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Abstract: In this paper, we consider a class of functionals subject to a duality restriction. The functional is of
the form J(Q, Q") = Jof + /o8& where f, g are given nonnegative functions in a manifold. The duality is a
relation a(x, y) <0V x € Q,y € Q*, for a suitable function a. This model covers several geometric and physical
applications. In this paper we review two topological methods introduced in the study of the functional, and
discuss possible extensions of the methods to related problems.
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1 Introduction

Functionals with duality arise in many applications. An important example is Kantorovich’s functional

K, y) = / FOOBO + / £y @1
Q Q*

arising in optimal transportation, where Q, Q0* are given domains in the Euclidean space R", f, g are mass
distributions in 2, Q*, respectively. The functions ¢ and y satisfy a constraint

d0) +w(y) < cx, y) (12)
for a cost function c(-, -) defined in © X ©*. Kantorovich’s functional (1.1) plays a fundamental role for the theory

of optimal transportation and its applications in applied sciences.
In this paper we consider the following functional

JQ,Q" = / fOodx + / g(y)dy, 1.3
Q o
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where f, g are given nonnegative functions. Both integrals in (1.3) are weighted volume functional. The domains
Q and Q* satisfy a restriction
alx,)) <0 VxeQ,yeQ” (1.4)

for a suitable function a(:, -). Typical examples include the cases when , Q* are convex domains in the unit
sphere S" and
alx,y)=x-y, (1.5)

or when Q, Q* are convex domains in the Euclidean space R**! and
ax,y)=x-y—1 (1.6)

The functional (1.3) is interesting not only by its simple form, but it is related to several geometric and physi-
cal applications. It arises in our study of Minkowski type problems in the Euclidean space [1] or in the unit sphere
[2]. Surprisingly, Kantorovich’s functional can be regarded as a special case of the functional (1.3). Moreover, the
functional (1.3) also covers the L, dual Minkowski problem, which was extensively studied recently.

To see that Kantorovich’s functional is a special case of the functional (1.3), suppose that  and Q* in (1.3)
are given by two functions x,.,; = ¢(X),x’ € wandbyy,., =w(/),y € w*, respectively, as follows

Q=Q,= {(x’,xn): X €Ew, 0<x, < d)(x’)},
Q' =Q) ={(¥.y): Y €0"0<y, <y},

wherex’ = (x, ..., %)Y = (q, ... ,Y,), wand o* are hounded domains in R". Suppose thatlocally f = f(x’)
and g = g()areindependent of x,,,, and y,,, respectively. One easily sees that K(¢p, y) = J (Q¢, Q:;) with
the constraint a(x,y) = X4 + Yoy — cX,y) < 0.

Next we show that the functional for the L P dual Minkowski problem can also be written in the form (1.3).
Let

f@=121"""f@ and g@) = |23,
wherez =z/|z| € S"forz # 0, f ,& € L®(S™) are bounded positive functions on the unit sphere. In order that
f and g are integrable near the origin, we assume that p < 0and g > 0. We calculate the functional (1.3) with
the above f and g,
JQ,Q = / |z|"f(Z)dz + / |z| 7P~ (Z)dz.
Q Q*

Let u and r denote the support and radial functions of Q. Then

r(€)
/ 121Gz = / / Ef(@dede = 1 / rfae,
Q s 0 q NG

r*(x)
/ 2P g @)z = / / P15 00dedx = — - / ()P g,
Q S 4 sn

where r and r* denote the radial functions of Q and Q" respectively. When Q" is the polar dual of , we have
r* = 1/u. Here u is the support function of Q. As a result, for a dual pairing  and Q" the functional (1.3) can
be written as
T, =-1 / uPgdx + 1 / rifdé. 1.7)
p - q L
This is the functional for the L, dual Minkowski problem introduced by [3], and was studied in [4]-[6]. It is an
equivalent form of a functional in [7]. The constraint (1.4) in this caseisx -y < 1.
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In this paper we discuss the functional (1.3) for Q, Q" in the unit sphere S" with the constraint « in (1.5),
or for Q, Q" in R™! with the constraint « in (1.6), with emphasis on the two topological methods introduced in
[1], [2], [5], [6]. In the former case, it leads to the Minkowski problem in the sphere, in the latter case, we have the
centro-affine Minkowski problem. Minkowski type problems have been investigated by many authors in recent
years [3], [7]-[11].

The topological method in [2] is an extension of the Mountain Pass Lemma. In the Mountain Pass Lemma,
one considers the min-max of a functional in the set of all paths connecting two fixed points in a Banach space.
Here we replace a path by a cylinder of the form M X [0, 1], and consider the min-max of a functional in all the
cylinders. By this extension we can obtain more than one solutions.

The topological method in [1], [5] extends the fixed point theorem. In the study of Minkowski type problems,
we use the associated Gauss curvature flow, which is a gradient flow of the corresponding functional. However
in some important applications, there is no uniform estimate for the flow. By computing the homology for a
class of ellipsoids, we prove that there is a balance point, which is a special ellipsoid, such that the uniform
estimate holds for the Gauss curvature flow starting from the balance point. Hence it converges to a solution to
the Minkowski problem. We believe both methods will find more applications.

This paper is arranged as follows. In Section 2, we introduce the Minkowski problem in the sphere. In
Section 3, we show that there are at least two solutions to the Minkowski problem in the sphere, where we
show how a new min-max method is used to obtain the second solution. In Section 4, we introduce the centro-
affine Minkowski problem, and in Section 5 we emphasize how to use the homology to find an initial condition
such that the curvature flow converges to a solution. In this paper we also show some extensions of the methods
to related problems.

2 The Minkowski problem in the sphere

2.1 The Minkowski problem in the sphere

This problem can be phrased as follows. Given a positive function ¢ on the unit sphere S", one asks whether
there exists a convex hypersurface M C S" such that the Gauss curvature of M at a point x € M is equal to
P(v(x),

KXx)=¢(vXx) VxeM, 2.1

where v(x) is the unit outer normal of M at x.
This Minkowski problem can be reformulated as a variational problem associated with the functional (1.3),
subject to the constraint
alx,y):=x-y<0 V(x,y) € QxQ". (2.2)

Let Q be a domain in S™. The polar dual of € is a convex set in S" given by
Q ={yesSt x-y<0 VxeQl.

For simplicity we will consider domains with Lipschitz boundaries only, and we also assume that f, g are positive
and bounded measurable functions on S".

Given a domain Q and a constant 6 > 0, we denote by N;3(Q2) the union of subsets of S" whose Haus-
dorff distance from Q is less then &, namely N3(Q) = {Q' C ™ Q c Q) and Q' C Q;}, where Q; = {x €
S dist(x, Q) < 6}.

Definition 2.1. We say that a pair of Lipschitz domains Q, Q" is a critical point of the functional J if for any
domains U € N4(Q) and V € N3(Q"), and for sufficiently small 5§ > 0,

JW, V) = JE€,Q% + 0(5). 2.3
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Lemma 2.1. Let the pair Q, Q" be a critical point of the functional J. Then Q, Q" are convex, and Q* and Q are
dual to each other.

Proof. Note that (¥)* is convex and by the constraint (2.2), Q C (Q*)*. If Q is not convex, then Q is a true
subset of (Q*)*. Hence the volume [(Q; — ) N (Q*)*| > ¢6 for a constant ¢ > 0, for all small 5 > 0. This is
impossible by the definition (2.3).

If the pair Q, Q" is a critical point of the functional 7 and Q" is not the polar dual of Q, by the restriction
(2.2), we see that Q* is a true subset of Q*. Hence the volume |Q§ NQ* —Q*| > ¢é for aconstantc > 0, again
in contradiction with the definition. O

When Q and Q* are dual to each other, we call them a dual pairing. The duality on the unit sphere
has a special property, namely the unit outer normal v(x) of x € 9Q is a point on dQ", and for any point
y € 0Q*, thereisapointx € dQsuchthaty = v(x).If 0Q and 0Q" are C' smooth and strictly convex, then
ViXx € 0Q — v(x) € 0Q" isaone-to-one mapping on 0Q. Observe that if dQ is strictly convex and C' smooth,
s0 is 0Q".

Let Q,Q" C S" be a dual pairing. Denote M = dQ and M* = 0Q". Let k; be the principal curvatures of
Matx € M,wherei = 1,...,n — 1. Then Ki_l are the principal curvatures of M* at y = v(x). Hence if M is
a solution to the Minkowski problem (2.1), then M* is a solution to the prescribed Gauss curvature problem

K@) =1/¢(2) Vze M 2.4)

Therefore, problem (2.4) is equivalent to its dual problem (2.1).
Next we derive the Euler equation for the functional 7.

Lemma 2.2. Assume the dual pairing Q, Q" is a critical point of J. Assume that M = 9 is strictly convex and
smooth. Then
KGO = f)

T g’
where K(x) and v(x) are the Gauss curvature and unit outer normal of M at x.

VxeM, 2.5)

Proof. LetQ,,t > 0,beaone-parameter family of deformations of Q with Q, = €, and X(-, t) be a parametri-
sation of M, = 0Q,. Let Q7 be the dual of Q, and X*(,t) be a parametrisation of M; = dQ;. Denote
V = (0,X,v). Then one has (9,X*,v*) = —V (see e.g. [12]), where v and v* are the unit outer normal of M,
and M}, respectively. By the first variation formula of volume,

d

ST (@) = / VOO £00d 00 — / VOONEYAU ), 26)

M M*

where du and du* are respectively the area elements of M and M*, and x(y) € M is the point such that
vix(y)) = y.
Lety = y(x) € M* denote the unit outer normal of M at x. One has

dp*(y(x)) = Kx)dux).

Inserting it into (2.6), we see that

% 7 (Q.Q)) = / V0O fOOdu(x) — / V0)g(vO))K()du(x) = 0.
= M M
Since the formula holds for all V, we arrive at (2.5). O

When f = land g = 1/¢, equation (2.5) is the Minkowski problem in the sphere, namely equation (2.1).
The Minkowski problem in the sphere was studied by Gerhardt [12]-[14]. He proved the existence of one solution
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if certain barrier conditions are satisfied or ¢ is invariant under a group action [12]. In the paper [2], by exploiting
the functional (1.3), we proved the existence of solutions to the Minkowski problem (2.1) in the sphere for any
positive and bounded function ¢.

2.2 Extensions

We can extend the functional (1.3) from the sphere S™ to more general convex hypersurfaces or even manifolds.
Here are two examples.

Example 2.1. Let us equip the unit sphere S" with a different metric g, and consider the functional (1.3) in the
metric g, namely

JQ,Q" = / f)dvoly + / g()dvols, @7
Q o

where dvol; is the volume element of S™ with the metric g. Note that dvol; = |g|dx for a function || and dx
denotes the standard volume element of S". Hence

JE@Q.Q" = / FO0Z1dx + / 20)(Zldy:
Q QF

Hence the Minkowski problem in a metric sphere is the same as in the standard sphere, provided the constraint
(2.2) is unchanged.

Example 2.2. Let M and N be two smooth, compact, uniformly convex hypersurfaces in R™*.. Let f, g be
two positive functions defined on M, N, respectively. Let Q C M and Q* ¢ N be two domains. We can also
introduce the functional J on M and NV,

JQ, Q% = /f(x)dvolM +/g(y)dvolN. 2.8)
Q Q"

Instead of using the constraint (2.2), we impose the following new one,
V) -V <0 VxeQ,yeQr, 2.9

where v(x) is the unit outer normal of M at x € M and v*(y) is the unit outer normal of M at y € N Since M
is smooth and uniformly convex, v is a one-to-one mapping from M to S™. Hence

/ f0odvol,, = / fU2)1,dz,
Q U

where 7, is the Jacobian of the mapping v, and U = v(Q) C S" Similarly we have

/ g(y)dvol, = / g0 )T dz,
QF 14

where T7 is the Jacobian of the mapping v*~', and V = v¥(Q") C S™ Hence the functional .J is changed to

Jw,v) = / FOI)T, dx + / g(v*‘l(y))I; dy. (2.10)
U 14

The constraint (2.9) can now be written as

x-y<0 VxelU,yeV
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Since 7, and l; are the inverse of Gauss curvature of M and N respectively, the integrands of (2.10) are given
by

f0)
Ky (v'x)’

gv*l(y)
Ky (v’
where K, and K - are respectively the Gauss curvature of M and N'. A special caseiswhen ' = S"and g = 1.
In this case, we can calculate the Euler equation by Lemma 2.2 for the functional .7:

fOTONI, =

gV oI, =

fv')

KO =% 700

x € 0U, (2.11)
where K is the Gauss curvature of U, as a hypersurface in S".

The above are two examples of the functional (1.3). We point out that there are more functionals like the
functional .7, which also leads to interesting Monge-Ampeére type equations.

Example 2.3. Let o) denote the k-th normalized elementary symmetric polynomial. Letx = (k, ..., k,) bethe
principal curvatures of a hypersurface M in R**. Let

1
L=~ / o, (K)ds, (2.12)

M

where ds is the area element of M. By [15], we calculate the variation of I;:

(LD, &) = / Gent(EHE V),

M

where v is the unit outer normal of M and £ is a smooth vector field on M.

We now consider an extension of (1.3)

IWM,M") = / On_q(K) f(V)ds + / On_1(k*)g(v*)ds™, (2.13)
M M*
where M is a closed convex hypersurface, M* is the polar dual of M, k* = (Kl*, ooy K:) are the principal curva-

tures of M* and v* is the unit outer normal of M*. Let K, K* be the Gauss curvature of M, M*, respectively. Then
ds = ‘%, ds* = ‘% Hence

IWM,M") = /al(i)f(v)dv+/0'1(ﬂ*)g(v*)dv*, (2.14)
s s

where 4 = (4;,...,4,) and A* = (/1;‘, ..., A%) are the principal radii of M and M*. Let u, u* be the support
functions of M, M*. Then

IWM,M") = /(Au +nuw) f(v)dv + /(Au* + nu*)g(v)dv*

st st

= /(Af +nfiudv + /(Ag +ng)u*dv*
s s

= /F(v)u(v)dv+ /G(v*)u*(v*)dv*,

st st
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where F(v) = Af + nf and G(v*) = Ag + ng.Let M, be a variation of M and M; be its dual. Denote u(-, t)
and u*(-, t) the support functions. Recall that (see e.g. [16])

0, logu*(v*,t) = 0, logr*(v*, t) = —0, log u(v, t),

where r* is the radial function of M*, and v is the unit outer normal of M at the point p such that p/|p| = v*.
Therefore
% I(M,M;) = / F(v)o,udv + / G(v*)ou*dv*
t=0
| st st
= / F(Wo,udv — / G(v*)%dtudv*
s s
= [ (Fv) - 60 -1 Voud
= [ (F0) = 60" iz )Ouuav,

sn

u

where we use dv* = g dv and u* = 1/rin the last equality (see e.g. [16]). Here r is the radial function of M.
As the variation d,u can be arbitrary, we see that the Euler equation of the functional 7 is

(Ag +ng)(v¥)

2 2y;+1 —
W + [Vul)2"K(v) Af+npw)

ves, (2.15)

where (u? + |Vu|2)%(v) = r(v*) is used. Here K(v) means the Gauss curvature K at the point p € M such that
the unit outer normal of p is v. Equation (2.15) is a L, dual Minkowski problem [17].

3 Existence of solutions

For a prescribed curvature problem with variational structure, very often one employs a gradient flow to obtain
solutions. It provides a deformation of the level sets of the functional. When the topology of the level sets changes,
one obtains a solution if necessary estimates can be established. The gradient flow itself needs not be smooth.

3.1 Existence of one solution

In [2], we introduced a piece-wise smooth gradient flow for the functional .7, for which we can establish the a
priori estimates and prove the convergence. Together with the Mountain Pass Lemma, we proved the existence
of one solution to the Minkowski problem in the sphere.

Theorem 3.1. Let ¢p € CX(S") be a positive function. Then there is a uniformly convex, C>%-smooth solution M C
S™ to the following problem, for any @ € (0, 1),

KXx) = ¢(v(x)), Vx e M. (31

Proof. The piece-wise smooth gradient flow is as follows:

K,
o)’

where X(-, t) is a parametrisation of the evolving convex hypersurfaces M, C S", v and K are respectively the
unit outward normal and Gauss curvature at X. The factor y is a positive function depending on the position
and normal of X(-, t). By choosing proper y we can establish the a priori estimates, provided that M, is strictly
contained in the north hemisphere. As we cannot ensure that M, is contained in the north hemisphere, we need
to relocate the north pole from time to time, such that M, is contained in the north hemisphere. In such a method

0.X = —y log 3.2)
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we obtain a Lipschitz continuous, piecewise smooth solution to the flow (3.2). Moreover, one can verify that (3.2)
is an ascent gradient flow of the functional J with f = land g = 1/¢. By the gradient flow and the Mountain
Pass Lemma, we obtain one solution. By the regularity theory for the Monge-Ampére equation, the solution is
€* smooth, uniformly convex. 0

Let us recall the Mountain Pass Lemma, as a comparison to the argument below for the second solution.
Let 7 be a functional defined on a metric space H. Let L be the set of all paths connecting two fixed points
Po» D1 € H,namely

L={¢:s€[0,1]1 > #(s) € H, £(0) = p,,#(1) = p;, and Z is continuous}.

Assume that there exists a constant 6, > 0suchthatVs € L,

inf I(£2(s)) < max(Z(p,), Z(p,)) — . 3.3)
s€(0,1)
Let
c¢* =sup inf Z(£(s)). (34)
feLSE(O,l)

Then under appropriate conditions, ¢* is a critical value of 7.

To find a critical point, one employs an ascent (or descent) gradient flow G: p € H — p., € H, such that for
any 7 = {pg:s € [0,1)} € Landt > 0, theflowGsendsZto 7, = {p,,:s € [0,1]} € L. Under appro-
priate conditions, one can prove that there exists s* € (0, 1), such that p,.., converges to a critical point p* of
and Z(p*) > c*.

3.2 Existence of two solutions

A new topological method was introduced in [2] to prove that for any bounded, positive function ¢ on $**1,
there exist at least two solutions to the Minkowski problem in the sphere.
In the case f = g = 1, the dual pairing

Q:S"n{xn+l> \f} Q*:S”n{xn+1<—\f}

isa critical point of 7, and it is the Mountain Pass solution of the functional 7. Any other solution must be a trans-
lation of Q, Q" given above [12]. Hence in our Theorem 3.2 below, when ¢ is a constant, two geodesic spheres S™
with different centres are regarded as different solutions. Hence when f = g = 1, there are infinitely many
solutions, and these solutions are congruent with each other by translations.

Theorem 3.2. Let ¢ € CX(S™) be a positive function. Then there exist at least two uniformly convex, C**-smooth
solutions to the problem (3.1), for any @ € (0,1).

Our argument is also a min-max principle like the Mountain Pass Lemma. In Theorem 3.1, we obtain one
solution M* to the Minkowski problem in the sphere by the min-max principle (3.4). To obtain the second solu-
tion, we use the gradient flow (3.2) and replace the path ¢ in (3.4) by cylinder C, and obtain a different critical
point for the functional .7 in (1.3).

More precisely, let ® denote the set of all closed convex hypersurfaces in S" (a single point p € S" will also
be regarded as an element in ®). A cylinder C is a mapping from S" X [0, 1] to ® such that

(@ C(p,0) = {p} for any point p € S" and C(p, s) shrinks to the point {p} ass — 0.
(ii) C(p,s)is continuousin p € S*ands € [0,1].
(i) C(p,1) = 0B, ,(p), where B.(p) C S" is the geodesic ball with centre p and radius r.

By the above properties, one sees that C(S™ X [0, 1]) is a topological cylinder.
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Let @ be the set of all cylinders. We denote

c,=sup inf J(C(p,9)), (3.5
ced(P.)ES"X[0,1]

where J is the functional (1.3) with f = 1, g = 1/¢. For simplicity we abbreviate J(Q, Q™) to 7 (€2) when Q"
is the polar dual of Q, and for convenience we also write .7 (€2) as .J (0€2).

By definition, we have ¢* > c,, where c* is the critical value given in (3.4) for the functional 7 in (1.3).
Corresponding to (3.3), it is easy to verify that

c, <inf{J(C(p,s): peS", s=0ors=1}. (3.6)

To obtain the second critical point, we use the flow (3.2) to deform an initial cylinder C, to C;, such that for
any (p,s) € S" x[0,1], C,(p,s) € O is the solution to the flow with initial condition C,(p, s). For any ¢t > 0, by
the definition of ¢*, we have

inf C(p,s) <c,.
(p,S)elgﬂx[o,l]J( (p,s) <c,

Naturally we choose the initial cylinder C, by Co(p, s) = 0B, /,(p), the geodesic sphere centred at p with radius
sz /2. But one can also choose any cylinder C € @ as the initial condition.

Note that C,(p, s), as a convex hypersurface in S", has a unique geometric centre. It is a point on S" depend-
ing continuously on p, s and ¢. Therefore for any s € (0,1) and t > 0, the set of geometric centres of C,(p, s)
is a cover of the unit sphere S", which cannot continuously deform to a point in S™. This is a key topological
property in this argument.

By this property and the definition of c,, there exists (p*, s*) € S" X (0, 1) such that J(C,(p*,s*)) < c, for
all¢ > 0.By the a priori estimates, C,(p*, s*) converges to a critical point M,, of .7 with J(M,) < c,.

If 7(M,) < c,, we can choose another cylinder ¢’ with inf, poesixoad (C'(p,s)) > J(M,), and repeat the
above procedure to obtain another solution M with 7 (M’) > J (M,). By the a priori estimates for equation (3.1)
and the gradient flow, one sees that c, is a critical value of 7.

If ¢* # c,, apparently the two solutions corresponding to the critical values ¢* and c, are different. If
¢* = c,, we can show that there are two different solutions, using the nontrivial topology of S", i.e. it is not
contractible [2].

We also show that there exists positive functions ¢ € C*(S") such that the Minkowski problem (3.1) admits
exactly two solutions. Such a function ¢ we gave in [2] is rotationally symmetric with respect to the x,,,; axis and
is strictly monotone in x,_,. By the rotating plane method, we show that a solution must be a geodesic sphere
centred at the north pole or the south pole. The rotating plane method is similar to the moving plane method.
On the unit sphere, we can rotate a plane passing through the x,,,;-axis and use it to prove the symmetry.

4 The centro-affine Minkowski problem

4.1 The centro-affine Minkowski problem

Denote by K, the set of convex bodies in R™*! enclosing the origin. In this section we deal with the existence of
critical points Q, Q" € K, of the functional

7@, = / Fodx + / 2()dy, @D
Q oF

subject to the constraintx -y < 1Vx € Q,y € Q. Bytheproofof Lemma 2.1, if the pairing Q, Q" is a critical
point of 7, then necessarily Q is convex and Q" is the polar dual of Q, namely
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Q ={yeR"™x.-y<1 VxeQ}.

Hence as before, we may abbreviate J(€2, Q") to J(Q) for simplicity.
Assume that Q € K, is a critical point of 7. Denote by u the support function of M = 9d€. Then u satisfies
the Euler equation of .7,

glx/u(x)
U2 (x) f(Vul) + ut)x)

det(Vu + uhx) = on S, W)
where I is the identity matrix, and V denotes the covariant derivative with respect to an orthonormal frame on
Sn.

When f = 1, equation (4.2) is precisely the prescribed centroaffine curvature problem studied in [18],
which is a variant of the centroaffine Minkowski problem in [19]. Recall that the centroaffine curvature (intro-
duced by Tzitzéica [20] in 1908) of a convex hypersurface M C R™! at a point p € M is equal to the quantity

K(p)/d™(p) = [u"™*2(0) det(V2u + uD(0]

where K(p) is the Gauss curvature of M at p, d(p) is the distance from the origin to the tangent plane of M at p,
and x is the unit outer normal of M at p.

The centroaffine Minkowski problem concerns the existence of closed convex hypersurfaces M such that
the centroaffine curvature is equal to a given function g. If g is a function of the centro-affine normal of M, it is
the centroaffine Minkowski problem introduced in [19]. If g is a function of the position of M, it is the version
studied in [18]. We remark that for the prescribed Gauss curvature equation K(p) = g(p)Vp € M, where g
is a function of the position of M, the problem has also been studied in a number of papers [21]-[23].

Due to the affine invariance, there is no uniform estimate for equation (4.2) for general functions f and
g. For example, when f = g = 1, (4.2) is the equation for elliptic affine spheres. A classical result in affine
geometry states that a closed convex hypersurface is an elliptic affine sphere if and only if it is an ellipsoid.
Hence ellipsoids with the volume |B,(0)| are the only critical points of the functional 7.

In the paper [1], we proved the following existence of solutions to (4.2).

Theorem 4.1. Let f and g be C*-smooth functions in R"*', Assume that there is a positive constant ¢, > 0
such that f(z), gz) > ¢, for allz € R™\; and either f(z) — oo or g(z) — oo as |z| — oco. Then there is a uniformly
convex, C>*-smooth solution to (4.2), where a € (0, 1).

There is no loss of generality in assuming g(z) — oo as |z| — oo. By our proof of Theorem 4.1, one sees that
this condition can be relaxed to g > C when |z| is sufficiently large, for a suitably large constant C > 0. To
prove Theorem 4.1, we will use the following Gauss curvature flow

KO, Dg(v/ (X, v))

AR 43)

Xx,0=
together with a topological method, where X(-, ) is a parametrisation of the evolving convex hypersurfaces M,,
v is the unit outward normal, K is the Gauss curvature of M,, and (X, v) denotes the inner product of X, v in
R+
The main difficulty is the uniform estimate. As shown by the example f = 1and g = 1, there is no uni-
form estimate in general. We will use a topological method to find a special initial hypersurface such that the
Gauss curvature flow (4.3) is uniformly bounded. This topological method was first introduced in our previ-
ous work [5], to prove the existence of a solution to the L ,-Minkowski problem in the super-critical exponent
case.
Let M, be a solution to the flow (4.3) and let u(-, t) be the support function of M,. Then the flow (4.3) can be
expressed as

_ . &x/w 2 -1
duu(x, t) = Flax + Vi [det(Vu + uD]™ + u(x, t). (4.4)
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One can verify that %j (€2;) > 0, and the equality holds if and only if M, satisfies (4.2), where Q, = Cl(M) is
the convex body enclosed by M.
Moreover, if the solution satisfies the uniform estimate

1/Cy < u(-, 1) < Cy, (4.5)
for all time ¢t > 0, then we have the estimate for the second derivatives,
CU<(Vu+uhx,t)<CI YV (x,t) € S"x[0,T), (4.6)

where the constant C depends only on n, C, f, g and the initial condition u(-, 0).
By the second derivative estimates, equation (4.4) becomes uniform parabolic. Hence by Krylov’s regularity
theory, higher regularity also follows:

€, Ollsaery < € ¥ (6,00 € S X [0, T), 4.7

Va € (0,1), where C depends only on n, a, Cy, f, g and the initial condition u(., 0).

4.2 The L,-Minkowski problem

This problem can be formulated as solving the equation
det(V2u + ul)(x) = fOIuP~(x) on S", (4.8)

where f is a positive function on the sphere S", u is the support function of a closed convex hypersurface M C
R™1, Equation (4.8) includes the classical Minkowski problem (p = 1), the logarithmic Minkowski problem
(p = 0), and the centro-affine Minkowski problem (p = —n — 1) as special cases [8], [19].

The L ,-Minkowski problem has been extensively studied in the last three decades, after it was introduced
in [24]. According to the Blaschke-Santal6 inequality, the problem is divided into three cases, namely the subcrit-
ical growth case p > —n — 1, the critical case p = —n — 1and the super-critical case p < —n — 1.Inthe
subcritical case, the existence of solutions can be obtained by using the variational method and the Blaschke-
Santal6 inequality [19]. In the critical case, a Kazdan-Warner type obstruction was found in [19]. It implies that
(4.8) admits no solution for a general positive function f. But in this case, the problem may also have infinitely
many solutions for some f [25]. In the supercritical case, there is no uniform estimate, and one might believe
that the problem has no solution. Surprisingly, we prove that for any positive f, equation (4.8) has a solution.
The key to proving this existence result is the topological method to be introduced in the next section. We will
discuss the method for equation (4.2). For equation (4.8), interested readers are referred to [5] for details. We
have also applied this method to the L, dual Minkowski problem [6].

5 Proof of Theorem 4.1

The proof consists of the following steps.

5.1 Aproperty of the functional

Given a convex body Q € K, letry(€2) < ry(€2) < ... < r,441(Q) be the lengths of semi-axes of the minimum
ellipsoid E(€). Let us define the eccentricity of Q by

r n+1 (Q)

e(QQ) = Q)

Then we have the following property [1]:



40 = Q.Guang etal.: Onthe functional [, f + [+ & DE GRUYTER

Lemma 5.1. Assume that g(z) — oo as |z| — oo. For any given constant A, if any one of the quantities
[dist(0, 0Q)171, Vol(Q), [Vol(Q)]™, and e(Q)

is sufficiently large, then we have J () > A.

5.2 A modified flow of (4.3)

Fix the constant
Ay =4 / f+4 / g

2(n+1)B; 2(n+1)B;

If the minimum ellipsoid of Q € K, is the unit ball B;, then we have J(£2) < %AO.

For a smooth and uniformly convex hypersurface N with Q; = CI(N) € K,, we define a modified flow M ()
with initial condition N as follows:

- IfJW) < A, we deform N by the flow (4.3) and let M (t) be the solution. As the functional .7 (My(?)) is
non-decreasing, if .J(My(t)) reaches A, at the first time ¢/, we stop the flow at time ¢t = ¢’ and freeze the
solution thereafter. That is, My(t) = My(t) for 0 < t < t’ and My () = My(t') forallt > ¢'.

- IEJW) > Ay, we set M y® =Nforallt > 0,i.e, the solution is stationary.

Therefore M (@) is defined for all time ¢t > 0, and J wm () is non-decreasing. By Lemma 5.1, if one of Vol(€2),
[Vol(Q)]17Y, [dist(0, 02,)17%, and eq, is sufficiently large, then we have My(t) = N for all t.

We want to find an initial condition N such that .7 (My(t)) < A, for all time ¢ > 0 and its support function u
satisfies the uniform estimate (4.5). If this is done, then by the a priori estimates (4.6) and (4.7), M (t) converges
to a solution of (4.2). We prove the existence of such an initial condition N by the following topological method.

5.3 Homology for a class of ellipsoids

Fix the constant 4, as above. By Lemma 5.1, there exist small constants d and 7, and large constant e, such that
J () > Ay provided Q € K, satisfies

either dist(0, 0Q) < d, or e(Q) > &, or Vol(Q) < &, or Vol(Q) > 7% (5.0

Let
A; = {E € K, is an ellipsoid in R"*': v, < Vol(E) < vy, e(E) < &},

where v, = 5, v; = (n+ )"~ Equipped with the Hausdorff distance, .4; is a subspace of the metric space
K of all convex bodies in R**1, One can verify that
(@l) A, is contractible and so homology group H,(A;) =0forallk > 1.

Denote

P = {E € Aj:either Vol(E) = v,, or Vol(E) = v,, or e(E) = e, or dist(0, 0E) = 0}.

One can verify
(a2) There exists a retraction ¥: A, \{B;} — P, ie, ¥: A;\{B,} — P is continuous and ¥|,, = id, where B, =
B,(0) € K, is the unit ball.
Denote
& ={E € A; N K,:Vol(E) = Vol(B,), e(E) = e},
A = {E € A;: Vol(E) = Vol(B,) and either e(E) = e or dist(0, 0E) = 0},

where K, denotes the set of the origin symmetric convex bodies. Then we also have
(@3) Hy(P)=H(A)forallk > 1,
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(a4) There is a long exact sequence
A Hk+1(.A) - Hk((c/. X Sn) d Hk(g) @ Hk(gn) - Hk(A) > ...,

(@5) The (n* + n — 1)-th homology group of £ satisfies

nn+1)

Hyn1(E) =27, where n* = >

For the proof of (a;)—(a;), we refer the reader to [5].

5.4 Selecting the initial condition

For any given E € A;, let M (¢) be the solution to the modified flow with initial data N = dE. Since J(E) > 4,
when E satisfies (5.1), we see that

(i) IfE € P,then My(t)=Nforallt > 0.

(i) IfJE) <Apthenforallt > 0,we have

dist(0, My (@) > d, & < Vol(Cl(H,, (1) < 7.

(i) If J(E) < A,, then the eccentricity e of My(t) satisfies1 < e < eforallt > 0.
With these properties, we can prove the following key lemma.

Lemma 5.2. For any given time t, > 0, there exists N, with CUN, ) € A; such that the minimum ellipsoid of
My (t,) is the unit ball B(0).
f

Proof. Assume to the contrary that there is a ' > 0 such that for any Q € A,, the minimum ellipsoid E,,(t")
of My(t') is not B, = B,(0), where N = 0Q. Noticing that Ey(t') € A;, we can define a continuous map
T:A;— Phy

Qe A; - Ey(t') € A \{B,} » V(EL() € P,

which satisfies 7|, = id. Hence T is a retraction and there is an injection from H,(P) to H(A,) for all k. This
together with property (a,) gives H,(P) = 0 V k > 1. By property (a;), we further obtain H;(4) =0V k > 1.
Inserting the homology group of A into the long exact sequence in (a,), we infer that

H(EXSY)=H(E)DH(SY), Vk>1
Using the Kinneth formula and the homology groups of S", we derive that
H (&) @ Hy_,(E) = H(E) D H(S") Vk=n

However, this contradicts property (as) if we take k = n* + 2n — 1. This completes the proof. O

We choose a sequence t;, — oo and let Ny =N, be the initial condition from Lemma 5.2, which sub-
converges in Hausdorff distance to a limit N, such that CI(V,) € A,. Since the minimum ellipsoid of My, (t;)
is the unit ball B;, we have J (M N () < %AO. By the monotonicity of the functional .7 under the flow (4.3), we
have My () = My, (t) V t < ;. It also follows that

Ty 0) <S4,
Then (5.1) cannot happen for Qy (t) = Cl(My, (¢)), and so for allt > 0,

dist(0,0Qy () > d, eQy () <2, b <VolQy (1) <7
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Hence we have the uniform estimate (4.5) for u(-, t), the support function of Qy (¢), and by the a priori estimates
(4.6) and (4.7), u(-, t) converges smoothly to a solution.

In the above argument, the constant A, is fixed beforehand. By Lemma 5.1, we still have 7 (Q) > A, if (5.1)
holds, when our condition isrelaxed to g > Cwhen |z| is sufficiently large, for a suitably large constant C > 0.
Hence Theorem 4.1 also holds under this condition.

5.5 Remarks

Let us point out that for equation (4.2), one can impose different conditions on f and g to obtain the uniform
estimates for the solution. In [18] the uniform estimate was obtained under the conditions

+ f+o(1)
[x]¥

80 = 8o

as x — oo,

g0 > g, VxeR™,

for some positive constants a, f, g, (assuming that f = 1). By the uniform estimate, it was proved that there

is a solution to
Ag(x/u(x))

2 _
det(Vu + ul)(x) = 200

on S", (5.2)

for a multiplier A > 0.
When f and g satisfy a stronger decay condition, namely

limsupf(2)|z|**** =0 and limsupg(z)|z|**** =0,
|z|>00 |z|»00
a uniform estimate was also obtained in [1]. By the uniform estimate, one can also obtain a solution.
The main purpose of the paper is to introduce the topological methods, so we dropped the details for other
parts of the proof.
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