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Abstract: This article deals with existence of solutions to the following fractional p-Laplacian system of
equations:

* a .
(=Ap)Su = [ufPs—2u + y—* [u|*2u [v]f in Q,
S
(=Dp)v = [VF 2y + );—lj [VIF~2v Ju[* in Q,
S

where s € (0,1), p € (1, ©) with N > sp, a, B > 1 such thata + g = p} = % and Q@ = RY or smooth bounded
domains in R¥. When Q = RY and y = 1, we show that any ground state solution of the aforementioned system
has the form (AU, 7AV) for certain 7> 0 and U and V are two positive ground state solutions of (-A,)’u =
lul"~2u inRY. For all y > 0, we establish existence of a positive radial solution to the aforementioned system in
balls. When Q = RY, we also establish existence of positive radial solutions to the aforementioned system in
various ranges of y.

Keywords: fractional p-Laplacian, doubly critical, ground state, existence, system, least energy solution, Nehari
manifold

MSC 2020: 35B09, 35B33, 35E20, 35D30, 35]50, 45K05

1 Introduction

We consider the following fractional p-Laplacian system of equations in RV:

a .
(=0p)°u = [ulF2u + — [u*2u|vff in RV,
S

(=8, = W20 + Lo 2y e in RY, (S
S
u,v € WPRN),
where 0 <s <1, p € (1,), N>sp, and a, > 1 such that a + f = p = lel’sp, Here, (-Ap)* denotes the frac-

tional p-Laplace operator, which can be defined for the Schwartz class functions S(RY) as follows:
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J’ () — u@)PAux) - uy)) 4

N
-y Y xERS

(-Ap)°u(x) = P.V

where P.V. denotes the principle value sense. Consider the following homogeneous fractional Sobolev space

14
e - e [0

dxdy < 001.

The space W*?(R") is a Banach space with the corresponding Gagliardo norm

1

P
dxdy

[l =

.[ [uC0) - uy)P

x = yINeP

For simplicity of the notation, we write [|u||s» instead of ||ull;*»g~). In the vectorial case, as described in [4],
the natural solution space for (S) is the product space X = W*?(R¥) x W*P(R") with the norm

1 )lx = (Ul agen, + Vs P
Definition 1.1. We say a pair (u, v) € X is a positive weak solution of the system (S) ifu, v > 0, and for every
(¢, ¥) € X, it holds
J’ uG0) - uP> @) - u()(@X) - ¢>(Y))

x =y
, ﬂ VGO = VP00 - vOHE) = Y))
=y
J|u|Ps “ugdy + I|v|Ps g + & [ juezu ipgax + L [y ueyax.
s [RN ps |RN
Define
p
Ul|,; s,
S=Sup= inf Mpp
UEWSP(RY), I3 €1

uz0 J' ul? dx
[RN

In the limit case p = 1, the sharp constant S has been determined in [18, Theorem 4.1] (see also [8, Theorem
4.10]). The relevant extremals are given by the characteristic functions of balls, exactly as in the local case. For
p > 1, (1.1) is related to the study of the following nonlocal integro-differential equation

(-8p)’u =S uk™' in RY,

. 1.2)
u>0 ue W RM).

In the Hilbertian case p = 2, it is known by [14, Theorem 1.1], the best Sobolev constant S is attained by the
family of functions

9 25s-N
Ix = xol *| *

Ux) = 2|1 + ] , X €RYN, t>0.

Moreover, the family U is the only set of minimizers for the best Sobolev constant [11]. However, for p # 2, the
minimizers of S are not yet known, and it is not known whether (1.1) has any unique minimizer. In [9], Brasco
et al. have conjectured that the optimizers of S in (1.1) are given by
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sp-N

P
sp p-1

- X — X
oo = |+ | Xl

., Xo€RN t>0,

but it remains as an open question till date. However, in [9, Theorem 1.1], it has been proved that if U is any
minimizer of S, then U is of constant sign, radially symmetric and monotone function with

liMyye [X] 71 UX) = U,
for some constant U, € [R\{O}.

Forp = 2,a = B and u = v, the system (S) reduces to the fractional Laplacian equation with purely critical
exponent. In [21], authors have studied existence and convergence properties of least-energy symmetric
solutions ug (s is a varying parameter) in symmetric bounded domains. For scalar equation, we also refer
[7,23] where existence/multiplicity of solutions for a class nonlinear elliptic equation with mixed fractional
Laplacians have been studied.

Peng et al. in [25] studied system (S) for p =2 and s = 1, and among the other results, they proved
uniqueness of least energy solution. In the local case s = 1, a variant of system (S) (with p = 2) appears in
various contexts of mathematical physics e.g. in Bose-Einstein condensates theory, nonlinear wave-wave
interaction in plasma physics, nonlinear optics, and for more details, see [1,3,26] and the references therein.
With the system of elliptic p-Laplacian type equations with weakly coupled nonlinearities, we also cite [19] and
the references therein. In the nonlocal case, there are not so many articles, in which weakly coupled systems of
equations have been studied. We refer to [12,13,16,20,22], where Dirichlet systems of equations in bounded
domains have been treated. In [20], existence and multiplicity of solutions to system of equations with critical
and concave nonlinearities have been studied (see [6,10,24] for similar problem in the case of scalar equations).
For the nonlocal systems of equations in the entire space RY, we cite [5,17,27] and the references therein.

For p = 2 and s € (0, 1) Bhakta et al. in [4] studied the following system:

a
(-A)Su = o [ul=2u [v|f + f(x) in RY,
S
B
%
S

(1.3)

(-A)v = — |v[f2v u]* + g(x) in RY,

w,v>0 in RV,

where f, g belongs to the dual space of WS (RN), Among other results, the authors proved that when
f=0=g, any ground state solution of (1.3) has the form (Bw, Cw), where C/B = \/m and w is the unique
solution of (1.2) (corresponding to p = 2).

Being inspired by the aforementioned works, in this article, we generalize some of the aforementioned
results in the fractional-p-Laplacian case.

Definition 1.2.

(i) We say a weak solution (u, v) of (S) is of the synchronized form ifu = Aw,v = uw for some constants A, u
and a common function w € W*?(R¥).

(ii) We say a weak solution (u, v) of (S) is a ground state solution if (u, v) is a minimizer of S, g (see (1.4)).

Define

P p
S e inf llullyse + [1VIlgsr
a@.p (u,v)EX, . . p% ' 1.4)
@v#0) | fon(uP + [V + Jul?|v]F)dx

Suppose that (S) has a positive solution of the synchronized form (AU, uU) for some A > 0, ¢ > 0 and
U € W*P(RY) is a ground state solution of (1.2). Then it holds

ABP + %uma-p =1=pukP+ %yﬁ‘!’,}a_

S S
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*
s

Now setting u = 7A, we obtain A% P = and 7 satisfies

- i+ atP

p} + atf - Brhp - preiir = 0. (1.5

On the other hand, we find that if 7 satisfies (1.5), then (AU, 7AU) solves (S).
Therefore, the natural question arises: Are all the ground state solutions of (S) is of the synchronized
form (AU, TAU)?
If the answer of the aforementioned question is affirmative, then it will hold
1+7P
“P T4+ 0B + cB )OI

This inspires us to define the following function:
1+7P

h(@) = 1+ P + ByPIE”

(1.6

Note that h(Tpin) = mingsgh(7) < 1.
Below we state the main results of this article, we present the following:

Theorem 1.3. Let (U, Vo) be any positive ground state solution of (S). If one of the following conditions hold
® 1<B<p,

(i) B=panda<p,

(iii) p>panda<p,

then, there exists unique Ty, > 0 satisfying

h(Tin) = migl h(t) <1,
T

where h is defined by (1.6). Moreover,
(u0r VO) = (AU) TminAV);

P

* B
ps + ATpin

where U and V are two positive ground state solutions of (1.2). Further, ABP =

Remark 1.4. Since for p # 2, uniqueness of ground state solutions of (1.2) is not yet known, we are not able to
conclude whether any ground state solution of (S) is of the synchronized form, i.e., of the form of (AU, tinAU)
or not.

Next, we consider (S) with a small perturbation y > 0, namely, we consider the system

a .
(=) = [l 21 + X a2y [y in RY,
S

(-)v = P2y + % VP2 [ in RV, (Sy)

S

u, v e WHPRWY).

and prove existence of positive solutions to (SV) in various range of y. The corresponding energy functional of
the problem (S,), given by for (u, v) € X

1 1 * *
T ) = (e + Vo) - Fjauv’s + VI + y [ vif)dx. @7

SRN

We define

N=1uv) EX:u#0,v#0,|ulf: = I
[RN

* a *
lup + p—y |u|a|v|ﬁ]dx, Wl = | [lvlps + % |u|“|v|ﬁ]dx]. (L8)
S [RN S
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It is easy to see that N # & and that any nontrivial solution of (SV) is belongs to N. Set

A= inf Ju,v).
(W,V)EN

Consider the nonlinear system of algebraic equations

K5+ Vk Fep =1,
b’

&5 s Bt o, (19
I8

k,¢ > 0.

Theorem 1.5. Assume that one of the following conditions hold:
@ If% <p< %,a,ﬁ>pand

B-p a-p
ok _ T P
0<ys (B} - p) a-p|" 1B-p (1.10)
ﬁ p) Bla-p
(i) IfNZiVZS<p . a,B<pand
= 1) & G
SREW - (1P B ’117‘“ 1.11)
alp-a) Blp-B

Then the least energy A = f(ko + £9)SY/P and A is attained by (ko/ by, 60/ PU), where U is a minimizer of (LD,
ko, ¢y satisfies (1.9) and

ko = min{k : (k,¢) satisfies (1.9)}. 1.12)

Theorem 1.6. Assume that ;- <p ;V—s and a, B < p. There exists y, > 0 such that for any y € (0, y,), there
exists a solution (k(y), €(y)) of (1.9) such that (k(y)YPU, £(y)V'PU) is a positive solution of system (SV) with
Jk(VrU, 6(p)'PU) > A, where U is a minimizer of (1.1),

A= inf_ 9Ju,v)
(u,V)EN

and

=1, v) € X\(0, 03} : ([l + [[VIE o0 = I(|u|vs* + P+ ul?vP)dxy.

RN

<p<s: and a, B < p. Then the following system of equations

* a .
(-Bp)u = [ulF2u + p—y 2w [VlE in By(0),
S

(-8 = V2 + ? P2y [ in Br(0), (1.13)

S

u, v € Wy (Br(0)),

admit a radial positive solution (ug, vp).

The organization of the rest of the article is as follows: In Section 2, we prove Theorem 1.3. Section 3 deals
with the proof of Theorems 1.5, 1.7, and 1.6.
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2 Proof of Theorem 1.3

Lemma 2.1. Suppose a, § > 1 such that a + B = p. Then
0] Sa,ﬁ = h(Tmin)S.
(i)) Sap has minimizers (U, tninU), where U is a ground state solution of (1.2) and Ty satisfies

Y (pF + ath - BPP - prTiP) = 0.

Proof. Let {(un, v;)} be a minimizing sequence in X for S, 5. Choose 7, > 0 such that [|vy|[x gy = TllUnl|pr g
Now set, wy, = % Therefore, ||un|[z» gy = [|Wall» gy @and applying Young’s inequality,

a . B . . "
[ unletwalfax < < [ dx + 25 [ wnlax = [ ugfdx = [ jwnf? ax.
RY b RY b RY RY RY

Therefore,

[[Unllgyso + 1[vallyyse
Sa,ﬁ + 0(1) = »

IRN(|HH|PS* + %+ |un|a|vn|ﬁ)dxl

b

14
[[un|ls»

r

[fwuunws* b e+ 5f |un|a|wn|ﬂ>dX] S

P
T || Wally 0

+ [

- 5
[fwﬂunws* £l + 7f |un|a|wn|ﬁ>dX]s

N 1 [ 14nl 0 Tl [[Wally o

) 1+h+ Tns)p/ps*l[J’
R

7t 0
¥ s ¥ bs
dwlax|” [
1+

22— 8 2 minh(7)S.
A+ gf+ o )eler >0

Thus, as n = «, we have h(Tuin)S < Sqp. For the reverse inequality, we choose u = U, v = Ty U to obtain
h(Twin)S 2 Sg 5. In Lemma 2.2, we will show that point 7y, exists. This proves (i).
(ii) Taking (u, v) = (U, TminU), a simple computation yields that

P P
llullgse + VI s

= h(Tuin)S.
5 5 s
Jr(up® + up + |u|a|v|ﬁ)dx]
By using (i), we infer that (U, tminU) is a minimizer of S g. Further, since zy;, is a critical point of h, computing
h'(Twin) = 0 yields that 7, satisfies
7Y (pf + atf - BrhP - preP) = 0.0
We observe from (1.6) that h(0) =1 and lim,..h(7) = 1. Therefore, to ensure the existence of 7, (.e.,

minimum point of h does not escape at infinity), g, is uniquely defined and z,;, > 0, we need to investigate
the solvability of the following equation:

g(t) = p¥ + atf - prhp - preRP = 0. @1
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Lemma2.2. Leta, B > 1,anda + B = p}. Then (2.1) always has at least one root T > 0, and for any root t > 0, the
problem (S) has positive solutions (AU, uU), where

*

b

=T\, AP=—=_
u ps* + arP

Moreover, if one of the following conditions hold
@) 1<B<p,

(i) p=panda<p,

(ii)) p>panda < p,

then, Tyin > 0 and h(tyin) < 1. In all other cases, Ty, = 0.

Proof. Clearly, if 7 > 0 solves
(pF + atP)An~p = p¥,

( ps*Tp:_p + BTPPARP = o,

then (AU, uU) with p = 74 solves (S). Thus to prove the required result, it is enough to show that (2.1) has
positive roots 7, which we discuss in the following cases.

Case 1: If1 < B < p.

Therefore, lim,.¢'g(7) = —.

Now, if a > p, then g(1) = a — B > 0. Thus, there exists 7 € (0, 1) such that g(z) = 0.

If1 < a < p, then we have p - p < p’ - a = f, and consequently, lim,«g(7) = . Thus, there exists 7 > 0
such that g(7) = 0.

Also observe that, by direct computation, we obtain

pr?!

h'(7) = f(7)g(r), where f(7) =

Thus, f(7) 2 0 for all 7 > 0 and f(0) = 0. This together with the fact that lim,_¢g(7) = - implies h’(7) < 0 in
T € (0, ¢) for some € > 0. This means h is a decreasing function near 0. Combining this with the fact that h(0) = 1
and lim,..h(7) = 1, we conclude that there exists a point 7y, € (0, ) such that mingsoh(7) = h(Tin) < 1, and
this holds for all a > 1.

Case 2: If B = p.

In this case, g becomes g(7) = a(1 + 77) - pfr® Hence, g(0) = a > 0 and g(1) = a - p.

(i) Ifa = p,then N = 2sp and g(7) = p — p7?. Thus, there exists a unique root 7; = 1 of g. Also note that h is
increasing near 0. Hence, 7 is the maximum point of h with h(5) > 1. In this case, min;»oh(7) = h(tyn) = h(0).

Yy »

T1

(a) The case 2(7)
(ii) If 1 < a < p, then we have 2sp < N < sp(p +1). Observe that g(0)=a >0, g1)=a-p <0, and
lim,..g(7) = +e. Also note that, g is decreasing in (O, (ps*/p)pla) and increasing in ((ps*/P)”la, °°). Therefore,

g has exactly one critical point (ps*/p)p%z and two roots 7; (i = 1, 2) with i € (0, ( p:/p)Tlﬂ), G E ((ps*/p)ﬁ, ),



8 —— Mousomi Bhakta et al. DE GRUYTER

y
g(7) Y

h(0) = 1

1 2
(b) The case 2(i7)

Further, note that in this case h is increasing near 0, which leads that first positive critical point of h,i.e., 7
is the local maximum for h and h(z) > 1. Further, as lim;..h(7) = 1, the second root of g, i.e., 7, becomes the
second and last critical point of h and h(z,) < 1. Therefore, in this case, Gy = % > 0 is the minimum point of h
with h(Tyi) < 1.

(iii) Ifa > p, then sp < N < 2sp and g(0) > 0. We see that g is increasing in |0, (p/ps*)ﬂlfp and decreasing in

[(p/ps*)alp,oo]. This together with the fact lim;..g(7) = - leads that there exists a unique 7 > 0 such

that g(7) = 0.

g(7) y=1

1
(¢) The case 2(iii)

Since in this case, h is increasing near 0, so at 7, h attains the maximum with h(z) > 1. Hence, h has no
other critical point, and therefore, h(zyin) = h(0).

Case 3: If B > p.

If1<a<p,then g(1) =a- B <0. Since g(0) > 0, there is a 7 € (0, 1] such that g(r) = 0. If a > p and
a > B, then g(1) > 0 and lim;-«g(7) = —o. Thus, there exists 7 € (1, ©) such that g(r) = 0. Ifa > pand a < §,
then g(1) < 0. As g(0) > 0, thus there exists 7 € (0, 1] such that g(7) = 0. Next we analyze %y, in case 3 in the
following three subcases.

(@) p>panda>p.

Observe that in this case we have

B<pf-p and a<p’-p. (2.2)

Hence, without loss of generality, we can assume a > f5.
Claim 1: g(7) > 0 for 7 € [0, 1). Indeed, by using (2.2), € [0, 1) implies 79, 78 > %P, Therefore,
g(m)> ps* + athf - ﬁz-ﬁ—P - ps*Tﬁ
=p + (@ pef - b
>p*+a-pf-prFP (as a<p* and ¥ <1)
=q- ﬁTﬁ-P >0,

where in the last inequality, we have used the fact that 7#? < 1 = 7P < B < a. This proves claim 1.
Claim 2: g is monotonically decreasing for 7 > 1. Indeed, 7 > 1 implies 7% > 7?. Therefore, by using (2.2), we have
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g'(t) = PP aBr? - p*(p* - p)t - B(B - p)]
<A P (aB - pX(p¥ - p)T - B(B - p)]

<t/ (pf - p)B - pIT - BB - p)]
<0.

This proves claim 2. Also observe that g(1) 2 0 and g(7) - —% as 7 — ». Combining these facts along with
claim 1 and 2 proves that g has only one root say 7 in (0, «), which in turn implies h has only one critical point
71in (0, ). Since B > p implies h is increasing near 0, so at 7, h attains the maximum with h(7) > 1. Combining
this with lim,..h(7) = 1 proves that h(zyn) = h(0) = 1, i.e, Tpin = 0.

(i) f>panda<p.

In this case, g(0) > 0, g(1) < 0, and we claim g is strictly decreasing in (0, 1). Indeed, a < p = 77 < 7% for
T€(0,1). Also B > p = a < p} - p. Therefore,

g'(@) =P apt? - pX(p; - p)t° - B(B - p)]
<P PP = p)(B - O™ - BB - p)]
<0.
Claim: g has only one critical point in (1, «). Indeed,

g'(r) = tFP7lg (1), where g(7) = apt? - p(p} - p)r* - B(B - p).

So to prove that g has only critical point in (1, «), it is enough to show that g has only one root in (1, «).
Observe that, g,(0) <0, lim;.«g(7) = « and a straight forward computation yields that g; is a decreasing

function in

1
*( ok _ p-a
0 P p)]

1
Hak p-a
4 PO p)] .

pB

and g is an increasing function in . Thus, g, has only one root.

Hence, the claim follows. Next, we observe thata < p = B > p* - p, and therefore, lim;..«g(7) = .
Yy

g1(7T)

g(7)
T1

(d) The case 3(ii)

h(0) = 1

\——//W’

T1 T2

(e) The case 3(it)

Combining all the aforementioned observations and claim, it follows that g has only one critical point in
(0, ) and two roots g, , with 7 € (0, 1) and 7, € (1, ). Hence, h has exactly two critical points 5, 7. Since h is
increasing near 0 leads to the conclusion that first positive critical point of h, i.e., 7 is the local maximum for h
and h(g) > 1 and since lim,....h(7) = 1 at the second critical point of h, i.e., at 7,, we have h(%,) < 1. Therefore, in
this case, Tyin = & > 0 is the minimum point of h with h(zy;,) < 1.

(i) B> p,a=p.

In this case, g(0) > 0 and a = p = B = p - p. Therefore,
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g'(t) = PP apr? - pX(p} - p)° - B(B - p)]
= AP (a - p*)Br* - B(B - p)]
<0,

i.e., g is a strictly decreasing function. Also, observe thatlim;_.g(7) = —«. Hence, g has only one root in (0, ),
i.e,, h has only critical point 7 in (0, ®). Since § > p implies h is increasing near 0, so at 7, h attains the
maximum with h(z) > 1. Combining this with lim,..h(7) = 1 proves that h(zn,) = h(0) =1, i.e, Tpin = 0. O

y
g(T) Y M

T1

(f) The case 3(4i7)
To prove Theorem 1.3, next we introduce an auxiliary system of equations with a positive parameter 7,
. a .
(=0p)y°u =i [ufF?u+ — [u?u v/ in RY,
b

B

*

N

(=Ap)v = [VF2y + — [v/f"2y [u* in RV, (Sp
u,v e WP(RWY).
We define the following minimization problem associated to (S,):

P P
llullgse + VIl

Snap = (ulvr)lex . N .
O G 1+ I+ o )axy
Similarly for 7 > 0, we define
O — T e D ing (D)
f,, o (n+ F + Tps*)p/ps*’ f,, Tmin) = I?thl)lfn 7).

Proceeding as in the proof of Lemma 2.2, we find € € (0, 1) small such that z;,(1), A*(n), u*(n) are unique
forn € (1 -¢,1+ ¢) and 73,(n) satisfies

Tp‘l(rlps* + atf - ﬁ'rﬁ‘p - ps*TPS*‘P) = 0.
Moreover, 7.5, (), 2*(n), u*(n) are C forn € (1 - &,1 + €) and £ > 0 small. Indeed, if we denote
F(n,7) = np* + atf - prPp - prei~P.

Then,
oF

on " tF P ap? - p¥(pf - p)r* - B(B - ).

Since Ty, is the minimum of h, direct computation yields g(zmin) = 0, £'(Tmin) > 0. Therefore, F(1, min) = 0,
%(1, Tmin) > 0. Consequently, by implicit function theorem, we obtain that (), A*(n), u*(n) are C
forne(-¢1+e¢).

Proof of Theorem 1.3. Let (ug, vp) is a ground state solution of (S). First, we claim that
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[ gl ax = 20 [ ot ax. 23
RY RY

To prove this, we define the following min-max problem associated to (S;)

B(n) = inf maxEy(tu, tv),
wv)ex\{o} t>0

where
E(u,v) = ;(“u”ws,p +{[V[[e0) = EI(n(u W + (VB + (uh)*(v)F)dx.
S [RN

Observe that there exists ¢(n) > 0 such that max .oE,(tuo, tvg) = E,(t(n)uo, t(n)vo), and moreover, t(n) satisfies
H(n, t(n)) = 0, where H(n, t) = t%P(nG + D) - C with

C = luollyer + ol D= [ (ol + Jugllwol)dx  and G = [ jugldx.
RrRY RY

As (ug, vp) is a least energy solution of (S), then
0H
H(1,1) =0, 5(1, >0 and H(n, tn) = 0.

Thus, by the implicit function theorem, there exists € > 0 such that t(n) : (1 - &1+ &) = R is C* and
oH

[%
tW == | ="
ot

G

(B - p)G + D)’
n=1=t

By Taylor expansion, we also have t(n) = 1 + t'(1)(n = 1) + O(|n - 1*) and thus
tP(n) =1+ pt'(MD(n = 1) + O(n - 1P).
H(1,1) = 0 impliesC = G + D, and H(n, t(n)) = 0 implies C = t(n)%~P(nG + D). Therefore, by definition of B(1)
and the aforementioned observation, we obtain
B(n) < Ey(t(muo, t()vo)
_ @y .t

G+D
» o (nG + D)
S 2.4)
= t(n)”ﬁC = t(n)PB()
GB(1
=B - —LPYD )4 oqn - 1P,

(P - p)(G + D)

Now, let us compute B(1) from the definition
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l[ullgyse + 11VII 0

(R R

B(1)= inf E;i(tmaxld, tmaxV), Where thay =
(w,v)EX

pi-p

P P
s . llulfyse + NIVIlse

P

=— 1n
N(u,v)EX F
IRN(IMI’% + v+ IuI“IVIﬁ)dX] ’

P P
ol s + [1Vollys»

p

s

N v
* ¥

[J—RN(Iqus + [Vol% + [uol?|volf)dx |

=%m+m.

By using this in (2.4), we obtain

G
B(n) < B(1) - E('I -1+ 0(n - 1P).

S

Therefore, we have

<-Ziom-1 itg>1,
By - Bw)| B

n-1 2—%+0(|n—1l) if <1

S
This implies that
G 1 "
B)=-—7= -—*Iluolps dx. (2.5)
A B 2w

Arguing similarly as in the proof of Lemma 2.1, it follows that S, . g is attained by (tU, 7(n)tU). Therefore,

bs

[
_ s 1+ 7(n)P .
B = ’ éwmw

(n + T()F + TP

SRS (00, S
N(n+t)f + ey
Then, from a simple computation, it follows
1+ (P>~ i} ; . .
B'(n) = [T (TP p + ar(nP - Br(PP = ple(®P) - 1 - (n)?] | [U dx.
pX(n + ()P + T(y)F)» ’ s [RIN

Note that for n = 1, 7(1) satisfies the equation g(z7) = 0, where g(7) is given by (2.1); thus, we obtain 7(1) = .
Consequently,
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ps

1 1+, |*° . Mo
B(1) = -— | — Jiwprax = -2 [ oy ax. 2.6)
Pl1+ Tmin + Tmin RrRY bs RY
By combining (2.5) and (2.6), we conclude (2.3). By a similar argument as in the proof of (2.3), we show that
[ tvolax = 2z [1opax, [ uolevoldx = thin ¥ [ (U dx. @)
RY RY RY RY

Therefore, by (2.3) and (2.7), we obtain
[ ot olPax = chi [, [ ok ivolPdx = ghott [ uol .
RY RY RY RY

Again, since (AU, uU) solves the problem (S), we obtain

ABD 4+ i*uma-p =1=pukP+ ﬁ*yﬂ-ma. (2.8)
S pS
Now define (uy, v¢) = [% %] By using (2.3), (2.7), and (2.8), we have
1wl Fys = AP [0

* a
= xv ”mov)s + = |U0|“|V0|ﬁ’dx
an 2

S

= 1ol + oy [ (e ax
)
=[|Ullysr-
Similarly, we obtain [|vi|[};s» = [|U|[%,s». Therefore, we have
l[willfysr = U0 = [[vallfyso- 2.9)
Also, by (2.3),
[rprax = [opax, (210)
RY RY
and by (2.7),
[wrrax = [jopax. 211)
RY RY

Thus, from (2.9) and (2.10), we conclude that u; achieves S. Further, from (1.1), (2.9) and (2.11) imply that v; also
achieves S in (1.1). This completes the proof. O

3 Proof of Theorems 1.5, 1.6, and 1.7

In this section, we study the system (SV) that we introduced in the introduction. For the reader’s convenience,
we recall (8)):

a .
(-0p)'u = |ulP2u + p—): [u|*~2u [v|f in RY,
S

=BV = [V 2y + ? VB2V [u* in RY, (Sy)
S

u, v € W (RWY).
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We also recall that (see (1.7)) the energy functional associated to the aforementioned system is

1 1 * *
I, v) = =([ulfse + [VIEs0) - —*I(Iulps + VB +y uvf)dx,  (u,v) € X.
p p; RY
The definition of Nehari manifold (1.8) is

* a £
N =l v) €X:u=0,v#0, [uf = I[|u|l’s + 2 |u|a|v|ﬁ]dx, VB o» = ”Mps LBy |u|“|v|5ydx .
[RN pS [RN ps
Therefore, it follows

A= inf J(u,v)
(W V)EN

= inf —(Ilullp o+ [|VI[Gs0)
WVEN

= inf = [(up + WP+ y e pP)dx.
N,

(wV)EN

Proposition 3.1. Assume that ¢, d € R satisfy

4
& B BY i 2 1, 3D
ps

If% <p< % a, B> p and (1.10) hold, then c + d > k + ¢, where k, ¢ € R satisfy (1.9).

Proof. We use the change of variables y = ¢ + d, x = ¢/d,y, = k + ¢, and X, = k/¢ into (3.1) and (1.9), we obtain

e (Xt 1)p§*p_ ! nop
bs—p
~ J P _
g 2 PS*’P ay arp _.fi(x)’ yO _fi(xo)s
+ =X
p
ps*-p

k<

2 W =00, = f00).

s

Then, one has

P52 a-2p *
+1 ( ) 5
LA ARS zl‘ps nop ’+ﬁx a+p

ay

/

00 =
fl ps-p
X P +

* =2

pp; X

e

52 a- a-2p

ay(x + 1) PX P
* 2 gl(X))
Ps7P gy ap

X pr + FX p

s

*

pp;

pi(pf - p)
By

f,00=

2

By
By &

pp|1+ o XP

s

+ (B~ p)xi - axl

*

pi-2p

L Prx+1) !; 500.

M1+ Zxp
PP P
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r
b-p -
] ’ from g/(x) = 0 and similarly, for g,, we have x, = a—?. Now by using (1.10),

. pay
Hence, we obtain x; =
’ 17 - B-

we conclude that

maxg,(x) = g,0) = |l ;z,,(ﬁ —p)-(@-p) <0
w0 1 SV prer - p) o
, i - p) a-p|?
ming(0) = g00) = = —— - plg 1| =0

Therefore, we conclude that the function f] is decreasing in (0, ), and on the other hand, the function f, is
increasing in (0, «). Thus, we have

y”;%p > max{f; (x), f,(x)}
> r)r(1>i(1)1(max{ 6D, (00D
p'-p
= min (max{f, (0, 00D = *

Hence, the result follows. O

We define the functions

;_ a a-,
Rk o) =k7 + Lieh -1, k>0,¢20,
bs
Fyk, €)= ¢ + %e?k% -1, k=0,¢>0,
S
; p* & e p-p)p (3.2)
o(k) = [i kﬂl—kpl , 0<k<1,
ay
P* ¢ pp *_p§
k(&) = B—Sy €[l—€ 2 ] 0<e¢x<1
Then Fy(k, £(k)) = 0 and F(k(¢), €) = 0.
2N N
Lemma 3.2. Assume that - < p < 5; and a, B < p. Then
Fk,€)=0,Fk, ¢)=0, k>0 3.3)

has a solution (ko, €y) such that Fy(k, ¢(k)) < 0 for all k € (0, ko), that is, (ko, €) satisfies (1.12). Similarly, (3.3)
has a solution (ky, ¢;) such that Fi(k(¢€),€¢) <0 for all ¢ €(0,4¢), that is, (k, &) satisfies (1.9) and
& = min{¢ : (k, ¢) satisfies (1.9)}.

Proof. The proof is exactly similar to [19, Lemma 3.2]. O

Lemma 3.3. Assume that % <p< %; a, B < p and (1.11) holds. Then ko + €, < 1, where (ko, €p) is same as in
Lemma 3.2 and

Fk(€),6) <0 Ve e (0,6), Fk ek)<0 Yke 0, ko).

Proof. By using (3.2), we obtain
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and then we have

P2

(- B -pp)
128

R e = |

p-aln?
B
14

From ¢”(k) = 0, we obtain k= [ pp - a) ]ps_p. Then by (1.11), we obtain

¢"(k) =

r p

Note that ¢'(1) = 0 = ¢’ and ¢'(k) > 0 for 0 < k < [%]” whereas ¢'(k) < 0 for [”—/3“]” <k<1.

B@p-p))
* * J
N ' - ) p
min 2= min o) = ey =-| 2B _PNIP-F
ke(0,1] » ayp p-a
kel[P2E | 4
e
The remaining proof follows from [19, Lemma 3.3] by considering u; = 1 = u, in their proof. O
< év—s; a, B < p, and (1.11) holds. Then
k+€<ky+ &
Fi(k,&)20, Fk,6)20
k,¢20 (k,¢)%(0,0)
has a unique solution (k, ¢) = (kq, ¢;), where F, and F, are given by (3.2).
Proof. The proof follows from [19, Proposition 3.4]. |

Proof of Theorem 1.5. By using (1.9), we have (ko/ bu, 6’0/ 4 U) € N is a nontrivial solution of (SV) and
A < J(k''U, €§PU) = —(ko + £)S. (3.4)

Now, suppose {(un, vy)} € N be a minimizing sequence for A such that J(un, v,) > A as n— . Let

||un||L,,S ®") and d,, = vl L RY Then by Holder’s inequality, we have
ay 5 ay
Sep < ”unHII/)'VS'p = J"Iunw: o Iun|a|Vn|ﬁ]dx <ol +— dn' 3.5
et p; 2
This implies that
5~ ay _ap~ B . o~
&+ e dr 21 ie, B dy 20,
Py
where &, = —%—, d, = —%. Similarly, we obtain
Sp-p Sps-p
B
Sdy < ||Vn||p sp = Jl"’nm + B_ [Un| [Vl |dx < dnp + ﬁy Pl (3.6)
S

and thus, F,(¢,, d ~n) > 0. Then for a, § > p, by Proposition 3.1, we have ¢, + &n >k+ ¢ =ky+ £, and on the
other hand for a, § < p, by Lemma 3.4, we have &, + d, = ko + €. Hence,
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G+ dy > (ko + 6)S . 3.7)
since J(Un, Vo) = y([lnllf 50 + ”V”;/sp) by using (3.4)(3.6), we have

S(en + dp) < J (Un, Vo) = A +0(1) < (ko + €)S¥ + 0(1).

This implies that
G+ dy < (Ko + 6)S @ + o(D). (3.8)
By combining (3.7) and (3.8), we obtain ¢, + d, — (ko + €p)S Ea as n — o, Therefore,

= lim J(up, vo) 2 —S hm(cn +dy) = —(ko + QIS

n—oo
Therefore,

—(ko + 6)S% = JkPU, ¢5PU).
This completes the proof of Theorem 1.5. d

Next, we prove existence of solutions of (1.13), namely, Theorem 1.7. For this, define

Wsp([RN) =4y ELP([RN) J—IM

|N+sp dXdy < o,

X(Br(0)) = WP (Bx(0)) x Wy (Bx(0)),

where W;P(Bg(0)) = {u € WSP(RM) : u =0 in RN\Bg(0)} with the norm ||-||;;», and

N(R) =1i(u,v) € X(BR(O))\{(O, 0)}: ||u||€vs,p + ||V||€Vs,p = I (lulps* + |V|ps* +y [u|?|v|P)dx |,
Br(0)

and set A(R) = inf, vei@I WU, v). We also define

=1, v) € X\(0, 00} ¢ |l + |VIF,er = I (e + [vIE + y [ul?|vIP)dxf.
[RN
Set A = inf, e 7 J(, v). Since N C N, it follows A < A and by the fractional Sobolev embedding 4 > 0.
For ¢ € (0, min{a, B} - 1), consider

(a - e)y

* 9
s

(B

(—Ap)*u = ulP 22y + [ule22u [v[f=¢ in Bg(0),

(3.9

(=Dp)v = |V 22y + ~— Ivlﬁ 27¢y |ul*~¢ in Bg(0),

28
u, v € WyP(Bg(0)).

The corresponding energy functional of the system (3.9) is given by

[ Quei-2e + o2+ p jue-epup-e)a.
Br(0)

1
Tt ) = (il + V) = 2

Define
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RR) = {(, v) € XBrOOM(O, 0} : G, v) = [[ulyo0 + [V

N I (P2 + [v[E =2 + p Juj*-¢[v]P-¢)dx = O,
Br(0)

and set A (R) = infy, \)eqmTeU, V).

Lemma 3.5. For any & € (0, min{fa - 1, B - 1, (p}" - p)/2}), there exists a constant C, > 0 such that

AR 2C, Ve€(0,el.

Proof. Let (u, v) € N (R). Then

(lullgse + VI,

1
Ty = [; ) D -2

so it suffices to show that ||u||€vs.p + ||v||§/s,p is bounded away from zero. We have

l[ullyyso + VIl = I (=2 + =22 + p Julo= vP~#)dx
Bg(0)
(f-28) /b (pf-2¢)/p
< BaOF/ || [ e dx o [ P ax
BR(O) BR(O) (3 10)
(a-&)/p} B-o)lp;
) [ e ax [t ax
Br(0) Br(0)
* o—(pt- pr-2e pr-2e _ -

< |BR(O)PEIE S E 20|l + (vl + ylll S VI S)

by the Holder and Sobolev inequalities. By Young’s inequality,

Il < 2 ls” + psf VI S s+ vl
Therefore, (3.10) gives
Hllyso + VIE 0 < (L -+ ) Ba(O)PE/E SE=20p(ulf0° + [[v]fer”). @11
Since (p; - 2¢&)/p > 1,
Ml + VI < B + VI s )E 20,

thus (3.11) gives

S®-20/p

p/(p;-p-2e)
(1 + y)|Br(0)*/ ”s*]

14 14
el + (VI z[

The desired conclusion follows from this since pf-p-2¢2p"-p-25>0 and the function

pI(p-p-20)

Ss-20lp . . e
is continuous and positive in [0, &]. O

h( = [(1 +7) | Bal0) P

2N
N+2s

Lemma 3.6. Assume that <p< % and a, B < p. For € € (0, min{a, 8} - 1), it holds
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AR <min{ inf J(u,0), inf
(u,0)ENR) (0,V)EN

Je0, )}
R)

Proof. Clearly, 2 < p - 2¢ < p! from min{a, B} < %S. Then we may assume that u, is a least energy solution of
(=Bp)u = [ulF>%u  in By(0),
u € Wy (Br(0)).

Set

Je(u,0) =app= inf Ju,0),T0, ) =ap= 1inf J(0,v).
(U,0)ENL(R) (0,V)ENR)

We claim that for any ¢ € R, there exists a unique t(g) > 0 such that (¢(¢)"Pu, t(c)"Pou;) € N,(R).

P P
popze [l 0 + |o1P || [G 50
to) = * W : W
[ (=2 + jowp =2 + p jusfe* owP-<)dx
Br(0)
_ qao + qao |0
qan + qaon 1o + o5y [ jultiedx
Br(0)
* _ 9. .
where q = pip_s _8), ie., L - f . Note that t(0) = 1, we have
pi-p-2 ¢ p K-
, - A
hm t (o‘) _ _(ﬁ S)VIBR(O)lull dX
o-0 |o)f~2¢0 ap(pF - 2€)

This implies that as g — 0

(B - e[, o1l dx

Ha)=- a(p; - 2€)

lolf~2¢a(1 + o(1)).

Then

VIBR(O)l ullp:_s dx

o)== - 20

|olf-2(1 + o(1)) as o — 0,

and therefore,

|7 =€ dx

S*—Zs y
b= - 2O lo]f¢(1 + o(1)) as & — 0.

t(og) » =
(@) baio

We obtain for |o| small enough

A:(R) < F(t(0)Pwy, t(o)Pouy)

1 *_ _ *_ p;—Zs
= |00 * dan [ _[ |’ ~¢dx ft(a)
Bg(0)

=@~ ——= [0y [ jupiax + o(lof) < aw.
B Bg(0)
Similarly, we see that A.(R) < ag. This completes the proof. O

Note that, similarly to Lemma 3.6, we obtain

A <min{ inf J(u,0), inf_ J(0,v)} = min{J(U, 0), J(0, U)} = ES%. (3.12)
W,0)EN OV)EN N
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Proposition 3.7. For 0 < ¢ < min{min{a, f} - 1, ps; p}, system (3.9) has a positive least energy solution (u., v;),

where both u,, v, are radially symmetric nonincreasing functions.

Proof. By Lemma 3.5, A.(R) > 0. Let (u, v) € Ng(R) withu, v > 0. Letu*, v* be Schwartz symmetrization of u, v,
respectively. Then by nonlocal Pélya-Szego inequality [2] and properties of the Schwartz symmetrization, we
obtain

I+ 0eler < [ Quei=2e ool =2 + p uspee e -o)ax.
Bg(0)

Also, note that J,(t}/Pu*, t}/Pv*) < J,(u, v) for some t, € (0, 1] such that (t}/Pu*, t}’Pv*) € N,(R). Hence, we
choose a minimizing sequence {(up, vp)} C Ne(R) of A, such that (u, v,) = (u},v¥) for any n and
Je(Un, vy) = A, as n — . Thus, we obtain both the sequences {u,} and {v,} that are bounded in Wy (Bz(0)).
WyP(Bg(0)) is a reflexive Banach space, upto a subsequence, u, — U, v, — V. weakly in W;y"”(Bg(0)). Moreover,
as Wy P(Bg(0)) = Lps*‘ZS(BR(O)) is a compact embedding, it follows u, - u,, v, — Vv, strongly in Ll’s*‘zs(BR(O)).
Therefore,

.[ (luel 2+ Ul =28+ p Jug® € uelP~€)dx

Bg(0)

= lim I ([UnlP =2 + [Va[P2 + p [un|® vyl ~¢)dx
"% By0)
p(p; - 2¢)

S
ps* e = pnlj& Je(Un, vn)

(p* - 2¢) .

B By f R

pr-2-p

and this yields that (u., v.) # (0, 0) and also u,, v, are nonnegative radially symmetric decreasing. By using the
weak lower semicontinuity property of the norm, we also have

l[wellfys + [IVellgyse < rllijg(llunllﬁ,w + [Vallgse),

and therefore,

ey + I < [ (2 2+ y o)
Br(0)

Therefore, there exists t, € (0, 1] such that (t}/Pu,, t!/Pv,) € N, and hence,

A (R) < Tt} Pu,, t}/Pv,)
te(pf - 26 - p)

= W(Ilusll’v’w,p Vel s0)
S

*

pS-2-p
<=1 P, P
p(ps* _ 28) nLIB(Hun”W p T ||V71||W p)

=lim jg(un, Vn) = AE(R):

n—-o

which yields that t, = 1, (U, Vi) € Ne(R), A:(R) = Je(u, ve), and

[tellyyso + IIVellgyse = }[ij?o(llunllﬁ,w + [|Vnllgyse)-

This proved that u, — ue, v, — V. strongly in Wy ?(Bz(0)). Now by Lagrange multiplier theorem, there exists
A € R such that
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T (ug, ve) + AG{(ug, ve) = 0.
Since J (ug, Ve)(Ue, Ve) = Ge(Ug, Ve) = 0 and
G (e, Ve)(Ue, Vi) = ‘(Ps* -2e-p) I (|u5|ps*—2£ + IVngS*—ZS +y || € velf~€)dx < 0,
Br(0)

we obtain A = 0 and hence, .7 {(u, ve) = 0. Since A.(R) = J(u, V) and by Lemma 3.6, we have u;, v, # 0. By
maximum principle [15, Lemma 3.3] we conclude the desired result. d

Lemma 3.8. For any (u,v) € N, there is a sequence (un,vy) € N N (CYRYN) x CP(RN)) such that
(Un, Vp) =~ (W, v) in X asn — o,

Proof. By density, there is a sequence (ii,, Vi) € C;'(RY) x Cy°(RY) such that (i, V) = (4, v) in X asn — o, Let

N - 1/(p;-p)
(L[ A ’

~ * ~ * ~ ~
Jen (Il + 150+ p [i2]7| )P )lx

n =

and note that t,—1 since (u,v) € N. Then (Up, V) = (tily, t0n) € N N (CF(RY) x CP(RY)) and
(Up, vp) = (u,v) in X. O

Lemma 3.9. There is a minimizing sequence (u,, v,) € N' N (CF(RY) x C2(RY)) for A.

Proof. Let (iiy, V) € N bea minimizing sequence for A, ie., Iy, V) — A. By the continuity of  and Lemma
3.8, there is a (uy, v;) € N N (C5(RY) x C7(RM)) such that

1
|j(un’ Vn) - j(ﬂn, ‘;n)l < E

Then J(up, vp) = A, 50 (Uy, vy) € N N (CF(RY) x CP(RY)) is a minimizing sequence for A. O

Proof of Theorem 1.7. First, we prove that
AR)=A forevery R > 0. (3.13)

Let R, < R,, then N'(R)) C N(R,), and hence, by definition, we have AR) < A(R).To prove reverse inequality,
let (u, v) € N(R,) and define

00, vi(x) = [%][u[%jx] v[%x”

Clearly, (u, v;) € N'(R;). Therefore, we obtain

AR) < J(ug,vi) = I, v), forany (u,v) € N(Ry),
and this implies that A(R;) < A(R;). So, we obtain A(R;) = A(R;). Let (u, v,) € N be a minimizing sequence of A.
In view of Lemma 3.9, we may assume that uy,, v, € Wy*(Bg,(0)) for some R, > 0. Then, (u, v,) € N'(R,) and

A = lim J(up, v,) 2 im A(R,) = A(R),
n—o

n—o

and hence, (3.13) holds.
Let (u, v) € N(R) be arbitrary, then there exists t, > 0 witht, > 1 as & — 0 such that (t}/Pu, tV/?v) € N(R).
Therefore, we have

limsup A, (R) < limsup J(t2Pu, tY'Pv) = 9(u, v).

-0 e-0

Thus, by using (3.13), we obtain
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limsup A.(R) < A(R) = A. (3.14)
e-0
By Proposition 3.7, let (u,, v;) be a positive least energy solution of (3.9), which is radially symmetric non-
increasing. Then by Lemma 3.5, for any & € (0, min{a - 1, 8 - 1, (p}" - p)/2}), there exists a constant C, > 0
such that

m(llusllﬁ,sw el sr) 2 Ce, Ve € (0, &) (3.15)
Therefore, from (3.14), we obtain u,, v. € Wy’ (B(0)) are uniformly bounded. Thus, by reflexivity upto a
subsequence, u; — Uy and v, — v, weakly in Wy ?(Bg(0)) as € — 0. Since (3.9) is a subcritical system in bounded
domain, passing the limit € — 0, it follows that (uo, vp) is a solution of the following system:

Sk a .
(~Ap)°u = Jupi 2 + p—” ufe2u [vif in By (0),
S

By

S

u, v € Wy (B(0)).

(=8p)v = [VIF2v + =2 V2 [ul* in Bg(0),

Also note that uy and vy are nonnegative and from (3.15), we see that (ug, Vo) # (0, 0). We may now assume that
Uo # 0. Therefore, by strong maximum principle [15], we obtain uy > 0 in Bg(0). Further, we claim, vy # 0. If
Vo = 0, then substituting (ug, vo) in the aforementioned system of equation shows that uy is a positive solution
to (=Ap)*u = |ul’~2u in Br(0). Since up € Wy (Br(0)), it follows

1 P 1 1 ps* S
T, 0) = uollyss - Iuo = ol - — [ uddx = <ol (316)
p B g b S By(0) N

We also observe that (ug, 0), (0, ugy) € N . Therefore, by using (3.12), we have

A< minl inf  9J(u, 0), 1r)1fN g, v)l < min{J(uy, 0), J(0, ug)} = J(uy, 0). 3.17)

(u,00EN
Combining (3.16) and (3.17) together yields

- S D
A < luollfyer. (3.18)

Further, by (3.14) and the fact that (u, v.) is a positive least energy solution of (3.9), it follows

A > limsup A.(R)
-0

= limsup J(ue, ve)
-0

28

pi-2¢ e B
s gs yusa EVf b‘)dX

. 1
= limsup| —([[uellfys0 + [[Vellysr) =
e0 |P € 5o

= limsup
-0

1
P p
e 28](||u5||ws,p + Iellor)

S
2 (ol + Voller)

s i
=yl >4 (by (318)),

which is a contradiction. Hence, vy # 0, and again by strong maximum principle, we obtain vy > 0 in Bg(0).
Moreover, as (U, V) is radial and u, — u, a.e. and v. — v, a.e. (up to a subsequence), we also have uy, vy are
radial functions. Hence, (ug, Vo) is a positive radial solution to (1.13). O
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Proof of Theorem 1.6. To prove the existence of (k(y), €¢(y)) for small y > 0, recalling (3.2), we denote F(k, ¢, y)
instead of F(k, ¢),i =1, 2 in this case. Let k(0) = 1 = £(0), then F(k(0), ¢(0), 0) = 0,1 = 1, 2. Clearly, we have

oF, _0F p-p
ok (K(0), £(0), 0) = —-7(k(0), £(0), 0) = Nl >0

and

oF, 3R i
¢ K@), 60),0) = —~(k(0), £(0), 0) = 0.

Therefore, the Jacobian determinant is J(k(0), €(0)) = (p;p%p)z > 0, where F = (F, F,). Therefore, by the
implicit function theorem, k(y) and ¢(y) are well-defined functions and of class C! in (-y,, y,) for some
Y, >0 and E(k, ¢,y) = 0 for y € (=), y,). Then (k(»)'/PU, é(y)'/PU) is a positive solution of (S,). Since
lim,,_o(k(y) + €(y)) = 2. Thus, there exists y; € (0, y,] such that k(y) + £(y) > 1 for all y € (0, y,). Therefore,
by (3.12), we obtain

1]
o

TKOIPU, €IP0) = 1 k) + oSt > sb

This completes the proof. O
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