € R. The goal is to find the
domain of A4 ,, study its qualitative behavior, and describe the rotational H,-hypersurfaces generated by the
graph of 4y ,, including the description of their singularities. This can be thought of as a classification a la
Delaunay of rotational H,-hypersurfaces in H" X R. Note that we choose n, r, and H, > 0 a priori, so that the
family of functions A4, really depends only on the parameter d,. We will find a critical value of H,, namely
(n —r)/n, which we use together with the sign of d, and the parity of r to distinguish various cases. Also, we
discuss n > r and n = r separately, as the latter case exhibits substantial differences from the former. One may
find the salient properties of the classified hypersurfaces in Tables 1-3 at the end of this section.

2.1 Casereven
We start by proving the following result.
Proposition 2.4. Assumereven,n>r,andd, <0.

() IfO<H,<(n—r)/n then Ay 4 is defined on [p_,+00), where p_ > 0 is the only solution of nH,I, ,(p) +
d.=0.
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(@) IfH,>(n—r)/n then AHr’dr is defined on [p_, p_ ], where p_ is as above, and p, > 0 is the only solution of
sinh*"(p) — (nH,I,, .(p) + d,) = 0.

Further, Ay 4 is increasing and convex in the interior of its domain. Also, g 4 (p_) =0=1lim,, ’iHndr(/’)' In
case (1), Ay 4 is unbounded. In case (2) lim,,_,, j'Hr,d,(p) = +o0. In both cases, d, = 0 if and only if p_ = 0. We
havelim, oy o(p) = H,"/", and for d, < 0 one finds lim,,, A 4 (p) = +oo (Figure1).

t t
/\H,.,d,. ‘ )\H,.dr

n—r n—r
b n / - n J
3
»

0|/L P o|pf P+ P

Figure 1: Behavior of 4, , forn > r,reven,andd, <0.Note that p_ = Oifand onlyifd, = 0.

Proof. The function nH, I, , + d, must be non-negative as noted in Remark 2.2, hence 4y , is well-defined when
0 < nH,I,,(p) + d. < sinh" " (p).

There is a unique value p_ > 0 depending on d, such that nH,I, .(p_) + d, = 0, and Remark 2.3 implies
d. = 0ifand onlyif p_ = 0. Set

f(p):=sinh" " (p) — (nH, I, .(p) + d,), p>0.

Then f(p_) > 0and f'(p) = sinh™"~'(p)cosh(p)((n — r) — nH, tanh’(p)). We have f'(p) > 0for p > p_ when
tanh"(p) < (n — r)/nH,. Soif 0 < H, < (n — r)/n the inequality is always true, and f has no zeros in (p_, +0).
IfH, > (n—r)/nthenlim, f'(p) = —c0, so f eventually decreases to —oo. This implies f has a zero p, > p_
depending on the value of d,.

It follows that 4y , is defined on some interval with p_ as minimum. If0 < H, < (n —r)/nthen the interval
isunbounded. We have 4y 4 (p_) =0=1im, }.‘H,.dr (p),andlim, Ay 4 (p) = +oo by the asymptotic behav-
ior of I, , noted in Remark 2.3. Moreover, 4y , isincreasing as the integrand function is positive away from p_. If
H, > (n—r)/nthen the denominator of the integrand function has a zero p,. depending on d,.. This means 4 ;
is defined on [p_, p,), and its slope tends to +oco when p — p_. We claim that Ag q 18 finite at p,, . Convergence
of the integral is essentially determined by the behavior of

h(p):= sinh " (p) — (NH,, .(p) + d,)"

near p,.But h(p,) = 0, and n (p,) is finite, which implies that ’lHr,dr behaves as the integral of 1/(p, — p)l/ 2 for
p close to p,, whence convergence at p,.
In order to check convexity on (p_, p, ), observe that the sign of ’THr,dr as in (5) is determined by the sign of

_ sinh"(p)
cosh’(p)

— (=1L () = ST,

r

g(p):

We trivially have g(p_) > 0and g’(p) = rsinh®(p)/cosh™*!(p) > 0, so that g(p) is always positive for p > 0.
Continuity of the second derivative of 45 , at the origin for d, = 0 follows by an explicit calculation using
Remark 2.3, whereas the statement limp_% }{H,,d,(p) = oo for d, < 0is trivial, cf. (5). O

We now go on with the analysis of the case d, > 0, but we first make a few technical considerations. For
r > 2 we have the following formula, which can be proved via integration by parts:

_ sinh’1(x) r—1
(r—2)cosh™2(x) r-2

Ir+1,r(X) = Ir_1,r_2(X)- (6)
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Recall that for a natural number m the double factorial is m!!:=m(m — 2)!!, and 1!! = 0!! = 1. Now take
r > 2 even. From the recurrence relation (6) we derive the following closed expression for I, .(x):

r—1

o 1 r=2 r—4
Ly, 00 = smh(x)(r —3 tanh’ —“(x) + T—20-9 tanh’ ™ (x)
r—-Dr-3) r—6 o r-nh 2 r—-nn
20— —6) tanh ") +-- -+ 30— tanh (x)> + = 2)!!I\g’z(x). 7)

The explicit expression I5,(x) = sinh(x) — arctan(sinh(x)) returns now a closed formula for each I,.,; ,(x).
We note here a useful identity which can be proved by induction.

Lemma 2.5. Letr > 2 be an even natural number. Then

(r=n0 _ 1 r—1 (r=1-3) o =Dl
r—-2" " +r—2+(r—2)(r—4) (r—2)(r—4)(r—6)++ 3(r—2)’

where, for all r, the sum on the right-hand side must be truncated in such a way that all summands exist.

We shall see that when d, > 0 then Ay ; is not well-defined for d, too large. We will combine (7) and
Lemma 2.5 to give a precise upper bound for d, whenn=r+1and H. =(n—r)/n=1/r +1).

Proposition 2.6. Assumer even,n>r,andd, > 0.

() If0O<H,<(—r)/n then Ay , is defined on [p_, +0o0), where p_ > 0 is the only solution of sinh""(p) —
(nH.I, (p) + d.) =0 0n (0, c0).

) IfH.=(n-r)/n then when n=r+1 we need d, < (r— D!z /2(r — 2)!! for Ay , to be well-defined,
whereas for n > r + 1 we have no constraint. Under such conditions, the results in the previous point hold.

() IfH,>(m—r)/n set = > 0 such that tanh’(z) = (n — r)/nH,. Then d, < sinh"~"(z) — nH,I,, ,(7) for Ay 4
to be defined. So Ay 4 is a functionon [p_, p,] C (0, +00), where sinh""(p,) — (nH, I, ,(p,) + d,) = 0.

Further, Ay, is increasing in the interior of its domain. In cases (1)-(2), Ay 4 (p_) =0,1lim_,, /'lHr,dr(p) = +o0,
A, q. is unbounded, and is concave in the interior of its domain. In case (3), Ay 4 (p_) = 0,1im,,_ )'”Hr,dr (p) = +o0,
Ay, a has a unique inflection point in (p_, p,), and goes from being concave to convex (Figure 2).

t . t
AH, . d, ) AH,.d,

Hy < 22r Hy > 2o /

0| p- f) 0| o P

Figure 2: Behavior of 4, , forn>r,reven,andd, > 0.

Proof. We have the constraint 0 < nf, I, .(p) + d, < sinh""(p) for p > 0. Since I, ,(0) = 0 and d, > 0 we must
have p_ > 0. Such a p_ exists only if

f(p):= sinh" " (p) — (nH, I, ,(p) + d,)
has a zero. We have f(0) < 0 and
f'(p) = sinh""(p) cosh(p) ((n — r) — nH, tanh’(p)).

For 0 < H, < (n— r)/n the derivative f’ is always positive and tends to +co as p runs to co, S0 p_ exists
and Ay 4 is defined on [p_, +o0). For H, = (n — r)/n we have a more subtle behavior. We compute

L i) = lim sinh""~(p) cosh(p)1 — tanh ()

n—rp>c
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.. ner—1, ,cosh"(p) — sinh’(p)
= lim sinh"""*(p) £ = “
P00 cosh’ (p)

r-1 . X
(cosh(p) — sinh(p)) Y. cosh”~*~(p) sinh'(p)
=0
cosh™(p)

= lim sinh"""*(p)
p—00

—1
sinh™ " 1(p) ;
= lim—————"——— % tanh'(p).
p—oo cosh(p) + sinh(p) g(; ()
When n = r + 2 the limit of f’ isr, and if n > r + 2 the limit is +oc0. In these two cases p_ exists and }“Hr,d,
is defined on [p_, o0). The case n = r + 1 needs to be studied separately, as the limit vanishes. The claim is that
for any r even we have that p_ exists only if

r-nh L4
T =22
Indeed, when r = 2 we compute

P
o sinh®(o) . : T
pilmo sinh(p) — / cosh(o) do —d, = pllfgo (arctan(sinh(p)) — d,) = 5~ d,.

0

In this case, f cannot have a zero if d, > 7 /2. To prove the above claim for r > 4, we use (7) and find

f(p) = sinh(p) — I, .(p) — d,

s 1 r—2 r—1 r—4
= smh(p)<1 + — tanh' “(p) + —20-9 tanh’ (p)
o, r=Dr-=3)---5 2,y (r=1
Tt =2 A) (r—2)!!>
8: — g:: arctan(sinh(p)) — d,.

Now Lemma 2.5 implies that when p — +o0 the sum of the terms into brackets goes to zero, and the product
of sinh(p) with the latter vanishes (one can use the estimates sinh(p) ~ e” /2 and tanh(p) ~ 1 — 2e~% for p — +o0
to see this). Hence

. r—-D'x

A S0 = o g 4
and the claim is proved. Convergence of Ay , at p_ follows by a similar argument as in the proof of
Proposition 2.4.

If H. > (n—r)/n there is a 7 > 0 such that f is increasing on (0, 7) and decreasing on (z, 4+o0). Such a

7 satisfies tanh’(r) = (n — r)/nH,. In order to have a well-defined ’lHr,dr’ we necessarily want f(z) > 0, which
forces the condition

d, < sinh"™"(z) — nH, I, ().

Since f'(p_) > 0, f'(p,) < 0, then f vanishes at p_ and p, with order 1. This gives convergence of Ay, q at
the boundary points. We have 4, ; (p_) =0, Ay 4 (p,) > 0,andlim, /'lHr,dr(p) = +o00 at once.

We finally discuss convexity of 45 ; by proceeding as in the case d, < 0. The sign of the second derivative
is determined by the sign of
_ sinh"(p)

d(n—-r)
" cosh’(p) '

nH,

r

&p): —(n—=n),.(p) -

By definition of p_, the sign of g(p_) is determined by the sign of tanh"(p_) — (n — r)/nH,. When nH, >
n — r, then the above quantity is negative as
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n—r

tanh’(p_) — = tanh'(p_) — tanh’ (7).

r
Similarly, g(p,) > 0. Since g’(p) > 0, Ay, q has a unique inflection point, and goes from being concave
to convex. If nH, < n—r, we have lim,_, , g(p) = —d,(n — r)/nH, < 0 by Remark 2.3. But g is an increasing
function, so it is always negative, and hence ’1Hr,dr is concave. O

There remains to look at the case n = r. Set I, (p) : =1, ,(p) = fo” tanh™ (z) dr.

Proposition 2.7. Assume n = r even. Then iy , is well-defined for d, < 1

®  Ifd, <0, then iy , isdefinedon|p_, p,], where p_is the only solution of nH,I,(p) + d, = 0, and p.,_is the
only solution of nH,I,(p) + d, =1

(2) If0<d, <1, then ’ledn is defined on [0, p_ ], where p, is defined as above.

Further, Ay 4 s increasing and convex in the interior of its domain. In case (1), Ay 4 (p_) =0 = }ledn(p_),
. . 1/2 .
and lim,,, Ay 4 (p) = +oo. In case (2), Ay 4 (0)=0, Ay 4 (p_) = d/" /(1 —d ") ,and lim,, Jy 4 (p) =
+c0. In the particular case d, = 0, we also have lim, i, o(p) = H,"/", and if d,, < 0 thenlim,_, iy 4(p_) =
+oo (Figure 3).

t
Ay dy

d, <0 J

0 | P pr P 0 Py P

Figure 3: Behavior of 4, , for nevenandH, > 0. When d, is non-negative, we distinguish two cases, i.e. d, = 0 (red),and 0 < d, <1
(blue).

Proof. Our usual constraint becomes
0<nHIL(p+d, <1l

Hence necessarily d, < 1. If d, < 0 there are positive numbers p_, p, such that nH,I,(p_) + d, = 0 and
nH,I,(p,) +d, =1 and A4 , isdefinedon [p_, p,). Clearly /'led"(p_) =0.1f0 < d, <1 then 4y 4 isdefined

. 1/2
on [0, p,). We have 4y 4 (0) = d},/ "/ <1 - di/ ") . The same method as in the proof of Proposition 2.4 shows

that in both cases 4 , is finite at p, . The expression of ZHr,dr in (5) for n = r implies convexity of the graphs
at once. Continuity of the second derivative at the origin for d,, = 0 follows by an explicit calculation, cf. (5) and
Remark 2.3. O

We now study the regularity of the H,-hypersurface generated by rotating the graph of 45 , , as described
at the beginning of Section 2. Then we will proceed with the classification result.

Proposition 2.8. Let n > r, r even. Then the hypersurface generated by the curve defined by Ay 4 is of class C*at
p = p., when the latter exists, and it is of class C* at p = p_ ifand only ifn > rand d, > 0orn =r and d,, = 0.
Whenn =r and d, > 0, it has a conical singularity at p = 0. Ifn > r and d, < 0, it has cuspidal singularities at
p=p_

Proof. Regularity to second order of the hypersurface generated by the graph of 45 ; is proved by showing that
the second fundamental form A is bounded.
For any choice of n > r, H, and d, for which p, exists, we have that p, > 0 andlim_,, j'H,,d,(p) = +00. By
(D, foranyi=1,...,n —1we have that
plirpr}k,.(p) = cotgh(p,).
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By definition of p_, combining (1) and (5) one finds

%(n}{r tanh(p,) — (n — ).

limk,(p) =
=P
It follows that lim,,_, |A|*(p) exists and is finite. _
Assume now thatn > rand d, > 0,thenp_ > Oandlim,,, Ay 4 (p) = +oo.Thereforelim
and is finite by arguing as above.
When d, = 0 we have p_ = 0. By Remark 2.3, (1) and (5), as p — 0 we get the estimates

9 .
o—p_ Al (p) exists

1

1 . 1
cotgh(p) ® p~'s g g RHp, Ay q(p)~H.

Foranyi=1,...,nit follows that
1

limk;(p) = H,
p—0

and lim, |A|%(p) exists and is finite in this case as well.

In the case n > r and d, < 0 we have p_ > 0, Ay 4 (p_) =0, butlim, , A, ,(p) = +oo. Hence |A|* blows
up at p_ because lim ,_,, k,(p) = +oo. Moreover, it is clear that by reflecting the hypersurface generated by the
graph of Ay , across the slice H" X {0} one gets cuspidal singularities along the intersection with H" X {0}.

Finally, when n =rand 0 < d,, < 1, by Proposition 2.7 we have that p_ = 0 and

e @=—% 5o
2\ 2
(1 —a; )
So the hypersurface generated by the graph of 45 ; has a conical singularity in p = 0. O

We now classify rotational H,-hypersurfaces for r even based on the above arguments. We recover results
by Elbert-Sa Earp [21, Section 6] and de Lima—Manfio—dos Santos [22, Theorem 1 and 2]. We recall that a slice
is any subspace H" X {t} C H" X R, and by its origin we mean its intersection with the ¢t-axis.

Theorem 2.9. Assume r even, n > r, and d, < 0. By reflecting the rotational hypersurface given by the graph of

Ay q, across suitable slices, we get a non-compact embedded H,-hypersurface.

(1) If0 < H, < (n—r)/n, the hypersurface generated by the graph of Ay , together with its reflection across
the slice H" x {0} is a singular annulus. Its singular set is made of cuspidal points along a sphere of radius
p_ centered at the origin of the slice H" X {0}.

(2) IfH, > (n—r)/n, then the hypersurface generated by the graph of Ay, q, together with its reflections across
the slices H" X {k4y_4 (p,)}, k € Z, gives a singular onduloid. Its singular set is made of cuspidal points
along spheres of radius p_ centered at the origin of the slices " X {2k4y_4 (p,)}, k € Z.

Theorem 2.10. Assume r even, n > r, and d, = 0. Then the rotational hypersurface given by the graph of Ay , is

a complete embedded H -hypersurface, possibly after reflection across a suitable slice.

() If0 < H, < (n—r)/n, the hypersurface generated by the graph of Ay, o Is an entire graph of class C? tangent
to the slice H" X {0} at the origin.

(2) IfH,> (n—r)/n, the hypersurface generated by the graph of Ag, o together with its reflection across the
slice " X { Ay _o(p,)}, is a class C? sphere.

Theorem 2.11. Assumer even, n > r, and d, > 0. By reflecting the rotational hypersurface given by the graph of

Ay q, across suitable slices, we get a complete non-compact embedded H,-hypersurface.

(1) If0 < H, < (n—r)/n, the hypersurface generated by the graph of Ay_, , together with its reflection across
the slice H" x {0}, is a class C* annulus. Whenn =r + 1 and H, =1/(r + 1), the same holds, provided that
d, is smaller than (r — D!z /2(r — 2)!!.



DE GRUYTER B. Nelli et al.: On constant higher order mean curvature hypersurfaces === 53

(2) IfH, > (n—r)/n, the hypersurface generated by the graph of Ay, q. together with its reflections across the
slices " X {kAy 4 (p,)}, kK € Z, is a class C? onduloid.

Theorem 2.12. Assume n=r even and H, > 0. Then the H,-hypersurface generated by the graph of iy 4,
together with its reflection across the slice " X {4y 4 (p,)}, is a class C? sphere if d, = 0, and a peaked sphere if
0 <d, <1Ifd, < 0thenthe H,-hypersurface generated by the graph of Ay , , together with its reflections across
the slices H" X {kiy 4 (p,)}, k € Z, gives a singular onduloid. Its singular set is made of cuspidal points along
spheres of radius p_ centered at the origin of the slices H" X {2kAy 4 (p,)}, k € Z.

2.2 Caserodd

We organize this subsection in a similar fashion as the previous one. Some of the arguments will be analogous
to the corresponding ones for r even, so we leave out the relative details. Note that this subsection includes and
extends the mean curvature case treated in [23] and [27]. A crucial difference from the case r even is that for
d, < 0the derivative ’iHr,dr is negative on some subset of the domain of 454, , and for r > 1the function 44 , is
not C*-regular at its minimum point. Further, more types of curves arise whenn > randd, < 0,and whenn =r.
In our classification, we will recover results by Bérard—Sa Earp [23, Section 2], Elbert—Sa Earp [21, Section 6],
and de Lima—Manfio—dos Santos [22, Theorem 1 and 2].

Proposition 2.13. Assumer odd, n > r,andd, < 0.

(1) If0<H,<(n—r)/n, then iy 4 is defined on [p_,+oo0), where p_ > 0 is the only solution of sinh"~"(p) +
(nH, I, .(p) +d,) = 0.

) IfH,> (n—r)/n, then Ay 4 is defined on [p_, p..], where p_ is as above, and p., > 0 is the only solution of
sinh"~"(p) — (nH,I, (p) + d,) = 0.

Set p, to be the only zero of nH, I, + d,. We have Ay 4 (p_) = 0,1im,_, Ay 4 (p) = —c0, Ay 4 (p) < Owhenp_ <
p < po and Ay g4 (p) > 0 when p > p,. In case (1), lim,_, Ay 4 (p) = +o0. In case (2), lim,_, Ay 4 (p) = +o0.
Further, Ay 4 is convex in the interior of its domain. In particular; it is of class C* forr =1, and lim —po /'1'thr(p) =
+oo forr > 1 (Figure 4).

t
AH, dy

]

u P

Figure 4: Behavior of 4y 4 forn >r,rodd, and d, <0.For H, > (n—1)/n, Ay 4, (p4) Is positive. When r > 3, 4, 4 (p,) may be positive
(black curve), negative (red curve), or zero (blue curve) depending on the values of H, and d,.

p
’

Proof. Our constraint for 4, , to be well-defined is now
—sinh"™"(p) < nH,I,,(p) + d, < sinh""(p), p>0. ®)

We know that nH.I,, . + d, is an increasing function with d, < 0 and I,, .(0) = 0, so that nH,I, ,(0) + d, < 0.
The first inequality in (8) is then always satisfied for p > p_ > 0, where p_ is the unique solution of nH,I, .(p) +
d, + sinh""(p) = 0. It is clear that p_ — 0 if and only if d, — 0. The study of the second inequality goes along
the lines of the corresponding one for r even (Proposition 2.4). Note that lim,,, , iHr,d,(ﬂ) = —oo regardless of
the value of H,. Also, Ay , is decreasing on (p_, py), where p; is the only zero of nH, I, . + d,, then it increases
beyond p,. Convergence at p_ or p, and the statements involving the second derivative follow by (5) and similar
arguments as in the proof of Proposition 2.4. We point out that for r = 1 the term (nH,I, .(p) + )Y/ equals 1,
so the second derivative of Ay , is well-defined over the interior of the whole domain. For r > 1 the same term
vanishes at p,, and this concludes the proof. O
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Unlike the case when r is even, the sign of /lHr,dr(p 4), for H. > (n—r)/n, r > 10dd, is not always positive.
We discuss this point here below. Moreover we show that A4 ; (p.) only takes positive values.

Proposition 2.14. The following statements hold.

() IfH; > (n—1/n then Ay 4 (p,) > 0foralld; <O0.

(2) Let2r—1>n>r >3 andr odd. Then there exist values H, > (n —r)/n and d, < 0 such that Ay 4 (p,) is
negative, positive, or zero.

Proof. In case (1), it is well known that the rotational hypersurface generated by the curve defined by 4 ; is
of class C*. We show (1) by using Alexandrov reflection method with respect to vertical hyperplanes in H" x R.
Let H; > (n—1)/n be fixed. Since the function defining 4y , is non-negative and does not vanish, and Ay 4
is continuous in d;, then for d; < 0 close enough to 0 we have Ay ; (p,) > 0. Suppose there is a value of the
parameter d, for which 4 4 (p,) vanishes. Consider the rotational hypersurface S obtained after reflecting the
graphof Ay 4 across the p-axis, and then rotating about the t-axis. Topologically S is a product S'x 8" and is of
class C. Since S is compact, we can take a vertical hyperplane IT C H" X R corresponding to p > 0large enough
not intersecting S, and then move it towards S until IT N S # @. We keep moving IT in the same way and reflect
the portion of S left behind II across I1. Since 4y 4 (p_) = 0, there will be a first intersection point between
the reflected part of S and S itself. The Maximum Principle then implies that S has a symmetry with respect to
a vertical hyperplane corresponding to some p € (p_, p.). But this is a contradiction, as the hypersurface has
rotational symmetry about ¢ = 0. Continuity of A5 , with respect to the parameters implies that there cannot
be values of ¢, such that 4 ;4 (p,) is negative.

As for (2), observe that for H, > (n — r)/n we have ﬁHr,o(p +) > 0, because the integrand function defining
Ag, o is non-negative and does not vanish identically. Continuity with respect to the parameter d, implies that
Ax, q,(p;) > 0for d, < 0close enough to 0. We now show that Ay _4 (p,) < 0forsome H, > (n —r)/nandd, <0.
Let us introduce the function
__nHI, (p)+d,
8(p):= TS (p)
and note that we can rewrite 4 4 (p,) as

Py 1
AHrydr(p_}.) = / &di
P

Vi-g©:

We claim that, for any d, < 0 and 2r —n —1 > 0, if H, is large enough then g is convex on (p_, p,). So let
d, < 0 be fixed. By definition of p, we have
H = |d,| & sinh" " (p,,)
’ nl, . (p.)

Observe that p, — Oifand only if H, — co and p, = |dr|%Hr_% as H, - oo. Therefore forany p € (p_, p,)

we estimate
1
d n
pz<|Hr|> , H,— oo. 9)

.
Since —sinh"~"(p) < nH.I,, .(p) + d, < sinh"~"(p) holds on (p_, p,), (9) and explicit computations give that
for any p € (p_, p,) we have

sinh(p)>”‘2< r=1 r)> L H L) +d;
cosh(p) cosh’(p) sinh""*%(p)

g'(p) = nH< ((n—r)sinh®(p) +n—r+1)

<sinh(p)>r_2< r-1 (n— r)> _(n—n)sinh*(p)+n—r+1
"\ cosh(p) cosh’(p) sinh’(p)

~H? ((2r —1-n|d|7H T —(n—r+ 1)|d,|—%) — (="
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When H, — oo the latter quantity diverges to +o0 if 2r —1 —n > 0, hence g” > 0 on (p_, p.). Fix H, large
enough such that g is convexin (p_, p,). Since g(p,) = +1, then g(p) < s(p) for any p € (p_, p,), where sis the

segment-line connecting (p_, —1) with (p ., 1). Moreover the function x XU /V1— X7 s increasing on (—1,1).
For such a choice of H, and d, we then have

Pt 1 1
A0 (p)) < / s&) _ s ;ﬂ— / U qu=o,
1

V1—da Vi-ur
as the latter integrand function is odd.

Continuity of A5 , with respect to the parameters H, and d, implies the last assertion of (2) atonce. ~ []

The proof of the next statement is left out, because the results can be seen by adapting the proof of
Proposition 2.4 when d, = 0.

Proposition 2.15. Assumerodd, n>r,andd, = 0.

() If0O<H, <(m—r)/n then Ay , is defined on [0, +oo).

2 IfH.>(n—r)/n then Ay , is defined on [0,p,], where p, >0 is the only solution of sinh""(p) —
nHrIn,r(p) =0.

Further; Ay, is increasing and convex in the interior of its domain. We have Ay ((0) = 0 =lim, iH,,o(Pl In case
(1), Ay o is unbounded. In case (2), lim,,_, Ay (p) = +oo. Finally, lim,_o 4y o(p) = H,"/" (Figure 5).

t t
A0 AH,0

Hy < 2 H, > 2 J

0 P 0| Py P

Figure 5: Behavior of 4, , forn > randr odd.

In order to prove the next result, one needs the analogue of formula (7) and Lemma 2.5 for r odd. We have
I,,(x) = cosh(x) — 1 and for r > 3 we compute

-1

I41,(0) = — sinh(x) ( % tanh"2(x) + m tanh”*(x)
(r—1@r-23) r—6 R U L (r—n
+ =27 —D0r—6) tanh ")+ -+ ——F— 20— )N tanh(x)) " 2)”121( X).
Lemma 2.16. Letr > 3 be an odd natural number. Then
r—nI' 1 r—1 r—nr-3) o r=D0r-3)...4
r—-2)" =1+ r—=2 o-2r-49 + r—2)(r—4)(r—=6) + + r-2r-4...3

where, for all r, the sum on the right-hand side must be truncated in such a way that all summands are positive.
The next two results can be proved following the proof of Propositions 1.6 and 1.7.

Proposition 2.17. Assumer odd, n > r, andd, > 0.

(1 Ifo<H,.<m-r)/n, then Ag, q s defined on [p_, +o0), where p_ > 0 is the only solution of sinh"™"(p) —
(nH, I, ,(p) +d,) = 0.

2 IfH,=(n-r)/n thenwhenn =r+1weneedd, <lord, < (r—D!!/(r—2)!! forr>1 inorderfor Ay ,
to be well-defined, whereas for n > r +1 we have no constraint. Under such conditions, the results in the
previous point hold.
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(@) IfH,>n—r)/n set > 0such that tanh’(z) = (n — r)/nH,. Then d, < sinh"™"(z) — nH,I,, .(z), for Ay 4
to be defined. So Ay 4 is a function on [p_, p,] C (0,+o0), where sinh""(p,) — (nH, I, ,(p,) + d,) = 0.

Further, Ay, is increasing in the interior of its domain. In cases (1)-(2), Ay 4 (p_) =0, 1lim,_, iHr,dr(p) =400
Ay, q_ 1s unbounded, and is concave in the interior of its domain. In case (3), Ay 4 (p_) = 0,1im,,_ )lHr,dr(p) = +o00,
A, 4 has a unique inflection point in (p_, p,), and goes from being concave to convex (Figure 6).

t . t
AH, . d, AH,.d,

H, < 22 T /

0| p- P 0| p- Py P

Figure 6: Behavior of 4, , forn > r,rodd,andd, > 0.

Proposition 2.18. Assume n =r odd. Then Ay , is well-defined for d, <1.SetI,:=1I, .

O Ifd, <L then iy , isdefinedonlp_,p,], where p_ is the only solution of nH,I,(p) + d, = =1 and p,, is
the only solution of nH,I,(p) +d, = 1.

(@ If-1<d, <1 then iy , isdefinedon[0,p,], where p, is defined as above.

Further, Ay 4 is convex in the interior of its domain. Set p, to be the only solution of nH,I,(p) + d, = 0. In

case (1), we have Ay 4 (p_) =0, Ay 4 (p) <0 for p_ < p < py Ay 4 (p) >0 for p> py, Ay 4 (p,) <0, and
. . 1/2 .

im,_, Ay q (p) = +oo. In case (2), one finds Ay 4 (0) = d}/”/(l - df/") , and limy __; Ay 4 (0) = —oo. For

d, <0 the function Ay , first decreases then increases, and the signof Ay 4 depends on the value of d,

1/n

Whereas for d, > 0 the function Ay , is increasing on the whole domain. Moreover; hmp_mﬂH olp) = and

m,_, ﬁHn,dn(p) +oo (Figure 7).

t |
AH, dn F ) AHnda
dn < —1 —-1<d, <1 :
p— po pr P /|

M

Figure 7: Behavior of }'Hnﬂdn for nodd and H, > 0. When —1 < d,, < 1, we distinguish four cases, i.e. d, = —1 (black), =1 < d,, < 0 (red),
d, = 0 (violet), 0 < d, < 1(orange). The blue curve corresponds to a value of d, € (—1, 0) for which A,_,mdn(er) vanishes.

Proof. The only part of the proof differing from the proof of Proposition 2.7 is about the sign of 4, ; (p.,). Welook
first at the case d,, < —1. Since nH,I,, + d, is convex, nH,I,(p) + d, < s(p), where s is the line passing through
the points (p_, —1) and (p., D). Now nH I ,,(p) + d,, < s(p) for p € (p_, p,), s0 we also have

(HL(p) +d)r s(p)

Vi-aH Lo +d): \1-se)

as the function x ~— x'/"/4/1 — x*/" is increasing. But the integral of the latter quantity over (p_, p, ) is computed
to be zero, as the integrand function is odd:

/ @) ”+_"’—/ ur du=0
2 . '
- V1 —3(5)" 1 \V1—un
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This shows 4y 4 (p,) < 0. The same holds when d, = —1, the only difference being that p_ = 0. Since
Ag, q,(p) depends continuously on d,, and for d,, > 0 we have 45 , (p;) > 0, there mustbe a d, € (—1,0) such
that Ay 4 (p,) =0. |

As in the case of r even (cf. Proposition 2.8), before proceeding with the classification result, we study the
regularity of the H,-hypersurface generated by a rotation of the graph of 4, ; .

Proposition 2.19. Letn > r, r odd. Then the hypersurface generated by the graph of Ay_, is of class Ctatp=p,,
when the latter exists, and it is of class C* at p = p_ ifand only if n > r, or n=r and d, € (—c0,—1) U {0}.
When n=r and d, € [-1,0) U (0,1), there is a conical singularity at p = 0. Moreover;, if r > 3 and d, # 0, the
hypersurface is C*-singular at any critical point of the function g a-

Proof. The first part of the proof is an application of the same argument as in Proposition 2.8. If r = 1 it is well
known that the corresponding hypersurface is smooth. Now let 7 > 3 and let p, be a critical point of 4, ;.
By (4) we have that nH, I, ,(py) + d, = 0. By (5) it follows that lim,,_ zH,,d,(p) = +4o00. Using (1) we can see that
lim, , k,(p) = +0c0, hence |A|* blows up near p. O

Remark 2.20. The same kind of singularities appears in the construction of rotationally invariant higher order
translators, i.e. hypersurfaces with H, = g(v, d/dt), where r > 1 and v is the unit normal, see [28].

We now proceed with the classification results. We recover results by Bérard—Sa Earp [23], Elbert—Sa Earp
[21, Section 6] and de Lima—Manfio—dos Santos [22, Theorem 1 and 2]. Recall that a slice is any subspace H" X
{t} C H" X R, and its origin was defined as its intersection with the t-axis.

Theorem 2.21. Assumer odd, n > r, and d, < 0. By reflecting the rotational hypersurface given by the graph of

Ay q, across suitable slices, we get an immersed H,-hypersurface.

(1) If0 < H, < (n—r)/n, the hypersurface generated by the graph of Ay _, , together with its reflection across
the slice H" X {0}, is an annulus with self-intersections along a sphere centered at the origin of the slice
H" x {0}. The hypersurface is of class C* for r = 1, and of class C' for r > 3. In the latter case, the singular
set consists of two spheres of radius p, contained in the slices H" X {+4y_4 (po)} and centered at their origin.

(@) IfH,> (n—r)/n, then we distinguish two subcases. If r = 1, the hypersurface generated by the graph of
Ay q, together with its reflection across the slice H" X {0} and vertical translations of integral multiples
of 24y 4 (py), s a C? nodoid with self-intersections along infinitely many spheres centered at the origin of
distinct slices. If r > 3, we have two possibilities. First, one may get nodoids as in the r = 1 case, except that
they are not C*-regular (singularities appear along infinitely many spheres of radius p, in distinct slices).
Second, one may get compact hypersurfaces with the topology of S x S* with C* singularities along two
spheres of radius p, contained in the slices H" X {£Ay 4 (py)} and centered at their origin.

Theorem 2.22. Assumer odd, n > r, and d, = 0. Then the rotational hypersurface given by the graph of Ay , is a

complete embedded H,-hypersurface, possibly after reflection across a suitable slice.

(1) If0 < H, < (n—1)/n, the hypersurface generated by the graph of Ay_ is an entire graph of class C? tangent
to the slice H" X {0} at the origin.

(2) IfH,> (n—r)/n, the hypersurface generated by the graph of Ay, o, together with its reflection across the
slice H" X {4y o(p,)}, is a class C? sphere.

Theorem 2.23. Assume r odd, n > r, and d, > 0. By reflecting the rotational hypersurface given by the graph of

Ag, 4, across suitable slices, we get a complete non-compact embedded H,-hypersurface.

(1 If0 < H, < (n—r)/n, the hypersurface generated by the graph of Ay, q. together with its reflection across
the slice H" X {0}, is a class C* annulus. When n = r +1and H, = 1/(r + 1) the same holds, provided that
d, is smaller than (r — D!!/(r — 2)!! forr > 1, or smaller than1 forr = 1.
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(2) IfH, > (n—r)/n, the hypersurface generated by the graph of Ag, q, together with its reflections across the
slices " X {kAy 4 (p)}, k € Z, is aclass C? onduloid.

Theorem 2.24. Assume n=r odd and H,, > 0. Then the hypersurface generated by the graph of Ay , , together
with its reflection across the slice H" X { Ay g4 (p,)} isaclass C? sphereifd, = 0, and a peaked sphere if0 < d, < 1.

When —1 < d, <0, the hypersurface generated by the graph of iy , , together with its reflections across
suitable slices, has self-intersections and we have three possibilities: it may be a generalized horn torus, a portion
of generalized spindle torus, or a nodoid. In all cases, the hypersurface has C* singularities, cf. Table 3.

When d, < —1, the hypersurface generated by the graph of Ay, , together with its reflection across the slice
H" X {0} and vertical translations of integral multiples of 22y 4 (p.,), is an immersed nodoid with C? singularities
along infinitely many spheres of radius p,, in distinct slices and centered at their origin.

Tables 1-3 summarize the above results. We describe the shape of the hypersurfaces and specify their
homeomorphism type when the topology is easily described.

Table 1: Rotation H,-hypersurfaces in H” X R with H, > (n —r)/n.

Parameters Shape/topology Singularities Figure
d >0 Onduloid/s™" x R 1 2,6
d =0 Sphere/s” 1 1,5
d, <0,reven Singular onduloid/S"~! X R Infinitely many copies of $"=! given by cusps in horizontal 1
slices
d, <0,rodd Nodoid |A]? = oo on infinitely many copies of "~ in horizontal slices 4
if r > 3, else smooth
s 1x s |A]?> — oo on two copies of S"~" in horizontal slices 4

Table 2: Rotation H,-hypersurfaces in H” X R with 0 < H, < (n —r)/n.

Parameters Shape/topology Singularities Figure

d >0 Unbounded annulus/S"~" X R 1 2,6

d =0 Entire graph/R" 1 1,5

d, <0,reven Singular annulus/s"~' X R A copy of "' given by cusps in the slice t =0 1

d, <0,rodd Singular annulus with |A]2 = oo on two copies of "' in horizontal 4
self-intersections along a copy slices if r > 3, else smooth

of S"Vin H” x {0}

Table 3: Rotation H,-hypersurfaces in H” X R with H, > 0.

Parameters Shape/topology Singularities Figure
d, <—1,nodd Nodoid |A]? = oo at infinitely many copies of $"~" in 7
horizontal slices
Nodoid |A]? = oo at infinitely many points on the 7
t-axis and copies of S"~" in horizontal slices
—-1<d,<0nodd Generalized horn torus |A|? = oo at two copies of 5"~ in horizontal 7
slices and at one point on the t-axis
Portion of generalized spindle torus |A]? = oo at two copies of S" in horizontal 7
slices and at two points on the t-axis
d, <0,neven Singular onduloid/s"" x R Infinitely many copies of S~ given by cusps 3
in horizontal slices
d,=0 Sphere/s” 1 3,7

0<d, <1 Peaked sphere/S” |A|? = oo at two points on the t-axis 3,7
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Remark 2.25. Let us comment on the last case of Table 1, i.e. d. < 0 and r odd. Both types of hypersurfaces
noted there occur depending on the value of H, and d,. Also, S"~! x S' occurs only if r > 3. As Ay a (py) # 0 gets
closer to the p-axis, the corresponding nodoids get more self-intersections, and the topology of the hypersurface
becomes non-trivial.

Remark 2.26. When —1 < d, < 0 and n is odd, all three cases in Table 3 occur depending on the value of the
parameter d,,.

3 Translation H,-hypersurfaces

In the proof of Theorem 6.1, besides rotation hypersurfaces, we will need further H,-hypersurfaces as barriers.
The suitable ones are invariant under hyperbolic translation in H" X R with r-th mean curvature H, > (n —
r)/n. Hyperbolic translations in H" X R are hyperbolic translations in a slice H" X {t} extended to be constant
on the vertical component, and will be described precisely later. When 0 < H, < (n —r)/n, smooth complete
hypersurfaces invariant under hyperbolic translation are treated in [22]. The case r = 1has already been studied
in [23], and an explicit description for n = 2 has been given by Manzano [29]. Therefore, we restrict to the case
r>1

Asin Section 2, given n, r, and H, > 0, one finds a one-parameter family of functions describing the profile
of such translation hypersurfaces. Since we do not aim to give a complete classification of translation hyper-
surfaces, we will choose the parameter to be zero (see (11) below), and we will only describe a portion of the
hypersurface. This will be enough for our purposes.

Letusrecall the construction of translation hypersurfaces in H" X R by Bérard—Sa Earp [23]. For simplifying
the notation, we denote the zero-section H" X {0} by H". Take y in H" to be a geodesic passing through 0. We
define V to be the vertical plane {(y(p), ):t, p € R}. We now take x to be a totally geodesic hyperplane in H"
orthogonal to y at the origin. We consider hyperbolic translations along a geodesic 6 passing through 0 in 7z,
repeated slice-wise to get isometries of H" X R. Now take a curve defined by c(p) := (tanh(p/2), u(p))in V, where
u is to be determined. For any p > 0, consider the section H" X { u(p)}, and move the point c(p) via the above
hyperbolic translations. On each slice, this gives a hypersurface M, in H" X { u(p) } through c(p). Hence the curve
defined by c generates a translation hypersurface M = U ,M , in H" X R.

The principal curvatures of the hypersurface M, with respect to the unit normal pointing upwards are

ky=---=k,_,=—H _tanh(p), k,=—H
A+ a%): A+ f%)e
Then .
. R
nH, = (n—rtanh’(p)—H___ +tanh () KK
’ P+ gy g A+ 27
This is equivalent to the identity
cosh"(p) _ d < ner i )
H-———""=—(cosh" " (p)——~ ), r=1,...,n (10)
"sinh"'(p) dp Pt i)z

Note that now the integrals
P
n—1
/ C9Shr—1 (r) dr
sinh’ ™ '(7)
0
are not well-defined for r > 1, because

p , ’
n—1 r—1
/Mdfz/wdfz/mtghmdmoo.
0

sinh™(7) sinh™(¢)
0 0
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[LH, e

Figure 8: Behavior of p,  forr>1.

We then choose ¢ > 0 and define

P p
hn—l .
Jure(p)i= / %da and  J,(p):= / cosh™z)dr,  p>0.
€ 0

Then one can integrate (10) twice and set the constant of integration to be zero, so as to obtain

(NH, ], &))"

p
MH,,e(P) = / \/ =

= = d¢, p>e (1
COSh r (é) - (nHr]n’r,g(g));

Again, p depends on H,, and ¢, so we write . to be precise.

Remark 3.1. Note that we have defined py . in (11) for p > e. This is because we are only interested in the
portion of translation hypersurface described by the graph of yy . for p > e. The tangent line to the curve
described by uy . at p = € is horizontal for all r, and py . is increasing for p > e. The second derivative of
My, () is computed as

. 2n=r) _. n
() cosh ™) (L 0 i~ i, ) "

ﬁHr,e (p) =

2(n=r)

r(nHr]n,r,e(p))%l (COSh r (p) — (nHr]n,r,e(p))% )E

This expression will be used when studying the convexity of uy_. and its regularity up to second order.

Remark 3.2. Let us discuss a few details on j,,.. for r>1 and p>e. It is clear that [, .(e) =0 and
lim, , ] re(p) = +o0. Further, J . (p) > 0 for p > e. Hence ], is a bijection between (e, o0) and (0, +o0).

For n > r, we have the asymptotic behavior (n — r)J, . .(p) & cosh"™(p) for p — +o0, and for n = r we have
Jnne(p) = pfor p — +oo.

We fixr > 1H, > (n — r)/n, and ¢ > 0, and study the function

(NH, ], e (©))"

P
My, (p):= [ \/ —

— = dé.
cosh (&) — (nH, ], . (E)r

Proposition 3.3. Let r > 1, H, > (n—r)/n, and fix € > 0. Then uy . is defined on [, pi], where p¢ is the
only solution of cosh""(p) —nH,J,, (p) = 0. We have uy .(€)=0= fiy (€), fiy (p)>0 for p€ (e, pi),
lim ppt P e (P) = +00, and py . is convex in the interior of its domain. Further, lim ,_, iy .(p) = +oo (Figure 8).

Proof. Putting together all constraints gives

0 < nH, J,.,..(p) < cosh™ " (p).
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Notice that p¢ is finite if and only if
fe(p):= cosh™ " (p) — nH, ], .(p)
admits a zero. One has f,(¢) > 0, whereas the derivative of f, is

cosh™(p) r
= 5 YY) (n — 1) tanh(p) — nH,),
sinh"~*(p) (= ntantt(p) &

flp)
and is negative since H, > (n — r)/n. Moreover, f’ tends to —co, hence a zero p¢, exists and is unique. Forn =,
fe reduces to 1 —nH,J, ., which has a zero p¢ > e regardless of the value of H, > 0. The remaining details on
the behavior of y; . follow as in previous section. O

Remark 3.4. The technique used for Proposition 2.8 can be combined with (12) and yields C2-regularity of the
translation H,-hypersurface at points corresponding to p = p¢ . At points corresponding to p = ¢ whenr > 1we
only have regularity C'.

By using the translation defined at the beginning of this section on the curves defined in Proposition 3.3,
one gets translation H,-hypersurfaces in H" X R, which we describe in the following theorem. Recall that 7 is
the totally geodesic hyperplane in H" orthogonal to the plane containing the support of the curve given by the
function uy . at the origin.

Theorem 3.5. Letr > 1, H, > (n—r)/n, and € > 0. Reflect the graph of My, ON [e, pﬁr] with respect to the hor-
izontal slice H" X { #H,,e( pi) } Translating the arc obtained along geodesics through the origin in « gives an
H,-hypersurface with the topology of R" x [0,1] and of class C* away from the boundary. The boundary com-
ponents are planar equidistant hypersurfaces with distance e from z, they lie in two different slices, and can be
obtained from one another by a vertical translation.

4 Estimates

In this section we collect estimates that will be needed in the proof of Theorem 6.1. We define radii and heights
related to pieces of the hypersurfaces classified in the previous sections, and study the interplay between them.
First we need to compare spheres and horizontal cylinders.

Fixn > r > 1and H, > (n —r)/n. Denote by S, the sphere in H" X R with r-th mean curvature H,, namely
the compact rotation hypersurface generated by the graph of A5 , in Theorems 2.10, 2.12,2.22, 2.24. LetRg :=p,,,
where p, was defined as the length of the domain of 4 .

For any € > 0, let us denote by C, . the H,-hypersurface described in Theorem 3.5, which is a portion of a
horizontal cylinder. Set Re =pS —¢ where p¢ is the unique value such that

flpy) = cosh" " (p,) —nH, ], (p,) = 0.

Note that C, . has a horizontal hyperplane of symmetry P and R, _is the distance between the projection of
the boundary of C, .on Pand C.. N P.
The next estimate will be used in Claim II for the proof of Theorem 6.1.

Lemmad4.1. For alln,r, H. withn >r > 1and H, > (n —r)/n, there exists a positive ¢ = e(n,r, H,) such that
R. <R;.

Remark 4.2. A version of this statement for r = 1 is given in Nelli-Pipoli [27, Lemma 3.3]. Lemma 3.1 may be
viewed as an extension of the latter tor > 1.
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Proof. We have already shown that for H, > (n —r)/n (or H, > 0) the function f, is decreasing. Since p$ > e,
we have lim,_,,, p$ = co.
Note that the function € — s is continuous and increasing. To see this, let 0 < a < b and p > 0, so that

b

4 p
cosh"1(x) / cosh"*(x) / cosh" 1 (x)
o dx [ S dx > [ S dx= ‘
Jural? / sinh™1(x) A sinh"(x) A sinh™ (o) Jnrp(P)
a

It follows that
fa(P%) <cosh™(p}) —nH, [, (P}) = fo(0%) =0 = fu(p})-

Since f, is decreasing, pf"_ > p§ holds.
We claim that p§ < /e if € is small enough. By definition of p¢ and the fact that f, is decreasing, it is
enough to prove that f.(1/€) < 0 for e small enough. Since the function xcosh(x) — sinh(x) is positive for x > 0,

we deduce that
cosh’ (%) 1

sinh’~l(x) ~ XV

cosh™1(x) ner
— "~ = cosh X
sinh’~1(x) )

whence

1 .
—=log(e) ifr=2,
]n,r,s(\/z) 2 1 22 2-r .

—(e‘r—e 2 ) ifr>2
r—2
In both cases lim,_ J,, .. .(1/€) = +o0. It follows that f.(1/€) < 0 for € sufficiently small, hence the claim is
proved. We deduce that e < p€ < \/E for e small, so lim,_,p$ = 0.
Givenn >r>1and H, > (n—r)/n, the value of R is fixed. By the above statements, there is a value of
¢ > 0 such that Rcm_ <pS <R s, O

The next type of hypersurfaces we consider are annuli. Let n > r, H. = (n — r)/n, and choose d, > 0. For
these values of the parameters, the functions 4 , for r even and odd share the same behavior. Specifically, they
have a zero p_, which is the only solution of sinh""(p) — (nH,I,, ,(p) + d,) = 0, and start with vertical tangent.
After a vertical reflection across the slice H" X {0} and rotation about a vertical axis, each curve produces an
unbounded annulus (see Theorems 1.11, 1.23).

Let us highlight a property of d, that will simplify our calculations. Since nI,, ,(p) = p" for p close to 0, for
p_ small we estimate

d, = sinh""(p_) — nH,I,,(p_) ~ p" — H,p" = p" (1— H,pl).
This implies

dr —
d,-0 Pﬁ_r =1 (13)

We need to consider the portion of the previous annulus between the slices H* X {0} and H" X {h* }, where
h* is defined as

/((n D@+ 4" (14)

smh (3]

Observe that by (13) we can interpret h* as an approximation of the value 4,_, /ra,(2p_) for p_ small.
Moreover h* < Ay /rq (2p-)-

Letnow n = r.For d, > 0 small enough, we consider portions of the peaked spheres found in Theorems 1.12
and 1.24, so that the cases n even and odd can be treated together. Here p_ is not defined a priori, so we choose
p_ = di/ " and define h* as follows (by abuse of notation, we use the notation h* as above)
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2p_

1 3
h*:=/dn" =d;. (15)
-

Note that when p_ is small, then 2p_ < p_ and h* is an approximation of g, q,@2p) — Ay, g (p_), Whichis
the height of the portion of the peaked sphere between two slices intersecting it in codimension one spheres of
radii p_ and 2p_. Moreover h* < Ay ; 2p_) — Ay 4 (p_).

For any n > r we define pjlr implicitly as

P,
h* =: /
oV

Notice that py, is the radius of the intersection of the sphere S, of constant curvature H, with a slice at
vertical distance h* from the South Pole.

As above, we assume p_ is small, which is equivalent to requiring d, small (recall that d,. — 0 if and only if
p_—0).

(nH, I, (&))"
sinh 7" (&) — (H, I, (£)

d¢, (16)

Lemmad4.3. Letn >r,d. > 0, H. = (n—r)/n, take h* as in (14), and p;'} as in (16). Then

limp?, = lim 2= = 0.
d,l—I}(}p H, 0, d,l—I}(} s 0

Forn=r,d, > 0,and H, > 0, take h* as in (15) and p;‘{ as in (16). Then

limp¥ =0 lim?= =o.
dnl—»op H, ’ d,11—>0 o

Proof. First assume r < n. For d, small the right-hand side of (16) is approximated as

P, 1

[ =5 (o)
0

We then approximate h* in (14) as

2p_ 1 2p_

" - d r 1 rn

h ~/<nnr§’+§nir> déz/dr’ér dé. 17)
pP— p-

Assume now n # 2r. We integrate (17) to find

r rn
h* ~ (zr —1) _
2r—n p

2
On the other hand, h* ~ HT ( er> .Since d, — 0 is equivalent to p_ — 0, it is clear that lim, _, p;}r =0and

=i

lim?= = limy/p_ = 0.
d,l—I:%p}_"I d,l—rf(l) P-

If n = 2r we need to integrate (17) in a different manner, namely

2p_
1 1
/d;f‘ldf =d' In2~p_In2

P
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Then again, lim, _op_/p;, = 0.

3
When n = r the proof is analogous provided that h* :=d}, as in (15). O

5 Hyperbolic limagon

The goal of this section is to improve the estimates on the size of the hyperbolic limacon introduced in [27]. This
hypersurface of H" generalizes the well-known limacon de Pascal in the Euclidean plane, and it will play an
important role in the proof of Theorem 6.1. We start by recalling its definition.

Definition 5.1. Let A and C be two distinct pointsin H", and ¢ > 0be a constant. Let C be the geodesic sphere with
radius c centered at C. For any P € C define A, to be the reflection of A across the totally geodesic hyperplane
in H" tangent to C at P. The set

L:={Ap, e H:P e C}

is called hyperbolic limagon, and A is called base point of L.

Since the hyperbolic space is two-points homogeneous, up to isometries of the ambient space £ depends only
on two parameters: a:=d(A, C), where d is the hyperbolic distance, and ¢ > 0 as in Definition 4.1. The shape of
£ changes depending on whether a = ¢, a < ¢, or a > c. Here we are only interested in the latter case. We refer
to Nelli—Pipoli [27, Section 2] for general properties of L.

The following result improves [27, Lemma 2.5] and will allow to remove the pinching assumption in [27,
Theorem 4.1].

Lemma 5.2. Take L to be the hyperbolic limagon with a > ¢ and base point A. Let C be the geodesic sphere defining
L, C beits center, and X be the point of C with minimal distance from A. Then L has two loops, one inside the other;
and it has a self-intersection only at A. Moreover the following statements hold.

(1)  The smaller (resp. larger) loop of L is contained in (resp. contains) the disk centered at X and radius a — c.
(2) The smaller loop of L bounds the disk centered at X and radius

sinh ¢
2 sinh a

(3) Allof L sits inside the disk centered at C and radius a + 2c.

Z(a,c):= cosh™! <cosh(a —-C) - sinh?(a — c)>, (18)

Proof. Since a > c, £ hastwo loops, one inside the other, and has a self-intersection only at A, cf. [27, Lemma 2.4].
The estimates (1) and (3) have been proved in [27, Lemma 2.5]. It remains to prove (2).

Since £ is invariant with respect to rotations about the geodesic passing through A and C, we can assume
n = 2. We start by giving an explicit parametrization of £ in the hyperboloid model for the hyperbolic space
canonically embedded in the Minkowski space R*! = (R3, ¢), where q s the standard scalar product of signature
(2,1). Without loss of generality, we can assume that A = (sinha, 0, cosha), and the center of C to be (0, 0, 1). Then
we parametrize C by

a(8) = (sinh ¢ cos 0, sinh ¢ sin 0, cosh ¢).

Let P = a(0) for some 6. We want to find the unique geodesic y, through P tangent to C explicitly: y is the
geodesic passing through P and generated by the unit tangent vector to C at P, which is

a’'(0)
Vqa'(0), ' (0)

Therefore y, = H? N I1,, where I, is the plane in R?! passing through O, P, and parallel to T. A unit normal
to I, with respect to q is the vector

TO) = = (—sin 6, cos 0, 0).

v(0) = (cosh ¢ cos 0, cosh ¢ sin 6, sinh c).
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Following Definition 4.1, we need to reflect A across y p. Since the reflection in H? across y p is the restriction
to H? of the reflection in R?! across I1,, it follows that £ can be parametrized as

L) = A —2q(A, v(O)V(6).

The point of C at minimal distance from A is X = (sinhc, 0, coshc). Since a > ¢, then X is in the compact
region bounded by the smaller loop of the hyperbolic limacon. The strategy now is to compute the distance
between X and £, then the smaller loop of £ will bound a disk centered at X and radius the above distance. It is
well known that the hyperbolic distance in the upper hyperboloid is

d(A,B) = cosh™'(—q(4,B)),  A,B € H-.

In order to find the critical points of the function 8 ~ d(X, L(0)), it is enough to find the critical points of
the function 6 ~ q(X, L(8)). We have

q(X, L(0)) = — cosh(a — ¢) + q(6) sinh 2c(1 — cos ),

where q(0) := q(4, v(0)) = cosh ¢ sinh a cos 6 — sinh ¢ cosh a. Explicit computations give

d% (q(X,L(8))) = sinh 2¢ sin A(2 sinh a cosh ¢ cos 6 — sinh(a + ¢)).
Hence critical points are given by

sinh(a + ¢)

2 sinh a cosh ¢’ 19

sin 8 =0, and cos 0 =

The case 8 = 0 yields a new proof of [27, Lemma 2.5, part 1]. The case 8 = & produces a disk centered at X

and radius a + 3c, which is worse than the disk in [27, Lemma 2.5, part 3]. The case of interest is now the last
one. Let 8, be such that cos 6, satisfies the second identity in (19). Then

_ _ sinhc . .9 _
qX,L(0,)) = —cosh(a — ¢) + 2 sinh @ sinh“(a — ¢).
We then have
dX,L)="7¢(a,c) = cosh™? <cosh(a —-C) - smh ¢ sinh?(a — c)>,
2 sinh a
hence the smaller loop of £ bounds a disk of center X and radius #(a, ¢). O

We conclude this section with a list of properties of # which will be useful for the estimates in the proof of
Theorem 6.1.

Lemma 5.3. The following properties hold.

(1) Foranya>c>0,7¢(a,0) =a ¢(aa)=0,and(a,c) > 0. Moreover ¢£(a,c) < a—c.

(2)  The function (a,c) ~ £(a,c) with domain {(a,c) € R%a > ¢ > 0} is increasing in the first variable and
decreasing in the second one.

(3) Forany x > 0, then £(4x, 2x) > x.

Proof. The properties in (1) follow directly by the definition of #, cf. (18).
As for (2), we have

sinh(a — ¢)

0 . 2 . 2 . .
— cosh(Z(a, ¢)) = 2 sinh” a — sinh” ¢ — cosh(a — ¢) sinh a sinh ¢
oa (“a.cy 2 sinh® a ( ( ) >

sinh(a — ¢)

> sinh 2 (sinh a — cosh(a — ¢) sinh c)
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_ sinh%(a — ¢) cosh ¢
2 sinh a

>0,

where we have used the fact that a > ¢ > 0. Likewise

9 cosh(Z(a, c)) = —M(Z sinh a + cosh ¢ sinh(a — ¢) — 2 sinh ¢ cosh(a — ¢))
Jc 2 sinh a
. 2
_ _3sinh (a.— c)cosh ¢ <.
2 sinh a

Since the functions sinh and cosh are increasing in [0, +o0), the claim follows.
Let us now prove (3). By (18) we have

.
£(4x,2x) = cosh'1<cosh(2x) - smh(Zx)>

4 cosh(2x)

— cosh™! ( 3(2 cosh? x — 1)? + 1)
42 cosh®> x—-1 )

It follows that #(4x, 2x) > x if and only if

32 cosh? x — 1)? +1
42 cosh? x — 1)

> cosh x,

namely (cosh(x) — 1)(cosh? x + (cosh x — 1)(3 cosh? x + 3 cosh x + 1)) > 0. The latter holds true for all x > 0, and
we are done. O

6 Ros-Rosenberg type theorem

The second goal of the present paper is to prove a topological result about compact connected H,-hypersurfaces
embedded in H" X R with planar boundary. This is a generalization of the classical result of Ros and Rosenberg
[25] about the topology of constant mean curvature surfaces in the Euclidean three-dimensional space.

Theorem 6.1. Let M be a compact connected hypersurface embedded in H" X [0, co) C H" X R with boundary a
closed horoconvex (n — 1)-dimensional hypersurface I" embedded in the horizontal slice H" X {0}. Assume M has
constant r-th mean curvature H, > (n —r)/n for some r = 1,...,n. Then there is a constant 6 = 6(n,r,H,) > 0
small enough such that, if I is contained in a disk of radius &, then M is topologically a disk.

We recall that a hypersurface I" of the hyperbolic space is called horoconvex if all its principal curvatures
are larger than one.

Remark 6.2. Let us make a few observations.

() When r =1, Theorem 6.1 improves [27, Theorem 4.1]. In fact, thanks to the new estimates given in
Lemma 4.2 (2), we do not need to assume any pinching onT".

(2) Elbert-Sa Earp [21, Theorem 7.7] proved that when n > r and 0 < H, < (n —r)/n, then a compact con-
nected H,-hypersurface M embedded in H" X [0, oo) with horoconvex boundary I" in the slice H" X {0} is
necessarily a graph over the compact planar domain bounded by I'. In particular M is a disk. Therefore,
we focus on the cases n > r, with H, > (n —r)/n, and n = r, with H,, > 0.

(3) By using Alexandrov reflections with respect to vertical hyperplanes, we can show that M shares the same
symmetries of its boundary. In particular, when I" is a geodesic sphere, M is rotationally symmetric. It
follows that M is a portion of one of the compact hypersurfaces classified in Section 2, and Theorem 6.1 is
proved in this special case.

In view of the previous remark, we will assume throughout that I" is not a geodesic sphere.
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Remark 6.3. In the following we will do extensive use of the tangency principle for H,-hypersurfaces as it is
stated in [24, Theorem 1.1]. In order to satisfy the assumptions there, it is enough that the hypersurface M in
Theorem 6.1 has a strictly convex point. This is guaranteed by [21, Lemma 7.5].

Notations. Let us introduce some notations that will be useful in the proof of Theorem 6.1. For the reader’s
convenience, there is a list of notations at the end of the article. We denote by € the compact domain of H" X
{0} bounded by I" and by W the compact domain in H" X R with boundary M U Q. Givenn >r > 2, and H, >
(n—r)/n, we fix an € > 0 such that Lemma 3.1 is satisfied. Denote by C,:=C, . the corresponding translation
H,-hypersurface of Theorem 3.5. When r = 1 we use the same notation, however recall that no choice of € is
involved. Let h. denote the height of C, (namely 25(p,) for r = 1 and 2y, (<) for r > 1). Analogously let
hg_be the height of S, (i.e. 24y o(p,), cf. Theorems 1.10, 1.12, 1.22, 1.24). We define hy, to be the height of M with
respect to the slice H" X {0}. The exterior (resp. interior) radius of I is the smaller (resp. larger) radius p such that
for any p € I" there is a geodesic sphere S with radius p tangent to I" at p and I' sits in (resp. encloses) the closed
ball with boundary S. We write r,,, for the exterior radius and ry, for the interior one. Clearly r,,, > r;,, and

nt ext = "int>

equality occurs if and only if I" is a geodesic sphere. Moreover, since I" is horoconvex, ry,,, and r,,, are determined
by the maximum and the minimum of the principal curvatures of I'. Finally we denote by D(R) any disk of radius

R > 01in a horizontal slice of H" X R.

The strategy of the proof of Theorem 6.1 is similar to that of [27]: if the height of M is less than the height of
C,, then M is a graph over €, otherwise it is a union of hypersurfaces, each one a graph over a suitable domain.
As in [25], at the end of the proof it will be clear that the union of such graphs has the topology of the disk. The
hyperbolic limacgon described in Section 5 will be used in various estimates.

Lemma 6.4. Let M and I satisfy the assumptions of Theorem 6.1. There is a disk D(r,,) in H" X {0} such that
M N (D(rpin) X R) is a graph, and €7 oy, Text — Ting) < T'min < T'ine- I particular, r ;. depends only on the principal
curvatures of T.

Proof. In order to prove the statement, we apply Alexandrov’s reflection technique with horizontal hyperplanes
coming down from above. Since M is compact, the slice H" X {t}, t > h,, does not intersect M. Then we let
t decrease. When t < hy,, reflect the part above the slice and stop if there is a first contact point between M
and its reflection. If we can get to t = 0 without having contact points, then M is a graph over € and we can
choose Iy < Tine- If this does not happen, there will be a 0 < t; < hy;/2 such that the reflected hypersurface
touches M for the first time. If the intersection point lied in the interior of M we would have a contradiction
with the Maximum Principle, hence a first touching point belongs to I'. Let q be one of such points. Then the line
{q} % (0, o) intersects M exactly once, and {q} X (0, 2t,) is contained in the interior of W, as t, < h, /2. Note
that the portion of M above H" X {¢,} is a graph.

We now perform Alexandrov’s reflections with respect to vertical hyperplanes, i.e. the product of a totally
geodesic hypersurface of H" and R. Let Q be one of such hyperplanes. Since M is compact, we can assume that
QN M = @. Fix a point x € Q and let y be the geodesic passing through x and orthogonal to Q. Move Q along y
towards M such that Q is always orthogonal to y. By abuse of notation, we call again Q any parallel translation
of the initial hyperplane. When Q touches M for the first time, keep moving Q and start reflecting through Q
the part of M left behind Q. In order not to have a contradiction with the Maximum Principle, we can continue
this procedure with no contact points between M and its reflection until Q enters I" at distance at least ry,
from it.

We can avoid the dependence on the contact point g by stopping reflecting when Q is tangent to C, where
C is as follows. Denote by C,,, the geodesic sphere in H" X {0} of radius r,,,, tangent to I" at ¢, and enclosing I'.
Then C is the geodesic sphere with the same center as that of C,,, and radius equal to r,,; — 'y

Define L to be the set of the reflections of q through any vertical hyperplane tangent to C. It follows that
L is a hyperbolic limacon as in Definition 4.1 whose base point is ¢ and whose parameters are a = r,,, and
C = Tp; — I'ine- SiNCe @ > ¢, £ has two loops. Moreover, since I" is horoconvex, the smaller loop of £ sits in €.
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Furthermore, since {q} X R intersects M in exactly one point, then the same holds true for any p in the
compact planar domain bounded by the smaller loop of £. Define r,,;, as the largest radius of a ball bounded by
the smaller loop of £. Then M N (D(ry,;,) X R) is a graph. Finally Lemma 4.2 and Lemma 4.3 imply £(rgy;, 'y —
Tint) < T'min < Tine at once. We remark that r;, depends only on a and ¢, namely only on the curvature of I, but
not on q. [

Proof of Theorem 6.1. We first assume hy, < h. .
Recall that R, = p§ — e forr>1,and R, = p,. We can then adapt the proof as in Nelli-Pipoli [27] to our
case.

Claim I. The hypersurface M lies in D(r,,; + R ) X [0, h¢).

Proof. Consider the H,-hypersurface C,. Its lower boundary is in the slice H* X {0} and the upper boundary
sits in the slice H" X {h. }. We call C, any horizontal translation or rotation of C,. Since M is compact, we
can translate C, horizontally so that M N C, = @ and M lies in the part of C, containing the axis of C,. Then
we move C, isometrically towards M until C, touches M for the first time (see Figure 9). By the Maximum
Principle, C, and M do not touch at any interior point. Since hy < he , the first touching point belongs to I'.
The same steps can be repeated for C, with any horizontal axis. By definition of r,,, we get that M sits inside
D(rey + Rc) X [0, he ). O

Claim II. If I is sufficiently small, then M is contained in the cylinder Q X R.

Proof. By Lemma 3.1 and our choice of ¢ one has R, < R . Recall that S, is the sphere with the same r-th mean
curvature as that of M. Cut S, with its horizontal hyperplane of symmetry and let S be the upper hemisphere.
Now take I" small enough so that R+ r,,, < Rg . Translate S} horizontally in such a way that the intersection
of its axis of rotation with the slice H" X {0} coincides with the center of the disk found in Claim I. Translate
upwards Sr+ such that Sr+ N M = (J. By the Maximum Principle, Claim I, and the hypothesis on I", we can translate
S;" downwards without having a contact point between S and M until the boundary of S} is contained in the
slice H" X {0}, whence M is below S} (see Figure 10).

By the Maximum Principle and the fact that r,,, < R, one can translate horizontally S;" without having a
contact point with M until S; becomes tangent to I" at any point of I', which gives the claim. O

Claim III. The hypersurface M is a graph over Q, hence it is a disk.
Proof. By Alexandrov’s reflections technique with horizontal hyperplanes coming down from above, it follows

that M is a graph over €, which proves Theorem 6.1 when h), < h, . Observe that 6 can be taken as Rg — R,
cf. Claim II. O

Figure 9: Here is a representation for n = 2. The black circle is the boundary at infinity of the slice H? X {0}, M is the blue surface whose
red boundary I' lies in H? X {0}. One moves the purple half-cylinder C, . isometrically towards M. Note that M may have non-trivial
topology.
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We now assume that hy; > h. . Alexandrov’s reflection technique with horizontal and vertical hyperplanes
guarantees that the part of M above the plane t = h;,/2 is a graph over a domain of H" X {0} and that the part
of M outside the cylinder Q X R is a graph over a domain of I" X R. The goal is to prove that M is the union of
such graphs, i.e. M N (Q X (0, hy,/2]) is empty. In this way it will be clear that M has the topology of a disk (see
Figure 11).

Recall the definition of h* in (14) for n > rand (15) for n = r. Hereafter we show that Q x [h*, by, /2] contains
no point of M if T" is small enough, and lastly we prove that there is no interior point of M in Q X [0, h*] as well.

Before doing this we discuss how the various quantities we use are related to one another. Let d. > 0 be
such that

?’p(rext’ Text = rint) < P— = Trin < Tint < Textr

where r,, is the radius defined in Lemma 6.4 and p_ is the minimum of the interval where 4,_,) /4 is defined

when n > r (see Section 2), and for n = r was chosen in Section 4 to be d,lz/ ". Note that if r,,, — 0, i.e. T" shrinks
to a point, then d, — 0, and so p_, h*, and p;“l go to zero as well (cf. Lemma 3.3). Hence if r,,, is small enough,

then h* <« %M Further, since #(Toy;, Text — Tin) > 0, we can find a > 0 such that
AT gy < f(rext’ Toxt — rint) <p_ (20)

whence p; /o > apj; /p_. Taking I' small enough, by Lemma 3.3 we have

* *

P P
i>ai>3’

Text -

therefore we can assume

Py, > ext: 2D

Oan

I'xR

Figure 11: Decomposition of M: the part of M above the green hyperplane and the part of M outside the red cylinder are graphs.
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ClaimIV. The compact domain bounded by M N (I]-I]" X {hy; — h* }) contains a geodesic segment of length at
least pj, .

Proof. Alexandrov’s technique with respect to horizontal hyperplanes implies that the reflection of points in M
at height h,, across the hyperplane H" X {h,,/2} sits in the closure of Q. We can assume that one of these points
lies on the t-axis after applying a horizontal isometry. Let M’ be the portion of M above the hyperplane H" X
{hy; — h*}.Then M’ is a graph with height h*. Suppose that for any p € dM’ the distance between p and the t-axis
is smaller than p7, . Cut S, with a horizontal hyperplane so that the spherical cap S/ above that hyperplane has
height h*. Then trénslate S’ up until it has empty intersection with M, then move it downwards. The Maximum
Principle implies there is no contact point between S/ and the interior of M " at least until the boundary of S/
reaches the level t = h,, — h*. Therefore the height of M’ is less than h*, which is a contradiction. O

Claim V. The domain bounded by M N (H" X {hy, — h*}) contains a disk D(R) With R > £(p}, — T'eys» Texy)-

Proof. Up to horizontal translation, we can assume that one of the endpoints of the geodesic segment found in
Claim IV is on the t-axis. Let p be the other endpoint. Consider a geodesic sphere C,,; of H" X {0} tangent to I"
and containing I'. Reflect the point p across any vertical hyperplane tangent to C,,, in H" X R.

The set of such reflections is a hyperbolic limagon £ in H" X {h,;, — h*} with base point p (see Figures 12
and 13). By the choice of p, the parameters of £ are a > p;r — I'yye @nd ¢ = 1,,;. By (21), a > ¢, so £ has two loops,
and the smaller one is contained in W — argue as in Lemma 5.4. The claim now follows by Lemma 4.2. O

Claim VI. The intersection between M and D(R) X [h*, hy, — h*] is empty.

Proof. Claim V implies that D(R) is contained in W, and since we have chosen h* < hy,, the hyperplane
H™ X {h,,; — h*} is above the hyperplane H" X {h,,/2}. By applying the Alexandrov’s reflection technique with
horizontal hyperplanes, the reflection of D(R) across H" X {z} is contained in W for all = € [h),/2, hy, — h*].

The claim then follows. O

Claim VIL. There is no point of M in the cylinder Q X {0 < t < h*} (see Figure 14).

D

Mn{t= /:_\;’~ h* }

Figure 13: The hyperbolic limagon from above.
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(?XH”

Figure 14: M does not intersect the red cylinder. This final step shows that M has the topology of a disk.

Proof. 1f n > r, X will denote the portion of the rotational hypersurface generated by the graph of A,_ /4
contained in (D(2p_)\D(p_)) X R. For n = r, ¥ will denote the portion of a peaked sphere generated by the graph
of Ay 4 contained in (D(2p_)\D(p_)) X R. Note thatifn > r, then the r-th mean curvature of  is strictly smaller
than that of M, while if n = r the nth mean curvatures of M and X coincide.

In both cases I" and d, > 0 are chosen small enough so that the Claims IV, V, and VI hold. For any n > r,
2 has two boundary components C, and C,. Up to vertical translation, we can assume C, C H" X {0} and C; C
H" x {h*}. Up to horizontal translation we can assume that the center of C, coincides with the center of the disk
of Lemma 6.4. Moreover, by definition of h*, the radius of C, is smaller than 2p_.

Let R be the radius found in Claim V. By Claim V, (21) and Lemma 4.3 we get

m Pu o Ph
3 3 6

R>2(py = TextsTexd) > f(

By Lemma 3.3, we can take I" small enough such that

p*
Ph, (1+1),,_,
6 a

where « is the constant in (20). It follows that if I" is small enough, then
R>ry+p_>2p_. (22)

Claim V and (22) allow us to translate X vertically in such a way that it is contained in W. By Lemma 6.4 and
the Maximum Principle, we can then translate ¥ down until C, reaches H" X {0} without having contact points
with the interior of M. Because of p_ < ry,, we can translate horizontally X in such a way that it touches every
point of I" with C,, and keeping C, inside Q.

Since (22) holds true, during this translation C; remains inside the disk D*(R) C H" X {h*}, which is the
reflection of D(R) C H" X {h,; — h*}. By Claim VI, in this process, the upper boundary of X does not touch M.
Recalling that the r-th mean curvature of  is not bigger than that of M, by the Maximum Principle, we get that
there can be no internal contact point between M and X. The claim then follows because X is a graph over the
exterior of D(p_). O

The proof of Theorem 6.1 is now complete. O

List of notations

We include a summary of the various notations we use throughout for the most notable objects and quantities.
(1) Profile curves:
Ap, 4 function defining the profile curve of H,-hypersurfaces in H" X R invariant under rotation
depending on a real parameter d, (Section 2).
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Hp, - function defining the profile curve of H,-hypersurfaces in H" X R invariant under hyperbolic
translation depending on a real parameter ¢ > 0 (Section 3).
(2) Domain of profile curves:
p—: minimum of the domain of 4, ; when this is not zero.
p..: maximum of the domain of 4 ;.
po: minimum point of A4 ,; in(p_, p,).
pS.: maximum of the domain of yy . forr> 1.
(3) Hypersurfaces in H" X R:
S,: rotation H,-hypersurface generated by the graph of 4, ,, for some H, > (n —r)/n.
C, . translation H -hypersurface with H, > (n — r)/n generated by the graph of uy; ..
(4) Special quantities:
Rg :thevalue p, for Ay ,.
R, :thevalue pS —eforr > 1.
h*: approximated value of Ay g 2p ) ford, >0and H, = (n—r)/n(14).
p;;r: radius of the hypersurface given by the graph of A, o, H, > (n —r)/n, at height h* (16).
(5) Specific notations for Section 6:
C,: same as C, . with a choice of e such that R <R .
he - height of C,, namely 24p,(p,) forr =1 andvz,uH”e (p%) for r > 1, cf. Theorem 3.5.
hy, height of M C H" X [0, oo) with respect to the slice H" x {0}.
L: the hyperbolic limagon as in Definition 5.1.
¢(a, ¢): optimal radius of a ball bounded by the smaller loop of £ with parameters a > ¢, see Lemma 5.2
and identity (18) for its explicit definition.
Iy interior radius of T'.
Ty €xterior radius of T'.
I'min: the largest radius of a ball bounded by the smaller loop of £ over which M is a graph, see
Lemmas 5.2 and 6.4.
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