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Abstract: In this paper, we consider a class of functionals subject to a duality restriction. The functional is of

the form  (Ω,Ω∗
) = ∫Ω f + ∫Ω∗ g, where f , g are given nonnegative functions in a manifold. The duality is a

relation 𝛼(x, y) ≤ 0 ∀ x ∈ Ω, y ∈ Ω∗, for a suitable function 𝛼. This model covers several geometric and physical

applications. In this paper we review two topological methods introduced in the study of the functional, and

discuss possible extensions of the methods to related problems.

Keywords:Minkowski type problem; geometric flow; variational method

1991 Mathematics Subject Classification: Primary 35J20, 35K96; Secondary 53A07

1 Introduction

Functionals with duality arise in many applications. An important example is Kantorovich’s functional

(𝜙,𝜓 ) = ∫
Ω

f (x)𝜙(x)dx + ∫
Ω∗

g(y)𝜓 (y)dy (1.1)

arising in optimal transportation, where Ω,Ω∗ are given domains in the Euclidean space ℝn, f , g are mass

distributions inΩ,Ω∗, respectively. The functions 𝜙 and 𝜓 satisfy a constraint

𝜙(x)+ 𝜓 (y) ≤ c(x, y) (1.2)

for a cost function c(⋅, ⋅) defined inΩ × Ω∗. Kantorovich’s functional (1.1) plays a fundamental role for the theory

of optimal transportation and its applications in applied sciences.

In this paper we consider the following functional

 (Ω,Ω∗
) = ∫

Ω

f (x)dx + ∫
Ω∗

g(y)dy, (1.3)
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where f , g are given nonnegative functions. Both integrals in (1.3) are weighted volume functional. The domains

Ω andΩ∗ satisfy a restriction

𝛼(x, y) ≤ 0 ∀ x ∈ Ω, y ∈ Ω∗
(1.4)

for a suitable function 𝛼(⋅, ⋅). Typical examples include the cases when Ω,Ω∗ are convex domains in the unit

sphere 𝕊n and

𝛼(x, y) = x ⋅ y, (1.5)

or whenΩ,Ω∗ are convex domains in the Euclidean space ℝn+1 and

𝛼(x, y) = x ⋅ y− 1. (1.6)

The functional (1.3) is interesting not only by its simple form, but it is related to several geometric and physi-

cal applications. It arises in our study ofMinkowski type problems in the Euclidean space [1] or in the unit sphere

[2]. Surprisingly, Kantorovich’s functional can be regarded as a special case of the functional (1.3). Moreover, the

functional (1.3) also covers the Lp dual Minkowski problem, which was extensively studied recently.

To see that Kantorovich’s functional is a special case of the functional (1.3), suppose that Ω and Ω∗ in (1.3)

are given by two functions xn+1 = 𝜙(x′), x′ ∈ 𝜔 and by yn+1 = 𝜓 (y′), y′ ∈ 𝜔∗, respectively, as follows

Ω = Ω𝜙 =
{(
x′, xn

)
: x′ ∈ 𝜔, 0 < xn < 𝜙(x

′)
}
,

Ω∗ = Ω∗
𝜓
=

{(
y′, yn

)
: y′ ∈ 𝜔∗, 0 < yn < 𝜓 (y

′)
}
,

where x′ = (x1,… , xn), y
′ = (y1,… , yn),𝜔 and𝜔∗ are boundeddomains inℝn. Suppose that locally f = f (x′)

and g = g(y′) are independent of xn+1 and yn+1, respectively. One easily sees that(𝜙,𝜓 ) =  (
Ω𝜙,Ω∗

𝜓

)
, with

the constraint 𝛼(x, y) = xn+1 + yn+1 − c(x′, y′) ≤ 0.

Next we show that the functional for the Lp dual Minkowski problem can also be written in the form (1.3).

Let

f (z) = |z|q−1−nf̂ (z̄) and g(z) = |z|− p−1−nĝ(z̄),

where z̄ = z∕|z| ∈ 𝕊n for z ≠ 0, f̂ , ĝ ∈ L∞(𝕊n) are bounded positive functions on the unit sphere. In order that

f and g are integrable near the origin, we assume that p < 0 and q > 0. We calculate the functional (1.3) with

the above f and g,

 (Ω,Ω∗
) = ∫

Ω

|z|q−1−nf̂ (z̄)dz+ ∫
Ω∗

|z|− p−1−nĝ(z̄)dz.

Let u and r denote the support and radial functions ofΩ. Then

∫
Ω

|z|q−1−nf̂ (z̄)dz = ∫
𝕊n

r(𝜉)

∫
0

tq−1 f̂ (𝜉)dtd𝜉 = 1

q∫
𝕊n

rqf̂d𝜉,

∫
Ω∗

|z|− p−1−nĝ(z̄)dz = ∫
𝕊n

r∗(x)

∫
0

t− p−1ĝ(x)dtdx = − 1

p∫
𝕊n

(r∗)− pĝdx,

where r and r∗ denote the radial functions ofΩ andΩ∗
respectively. When Ω∗

is the polar dual ofΩ, we have
r∗ = 1∕u. Here u is the support function ofΩ. As a result, for a dual pairingΩ andΩ∗

the functional (1.3) can

be written as

 (Ω,Ω∗
) = − 1

p∫
𝕊n

u pĝdx + 1

q∫
𝕊n

rqf̂d𝜉. (1.7)

This is the functional for the Lp dual Minkowski problem introduced by [3], and was studied in [4]–[6]. It is an

equivalent form of a functional in [7]. The constraint (1.4) in this case is x ⋅ y ≤ 1.
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In this paper we discuss the functional (1.3) for Ω, Ω∗
in the unit sphere 𝕊n with the constraint 𝛼 in (1.5),

or forΩ, Ω∗
inℝn+1 with the constraint 𝛼 in (1.6), with emphasis on the two topological methods introduced in

[1], [2], [5], [6]. In the former case, it leads to theMinkowski problem in the sphere, in the latter case, we have the

centro-affine Minkowski problem. Minkowski type problems have been investigated by many authors in recent

years [3], [7]–[11].

The topological method in [2] is an extension of the Mountain Pass Lemma. In the Mountain Pass Lemma,

one considers the min-max of a functional in the set of all paths connecting two fixed points in a Banach space.

Here we replace a path by a cylinder of the form × [0, 1], and consider the min-max of a functional in all the

cylinders. By this extension we can obtain more than one solutions.

The topological method in [1], [5] extends the fixed point theorem. In the study of Minkowski type problems,

we use the associated Gauss curvature flow, which is a gradient flow of the corresponding functional. However

in some important applications, there is no uniform estimate for the flow. By computing the homology for a

class of ellipsoids, we prove that there is a balance point, which is a special ellipsoid, such that the uniform

estimate holds for the Gauss curvature flow starting from the balance point. Hence it converges to a solution to

the Minkowski problem. We believe both methods will find more applications.

This paper is arranged as follows. In Section 2, we introduce the Minkowski problem in the sphere. In

Section 3, we show that there are at least two solutions to the Minkowski problem in the sphere, where we

show how a new min-max method is used to obtain the second solution. In Section 4, we introduce the centro-

affine Minkowski problem, and in Section 5 we emphasize how to use the homology to find an initial condition

such that the curvature flow converges to a solution. In this paper we also show some extensions of themethods

to related problems.

2 The Minkowski problem in the sphere

2.1 The Minkowski problem in the sphere

This problem can be phrased as follows. Given a positive function 𝜙 on the unit sphere 𝕊n, one asks whether

there exists a convex hypersurface M ⊂ 𝕊n such that the Gauss curvature of M at a point x ∈ M is equal to

𝜙(𝜈(x)),

K(x) = 𝜙(𝜈(x)) ∀ x ∈ M, (2.1)

where 𝜈(x) is the unit outer normal ofM at x.

This Minkowski problem can be reformulated as a variational problem associated with the functional (1.3),

subject to the constraint

𝛼(x, y) := x ⋅ y ≤ 0 ∀ (x, y) ∈ Ω×Ω∗
. (2.2)

LetΩ be a domain in 𝕊n. The polar dual ofΩ is a convex set in 𝕊n given by

Ω⋆ = {y ∈ 𝕊n: x ⋅ y ≤ 0 ∀ x ∈ Ω}.

For simplicitywewill consider domainswith Lipschitz boundaries only, andwe also assume that f , g are positive

and bounded measurable functions on 𝕊n.

Given a domain Ω and a constant 𝛿 > 0, we denote by 𝛿(Ω) the union of subsets of 𝕊n whose Haus-

dorff distance from Ω is less then 𝛿, namely 𝛿(Ω) =
{
Ω′
⊂ 𝕊n: Ω ⊂ Ω′

𝛿
and Ω′

⊂ Ω𝛿

}
, where Ω𝛿 = {x ∈

𝕊n: dist(x,Ω) < 𝛿}.

Definition 2.1. We say that a pair of Lipschitz domains Ω, Ω∗
is a critical point of the functional  if for any

domains U ∈ 𝛿(Ω) and V ∈ 𝛿(Ω∗
), and for sufficiently small 𝛿 > 0,

 (U,V) =  (Ω,Ω∗
)+ o(𝛿). (2.3)
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Lemma 2.1. Let the pairΩ, Ω∗
be a critical point of the functional  . ThenΩ, Ω∗

are convex, andΩ∗
andΩ are

dual to each other.

Proof. Note that (Ω∗
)⋆ is convex and by the constraint (2.2), Ω ⊂ (Ω∗

)⋆. If Ω is not convex, then Ω is a true

subset of (Ω∗
)⋆. Hence the volume |(Ω𝛿 −Ω) ∩ (Ω∗

)⋆| ≥ c𝛿 for a constant c > 0, for all small 𝛿 > 0. This is

impossible by the definition (2.3).

If the pairΩ, Ω∗
is a critical point of the functional  andΩ∗

is not the polar dual ofΩ, by the restriction
(2.2), we see thatΩ∗

is a true subset ofΩ⋆
. Hence the volume |Ω∗

𝛿
∩Ω⋆ −Ω∗| ≥ c𝛿 for a constant c > 0, again

in contradiction with the definition. □

When Ω and Ω∗
are dual to each other, we call them a dual pairing. The duality on the unit sphere

has a special property, namely the unit outer normal 𝜈(x) of x ∈ 𝜕Ω is a point on 𝜕Ω∗
, and for any point

y ∈ 𝜕Ω∗
, there is a point x ∈ 𝜕Ω such that y = 𝜈(x). If 𝜕Ω and 𝜕Ω∗

are C1 smooth and strictly convex, then

𝜈: x ∈ 𝜕Ω → 𝜈(x) ∈ 𝜕Ω∗
is a one-to-onemapping on 𝜕Ω. Observe that if 𝜕Ω is strictly convex and C1 smooth,

so is 𝜕Ω∗
.

Let Ω,Ω∗
⊂ 𝕊n be a dual pairing. Denote M = 𝜕Ω and M∗ = 𝜕Ω∗

. Let 𝜅 i be the principal curvatures of

M at x ∈ M, where i = 1,… , n − 1. Then 𝜅−1
i

are the principal curvatures ofM∗ at y = 𝜈(x). Hence ifM is

a solution to the Minkowski problem (2.1), thenM∗ is a solution to the prescribed Gauss curvature problem

K(z) = 1∕𝜙(z) ∀ z ∈ M∗. (2.4)

Therefore, problem (2.4) is equivalent to its dual problem (2.1).

Next we derive the Euler equation for the functional .
Lemma 2.2. Assume the dual pairingΩ, Ω∗

is a critical point of . Assume that M =: 𝜕Ω is strictly convex and

smooth. Then

K(x) = f (x)

g(𝜈(x))
, ∀ x ∈ M, (2.5)

where K(x) and 𝜈(x) are the Gauss curvature and unit outer normal of M at x.

Proof. LetΩt, t ≥ 0, be a one-parameter family of deformations ofΩwithΩ0 = Ω, and X(⋅, t) be a parametri-
sation of Mt =: 𝜕Ωt. Let Ω∗

t
be the dual of Ωt, and X∗(⋅, t) be a parametrisation of M∗

t
= 𝜕Ω∗

t
. Denote

V = ⟨𝜕tX, 𝜈⟩. Then one has ⟨𝜕tX∗, 𝜈∗⟩ = −V (see e.g. [12]), where 𝜈 and 𝜈∗ are the unit outer normal of Mt

andM∗
t
, respectively. By the first variation formula of volume,

d

dt |t=0
 (

Ωt,Ω∗
t

)
= ∫

M

V(x) f (x)d𝜇(x)− ∫
M∗

V(x(y))g(y)d𝜇∗(y), (2.6)

where d𝜇 and d𝜇∗ are respectively the area elements of M and M∗, and x(y) ∈ M is the point such that

𝜈(x(y)) = y.

Let y = y(x) ∈ M∗ denote the unit outer normal ofM at x. One has

d𝜇∗(y(x)) = K(x)d𝜇(x).

Inserting it into (2.6), we see that

d

dt |t=0
 (

Ωt,Ω∗
t

)
= ∫

M

V(x) f (x)d𝜇(x)− ∫
M

V(x)g(𝜈(x))K(x)d𝜇(x) = 0.

Since the formula holds for all V , we arrive at (2.5). □

When f ≡ 1 and g = 1∕𝜙, equation (2.5) is the Minkowski problem in the sphere, namely equation (2.1).

TheMinkowski problem in the spherewas studied byGerhardt [12]–[14]. He proved the existence of one solution
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if certain barrier conditions are satisfied or𝜙 is invariant under a group action [12]. In the paper [2], by exploiting

the functional (1.3), we proved the existence of solutions to the Minkowski problem (2.1) in the sphere for any

positive and bounded function 𝜙.

2.2 Extensions

We can extend the functional (1.3) from the sphere 𝕊n to more general convex hypersurfaces or even manifolds.

Here are two examples.

Example 2.1. Let us equip the unit sphere 𝕊n with a different metric g̃, and consider the functional (1.3) in the

metric g̃, namely

 (Ω,Ω∗
) = ∫

Ω

f (x)dvolg̃ + ∫
Ω∗

g(y)dvolg̃ , (2.7)

where dvolg̃ is the volume element of 𝕊n with the metric g̃. Note that dvolg̃ = |g̃|dx for a function |g̃| and dx
denotes the standard volume element of 𝕊n. Hence

 (Ω,Ω∗
) = ∫

Ω

f (x)|g̃|dx + ∫
Ω∗

g(y)|g̃|dy.

Hence the Minkowski problem in a metric sphere is the same as in the standard sphere, provided the constraint

(2.2) is unchanged.

Example 2.2. Let  and  be two smooth, compact, uniformly convex hypersurfaces in ℝn+1. Let f , g be

two positive functions defined on , , respectively. Let Ω ⊂ and Ω∗
⊂ be two domains. We can also

introduce the functional  on and ,

 (Ω,Ω∗
) = ∫

Ω

f (x)dvol + ∫
Ω∗

g(y)dvol . (2.8)

Instead of using the constraint (2.2), we impose the following new one,

𝜈(x) ⋅ 𝜈∗(y) ≤ 0 ∀ x ∈ Ω, y ∈ Ω∗
, (2.9)

where 𝜈(x) is the unit outer normal of at x ∈  and 𝜈∗(y) is the unit outer normal of at y ∈  . Since
is smooth and uniformly convex, 𝜈 is a one-to-one mapping from to 𝕊n. Hence

∫
Ω

f (x)dvol = ∫
U

f (𝜈−1(z))z dz,

where z is the Jacobian of the mapping 𝜈−1, and U = 𝜈(Ω) ⊂ 𝕊n. Similarly we have

∫
Ω∗

g(y)dvol = ∫
V

g(𝜈∗−1(z))∗
z
dz,

where ∗
z
is the Jacobian of the mapping 𝜈∗−1, and V = 𝜈∗(Ω∗

) ⊂ 𝕊n. Hence the functional  is changed to

 (U,V) = ∫
U

f (𝜈−1(x))x dx + ∫
V

g(𝜈∗−1(y))∗
y
dy. (2.10)

The constraint (2.9) can now be written as

x ⋅ y ≤ 0 ∀ x ∈ U, y ∈ V.
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Since x and ∗
y
are the inverse of Gauss curvature of and respectively, the integrands of (2.10) are given

by

f (𝜈−1(x))x = f (𝜈−1(x))
K(𝜈−1(x))

,

g(𝜈∗−1(y))y =
g(𝜈∗−1(y))
K (𝜈∗−1(y))

,

whereK andK are respectively the Gauss curvature of and . A special case iswhen = 𝕊n and g ≡ 1.

In this case, we can calculate the Euler equation by Lemma 2.2 for the functional  :
K(x) = f (𝜈−1(x))

K(𝜈−1(x))
, x ∈ 𝜕U, (2.11)

where K is the Gauss curvature of 𝜕U , as a hypersurface in 𝕊n.

The above are two examples of the functional (1.3). We point out that there are more functionals like the

functional  , which also leads to interesting Monge-Ampère type equations.
Example 2.3. Let𝜎k denote the k-th normalized elementary symmetric polynomial. Let 𝜅 = (𝜅1,… , 𝜅n) be the

principal curvatures of a hypersurfaceM in ℝn+1. Let

Ik(M) = 1

n− k∫
M

𝜎k(𝜅)ds, (2.12)

where ds is the area element ofM. By [15], we calculate the variation of Ik :

⟨𝛿Ik(M), 𝜉⟩ = ∫
M

𝜎k+1(𝜅)⟨𝜉, 𝜈⟩,

where 𝜈 is the unit outer normal ofM and 𝜉 is a smooth vector field onM.

We now consider an extension of (1.3)

(M,M∗) = ∫
M

𝜎n−1(𝜅) f (𝜈)ds+ ∫
M∗

𝜎n−1(𝜅
∗)g(𝜈∗)ds∗, (2.13)

whereM is a closed convex hypersurface,M∗ is the polar dual ofM, 𝜅∗ =
(
𝜅∗
1
,… , 𝜅∗

n

)
are the principal curva-

tures ofM∗ and 𝜈∗ is the unit outer normal ofM∗. Let K,K∗ be the Gauss curvature ofM,M∗, respectively. Then

ds = d𝜈

K
, ds∗ = d𝜈∗

K∗ . Hence

(M,M∗) = ∫
𝕊n

𝜎1(𝜆) f (𝜈)d𝜈 + ∫
𝕊n

𝜎1(𝜆
∗)g(𝜈∗)d𝜈∗, (2.14)

where 𝜆 = (𝜆1,… , 𝜆n) and 𝜆
∗ =

(
𝜆∗
1
,… , 𝜆∗

n

)
are the principal radii of M and M∗. Let u, u∗ be the support

functions ofM,M∗. Then

(M,M∗) = ∫
𝕊n

(Δu+ nu) f (𝜈)d𝜈 + ∫
𝕊n

(Δu∗ + nu∗)g(𝜈∗)d𝜈∗

= ∫
𝕊n

(Δ f + n f )ud𝜈 + ∫
𝕊n

(Δg + ng)u∗d𝜈∗

= ∫
𝕊n

F(𝜈)u(𝜈)d𝜈 + ∫
𝕊n

G(𝜈∗)u∗(𝜈∗)d𝜈∗,
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where F(𝜈) = Δ f + nf and G(𝜈∗) = Δg + ng. Let Mt be a variation of M and M∗
t
be its dual. Denote u(⋅, t)

and u∗(⋅, t) the support functions. Recall that (see e.g. [16])

𝜕t log u
∗(𝜈∗, t) = 𝜕t log r∗(𝜈∗, t) = −𝜕t log u(𝜈, t),

where r∗ is the radial function ofM∗, and 𝜈 is the unit outer normal ofM at the point p such that p∕|p| = 𝜈∗.

Therefore

d

dt |t=0
(Mt,M

∗
t

)
= ∫

𝕊n

F(𝜈)𝜕tud𝜈 + ∫
𝕊n

G(𝜈∗)𝜕tu
∗d𝜈∗

= ∫
𝕊n

F(𝜈)𝜕tud𝜈 − ∫
𝕊n

G(𝜈∗)
u∗

u
𝜕tud𝜈

∗

= ∫
𝕊n

(
F(𝜈)− G(𝜈∗)

1

rn+2K

)
𝜕tud𝜈,

where we use d𝜈∗ = u

rn+1K
d𝜈 and u∗ = 1∕r in the last equality (see e.g. [16]). Here r is the radial function ofM.

As the variation 𝜕tu can be arbitrary, we see that the Euler equation of the functional  is

(u2 + |∇u|2) n2+1K(𝜈) = (Δg + ng)(𝜈∗)
(Δ f + n f )(𝜈)

, 𝜈 ∈ 𝕊n, (2.15)

where (u2 + |∇u|2) 12 (𝜈) = r(𝜈∗) is used. Here K(𝜈) means the Gauss curvature K at the point p ∈  such that

the unit outer normal of p is 𝜈. Equation (2.15) is a Lp dual Minkowski problem [17].

3 Existence of solutions

For a prescribed curvature problemwith variational structure, very often one employs a gradient flow to obtain

solutions. It provides a deformation of the level sets of the functional.When the topology of the level sets changes,

one obtains a solution if necessary estimates can be established. The gradient flow itself needs not be smooth.

3.1 Existence of one solution

In [2], we introduced a piece-wise smooth gradient flow for the functional  , for which we can establish the a
priori estimates and prove the convergence. Together with the Mountain Pass Lemma, we proved the existence

of one solution to the Minkowski problem in the sphere.

Theorem 3.1. Let 𝜙 ∈ C2(𝕊n) be a positive function. Then there is a uniformly convex, C3,𝛼 -smooth solution M ⊂

𝕊n to the following problem, for any 𝛼 ∈ (0, 1),

K(x) = 𝜙(𝜈(x)), ∀ x ∈ M. (3.1)

Proof. The piece-wise smooth gradient flow is as follows:

𝜕tX = −𝜓 log
K

𝜙(𝜈)
𝜈, (3.2)

where X(⋅, t) is a parametrisation of the evolving convex hypersurfaces Mt ⊂ 𝕊n, 𝜈 and K are respectively the

unit outward normal and Gauss curvature at X. The factor 𝜓 is a positive function depending on the position

and normal of X(⋅, t). By choosing proper 𝜓 we can establish the a priori estimates, provided thatMt is strictly

contained in the north hemisphere. As we cannot ensure thatMt is contained in the north hemisphere, we need

to relocate the north pole from time to time, such thatMt is contained in the north hemisphere. In such amethod
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we obtain a Lipschitz continuous, piecewise smooth solution to the flow (3.2). Moreover, one can verify that (3.2)

is an ascent gradient flow of the functional  with f ≡ 1 and g = 1∕𝜙. By the gradient flow and the Mountain

Pass Lemma, we obtain one solution. By the regularity theory for the Monge-Ampère equation, the solution is

C3 smooth, uniformly convex. □

Let us recall the Mountain Pass Lemma, as a comparison to the argument below for the second solution.

Let  be a functional defined on a metric space H. Let L be the set of all paths connecting two fixed points

p0, p1 ∈ H, namely

L = {𝓁: s ∈ [0, 1]→ 𝓁(s) ∈ H, 𝓁(0) = p0,𝓁(1) = p1, and 𝓁 is continuous}.

Assume that there exists a constant 𝛿0 > 0 such that ∀ 𝓁 ∈ L,

inf
s∈(0,1)

(𝓁(s)) ≤ max((p0),(p1))− 𝛿0. (3.3)

Let

c∗ = sup
𝓁∈L

inf
s∈(0,1)

(𝓁(s)). (3.4)

Then under appropriate conditions, c∗ is a critical value of .
To find a critical point, one employs an ascent (or descent) gradient flow : p ∈ H → p;t ∈ H, such that for

any 𝓁 = {ps: s ∈ [0, 1])} ∈ L and t > 0, the flow  sends 𝓁 to 𝓁;t = {ps;t: s ∈ [0, 1]} ∈ L. Under appro-

priate conditions, one can prove that there exists s∗ ∈ (0, 1), such that ps∗;t converges to a critical point p
∗ of 

and (p∗) ≥ c∗.

3.2 Existence of two solutions

A new topological method was introduced in [2] to prove that for any bounded, positive function 𝜙 on 𝕊n+1,

there exist at least two solutions to the Minkowski problem in the sphere.

In the case f = g ≡ 1, the dual pairing

Ω = 𝕊n ∩
{
xn+1 >

√
2

2

}
, Ω∗ = 𝕊n ∩

{
xn+1 < −

√
2

2

}

is a critical point of , and it is theMountain Pass solution of the functional . Any other solutionmust be a trans-

lation ofΩ, Ω∗
given above [12]. Hence in our Theorem 3.2 below, when𝜙 is a constant, two geodesic spheres𝕊n

with different centres are regarded as different solutions. Hence when f = g ≡ 1, there are infinitely many

solutions, and these solutions are congruent with each other by translations.

Theorem 3.2. Let 𝜙 ∈ C2(𝕊n) be a positive function. Then there exist at least two uniformly convex, C3,𝛼 -smooth

solutions to the problem (3.1), for any 𝛼 ∈ (0, 1).

Our argument is also a min-max principle like the Mountain Pass Lemma. In Theorem 3.1, we obtain one

solutionM∗ to the Minkowski problem in the sphere by the min-max principle (3.4). To obtain the second solu-

tion, we use the gradient flow (3.2) and replace the path 𝓁 in (3.4) by cylinder , and obtain a different critical
point for the functional  in (1.3).

More precisely, letΘ denote the set of all closed convex hypersurfaces in 𝕊n (a single point p ∈ 𝕊n will also

be regarded as an element inΘ). A cylinder  is a mapping from 𝕊n × [0, 1] toΘ such that

(i) (p, 0) = {p} for any point p ∈ 𝕊n and (p, s) shrinks to the point {p} as s → 0.

(ii) (p, s) is continuous in p ∈ 𝕊n and s ∈ [0, 1].

(iii) (p, 1) = 𝜕B𝜋∕2(p), where Br(p) ⊂ 𝕊n is the geodesic ball with centre p and radius r.

By the above properties, one sees that (𝕊n × [0, 1]) is a topological cylinder.
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LetΦ be the set of all cylinders. We denote

c∗ = sup
∈Φ

inf
( p,s)∈𝕊n×[0,1]

 ((p, s)), (3.5)

where  is the functional (1.3) with f ≡ 1, g = 1∕𝜙. For simplicity we abbreviate  (Ω,Ω∗
) to  (Ω) whenΩ∗

is the polar dual ofΩ, and for convenience we also write  (Ω) as  (𝜕Ω).
By definition, we have c∗ ≥ c∗, where c

∗ is the critical value given in (3.4) for the functional  in (1.3).

Corresponding to (3.3), it is easy to verify that

c∗ < inf{ ((p, s)): p ∈ 𝕊n, s = 0 or s = 1}. (3.6)

To obtain the second critical point, we use the flow (3.2) to deform an initial cylinder 0 to t, such that for
any (p, s) ∈ 𝕊n × [0, 1], t(p, s) ∈ Θ is the solution to the flow with initial condition 0(p, s). For any t > 0, by

the definition of c∗, we have

inf
( p,s)∈𝕊n×[0,1]

 (t(p, s)) ≤ c∗.

Naturally we choose the initial cylinder 0 by 0(p, s) = 𝜕Bs𝜋∕2(p), the geodesic sphere centred at pwith radius
s𝜋∕2. But one can also choose any cylinder  ∈ Φ as the initial condition.

Note that t(p, s), as a convex hypersurface in 𝕊n, has a unique geometric centre. It is a point on 𝕊n depend-

ing continuously on p, s and t. Therefore for any s ∈ (0, 1) and t > 0, the set of geometric centres of t(p, s)
is a cover of the unit sphere 𝕊n, which cannot continuously deform to a point in 𝕊n. This is a key topological

property in this argument.

By this property and the definition of c∗, there exists (p
∗, s∗) ∈ 𝕊n × (0, 1) such that  (t(p∗, s∗)) ≤ c∗ for

all t > 0. By the a priori estimates, t(p∗, s∗) converges to a critical pointM∗ of  with  (M∗) ≤ c∗.

If  (M∗) < c∗, we can choose another cylinder ′ with inf( p,s)∈𝕊n×[0,1] (′(p, s)) >  (M∗), and repeat the

above procedure to obtain another solutionM′
∗with (

M′
∗
)
>  (M∗). By the a priori estimates for equation (3.1)

and the gradient flow, one sees that c∗ is a critical value of  .
If c∗ ≠ c∗, apparently the two solutions corresponding to the critical values c∗ and c∗ are different. If

c∗ = c∗, we can show that there are two different solutions, using the nontrivial topology of 𝕊n, i.e. it is not

contractible [2].

We also show that there exists positive functions 𝜙 ∈ C2(𝕊n) such that the Minkowski problem (3.1) admits

exactly two solutions. Such a function𝜙we gave in [2] is rotationally symmetric with respect to the xn+1 axis and

is strictly monotone in xn+1. By the rotating plane method, we show that a solution must be a geodesic sphere

centred at the north pole or the south pole. The rotating plane method is similar to the moving plane method.

On the unit sphere, we can rotate a plane passing through the xn+1-axis and use it to prove the symmetry.

4 The centro-affine Minkowski problem

4.1 The centro-affine Minkowski problem

Denote byo the set of convex bodies in ℝn+1 enclosing the origin. In this section we deal with the existence of

critical pointsΩ,Ω∗ ∈ o of the functional

 (Ω,Ω∗
) = ∫

Ω

f (x)dx + ∫
Ω∗

g(y)dy, (4.1)

subject to the constraint x ⋅ y ≤ 1 ∀ x ∈ Ω, y ∈ Ω∗
. By the proof of Lemma 2.1, if the pairingΩ, Ω∗

is a critical

point of  , then necessarilyΩ is convex andΩ∗
is the polar dual ofΩ, namely
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Ω∗ = {y ∈ ℝn+1: x ⋅ y ≤ 1, ∀ x ∈ Ω}.

Hence as before, we may abbreviate  (Ω,Ω∗
) to  (Ω) for simplicity.

Assume thatΩ ∈ o is a critical point of  . Denote by u the support function ofM = 𝜕Ω. Then u satisfies
the Euler equation of  ,

det(∇2u+ uI)(x) = g(x∕u(x))
un+2(x) f (∇u(x)+ u(x)x)

on 𝕊n, (4.2)

where I is the identity matrix, and∇ denotes the covariant derivative with respect to an orthonormal frame on

𝕊n.

When f ≡ 1, equation (4.2) is precisely the prescribed centroaffine curvature problem studied in [18],

which is a variant of the centroaffine Minkowski problem in [19]. Recall that the centroaffine curvature (intro-

duced by Tzitzéica [20] in 1908) of a convex hypersurface M ⊂ ℝn+1 at a point p ∈ M is equal to the quantity

K(p)∕dn+2(p) =
[
un+2(x) det(∇2u+ uI)(x)

]−1
,

where K(p) is the Gauss curvature ofM at p, d(p) is the distance from the origin to the tangent plane ofM at p,

and x is the unit outer normal ofM at p.

The centroaffine Minkowski problem concerns the existence of closed convex hypersurfaces M such that

the centroaffine curvature is equal to a given function g. If g is a function of the centro-affine normal ofM, it is

the centroaffine Minkowski problem introduced in [19]. If g is a function of the position of M, it is the version

studied in [18]. We remark that for the prescribed Gauss curvature equation K(p) = g(p) ∀ p ∈ M, where g

is a function of the position ofM, the problem has also been studied in a number of papers [21]–[23].

Due to the affine invariance, there is no uniform estimate for equation (4.2) for general functions f and

g. For example, when f = g = 1, (4.2) is the equation for elliptic affine spheres. A classical result in affine

geometry states that a closed convex hypersurface is an elliptic affine sphere if and only if it is an ellipsoid.

Hence ellipsoids with the volume |B1(0)| are the only critical points of the functional  .
In the paper [1], we proved the following existence of solutions to (4.2).

Theorem 4.1. Let f and g be C2-smooth functions in ℝn+1. Assume that there is a positive constant c0 > 0

such that f (z), g(z) ≥ c0 for all z ∈ ℝn+1; and either f(z)→∞ or g(z)→∞ as |z|→∞. Then there is a uniformly

convex, C3,𝛼 -smooth solution to (4.2), where 𝛼 ∈ (0, 1).

There is no loss of generality in assuming g(z)→∞ as |z|→∞. By our proof of Theorem 4.1, one sees that

this condition can be relaxed to g ≥ C when |z| is sufficiently large, for a suitably large constant C > 0. To

prove Theorem 4.1, we will use the following Gauss curvature flow

𝜕X

𝜕t
(x, t) = −K(x, t)g(𝜈∕⟨X, 𝜈⟩)

f (X)⟨X, 𝜈⟩n+1 𝜈 + X(x, t) (4.3)

together with a topological method, where X(⋅, t) is a parametrisation of the evolving convex hypersurfacesMt,

𝜈 is the unit outward normal, K is the Gauss curvature of Mt, and ⟨X, 𝜈⟩ denotes the inner product of X, 𝜈 in
ℝn+1.

The main difficulty is the uniform estimate. As shown by the example f ≡ 1 and g ≡ 1, there is no uni-

form estimate in general. We will use a topological method to find a special initial hypersurface such that the

Gauss curvature flow (4.3) is uniformly bounded. This topological method was first introduced in our previ-

ous work [5], to prove the existence of a solution to the Lp-Minkowski problem in the super-critical exponent

case.

LetMt be a solution to the flow (4.3) and let u(⋅, t) be the support function ofMt. Then the flow (4.3) can be

expressed as

𝜕tu(x, t) = − g(x∕u)
f (ux +∇u)un+1 [det(∇

2u+ uI)]−1 + u(x, t). (4.4)
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One can verify that
d

dt
 (Ωt) ≥ 0, and the equality holds if and only if Mt satisfies (4.2), where Ωt = Cl(Mt) is

the convex body enclosed byMt.

Moreover, if the solution satisfies the uniform estimate

1∕C0 ≤ u(⋅, t) ≤ C0, (4.5)

for all time t ≥ 0, then we have the estimate for the second derivatives,

C−1I ≤ (∇2u+ uI)(x, t) ≤ CI ∀ (x, t) ∈ 𝕊n × [0, T), (4.6)

where the constant C depends only on n, C0, f , g and the initial condition u(⋅, 0).
By the second derivative estimates, equation (4.4) becomes uniform parabolic. Hence by Krylov’s regularity

theory, higher regularity also follows:

‖u(⋅, t)‖C3,𝛼 (𝕊n) ≤ C ∀ (x, t) ∈ 𝕊n × [0, T), (4.7)

∀ 𝛼 ∈ (0, 1), where C depends only on n, 𝛼, C0, f , g and the initial condition u(⋅, 0).

4.2 The L
p
-Minkowski problem

This problem can be formulated as solving the equation

det(∇2u+ uI)(x) = f (x)up−1(x) on 𝕊n, (4.8)

where f is a positive function on the sphere 𝕊n, u is the support function of a closed convex hypersurfaceM ⊂

ℝn+1. Equation (4.8) includes the classical Minkowski problem (p = 1), the logarithmic Minkowski problem

(p = 0), and the centro-affine Minkowski problem (p = −n − 1) as special cases [8], [19].

The Lp-Minkowski problem has been extensively studied in the last three decades, after it was introduced

in [24]. According to the Blaschke-Santaló inequality, the problem is divided into three cases, namely the subcrit-

ical growth case p > − n − 1, the critical case p = −n − 1 and the super-critical case p < − n − 1. In the

subcritical case, the existence of solutions can be obtained by using the variational method and the Blaschke-

Santaló inequality [19]. In the critical case, a Kazdan-Warner type obstruction was found in [19]. It implies that

(4.8) admits no solution for a general positive function f . But in this case, the problem may also have infinitely

many solutions for some f [25]. In the supercritical case, there is no uniform estimate, and one might believe

that the problem has no solution. Surprisingly, we prove that for any positive f , equation (4.8) has a solution.

The key to proving this existence result is the topological method to be introduced in the next section. We will

discuss the method for equation (4.2). For equation (4.8), interested readers are referred to [5] for details. We

have also applied this method to the Lp dual Minkowski problem [6].

5 Proof of Theorem 4.1

The proof consists of the following steps.

5.1 A property of the functional

Given a convex bodyΩ ∈ o, let r1(Ω) ≤ r2(Ω) ≤ … ≤ rn+1(Ω) be the lengths of semi-axes of the minimum
ellipsoid E(Ω). Let us define the eccentricity ofΩ by

e(Ω) = rn+1(Ω)
r1(Ω)

.

Then we have the following property [1]:
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Lemma 5.1. Assume that g(z) → ∞ as |z| → ∞. For any given constant A, if any one of the quantities

[dist(O, 𝜕Ω)]−1,Vol(Ω), [Vol(Ω)]−1, and e(Ω)

is sufficiently large, then we have  (Ω) > A.

5.2 A modified flow of (4.3)

Fix the constant

A0 := 4 ∫
2(n+1)B1

f + 4 ∫
2(n+1)B1

g.

If the minimum ellipsoid ofΩ ∈ o is the unit ball B1, then we have  (Ω) ≤ 1

2
A0.

For a smooth and uniformly convex hypersurfaceN withΩ0 = Cl(N) ∈ o, we define amodified flow M̄N (t)

with initial condition N as follows:

– If  (N) < A0, we deform N by the flow (4.3) and let MN (t) be the solution. As the functional  (MN (t)) is

non-decreasing, if  (MN (t)) reaches A0 at the first time t
′, we stop the flow at time t = t′ and freeze the

solution thereafter. That is, M̄N (t) = MN (t) for 0 ≤ t < t′ and M̄N (t) = MN (t
′) for all t ≥ t′.

– If  (N) ≥ A0, we set M̄N (t) ≡ N for all t ≥ 0, i.e., the solution is stationary.

Therefore M̄N (t) is defined for all time t ≥ 0, and  (M̄N (t)) is non-decreasing. By Lemma 5.1, if one of Vol(Ω0),

[Vol(Ω0)]
−1, [dist(O, 𝜕Ω0)]

−1, and eΩ0
is sufficiently large, then we have M̄N (t) ≡ N for all t.

We want to find an initial conditionN such that  (MN (t)) < A0 for all time t > 0 and its support function u

satisfies the uniform estimate (4.5). If this is done, then by the a priori estimates (4.6) and (4.7),MN (t) converges

to a solution of (4.2). We prove the existence of such an initial condition N by the following topological method.

5.3 Homology for a class of ellipsoids

Fix the constant A0 as above. By Lemma 5.1, there exist small constants d̄ and 𝑣̄, and large constant ē, such that (Ω) ≥ A0 providedΩ ∈ o satisfies

either dist(O, 𝜕Ω) ≤ d̄, or e(Ω) ≥ ē, or Vol(Ω) ≤ 𝑣̄, or Vol(Ω) ≥ 𝑣̄−1. (5.1)

Let

I =
{
E ∈ ̄o is an ellipsoid in ℝn+1: 𝑣0 ≤ Vol(E) ≤ 𝑣1, e(E) ≤ ē

}
,

where 𝑣0 = 𝑣̄, 𝑣1 = (n+ 1)n+1𝑣̄−1. Equipped with the Hausdorff distance,I is a subspace of the metric space of all convex bodies in ℝn+1. One can verify that

(a1) I is contractible and so homology group Hk(I ) = 0 for all k ≥ 1.

Denote

 = {E ∈ I : either Vol(E) = 𝑣0, or Vol(E) = 𝑣1, or e(E) = ē, or dist(O, 𝜕E) = 0}.

One can verify

(a2) There exists a retractionΨ:I∖{B1}→  , i.e.,Ψ:I∖{B1}→  is continuous andΨ| = id, where B1 =
B1(0) ∈ o is the unit ball.

Denote  = {E ∈ I ∩e: Vol(E) = Vol(B1), e(E) = ē},

 = {E ∈ I : Vol(E) = Vol(B1) and either e(E) = ē or dist(O, 𝜕E) = 0},

wheree denotes the set of the origin symmetric convex bodies. Then we also have

(a3) Hk+1() = Hk() for all k ≥ 1,



Q. Guang et al.: On the functional ∫𝛀 f + ∫𝛀∗ g — 41

(a4) There is a long exact sequence

…→ Hk+1()→ Hk( × 𝕊n)→ Hk()⊕ Hk(𝕊n)→ Hk()→… ,

(a5) The (n∗ + n − 1)-th homology group of  satisfies

Hn∗+n−1() = ℤ, where n∗ = n(n+ 1)

2
.

For the proof of (a1)–(a5), we refer the reader to [5].

5.4 Selecting the initial condition

For any given E ∈ I , let M̄N (t) be the solution to the modified flow with initial data N = 𝜕E. Since  (E) ≥ A0
when E satisfies (5.1), we see that

(i) If E ∈  , then M̄N (t) ≡ N for all t > 0.

(ii) If  (E) < A0, then for all t > 0, we have

dist(O, M̄N (t)) ≥ d̄, 𝑣̄ ≤ Vol(Cl(M̄N (t))) ≤ 𝑣̄−1.
(iii) If  (E) < A0, then the eccentricity e of M̄N (t) satisfies 1 ≤ e ≤ ē for all t > 0.

With these properties, we can prove the following key lemma.

Lemma 5.2. For any given time t0 > 0, there exists Nt0
with Cl(Nt0

) ∈ I such that the minimum ellipsoid of

M̄Nt0
(t0) is the unit ball B1(0).

Proof. Assume to the contrary that there is a t′ > 0 such that for any Ω ∈ I , the minimum ellipsoid EN (t
′)

of M̄N (t
′) is not B1 =: B1(0), where N = 𝜕Ω. Noticing that EN (t

′) ∈ I , we can define a continuous map

T:I →  by

Ω ∈ I ↦ EN (t
′) ∈ I∖{B1} ↦ Ψ(EN (t′)) ∈  ,

which satisfies T| = id. Hence T is a retraction and there is an injection from Hk() to Hk(I ) for all k. This

together with property (a1) gives Hk() = 0 ∀ k ≥ 1. By property (a3), we further obtain Hk() = 0 ∀ k ≥ 1.

Inserting the homology group of into the long exact sequence in (a4), we infer that

Hk( × 𝕊n) = Hk()⊕ Hk(𝕊n), ∀ k ≥ 1.

Using the Künneth formula and the homology groups of 𝕊n, we derive that

Hk()⊕ Hk−n() = Hk()⊕ Hk(𝕊n) ∀ k ≥ n.

However, this contradicts property (a5) if we take k = n∗ + 2n − 1. This completes the proof. □

We choose a sequence tk → ∞ and let Nk = Ntk
be the initial condition from Lemma 5.2, which sub-

converges in Hausdorff distance to a limit N∗ such that Cl(N∗) ∈ I . Since the minimum ellipsoid of M̄Nk
(tk)

is the unit ball B1, we have  (M̄Nk
(tk)) ≤ 1

2
A0. By the monotonicity of the functional  under the flow (4.3), we

have M̄Nk
(t) = MNk

(t) ∀ t ≤ tk . It also follows that

 (M̄N∗
(t)) ≤ 3

4
A0.

Then (5.1) cannot happen forΩN∗
(t) = Cl(MN∗

(t)), and so for all t ≥ 0,

dist(O, 𝜕ΩN∗
(t)) ≥ d̄, e(ΩN∗

(t)) ≤ ē, 𝑣̄ ≤ Vol(ΩN∗
(t)) ≤ 𝑣̄−1.
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Hence we have the uniform estimate (4.5) for u(⋅, t), the support function ofΩN∗
(t), and by the a priori estimates

(4.6) and (4.7), u(⋅, t) converges smoothly to a solution.
In the above argument, the constant A0 is fixed beforehand. By Lemma 5.1, we still have  (Ω) ≥ A0 if (5.1)

holds, when our condition is relaxed to g ≥ Cwhen |z| is sufficiently large, for a suitably large constant C > 0.

Hence Theorem 4.1 also holds under this condition.

5.5 Remarks

Let us point out that for equation (4.2), one can impose different conditions on f and g to obtain the uniform

estimates for the solution. In [18] the uniform estimate was obtained under the conditions

g(x) = g∞ + 𝛽 + o(1)

|x|𝛼 as x→∞,

g(x) > g∞ ∀ x ∈ ℝn+1,

for some positive constants 𝛼, 𝛽, g∞ (assuming that f ≡ 1). By the uniform estimate, it was proved that there

is a solution to

det(∇2u+ uI)(x) = 𝜆g(x∕u(x))
un+2(x)

on 𝕊n, (5.2)

for a multiplier 𝜆 > 0.

When f and g satisfy a stronger decay condition, namely

lim sup
|z|→∞

f (z)|z|2n+2 = 0 and lim sup
|z|→∞

g(z)|z|2n+2 = 0,

a uniform estimate was also obtained in [1]. By the uniform estimate, one can also obtain a solution.

The main purpose of the paper is to introduce the topological methods, so we dropped the details for other

parts of the proof.
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