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Abstract: In this article, we study the uniqueness of positive symmetric solutions of the following mean
curvature problem in Euclidean space:
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where ∈ −h C 1, 11([ ]) and ∈ ∞ ∞f C 0, ; 0,1([ ) [ )). Under suitable conditions on h and monotone condition on
f s

s

( ), by introducing a modified Picone-type identity, we prove that the problem has at most one positive
symmetric solution.
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1 Introduction

This study is concerned with the uniqueness of positive symmetric solutions related to the one-dimensional
mean curvature equation in Euclidean space:
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, ∈ −∞ ∞y ,( ), ∈ −h C 1, 11([ ]), ≥h x 0( ) for ∈ −x 1, 1[ ], and ≢h 0 in any compact sub-

interval of −1, 1( ), ∈ ∞ ∞f C 0, ; 0,1([ ) [ )), and >f s 0( ) for >s 0.
In general, we say u a solution of problem P( ) if ∈ − ∩ −u C C1, 1 1, 11([ ]) (( )), ′ ⋅ϕ u( ( )) is absolutely contin-

uous in any compact subinterval of −1, 1( ), and u satisfies the equation and the boundary conditions in
problem P( ). Moreover, we say the solution u is positive if >u x 0( ) for ∈ −x 1, 1( ). Since ∈ −h C 1, 11([ ]) and
∈ ∞f C 0,1([ )), we see that every solution u of problem P( ) satisfies ∈ −u C 1, 13([ ]).

Our concern is focused on a class of quasilinear elliptic problems related to prescribed mean curvature
equations in Euclidean space. Such problems arise in many physical models as well as geometric models such
as pendent and sessile drops in capillary surfaces [1,2], electrostatic actuators in micro-electro-mechanical
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system [3,4], phase transition models with large spatial gradients [5], the corneal shape of human eyes [6], and
minimal surfaces (see [7] and references therein).

Let us briefly recall the research history of this problem. In 1914, Bernstein [8] proved the uniqueness of
the following minimal hypersurface equation in +n 1�
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where =H 0, by showing that the only entire solution of (1.1) is linear for =n 2. Almost 50 years later, the
higher-dimensional version of the classical Bernstein’s theorem was settled through the successive efforts of
Federer and Fleming [9], Fleming [10], De Giorgi [11], Almgren [12], Simons [13], and Bombieri et al. [14]. The
result is that (1.1) has only linear entire solutions for ≤n 7 and there are nontrivial entire solutions for >n 7.
Then, when H is a nontrivial function, boundary value problems associated with equation (1.1) attracted much
attention. Particularly, the nonexistence, existence, and multiplicity of positive solutions involving the pre-
scribed mean curvature problems have been widely investigated by many authors in the past few decades, for
instance, readers may refer to [15–23]. Recently, López-Gómez and Omari in articles [24–27] investigated the
regularity, bifurcation, and existence of the bounded variation solutions of the one-dimensional prescribed
mean curvature problems, which provides a novel perspective of solutions.

To our knowledge, results on the uniqueness of solutions for prescribed mean curvature problems are
rare. Motivated by this observation, we aim to study the uniqueness of positive solutions of problem P( ) under
appropriate restrictions on the nonlinear term f . More precisely, we assume
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The main result of this article is given as follows.

Theorem 1.1. Assume F( ). Also, assume

= ′ ≥ ∈ −H h x is symmetric with respect to x and h x for x0 0 1, 0 .( ) ( ) ( ) ( )

Then, problem P( ) has at most one positive symmetric solution.

We offer some examples that satisfy assumption H( ).

Example 1.1.
• = − +h x x 11

2( ) , ∈ −x 1, 1[ ];

• = +−
h x e c

x

2 1

2

( ) , for any ≥c 01 and ∈ −x 1, 1[ ];
• = +h x c xln 33 2

2( ) ( ), for suitable <c 02 and ∈ −x 1, 1[ ].

The rest of this article is organized as follows. In Section 2, we give some lemmas and prove Theorem 1.1. In
Section 3, we state two examples as applications of our result.

2 Proof of Theorem 1.1

Before proving Theorem 1.1, we first give the nonexistence of double zeros of nontrivial nonnegative solutions
of problem P( ) for later use, which shows that any nontrivial nonnegative solution of problem P( ) is a positive
solution by combining with the concavity of solution.

Lemma 2.1. Every nontrivial nonnegative solution u of problem P( ) has no double zero (i.e., a point x* such that
= ′ =u x u x* * 0( ) ( ) ) on −1, 1[ ] and ′ <u 1 0( ) .
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Proof. Let u be a nontrivial nonnegative solution of problem P( ). Suppose, on the contrary, that there is a point
∈ −x* 1, 1[ ] such that = ′ =u x u x* * 0( ) ( ) . We divide the rest of the argument into three cases:
Case 1. ∈ −x* 1, 1( ). Integrating the first equation in problem P( ) on x x*,( ) for ∈ −x 1, 1( ), we obtain
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Thus, ′ ≥u x 0( ) for ∈ −x x1, *( ) and ′ ≤u x 0( ) for ∈x x*, 1( ). Together with the boundary conditions − =u 1( )

=u 1 0( ) , we obtain ≡u 0, which is a contradiction.
Case 2. = −x* 1. Similar to (2.1), we have
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Thus, ′ ≤u x 0( ) for ∈ −x 1, 1( ). Together with the boundary conditions − = =u u1 1 0( ) ( ) , we obtain ≡u 0, which
is also a contradiction.

Case 3. =x* 1. The fashion is the same as in Case 2. Therefore, u has no double zero on −1, 1[ ] and the proof
is completed. □

Next, let u x( ) be a positive symmetric solution of problem P( ). In order to use the shooting method to
prove Theorem 1.1, we introduce notation u x α;( ), instead of u x( ), as a positive symmetric solution of problem
P( ) satisfying the conditions:

′ = = ∈ ∞u u α0 0 and 0 0, .( ) ( ) ( )

A corresponding initial value problem of P( ) is stated as follows:
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where α is a parameter.
We first consider the local existence and uniqueness of solutions for the initial value problem, extending

the domains of functions h and f . Define ∈ − ∞h C˜ 1,1([ )) by =h x h x˜( ) ( ) for ∈ −x 1, 1[ ], ′ =h x˜ 0( ) for ≥x 2 and
≤ ≤∈ − ∈ −h t h x h tmin ˜ maxt t1,1 1,1( ) ( ) ( )[ ] [ ] ; =f s f s˜( ) ( ) for ≥s 0 and = − −f s f s˜( ) ( ) for <s 0. In what follows, for

convenience, we still denote h̃ and f̃ by h and f , respectively.
We provide the following lemma to show the relationship between problem P( ) and Problem (2.2).

Lemma 2.2. A function ∈ −u x C 1, 12( ) ([ ]) (≜u x α;( )) is a positive symmetric solution of problem P( ) if and only if
it is a solution of Problem (2.2) with >u x 0( ) for ∈x 0, 1( ) and =u 1 0( ) .

Proof. Together with Lemma 2.1, it is clear that every positive symmetric solution u x( ) of problem P( ) is a
solution of Problem (2.2) with >u x 0( ) for ∈x 0, 1( ) and =u 1 0( ) . Now, we show that every solution

∈u x C 0, 12( ) ([ ]) of Problem (2.2) with >u x 0( ) for ∈x 0, 1( ) and =u 1 0( ) corresponds to a positive symmetric
solution of problem P( ). Let us define

=
⎧
⎨
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∈
− ∈ −u x

u x x

u x x

˜
, 0, 1 ,

, 1, 0 .
( )

( ) [ ]

( ) [ )

From the definition, ũ satisfies the equation and boundary condition in problem P( ) for ∈x 0, 1[ ]. It suffices to
show that ũ also satisfies the equation and boundary condition in problem P( ) on the interval −1, 0[ ]. It is not
difficult to check that ∈ −u x C˜ 1, 12( ) ([ ]), = −u x u x˜ ˜( ) ( ), ′ = − ′ −u x u x˜ ˜( ) ( ), and ″ = ″ −u x u x˜ ˜( ) ( ) for ∈ −x 1, 1( ). We
observe that u satisfies
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showing ũ is a positive symmetric solution of problem P( ). The proof is completed. □

Since ∈ − ∞h C 1,1([ )) and ∈f C
1 �( ), by a general ordinary differential equation theory (readers may refer to

Theorem 1.1 in Chapter II, [28]), we see that there exists a maximum interval δ α0,[ ( )) with < ≤ ∞δ α0 ( ) such that

solution u x α;( ) of Problem (2.2) uniquely exists on δ α0,[ ( )) and satisfies ∈ × ∞∂
∂ u x α C δ α; 0, 0,

x

2( ) ([ ( )) ( )). If
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α 0,
( )( ) , then problem P( ) has no positive symmetric solution. Without loss of generality, we consider

the case >δ α 1( ) in the rest of this article.
From now on, corresponding to problem P( ), we may restrict x on 0, 1[ ] in Problem (2.2) for simplicity.
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By differentiating the first equation in Problem (2.2) with respect to x , u x α;( ) satisfies
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The following identity plays a crucial role in the proof of Theorem 1.1, which is inspired by [30–32].
Specifically, an identity for the Laplacian problem is introduced in [31] using the idea of Korman and Ouyang
[29,30] and an identity for the p-Laplacian problem is developed in the study [32].

Lemma 2.3. Assume that u and ω satisfy (2.2)–(2.4). Then,
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Proof. Let u x( ) (≜u x α;( )) be a positive solution of Problem (2.2). Then, by direct calculation, Problem (2.2) can
be rewritten as the following problem:
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Obviously, u satisfies (2.4). Together with the fact that ω satisfies (2.3), we have
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The proof is completed. □

We introduce the modified Picone-type identity, which will be used to search for the zeros of ω later (see
[33] for the Picone-type identity).

Lemma 2.4. Let b x1( ) and b x2( ) be the functions on an interval I and y and z be the functions such that y, ′ϕ y( ),
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Lemma 2.5. Let ∈y z C x x, ,1
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By direct calculation and ii( ), we have

∫ ′ ′ = ′ − ′ =yϕ y x y x ϕ y x y x ϕ y xd 0.
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The proof is completed. □

Remark 2.2. If the assumption iii( ) in Lemma 2.5 is replaced by:
′iii( ) x0 and x1 are not double zeros of function z,

the result is also valid. The proof is obvious, and we omit it here.

Lemma 2.6. Assume F( ). Let u x α;( ) be a positive solution of Problem (2.2) with =u α1; 0( ) and ω x( ) be a
solution of Problem (2.3) satisfying ≥ω x 0( ) on an interval ≜ ⊂I b0, 0, 1[ ] [ ], then ω x( ) has no double zero on I .

Proof. Obviously, 0 is not a double zero of ω owing to =ω 0 1( ) . Reminding ′ =ω 0 0( ) , there exists >ε 0 such
that >ω x 0( ) on ε0,( ). It suffices to show that ω has no double zero on b0,( ]. If <b ε, the result is obtained. If

≥b ε, we suppose, on the contrary, that there is a point ∈x b* 0,( ] satisfying = ′ =ω x ω x* * 0( ) ( ) . Then,
integrating the first equation in Problem (2.3) on x x, *( ) for ∈x b0,[ ], we obtain

6  Yong-Hoon Lee and Rui Yang



∫′
+ ′

=
ω x

u x α

h τ f u τ α ω τ τ

1 ;

; d ,

x

x

u
2 3

*

( )

( ∣ ( )∣ )
( ) ( ( )) ( )

i.e.,

∫′ = + ′ω x u x α h τ f u τ α ω τ τ1 ; ; d .

x

x

u

2 3

*

( ) ( ∣ ( )∣ ) ( ) ( ( )) ( )

From assumption F( ), we obtain

′ > > >f s

f s

s

s0, for 0.( )
( ) (2.6)

Thus, ′ ≥ω x 0( ) for ∈x x0, *( ). It follows that = ≤ =ω ω x1 0 * 0( ) ( ) , a contradiction. Hence, ω has no double
zero on I , and the proof is completed. □

Lemma 2.7. Assume F( ). Letu x α;( ) be a positive solution of Problem (2.2)with =u α1; 0( ) andω be a solution of
Problem (2.3), then ω has at least one zero on 0, 1( ).

Proof. On the contrary, suppose that ω has no zero on 0, 1( ). Then, it follows from the fact =ω 0 1( ) that >ω 0

on 0, 1( ) and ≥ω 1 0( ) . By Lemma 2.6, 1 is not a double zero of ω. Let us first consider the case ′ ≠ω 1 0( ) . Then,

by setting =y u, =z ω, =b
hf u

u
1

( ) , and = ′b hf u2 ( ) in Lemma 2.4, we obtain =l u 01[ ] , =L ω 02[ ] . Thus,

⎛

⎝
⎜

′
+ ′

− ′
⎞

⎠
⎟

= ⎛
⎝ − ′ ⎞

⎠ −
⎛

⎝
⎜ ′ ′ −

′ ′
+ ′

+
′

+ ′

⎞

⎠
⎟ − +

x

u ω

ω u

uϕ u

h

f u

u

f u u u ϕ u

uu ω

ω u

u ω

ω u

ul u

u

ω

L ω

d

d 1

2

1 1

.

2

2 3

2

2 3

2 2

2 2 3
1

2

2

( ∣ ∣ )
( )

( )
( ) ( )

( ∣ ∣ ) ( ∣ ∣ )
[ ] [ ]

Integrating the aforementioned equation on 0, 1( ), we have

∫

∫ ∫

⎛

⎝
⎜

′
+ ′

− ′
⎞

⎠
⎟
′

= ⎛
⎝ − ′ ⎞

⎠ −
⎛

⎝
⎜ ′ ′ −

′ ′
+ ′

+
′

+ ′

⎞

⎠
⎟ ≜

u ω

ω u

uϕ u x

h

f u

u

f u u x u ϕ u

uu ω

ω u

u ω

ω u

x J

1

d

d
2

1 1

d .

0

1
2

2 3

0

1

2

0

1

2 3

2 2

2 2 3

( ∣ ∣ )
( )

( )
( ) ( )

( ∣ ∣ ) ( ∣ ∣ )

Note that u is a positive symmetric solution of problem P( ), ′ = =u α u α0; 1; 0( ) ( ) , all conditions in Lemma 2.5
are satisfied with =x 00 and =x 11 . Using Lemma 2.5, we obtain

∫ ′ ′ =uϕ u xd 0

0

1

( ( ))

and

∫
⎛

⎝
⎜

′
+ ′

⎞

⎠
⎟
′

=
u ω

ω u

x

1

d 0.

0

1
2

2 3( ∣ ∣ )

Hence,

∫
⎛

⎝
⎜

′
+ ′

− ′
⎞

⎠
⎟
′

=
u ω

ω u

uϕ u x

1

d 0.

0

1
2

2 3( ∣ ∣ )
( ) (2.7)

By Remark 2.1,
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∫
⎛

⎝
⎜ ′ ′ −

′ ′
+ ′

+
′

+ ′

⎞

⎠
⎟ ≥u ϕ u

uu ω

ω u

u ω

ω u

x

2

1 1

d 0.

0

1

2 3

2 2

2 2 3
( )

( ∣ ∣ ) ( ∣ ∣ )
(2.8)

By F( ), we have

< ⎛
⎝

⎞
⎠
′
=

′ −
>

f u

u

f u u f u

u

u0 , for 0,
2

( ) ( ) ( )

and thus,

∫ ⎜ ⎟
⎛
⎝

− ′ ⎞
⎠

<h x

f u x

u x

f u x u x xd 0.

0

1

2( )
( ( ))

( )
( ( )) ( ) (2.9)

Combining (2.8) and (2.9), we obtain <J 0, which contradicts (2.7). For the case ′ =ω 1 0( ) , by using Remark 2.2,
we also obtain a contradiction. Therefore, ω has at least one zero on 0, 1( ), and the proof is completed. □

Lemma 2.8. Assume H( ). Let u x α;( ) be a positive solution of Problem (2.2) with =u α1; 0( ) and ω be a solution
of Problem (2.3), then ω has at most one zero on 0, 1( ].

Proof. Suppose, on the contrary, that ω has more than one zero on 0, 1( ]. Then, there exist r0 and r1 such that
< < ≤r r0 10 1 , = =ω r ω r 00 1( ) ( ) , and ≠ω x 0( ) for ∈x r r,0 1( ). We consider the case <ω 0 on r r,0 1( ). Integrating

both sides of equation (2.5) on r r,0 1[ ], we have

∫
⎛

⎝
⎜

′
+ ′

⎞

⎠
⎟ ′ −

⎛

⎝
⎜

′
+ ′

⎞

⎠
⎟ ′ = ′

ω r

u r

u r

ω r

u r

u r h s f u s ω s s

1 1

d .

r

r

1

1
2 3

1

0

0
2 3

0

0

1

( )

( ∣ ( )∣ )
( )

( )

( ∣ ( )∣ )
( ) ( ) ( ( )) ( ) (2.10)

Note that
(i) ′ ≤ω r 00( ) , ′ ≥ω r 01( ) , and ′ <u x 0( ) for ∈x 0, 1( );
(ii) at most one of ′ω r0( ) and ′ω r1( ) is zero. Indeed, if ′ = ′ =ω r ω r 00 1( ) ( ) , then, integrating the first equation in

(2.3), we have

∫=
′

+ ′
−

′
+ ′

= −
ω r

u r α

ω r

u r α

h x f u x α ω x x0

1 ; 1 ;

; d .

r

r

u

1

1
2 3

0

0
2 3

0

1

( )

( ∣ ( )∣ )

( )

( ∣ ( )∣ )
( ) ( ( )) ( )

This implies that =ω 0 on r r,0 1( ) owing to the positivity of h and the fact ′ >f 0 from (2.6), which is a contra-
diction. Hence,

⎛

⎝
⎜

′
+ ′

⎞

⎠
⎟ ′ ≤

ω r

u r

u r

1

0,
1

1
2 3

1

( )

( ∣ ( )∣ )
( )

and

⎛

⎝
⎜

′
+ ′

⎞

⎠
⎟ ′ ≥

ω r

u r

u r

1

0.
0

0
2 3

0

( )

( ∣ ( )∣ )
( )

Combining the aforementioned two inequalities and the aforementioned ii( ), it follows

( ) <LHS of 2.10 0.

On the other hand, using H( ), we obtain

( ) ≥RHS of 2.10 0,

which is a contradiction. Therefore, ω has at most one zero on 0, 1( ], and the proof is completed. □
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Lemma 2.9. Assume F( ) and H( ). Let u x α;( ) be a positive solution of Problem (2.2) with =u α1; 0( ) , then
solution ω of Problem (2.3) satisfies <ω 1 0( ) .

Proof. Combining Lemmas 2.7 and 2.8, there exists a constant ∈c 0, 11 ( ) such that =ω c 01( ) , >ω x 0( ) for
∈x c0, 1( ) and <ω x 0( ) for ∈x c , 11( ]. Obviously, <ω 1 0( ) . □

Proof of Theorem 1.1. The following proof is mainly inspired by Tanaka [31]. By Lemma 2.2, u x( ) is a positive
symmetric solution of problem P( ) if and only if u x( ) is a positive solution of Problem (2.2) with =u 1 0( ) .
Thus, we investigate the number of positive solutions of Problem (2.2) instead. Let u x( ) be a positive solution
of Problem (2.2) with = ∈ ∞u α0 0,( ) ( ). To avoid confusion, we denote the solution by u x α;( ) below.
In order to make use of the Prüfer transformation for solution u x α;( ), we introduce two functions

∈ × ∞r x α θ x α C, , , 0, 1 0,1( ) ( ) ([ ] ( )) satisfying

⎧
⎨
⎩

=
′ =

u x α r x α θ x α

u x α r x α θ x α

; , sin , ,

; , cos , ,

( ) ( ) ( )

( ) ( ) ( )
(2.11)

where ′ = ∕d xd . The result of Lemma 2.1 implies that ≠r x α, 0( ) for all ∈x 0, 1[ ]. From the initial conditions in
(2.2), it yields =θ α0,

π

2
( ) (mod π2 ) and =r α α0,( ) . For conciseness, we take =θ α0,

π

2
( ) .

From (2.11), we obtain

= ⎛
⎝ ′

⎞
⎠θ x α

u

u

, arctan .( )

Taking the derivative of θ with respect to x , we obtain

′ =
′ − ″
′ +

= −
″

= +
+ ′

≥ ∈θ x α

u uu

u u

θ

θu

r

θ

huf u u

r

x, cos
sin

cos
1

0, for 0, 1 ,

2

2 2

2 2

2 3

2
( )

( )( ∣ ∣ )
( )

implying that θ x α,( ) is increasing with respect to x on 0, 1( ). Thus, the fact that u x α;( ) is a positive solution of
Problem (2.2) with =u α1; 0( ) indicates

= ∈ ⎛
⎝

⎞
⎠ ∈θ α π θ x α

π

π x1, and ,
2

, , for 0, 1 .( ) ( ) ( )

Claim that ≔ >=
∂

∂θ x α, 0α x

θ α

α
1

1,
( )∣

( ) . We take the derivative of θ x α,( ) with respect to α:

=
′ − ′

′ +
θ x α

u x α u x α u x α u x α

u x α u x α

,
; ; ; ;

; ;
.α

α α

2 2
( )

( ) ( ) ( ) ( )

( ) ( )

Reminding =u α1; 0( ) , we have

=
′

=
′

θ α

u α

u α

ω

u α

1,
1;

1;

1

1;
.α

α

( )
( )

( )

( )

( )

By Lemmas 2.1 and 2.9, >θ α1, 0α( ) since u x α;( ) is a positive solution of Problem (2.2) with =u α1; 0( ) . Now,
we suppose, on the contrary, that there exist > >α α 02 1 such that u x α; 1( ) and u x α; 2( ) are two positive
solutions of Problem (2.2). Then,

= = > >= =θ α θ α π θ α θ α1, 1, , 1, 0, and 1, 0.α α α α α α1 2 1 2
( ) ( ) ( )∣ ( )∣

By the intermediate value theorem, there exists ∈α α α* ,1 2( ) such that =θ α π1, *( ) and <=θ α1, 0α α α*( )∣ . It
implies that u x α; *( ) is also a positive solution of Problem (2.2) with =u α1; * 0( ) , which contradicts the
aforementioned claim, and consequently, problem P( ) has at most one positive symmetric solution. The proof
is completed. □
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3 Applications

We finally give two examples to illustrate the applicability of our uniqueness result.

Example 3.1. We consider the problem

⎧

⎨
⎪

⎩⎪

⎛

⎝
⎜

′
+ ′

⎞

⎠
⎟
′
+ = − < <

− = =

−u x

u x

λe u x x

u u

1

0, 1 1,

1 1 0,

x

2

2
2( )

∣ ( )∣
( )

( ) ( )

(E1)

where parameter >λ 0.
By Theorem 1.1, problem E1( ) has at most one positive symmetric solution for all ∈ ∞λ 0,( ).

Example 3.2. Let >λ 0, and consider the problem

⎧

⎨
⎪

⎩⎪

⎛

⎝
⎜

′
+ ′

⎞

⎠
⎟
′
+ − − + + = < <

= =

u x

u x

λ x u x u x x

u u

1

1 1 0, 0 2,

0 2 0.

2

2 3
( )

∣ ( )∣
[ ( ) ]( ( ) ( ))

( ) ( )

(E2)

By Theorem 1.1, problem E2( ) has at most one positive symmetric solution.
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