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Abstract: In this work, we analyze the asymptotic behavior of a class of quasilinear elliptic equations defined
in oscillating (N + 1)-dimensional thin domains (i.e., a family of bounded open sets from R¥*1, with corrugated
bounder, which degenerates to an open bounded set in R¥). We also allow monotone nonlinear boundary
conditions on the rough border whose magnitude depends on the squeezing of the domain. According to the
intensity of the roughness and a reaction coefficient term on the nonlinear boundary condition, we obtain
different regimes establishing effective homogenized limits in N-dimensional open bounded sets. In order to
do that, we combine monotone operator analysis techniques and the unfolding method used to deal with
asymptotic analysis and homogenization problems.
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1 Introduction

In this work, we are interested in analyzing the asymptotic behavior of the solutions of a quasilinear elliptic
equation defined in the following class of thin domains:

RE={(x,y) ERMl:xew,0<y< sg[%]} for € >0, 1.1

where w C RN, N 2 1, is an open, bounded, connected, and regular set with g : R¥ — R satisfying:

g is a lower semicontinuous function in L*(RY), strictly positive, and L-periodic (i.e., there exists L € RY, L = (Ly, ...,Ly), such
that

gy + Lig)=g(y), forallyeRY, and i=1,..,N, (HD
where {e,, ...,ey} C RY denotes the canonical basis of RY). Also, we set
& = yfg“ig},g()’) >0, and g = y“é%’}vg()’)

The parameter a in (1.1) is assumed to be positive, and establishes the roughness on the upper boundary of
RE. OiR¢ is the lateral boundary of R* given by:

* Corresponding author: Jean Carlos Nakasato, Departamento de Matemética Aplicada, Instituto de Matemética e Estatistica da
Universidade de Sdo Paulo, Rua do Mat&o 1010, Sdo Paulo, SP - Brazil, e-mail: nakasato@ime.usp.br

Marcone Corréa Pereira: Departamento de Matematica Aplicada, Instituto de Matematica e Estatistica da Universidade de Sdo Paulo,
Rua do Matdo 1010, Sdo Paulo, SP - Brazil, e-mail: marcone@ime.usp.br

8 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.


https://doi.org/10.1515/ans-2023-0101
mailto:nakasato@ime.usp.br
mailto:marcone@ime.usp.br

2 =—— Jean Carlos Nakasato and Marcone Corréa Pereira DE GRUYTER

z)

ale =

(x,y)eRN+1:xeaw,0<y<eg[8

The upper boundary of oR¢ plays an important role in this work and is denoted by:

e
E .

Note that, according to [4], R¢ is a purely periodic thin domain in R¥*! since it exhibits a periodic structure
set by the L-periodic function g. Its representative cell is the open set

Y*={,¥) ERVxR:y €Y, 0<y, <g(y)} 1.2)

where Y C RY is the RN-rectangle

= l,(x,y) ERN:xEwy=¢g

N
v=[10,L), L=(L,..Ly).
i=1
Indeed, R¢ can be seen as the union of the cell Y* appropriately rescaled in the vertical and horizontal
directions by the terms € and &%, respectively.
We deal with the following quasilinear problem with nonlinear boundary condition defined in R®:

. Yy ~ pes

- div alx, —, E,Vuf] = féin R?,
L X €|ne B i X s]= BIyeE; £

a vl Vu]q + gPh|x, a,g,u ePHEIn T%, 13)
X

a F% Vuf]rf = 0on OR®\(T¢ U 9;R®),

uf = 0in 9;R¢,

where n¢ is the outward unit normal to dR¢, f¢ € LP'(R®), HE € LF'(I¢), and p™ + (p’)™! = 1. The functions a
and b are Carathéodory functions that satisfy monotone and usual p-growth conditions in the third variable
(see Section 2). We set homogeneous Dirichlet boundary condition on the lateral borders. On the top, we have a
type of Robin’s nonlinear boundary condition (which models the reaction catalyzed by the upper wall), and on
the button, we have homogeneous Neumann boundary condition. The term &#, set by the parameter B, is a
reaction coefficient term that acts on the nonlinear boundary condition on I'* and depends on the squeezing of
the open set Ré. Such term can be used to model many reaction-diffusion processes, which naturally arises, for
instance, in chemical engineering, since one shall consider the effects of Newton’s cooling law. Here, as one can
see in the following results, depending on the reaction coefficient €#, the cooling from the outside through the
upper wall determines how the limit behavior will be. In particular, it is related to microfluidic applications
(see [40] for more details). For simplicity of our arguments, we will assume

HE = b|x

xy h], (14)

)Sa)g

with h € Wi (w).
Under these conditions, we know that the variational formulation of (1.3) is given by:

Ja .
)

X )y
X g Vut |Vodxdy + Sﬁ‘[b X g ut [pdS

(1.5)

Iff(pdxdy + eﬁj'b X, =, 2 h](pdS Vo € WEP(R®),

where
WP (R®) = {p € WIP(R®) : uf = Oon OR®}

is a Sobolev space equipped with the norm:
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1
p

(1.6)

10N heceey =

1
;}@vml’dxdy

Furthermore, for each fixed € > 0, the existence and uniqueness of solutions are guaranteed by Minty-
Browder’s theorem. Here, we are interested in analyzing the asymptotic behavior of the solutions ué as
€ — 0. We determine the effective problem of (1.3), as the domain R becomes thinner and thinner, although
with a high oscillating boundary at the top and different order of reactions.

Indeed, the open set R* C w x (0, g;) for all £ > 0, and then, it degenerates to the open set w as the
parameter € goes to zero. Hence, due to the thickness of R¢ at € = 0, it is expected that the sequence of solutions
u® will converge to a function depending only on the variable x € w and that this function will satisfy an
equation of the same type as (1.3) but in w C R¥. Here, we will determine this equation that will depend on the
geometry and roughness of the thin domain, as well as, the reaction term on the border.

The parameters a and 8 define, respectively, the intensity of the roughness of the top boundary and the
effect of the flux given by the nonlinear reactions on the border. As we have mentioned, the homogenized limit
equation will depend tightly on these numbers. Concerning the parameter a, we will analyze three distinct
cases. We will consider the weak oscillatory case (0 < a < 1), the resonant or critical case (a = 1), and the high
oscillatory one (a > 1). We will obtain different limit problems according to these three cases and § varying in
R. We will see that f = 1 is also a kind of critical value. When a > 0 and 8 > 1, we are able to analyze (1.3) in a
satisfactory way. But when < 1and p € (1, 2), we need to add some conditions that will depend on the values
of a, B, and p € (1, 2) (see Proposition 4.1). In particular, we will treata > 0, p = 2, and € R improving the
recent results obtained in [27] for N=1,p = 2,a > 0, and € R. In fact, our main goal here is to generalize
previous works from bidimensional oscillating thin domains to (N + 1)-dimensional ones for a much more
general class of elliptic equations, which also includes nonlinear boundary conditions.

We will combine techniques involving the analysis of monotone operators and the so-called unfolding
operator method from homogenization theory. It is worth noting that the unfolding operator was initially
developed as an effective method to deal with homogenization problems in partial differential equations (see,
for instance, [14,15]). See also the recent monograph on the subject [16] in order to have a nice and broad
perspective of this technique. In [6], this method was adapted to bidimensional thin domains with locally
periodic oscillatory boundaries, and in [7] with very mild regularity assumptions. In Section 3, we recall such
results that can be directly adapted to R¥*1,

As one will see, if f¢ and H® converge, in a certain sense, to functions f and H, respectively, the
homogenized equations of (1.3) can be formally described as follows. Let us first assume S = 1. Hence, if
a = 1, the so-called resonant oscillating case is obtained by Theorem 4.3 and is given by:

-div A(x, Vu) + v(B)B(x,u) = f + v(B)Hin w,
u=0on ow,

.7
where A and B are the following monotone operators defined for z € RY:

Alx, z) = Ia(X,yl , s, (2,0) + vylyZXz)dyl dy, and

y*

INXN 0
0 0

Bo,2)= [ b0ey,y,, D)o,

A, Y*
X, is an auxiliary function that is defined for each z € RV. It is the unique solution of

Ia(x,yl,yz, (2,0) + V,,, X))V, pdy,dy, =0, V¢ € WwyP(Y*), and ae. x €RY,
Y*

with IY*deyl dy, = 0, where WyP(Y*) € WP(Y*) is the Sobolev space of L-periodic functions on variable y,,
which is given by:

WyP(Y*) = {p € WP(Y*) 1 Y(y; + L, y,) = Y1, ¥,), V(1. Y,) € Y*).



4 —— Jean Carlos Nakasato and Marcone Corréa Pereira DE GRUYTER

The existence and uniqueness of X;, for each z € RY, are guaranteed by the Minty-Browder’s theorem.
Also, the forcing terms f and H are given by:

F0 = [Fooyy)dydy, and A0 = [ bex,y,,3,, he)o(), x € o,
v* 9, Y*
where f is the limit of the unfolding operator applied to the sequence f* (see Section 3 and Theorem 4.3). The
reaction term v in (1.7) depends on the parameter § and is given by:

1 ifB=1,
VB =10, it p>1.

Thus, under the conditions @ = 1 and f > 1, the nonlinear boundary condition will be captured by the homo-
genized limit equation, only if § = 1.

Next, ifa € (0, 1), then we are in the weakly oscillatory case (see Theorem 4.4); the limit equation of (1.3) is
the same one given by (1.7), but now, with the monotone operator A set by a different auxiliary function. Now,
the auxiliary function X, is the unique solution of:

JAooy, 2+ v x)w,pdy, =0, vy e W),
Y

where
gOyy)

INXN I a(xxyly))z,f)d)ﬁ in YX [RN'
0

A(x,yl,f) = 0 0

Note that 4 involves a kind of average of a, and then, it can be seen as a nonlocal monotone operator.

Now, let us suppose a > 1. Here, see in Theorem 4.7, we still have to split the analysis in two other cases:
l<a<fandl<pf<alIfl<a<p,the limit equation also assumes the form (1.7), but in the other side, the
operators A and B are given by:

Iy 0O

A=

Ia(xyylsyZJ E + vy1Xf)dy1dy2 and
v’
B(x,2)= b0, y;, 80, 2)Iyg()ldy,,

Y*

where
Y*=Yx(0,g).

See that Y* C Y* and it is associated with the non-rugged part of the thin domain R¢. Indeed, the expressions
obtained for the operators A and B here are in agreement with the results of the previous work [5]. Since the
roughness on the top of R? is too high, the diffusion in this part must vanish setting diffusion coefficients just
defined in Y*. We also obtain a distinguished forcing term A as a different coefficient v. They are set by

_ 1, if p=aq,
= b0y, 80, WDITgO] and o) =\ 4o

Note that now, the limit equation (1.7) will capture the nonlinear boundary condition only as § = a. Also, we
point out the dependence of the terms H and B with respect to V,,g. It emphasizes the effect of the profile of the
thin domain in the limit problem even in this case.

On the other hand, if 1 < § < a, the family of solutions u¢ will converge to the function h, which sets the
nonlinear boundary condition (1.4). Due to the geometry of the thin domain, we can extend the function h from
Wy (w) into Wy;’(R€) obtaining

eVP||uf - h|pgey » 0 as € - 0. (1.8)

Finally, if we have § < 1, Proposition 4.1 guarantees, for any y > 0, that
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el b, pz2 a>0,

1 , eF Y v eh|,  1<p<2 a<i,
E||u5 = h|lpgey S €Pc + C-

[el-ﬂ-zpfy + £Zz-yp+1_a], 1<p<2, a>1

Thus, we obtain (1.8) for some appropriate combinations of a and p with § < 1. In particular, (1.8) holds ifa > 0
and p = 2. Under these conditions, the thin domain perturbation affects the solutions in such way that the
nonhomogeneous boundary condition, given on the border, will establish the asymptotic behavior of the
solutions at € = 0. As we have pointed out, it is in agreement with [27], and it is now accomplished for a
larger class of quasilinear elliptic equations.

We note that somehow, the homogenized limit operators A and B, reproduce the properties of the
operators a and b set in Section 2, which guarantees the existence and uniqueness of the homogenized solution
(1.7) in each mentioned case (see Proposition A.1). Also, we point out the dependence of the auxiliary functions
X on: (i) the function a, which sets the quasilinear equations; (ii) the geometry of the thin domain, given by the
function g; and (iii) the intensity of the roughness established by the parameter a. This way we obtain the
explicit dependence of the homogenized equation on the perturbed and original Problem (1.3).

1.1 Some classical examples

In order to illustrate our results, we will give some examples. They include the Laplacian, the p-Laplacian, and
the pseudo p-Laplacian operators. Since we do not have homogenized equations for 8 < 1, we will focus on the
case sethy f > 1.

For instance, let § 2 1, a(x, y,,¥,, &) = £ and b(x, y,,y,, z) = z. Also, let us take f%(x,y) = f(x) € L%(w) for
all € > 0. Then, (1.3) becomes

—Aué = f(x) in Ré,

out

o + gPue = ePh on ¥,

ou’

o 0 on 9R\(T¢ U 9;R®),
ut =0 on o;R¢,

and so, when ¢ — 0, the family of solutions u¢ will converge to the unique solution of the problem:
|0, Y*|

-div (AV) + (BT

u=f +vp)Hin w,
u=0on dw,

where A = (ay) is a constant matrix, called by the constant homogenized matrix of coefficients, with

1 0X; ox . |
a; = 1+ ——|dy,d and = —,i#j, Lj=1,.,N, ifa=1,
' lY*lJ* oy ) " oyt Y
Q= andag=0,i#j, ij=1.,N, ifa<1
bg(g)y j=0,i%j, ,j=1.,N, ’
Gi=S anday=0,i%j, ij=1.,N, ifa>1,

&y

where -2

denotes the ith partial derivative with respect to the variable y, € R"; (p)y is the average of any

1

measurable function ¢ defined in Y: (¢)y = ﬁf{pdy, and for eachi = 1,..., N, X; is the unique solution of the
Y

auxiliary problem:
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[ei+ 9y, %09, 0dy dy, =0, with [Xdy,dy, =0, vy e W), 1.9)
Y*

Y*
The forcing terms are given by:

_ _ 0, Y*

Foo=fo0 and A = %hm, 1.10)
where |Y*| and |9, Y*| are, respectively, the Lebesgue measure of the sets Y* and 9,Y*. The representative cell
Y* has been introduced in (1.2), and 9,Y* is its upper boundary:

0,Y* = {(yl:g(yl)) € RN 'y € Y}

See that
¥4 = [gody, and [9,7% = [T+ [VgTdy,.
Y Y

It is worth noting that we are improving the results from [2,5-7, 27,28] for any N = 1. Now are needed N
auxiliary problems instead of one to determine the homogenized matrix of coefficients A. The dependence of
the auxiliary functions X; with respect to the thin domain is explicit and is given by the open set Y* and
function g.

Another important example is the well-known p-Laplacian. It was previously studied in [3,31] with homogeneous
Neumann boundary conditions in bidimensional thin domains. Indeed, if we take a(x,y,,y,,¢) = |EP2E,
b(x,y,,¥,,2) = |z|P"%z, and f¢ = f € [*(w), we obtain

—Apuf = f(X) in R,
-2 auf -2 -2
|Vue [P o " ePlus|P-2us = eflhP-2h  on T,
w22 =g on RE\(I® U 3,R?)
6’18 l 3
ut=0 on ojRé.

It satisfies our conditions and possesses as limit problem of equation (1.7). The forcing terms are the same set
by (1.10), and the operator A is now nonlinear and given by:

1
o [T XN Xty dy,, a= 1,
1Y*|
Y*

_ P2
A = W, a<l,

i p-2 >
<g>YIEI §& a>1,

where, for each (&, ...,&y, 0) € R¥*, X; is the unique solution of

.[ 1€, 0) + Wy, XelP2((€, 0) + Yy, Xe )V, 0y, dy, = 0, Vi € WyP(Y™),
Y*

with IYKgdyl dy, = 0. In this case, even though A still satisfies the monotonicity properties of the p-Laplacian,
the effective Problem (1.7), in general, is not a p-Laplacian equation (as is the case considered in [3,31] with
N =1). This feature appears due to the intricacy of the auxiliary problem and is in agreement with the
pioneering work [18], which deals with quasilinear equations in perforated domains of RY. On the other
side, if p = 2, it is not difficult to see that we are able to recover (1.9) writing the solution X; = nglfiXi with X;
given by (1.9).

Another interesting case is the so-called pseudo p-Laplacian operator. It is given setting
ax,y;,¥,, &) = (&IP2&, ....|en+1P~*En+1) and b(X, y,, y,, 2) = |z|P~%z:
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s oflowftow) ofjow o, in B¢
i-10X;| | 90X 0X; ay|| oy oy ’

N p-2 p-2

out|” “out ,  |out| " ouf

—| —pEf+|—| —n°+eBluEpP? =eBuP2h  on T,
Zl x| ox™ |y | Byt In|
N p-2 p-2

out ot out out

— | I pg+|=| =pE=0 on ORé\(I'¢ U 9;R?).
Zl ox; | ox ‘ | oy ¢ o
=0 on OjR¢.

In this case, the homogenized matrix of coefficients is given by:

1 N+1 aXE p-2 [ 6Xf l
— g+t | e+ tlaydy, fora=1,
|Y|Y[,»:z1 T I T et
N -2
ACE) = &P~ &

© ;7<g>y<gl‘i”>l"1 for a <1,
o5 g for a>1,
&y i3

where X;, for each £ = (&, ...,&y, 0) € RV*1, is the unique solution of

N1 ax; [P~ X | oy )
&+ — &+ —|=——dy,dy, = 0 with |Xgdy,dy, =0, Yy € W,P(Y*).
;/[l:zl Loy Cooyy oy Y J; £ !
. o _ o
Here, we still denote ETARRET

Now, in order to finish the introduction, let us give a brief historical on related problems. We start by
mentioning the pioneering works [23,36,37], where the authors studied reaction-diffusion equations posed in
standard thin bounded domains, i.e., a family of (N + 1)-dimensional bounded regions, which shrinks to an
open bounded set of RY without oscillatory boundary. Quasilinear elliptic problems in such thin domains can
be seen in [13,34] (see also [38]). In thin domains with oscillatory boundaries, we mention [2,25] where the
Laplacian operator has been dealt with classical tools of homogenization theory (such as the extension
operator method and the asymptotic expansion). See also [27,28,30] where related issues have been studied
by the approach given by the unfolding method. The p-Laplacian in oscillating thin domains has been recently
studied using the classical approach in [29] and as a consequence of the unfolding method in [3,31].

We also cite [4-7,12, 26,33,35] for works treating several types of thin domains with rough boundaries and
distinct boundary value problems (reaction-diffusion, Stokes and Navier-Stokes equations, and others). For
related topics, we still indicate [11] for a monotone problem in domain with oscillating boundary and [21,22],
where the authors studied monotone problems with nonlinear Signorini boundary conditions in a domain
with rough boundary (not thin one).

Note that all these works (and many others in the literature) deal with issues related to the effect of
thickness and roughness on the behavior of solutions of partial differential equations. In fact, thin structures
with rough boundaries naturally appear in many fields of science: fluid dynamics (lubrication), solid mechanics
(thin rods, plates, or shells), or even physiology (blood circulation). Therefore, analyzing the asymptotic behavior
of different models on these structures and understanding how the geometry and the roughness affects the
problem is a very relevant issue in applied science (see, for instance, [1,8,9, 19,20,32, 39,41]). Finally, we cite [10,17]
for questions related to quasilinear problems regarding existence, asymptotic, estimates, and related questions
for general elliptic quasilinear problems.

This article is organized as follows: in Section 2, we introduce more notations setting our conditions. In
Section 3, we discuss the unfolding method for oscillating thin domains in RN*1. The proofs of our main results
are in Section 4. We also have an appendix Section A where the results concerning the well posed of the limit
equations are obtained.
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2 Settings of the problem and notations

In this section, we introduce some notations setting the necessary conditions that will be needed to introduce
the unfolding operators and prove our results. First, we denote by c, g, ¢, ¢;,... positive constants that
independent of & > 0. Next, we establish an appropriated partition of the open set w C RY. Since g is L-per-
iodic, for some L = (L1, ...,Ly) € RY, we can consider the following rescaled rectangular blocks Y7 € RY for
each k € zV

YE={0q, .,xy) ERN : e%;L; < x; < e%k; + DL;, i=1,..,N}
Here, we basically rescale the box Y € RY by 2 and shift it by an integer vector also multiplied by £%. Note that

it is in agreement with the classical unfolding operator techniques developed to fixed domains, for instance, in
[14]. Also, we introduce the following open sets illustrated in Figure 1.

Ke={kezZN : e Y+ k)N w * B},

wi= U{Yf: ¥ Cwl and wf = w\w§. @D
kek®

Now, let us rewrite each x € w in an appropriated form. For each x € w, there is a unique diagonal matrix

with integer entries, which we denote by [%] and a unique {%} € Y, such that, for each € > 0,

X
L + 8“{;}.

X
X= e“[—g 2
We also denote

R(;e: (X,y)E[RN+1;X€w08,O <y<gg[% and
(2.2)
Rf = (X,)’)ERN+1;Xwa,O<y<gg[£ )

/ I~

~/

Figure 1: Partition of the domain w.
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Next, we describe the conditions on the Carathéodory functions a and b used to set our perturbed Problem
(1.3). For that, let us set the following class of monotone functions:

Let [RN X RN x [R X RM 3 (XsylyyZJZ) g ﬂ(X,)’pyz; Z) €
RM be a function, continuous in x, L-periodic in variable y,, (H2)

satisfying A(x,y;,y,,0) =0 ae. (x,y,,y,) € R¥ x RN x R.

If p 2 2, we assume

(ACY, Yy 1) = ALYy, 20), - — Z) 2 € |21 = 3P,

(H3)
A Y5 Yy ) = ALYy, 2)| < cla = 2|12 + (2P < clz - 2|1+ |2] + |z])P?
a.e. (x,),,y,) € R¥ x RN x R, for some constant ¢ > 0 independent of x,;,y, and z;, i = 1, 2.
If1<p <2, then
(AY, Yy 7)) =AY Yy, 20), 2~ ) 2 €z = BPA+ 7] + |2)P72 (H4)

[AX, Y, Y, 2) = ACGY, Yy, 2| S € |2 = P72,

a.e. (x,);,y,) € R¥ x RN x R, with ¢ > 0 independent of x, y,,y, and z;, i = 1,2.

Then, we take functions a and b that satisfy hypotheses (H2), (H3), and (H4) with M =N+ 1and M =1,
respectively. Furthermore, under this hypothesis, the weak formulation of Problem (1.3) is (1.5) and it has a

unique solution uf € Woljp (R?), thanks to the Browder-Minty Theorem, where

WP (R€) = {p € WLP(R®) : uf = Oon 9;R¢}
is the Sobolev space equipped with the norm:

1

p

23)

(][

1
= p
| wopaxay
Ré‘
From now on, we may use the following rescaled norms, which are very useful in thin domain problems.
We denote
lolllrre) = €7 (|9l Vo € LP(R®),1< p <, and
elllwiege = €7 l@llwtege Yo € WHP(R?), 1< p < w.
For completeness, we still set |[|¢]||.=&*) = |||
Remark 2.1. Now, let us see that the usual norm of W'P(R?) is equivalent to the norm (2.3). Thereunto, let

¢ € Coy(R?) (the set of functions C* with zero value in the lateral boundary of R?) and extend ¢ in the X plane
by zero. Note that

¢(X,)’) = ¢(X’Y) - ¢(X + XO:y)

for some xy = (Xgq, ..., Xon) With (x + X) € dw. Consequently,

[xol n
9¢ Xo Xoi
pooyl=| [ T2+ e,
oLy ! Zlaxi |Xol |Xol
1ol il v
N |IXo 14 Pl|xo D’ Py
99 Xo ] Xoi
< s eyl | oae | [| 22
izzl ‘([ 0x; |xol ‘([ [0l
| X0l %
N |I*0 6¢

<[diam(@) ¥ | [

i=1]

14
Xo
X+ —t, de| .
ol y]‘

0X;
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Therefore, if we take the power p and integrate in R*, we obtain by Fubini’s theorem and a change of variables
that

N Ixl

_[I¢Ipdxdy <cy[]

llRO

9.
0x;

12
—|t y] ‘ dedxdy < c [ % pPdxdy
RS

for some ¢ > 0 independent of . Now, if (x, y) € Rf\[w % (0, £g)], we can write

600) = 9003 - o e + ol o2 - o+ 50,62

for some (x + Xxg) € dw. Since

o) /

8o 1]

o(x,y) - q)[x, 87] < cev ‘ —(x, s) ds|,

and then,
P

[ oy - |, e dxdy <cerf| 25| dxdy.

R* R®
Hence, one can conclude that

ﬁWM®<ﬁ ‘M®+ﬁwwmw 2.4

for some ¢ > 0 independent of €. Thus, the usual norm of WP(R?) is equivalent to the norm (2.3).

Finally, we finish this section pointing out that the variational formulation of (1.5) is equivalent to the
variational inequality (see, for instance, [24])

_[a @ |(Vue - Vo)dxdy + £f Ib[ — ,rp](uf - @)ds
- (2.5)
< Iff(us - @)dxdy + Eﬁﬁ’ X ; h\w - p)dS, Vo € Wy (R).
R® re

X
X,F

3 Unfolding approach

In this section, we briefly introduce the unfolding operators pointing out their useful properties. For details,
the reader must consult [6,7,30]. First, we will define the unfolding operator to functions set in open bounded
sets of R¥*1, As one will see, the definition and the proofs of the properties are very similar to the ones
performed in [6,7]. In the sequel, we define the boundary unfolding operator for functions set on the border of
Lipschitz open sets according to [27] and references therein.

3.1 Unfolding operator
We define the unfolding operator in oscillating open sets as follows:

Definition 3.1. Let ¢ be a Lebesgue measurable function in R¢. The unfolding operator 7, which transforms
functions from R? into w x Y*, is defined by:
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X
(P[gal_ L+ &%, ey ] for (x,y,,y,) € w5 x Y*
n(p(x’yl’yz) = et 1 2 172 0

0 for (x,y,,y,) € wf x Y¥,
where the sets w§ and w{ are given by (2.1).
Next, we announce some properties of 7, whose proofs can be easily adapted from [6,7].
Proposition 3.2. The unfolding operator satisfies the following properties:
(1) 7 is linear;

2) Toy) = TLo)T(W), for all 9, Y Lebesgue measurable in R?;
B) Vo ELP(R),1<p< oo

7o)

X1 Y|
X’L‘“]’ 8] (%, y),

for (x,y) € R;, where R{ is the set given by (2.2);

(4) Let ¢ a Lebesgue measurable function inY* extended periodically in the variable y,. Then, 9(x,y) = (p(gx—a, f)

is measurable in R¢ and

TE((pS)(XJyl 1y2) = (0())1,)’2); V(X)ylxyz) e w(‘)&‘ X Y*'

Moreover, if ¢ € LP(Y*), then ¢* € LP(R®);

(5) Let ¢ € L'(R®). Then,
—ijT (x ydxdy, d —1J' (x, y)dxd —1j (x, y)dxd —1J' (x, y)dxd
Y| g X, Y15 Y, Ly, &y, ER:P »yaxay £R€¢ »y)axay ERfD » yaxay,
0 1

where R§ and Rf are given by (2.2).
(6) For all p € WYP(R?),

0 99 .
V). Tep = €T Vo and a']}w = 8‘7}5 a.e. inwxY*

(7) Yo € LP(R®), T(9) € LP(w x Y*),1 < p < o, Moreover,

I¥])?

1
|Y]) ,
e lollzrge < e llollzrze);

[17e@lr@xys) =
(8) For ¥ € Cy(w x Y*) (the periodic functions in y, variable), define {¥¢} by:

Pe(x,y) = ¥

Xy
X o E]’ V(x,y) € R

Then, W¢ € C(R?) and

X
ﬂ(qjg)(x;)ﬁ’)’z) = lp Ea F

I, + sayl,yl,yZ],
for all (x,y,,y,) € w5 x Y*
Now, let us introduce the following definition:

Definition 3.3. We say that the sequence ¢¢ € L'(R?) satisfies the unfolding criterion for integrals (u.c.i) if
%IR5|<PSIdXdy - 0, when & — 0.

We have the following result:
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Proposition 3.4. Let 9¢ € LP(R¢),1 < p < o, with|||¢¢|||rre) uniformly bounded; u¢ € LI(R) withp™ + q1 = r!

forr>1; ¢ € LP (w), with p™ + (p")™! = 1; and ¢ € C=(R?) defined as in the item 3.2 of Proposition 3.2. Then,
() {p%} satisfies the u.c.i.

(i) {pu‘} satisfies the u.c.i.

(iii) {p°¢} satisfies the u.c.i, for1 < p < o,

(iv) {@*W¢} satisfies the u.c.i.

Proof. The proofs are similar to those ones given in [6, 7] for bidimensional open sets. O

Next, let us state some convergence properties of the unfolding operator. The proofs are very similar to the
bidimensional case and, therefore, will be omitted.

Proposition 3.5. The following convergence holds:
(1) For ¢ € LP(w),1<p < o,

Tep — @ strongly in LP(w x Y*).

(2) Let Y € C(w x Y*). Define ué(R%) as:

Xy
I a)£

ut(x,y) = ylx ,(X,y) € R,

Then,
Teut — ¢ strongly in LP(w x Y*),1<p < o,
We write ¢(x,y) = V(x) + ¢,(x,y), where V is defined as follows:

€8y
V(x) = éj—(p(x, s)ds a.e. x € w. 3.1
09

Proposition 3.6. Let 9, € W'P(R?),1 < p < », with |||@,||lwirzs) uniformly bounded and Vy(x) defined as in (3.1).
Then, there exists a function ¢ € W'P(w) such that, up to subsequences,

V. = @ weakly in W'(w) and strongly in LP(w),
1loe = @lllrey = O,
Te0, — ¢ strongly in LP(w; WP(Y*)).

Moreover, if us € Wy’ (R®), then u € Wy™(w).
Finally, we have:

Theorem 3.7. Let ¢¢ € WYP(R?) for 1< p < o, with |||@¢||lyrogey = € 7V/P||9¢|lwiogey uniformly bounded. Then,
there exists ¢ € WP(w) and ¢, € LP(w; W,}’p (Y*)) such that (up to subsequences)
(@) ifa =1, we have

T, = ¢ strongly in LP(w; WLP(Y*)),

T%p, = V%o + V0, weakly inLP(w x Y*),

Te0yp, — 04,0, weakly in LP(w x Y*).

(b) Ifa <1, we obtain 3,,p, = 0 and
T9, = @ strongly in LP(w; W1P(Y*)),
T, = o + V0, weakly in LP(w x Y*).

Remark 3.8. It is worth noting that the function ¢, is defined up to additive functions depending on x.
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3.2 Boundary unfolding operator

Here, we introduce the boundary unfolding operator. We need the following condition:
Suppose that g:RY - R satisfies Hypothesis (H1) and is a Lipschitz function with Vg € L*(RY).

First, let us prove a result concerning an uniform embedding in &:
Proposition 3.9. For any ¢ € WP(R?), it holds

%

1/p’
&€
‘ oy

lolleaey < C

1
+ i 10llres |
17
rey €7

13

(HS5)

where 0 < C = C(e, g, ||Vgllz=®™) is such that C is independent of € for a <1 and &€ <1. For a>1,

Cle, &, |IVgllr=w™) = & 7'C(gy, ||V8]l1=w™) Whenever e < 1.

Proof. Let ¢ € C(R?). Note that

X 1/p

X “ Sa]a(p ) & ﬁ]
?]] o, z) = I E(X’ s)ds < (eg)"? !

d

4

a p
¢ (x,8)

— d
oy §

o\, €8

for any z €

&g 8%] - eg)/2, &g

It is clear that

g RES

Take the power p in both sides of the aforementioned equality and put it together with (3.2). Then,
2]

2foerc]

0

X, €8 - o(x,z) + 9(x, 2).

a 12

0P|x, eg a—ﬁ(x, s)| ds + coP(x, z).

Integrate it with respect to z between &g

X .
F]’ we obtain

g f]

ds +c¢ I 0P(x, z)dz.
0

gia] - £g,/2 and &g

A
8—);]] < ePc I

0

a9 i
3y (x,8)

ECQP|x, &g

Finally, multiplying by \/ 1+ |e"9Vg(x/e%)* and integrating in x € w lead us to:

- 99
ecllollfpe < €71+ €22 Vg e gon, I‘ 5y 69)
2l
which implies the result due to assumptions on function g.

Proposition 3.10. For ¢ € WLP(R?),

14

99
LP(R)

€||(P||€P(r£) +éef ay

leleee < €

with C > 0 a constant depending only on g; but independent of €.

14
dxdy + c,[T+ e |Vglf- ) [loPdxay,
RS

(3.2)
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Proof. Let ¢ € WLP(R?). Note that

eg(x/e%)
o(x,y) = o(x, eg(x/e?)) - 3': a—ﬁ(x, s)ds.
Putting the power p in both sides leads us to:
eg(x/e%)
lpC, YIP = 27 |o(x, eg(x/eM)P + 2P

a—z(x, s)ds
0
eg(x/e®)

<22 |pCx, eg(x/e NP1 + 2 (Vg + 22(ge)? |

0

P
ds,

29
3y x,s)

where the last inequality was obtained due to a Holder’s inequality. Next, we integrate with respect to y
between 0 and £g(x/e%) and then integrate with respect to x € w. We obtain

p
Al
LP(R®)

From here on, the results of this subsection can be found in [27,28,30]. We state them for the convenience
of the reader. Next, we define the boundary unfolding operator.

%

p p -1a.p-
||¢||LP(R€) < 2g18 ||(/)||Lp(r9) + nglp et

Definition 3.11. Let ¢ be in LP(I'¢). We define the boundary unfolding operator 72 by:

¢[8“ % L+ g%, eg(y)|  for (x,y) € wg x Y,

0 for (x,y;) Ewf xY

TPo(x, y,) =

where the sets w§ and w{ are given by (2.1).

Now, in order to introduce some properties of 72, let us still set

0. Y*={(y;,g(y)) ERN*1:y €Y}
%] %]
el el

Proposition 3.12. The boundary unfolding satisfies the following properties:
@) 72 is linear and T 2T b = T2 oy), for all ¢, € LP(T?).
(2) For any ¢ € LP(T®),

£=1lx, egl € RM1: x € wét and Tf = 4|x, eg ERM1: x € wf

Jods - [oas = [pds - 1 [ Troddxdoy,),
r I; T, 7l Wx0Y*

where

d.(y;, g0n)) = de(y,) = \/W
JL+ v 0P
(3) Let ¢ € LP(T). Then,
|7 2pd!?|

Lp(wxauY*(S“[e’; ]L+say1 )) < Yll/p ”(P | ILP(I‘E) .

(4) Let ut € WYP(R®) be such that T.ut — $ weakly (respectively, strongly) in LP(w; WP(Y*)). Then,
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Thue — $ weakly (respectively strongly) in LP(w % 9,Y*).

Remark 3.13. If a < 1 in item 3.12 of Proposition 3.12, then d, —
Ve |
VI Vg P
Note also that for £ small enough and a > 1, we have

W, ase— 0.Ifa=1,thend, - 1;
A\ 1

and ifa > 1, e*'d, — = d(y,). Also, if B 2 a > 1, we have ¢/'d, — 0.

17 20l wxaur®) < 1T 200 Pllrxa,rs-

4 Main results

In this section, we will show the main results of this article. The first one regards the uniform bounds of the
solutions. Note that, in some particular cases, we are also able to obtain rates of convergence. In the sequel, we
will describe the asymptotic behavior of (1.3) with respect to the roughness parameter a > 0. We will prove:
Theorem 4.1, concerning the resonant case given by a = 1, Theorem 4.2, associated with the weakly regime set
by a € (0,1), and Theorem 4.3, where the strongly case is established setting a > 1.

Proposition 4.1. Suppose that |||f¢|||rr@s) < ¢, with ¢ > 0 independent of €.
Then, for some c > 0 independent of € > 0, the weak solutions of (1.5) satisfy

uf = hlllwroge < c
forallp € (1, +),a 2 0, and B € R. In particular, |[|u®||lyrrge) is uniformly bounded.

Moreover,
(1) If0 <a <1, then

(U] Fprey < c, p>1 B=1,

|[u® = Rllgpqe) < ce', pz2 p<1

I = B, < 0[81‘” ters| 1<p<2 B<1,

2y
Wherey>0,1—/3—;>0.
(2) Ifa > 1, then
Ul lpp ey <, p>1 p=1
ut - h||Ppe, < cel b, p=2, <1,
LP(T%)

2, 2)
97N |uf = h|ffpqe, < c[s“‘ﬁ‘% + eﬁ], 1<p<2, B<1,
2
Wherea—ﬁ—?>0,y>0.
Furthermore, for B < 1,
el=h, p=2 a>0,

17 + g2 1 2, a<1
EVPTDP + g2p < < a <
= Rl < €Pc+ ¢ ') p=2 ’

[81_’3_2; + 8%*1‘“], 1<p<2, a>1

Proof. Let us take ¢ = €7'(u® - h) in (1.5). Next, let us add, in both sides of the equation, the term:



16 —— Jean Carlos Nakasato and Marcone Corréa Pereira DE GRUYTER

1
oo

X, 81 % Vh](Vuf ~ Vh)dxdy.

Then, we obtain

X
X, —a,z,Vu‘?]—a
et ¢

X, 81 % Vh]](wf ~ Vh)dxdy

1
e
i Xy Xy
+ b 1j blx, =, 2 uf] ~blx, =, 2, h] (€ - h)dS
% e’ ¢ ev ¢
1 1 Xy o
= ;Jgff(uf - hydxdy - Jga X vn](vw - Vh)dxdy = I - II.

In the following, we estimate I and II. By Poincaré inequality,

< |IF¥ e @eylllu® = hlllze@esy < ¢ I 11e @ 11U® = Rlllwtoge,
and, by Hypotheses (H3) and (H4), if p 2 2, there exists ¢ > 0, such that

.’;, Q,Vh
a[ et g ]‘

II<

lu = Rlllzeey < ¢ (111 + [VA] 106 11 = Rlllioge),
LP'(R®)

and, if1<p <2,
-1
115 c [|[R]] o 11UE = Rlllytogze,.

Thus, for some ¢ > 0,

a[x, i, X, Vué —, X, Vh]
et ¢ et ¢
+gﬁ‘1j

X) i) X} ub‘] - b[X’ L’ X’ h]
% e’ ¢ ev ¢

< cljuf = hfllwoge).-

- alx, (Vué - Vh)dxdy

1
g

b

(uf - h)dS

Consequently, if p > 2, it follows from Hypothesis (H3) on functions a and b, respectively, that

Co ||ué - h”IWLp(Rs) < %;3[ alx, % % Vué| - alx, % % Vh]](Vus - Vh)dxdy
+ gﬁ_ll b, = % uf] - blx, 25, % | - 1S < ¢ [l1uf - hlllyinge,
and
coeP Y |uf = h|fpe, < %1}[ alx, % % Vue] - alx, % % Vh||(Vut - Vh)dxdy
+ eﬁ‘lj blx, %, %, uf] - b|x, %, %, h”(ug - h)dS < ¢ |[|u® = hlllwrece)-

FE
Hence, there exist constants ¢, and ¢ > 0 such that
[[luf = hl|lwiegey < co  and efYjuf = hl|jpeey < @, Ve >0.

On the other side, if 1 < p < 2, it follows from the Young’s inequality that:

p/lzlp
I = Ry S 5 [ 190 = VREQL + 9] + [VRI)P2dxy
RS

p <
WHR®) =

- -2/(2-p)3p
, 2-pA 3

” J'(l + |VuE - VAP + 2 [Vhj)dxdy.
RE

4.1

4.2)
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for any A > 0. Then, for A big enough, there exist ¢, and ¢ > 0, such that
WHRT) =

I = Rl < 2 J 190 = TRPCL+ (9] + [WRDP2xdy + 5 [0+ 2 [VRP)Axdy.
R® R®

Now, due to Hypothesis (H4) and (4.1), we have

g [1vue - 9npa + v + (hpe-2axdy
RS

1 Xy J Xy
< - _ = El — - = €
< g}J;eax, e“’s’vu alx, s“’e’Vh (Vu® - Vh)dxdy
~ Xy Xy
p-1 _ _
+ & E[bx, ga,g,uf] b|x, ga,g,h](u‘9 h)dS

< clfuf = hfflwoge).-

Thus, for some constant ¢ > 0,
1 = Rl < € 110 = Rllhyroges, + 2 [0+ 2 [VRP)Ax
WhPRE) = A COR Ly
RS
<c|luf = hlllyioge + c]gl_[(l +2|VhP)dx Vp e (1,2) and &> 0.
w

Therefore, |[|u® = hl||yr(gs) is uniformly bonded in & > 0 for all p € (1, +).
Next, we estimate the norm ||u® - h||;»s. From (4.1) and (H4),

83‘1I|u£ = hPA(1 + [uf] + |h)P72dS < c [[|uf - hl|lyrogey S ¢, When 1<p<2.
rf

By Proposition 3.9 and (2.4), there exist constants ¢y, ¢, and ¢ such that

€—h 9 E—-h e-h L asi
CollU® — prey < |€ — e - + [||u® - PR * 1 1-a
ol llzecrey 6y( ) . Il IHES) ETY
LP(R%)
h , as<l]
<q|||ut - 12ReY 1 1-a
1| [ lwreczey £ ast
1, a<l,
SCZ. 1-a
er, a>1.

Thus, the result follows if f > 1.

17

4.3)

(4.4)

4.5)

Now, let us assume § < 1. Then, for any y > 0 and 1 < p < 2, we have by the Young’s inequality that

pA%s‘%V
2

Jiur = s = P2 e = heca + el + s
ré r

2y
2 - p)3Pezp
+ #J’a + [uS = hP + 27 |h]P)dS.
2Azp e
Hence, for A big enough and (4.4), there exists ¢ > 0 such that
cflus - hpds < &5 + e[ 1 + [hiPyas.
ré ré

It remains to evaluate the last integral on the right-hand side. Before doing so, observe that

(4.6)
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Y V2 max{l, ||Vgllm@}, @ =1,
\/1 + gk Vg[—a <11, a<1,
£
e Vgllm Y, a>1,
for any 1 > ¢ > 0, which allows us to conclude that:
% 2
[+ npyas = [@ + reop), 1+ e Vg[E] dx

re w
\/fmax{l, ”Vg”Lw([RN)}, a=1,
< (lwl + ||h||€F’(w))' 1, a<i,
e Vgllprwy),  a>1.

The aforementioned estimate and (4.6) lead us to

\/E max{l’ ||vg||L°°(RN)}: a= 1:

cfu - npds < 17 + ev(wl + [|hlfg, ) {1 a<1, @7
re 79 |Vgllp=® ) a>1,
and 8 < 1.
onsequently, from (4.2), (4.3), (4.5), and (4.7), we have
C q ly, fi 4.2), (4.3), (4.5) d 4.7) h
[||uf = hlllwreeeysc, p>1,
1, p>1, a<l, andf=21,
el-a p>1, a>1, and B=1,
el b, p=2 a>0, andB<1, (4.8)
l|u€ = h|[fpge < € w
(sl-ﬁ-p + 82-p), 1<p<2,a<l, andpf<1,
(el‘ﬁ‘% + e%*l‘“), 1<p<2 a>1 and <1

Note that we still need to estimate [||u® - h||[z»ge) for f <1 in order to finish the proof of the current
proposition. Indeed, combining Proposition 3.10 and (4.8), we obtain

p
0
Co [[1Uf = R[] ge, < &P ’ @(us - h)‘ + ||uf = RlfSp e,
LPR®)
el=h, p=2 a>0,
_p_ A
S£Pc1+c(£1ﬁp+52"’)’ 1<p<2 as],

(gl-ﬁ‘zpy + SZZ—Vp+1_a)’ 1<p<2 a>1,
completing the proof. O

Remark 4.2. Before we start the proof of Theorems 4.1-4.3, we observe that, from item 3.2 from Proposition 3.2,
item 3.12 from Proposition 3.12, and Inequality (2.5), we have that
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Iaa“

wxY*

X
o L+ €Y1, Y1, Y55 TEV(p](TSVuE - TVp)dxdy, dy,

X, % % V(/)](Vu‘E - Vop)dxdy

8 &
Rl
X

+ gft I b[ga[E L+ €Y, Y., Y,, Tg(p](Tgug - quo)dgdxda(y)

wWwx9,Y*
+ m1et o, 2,2, o - p)as

Iy
Y
< [ T - Ty dy, + |€_| [re - pyaxay

wxY* Rls
+ gbf1 I b|e® % L+ €Y, 9, Yy, Ti’h](Tgug _ ‘T?(p)dgdxda(y)

wWwx9,Y*

_ X Yy
 I¥lef fofx, 7. % e - oy

I

forallp € Wollp (R?). Moreover, due to Proposition 3.4, we have that the integrals on R{ and I'{ converge to zero
as € — 0. Hence, we can omit these terms keeping the equations shorter, and we have

I a[e“

wxY*
+ gb1 I b[e“[%
€

X
Py L + &%, ¥, Y,, T SV(p](’T Vuf - 7.Vp)dxdy, dy,

L+ €%, Y1, Yy, 7-590](7-?”‘? - T 29)d.dxda(y)

wWwx9,Y* (4.9)
= I TefE(Teuf - Tep)dxdy, dy,
wxY*
X
+ Sﬂ_l I b[é“l[F L + SaYl’yl’yZ’ Tgh](Tgué‘ — TS(P)deXdO'(y),

Wx9,Y*

for all 9 € WoP(R?).

41 Casea =1

Now, we are in conditions to show our main results concerning to the order of roughness. We first consider the
resonant case. We have the following result:

Theorem 4.3. Let u® € Wolj” (R®) be the sequence of weak solutions of (1.5) for a =1 and B = 1. Suppose that
fe € LP'(R®) is such that |||f¢]|| ' &e) IS uniformly bounded and

Tefe = f weakly in LP'(w x Y*).
Then, there exists unique (4, ) € Wy (w) x LP(w; WyP(Y*)) such that

Teué — gstrongly in LP(w; WYP(Y*)),
TVt — Vu + Vyuy weakly in LP(w x Y),
TeOyu® — 9y,1y weakly in LP(w x Y*),

T buz — u strongly in LP(w x 8,Y*),
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satisfying

[ aGe.,,y,, T+ 9,00 + vy, p)dxdy,dy, + vB) | bex, .y, wpdxdo(y)

WxY* Wx9,Y*

= | Foaxdy,dy, +vB) [ b0y, Wedxda(y)

wWwxY* wWwx9,Y*
for all (¢, ) € WyP(w) x LP(w; WyP(Y*)), with v(1) = 1 and v(B) = 0 for B > 1. Moreover,
J1acx, Banwg + v(pBC, wigldx = [(F + v(pE)pdx, Vo € WyP(w),
where

Inxy O

A(x,z) = 0

Ia(x, Vi, Y,,(2,0) + VylszZ)dy1 dy,,

y*

foo= If 06 Y15 )0y, dy,
&

B(x,2)= [ b0y, y,, 2)d0(y) and B = [ b(x,y;,y,, Wdo(y).

0, Y* 0y Y*
Moreover, for each z € RY, X, is the unique solution of the auxiliary problem:

Jatx, 9,3, (2,0 + 9y, %30, pdy,dy, =0, v € WP(Ys), 4.10)
Y*

and a.e. x € RY satisfying _|'Y,,dey1 dy, = 0.

Proof. We are in condition of applying Theorem 3.7, thanks to Proposition 4.1, which means that there exist
(u, uy) € WpP(w) x LP(w; WyP(Y*)) such that, up to subsequences,
TeUt — @  strongly in LP(w; WLP(Y*)),
Teu® = Vu+ Vyuy  weaklyin LP(w x Y*),
Teoyu® — dyu;  weaklyin LP(w x Y*).
Moreover,

Thuf > u  stronglyin LP(w x 9,Y*).

Let ¢ € WyP(w) and € C(w x Y*). Define

Pe(x,y) = ¢(x) + ey|x, % %] for (x,y) € R,

Note that, by Proposition 3.5,
Te9f — ¢ stronglyin LP(w x Y*),
TV — (V§ + Yy, ) strongly in [LP(w x Y¥)]N*1,

We need to prove that

»
X
.[ ale® F]L + Y, V1, Yy, TVQ? | - a(x’)ﬁ’)’z’ Vo + v)ﬁ:)/zlp) dxdy, dy, > 0, (4.11)
wWwxY*
which holds if
a X a £ a X a p,
J ale’| g (b + €YY Yy TV0| — al e Z|L + €931 0, VO + ¥y 0| | dxdydy, =0,
wxY*
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since

%

I

wxY*

ale? dxdy, dy, — 0.

X
o

L+ €1, Y1,Y,, V9 + vyp)?zlp] - a(x,yl,yz, Vo + Vyl,yzlﬁ)

Suppose p = 2. Note that, by Hypothesis (H3),

»
X X
€ ga E L+ gayl’yl’yZ’ 7-5V(0£ - a ga F L+ 8“)’1,)’1,)’2, V¢ + Vyﬂ’zlp]
< TV - (V9 + Uy, PP (L + |T.V9?| + [V + ¥y, Y)P P,
Integrating in w x Y* and using Hélder’s inequality, for exponents p/p” and p/(p - p’)
X X 4
c I ale” — L+ €Y1, Y1, Yy, TV | — ale® @ L+ %, y,,Y,, V¢ + Vylyzl/)] dxdy, dy,

wxY*

< |TV9E = (V9 + Yy, )l zpwxr (€ + ITVOE oy + 11V + Uy y, Blliraxys)) = 0.

The case 1 < p < 2 is analogous, using Hypothesis (H4). Therefore,

ale| = |L + €%, 31, y,, TV9%| = a(x,y,,¥,, V9 + Uy, ) strongly in [L” (w x Y9IV

X
o

We point out that

X
b[é‘a[g
with analogous arguments. It is left to the reader.

Next, let us take ¢ = @€ as a test function in (4.9). Using the aforementioned convergences and Remark 3.13,
we will pass to the limit. First, let us suppose > 1. Hence, as € — 0 in (4.9), we obtain

L + a"yl,yl,yz,']‘sgof] - b(X,y,,Y,,$) strongly in L' (w x 9,Y*),

[ a0y, 3,99 + Wy, )0+ By = (99 + Wy, 9))dxdydy, < [ Fu - g)dxdy,dy,.

WxY* wxY*
Since C’(w x Y*) is dense in LP(w; Wi’p (Y*)), the aforementioned variational inequality holds for any
Y € LP(w; W}}’p(Y*)). Thus, taking (¢, ¥) = (u, wy) + A(p, ¥), A > 0, we have
¥ I ax, y;, y,, Vu £ AV + V), 1y £ AV, , W)(Vo + V, , P)dxdy, dy, < F I f pdxdy, dy,,
wxY* wxY*
which implies, as A — 0, that the pair (u, ;) satisfies
j a(x, yy, ¥y, Vi + Vy ) (Vo + 9y, Wydxdy, dy, = I f pdxdy, dy,. (4.12)
WxY* WxY*
Note that, due to Browder-Minty theorem, the pair (u, u) is unique in WP(w) x LP(w; W}p (Y*)/R). It remains
to identify w; with the unique solution of the auxiliary problem:
[ate. 1.y, @.0) + ¥y, X0, pdy,dy, =0, vy € WiP(re),
Y*
for each z € RV, Observe that taking ¢ = 0 and treating x € w as a parameter in (4.12), we obtain, a.e. in w, that
Ia(x, Vi Yy, VU + V), u)Vy, , Wdy, dy, =0, V¥ E W;’p (Y*). (4.13)
Y*

Hence, due to the uniqueness of the solutions of Problem (4.10), we conclude that:
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w6y, Y,) = Xvueo(Vy,Y,)  ae (Xy;,Y,) € wx Y™

In order to achieve the N-dimensional limit problem, take ¥ = 0 in (4.12). Thus,

I a(x, y;, Yy, Vu + Vy 5, u)Vodxdy, dy, = I f paxdy, dy, .

wxY* wxY*

Defining

Iy«n
0

T = [7 0033,y dy,,
J.

Alx,z)= Ja(x, Vi, Yy, (2,0) + V), X)dy, dy, and

y*

0
0

where Iyxy is the N-dimensional identity matrix, we obtain the limit equation:

IA(X, Ve U)Vpdx = If pdx, Vo€ WoP(w).
w w

From Proposition A.1, the aforementioned problem has a unique solution due to Browder-Minty theorem,
which implies the convergence of the solutions uf to u.
Now, let us suppose § = 1. Hence, from (4.9), we obtain as € — 0 that:

[ aGoy.3,, 90 + 9y )T+ Wy = (V6 + Wy p)dxdydy, + [ b0x Yy, y,, 9 - @)dxda(y)

wxY* WXx0 Y*

< [ Fu-gyxdydy, + [ bocy;, 3, D@ - @)dxdo(y).

wWwxY* WXx0,Y*

One can argue as in (4.12) to see that the aforementioned inequality is equivalent to:

[ aty,. 3, 9u + 9, )W + 9, p)dxdydy, + [ bx,yy, ;. wdxda(y)

WwxY* Wx9,Y*

= If¢dxdy1dy2 + _[ b(x,y,,Y,, H¢dxdao(y).

wWwxY* wWwx9,Y*

Furthermore, applying the Browder-Minty theorem, we obtain existence and uniqueness in W(}’p (w) x LP(w; Wé’p (Y®)/R),
which implies the convergence of the solutions. Now, to obtain the N-dimensional limit problem, we take ¥ = 0
rewriting the aforementioned equation as follows:

[1ac, vawe + B wigldx = [(F + Mpdx,  ¥9 € Wi (w),

[}

where A and f were previously defined and

Bx,2)= [ b(x.y,.y,,2)d0(y) and A= [ b(x,y,,y,, Wdo(y)[]
0y Y* 0y Y*

4.2 Casea <1

In this subsection, we study the weak oscillation case. We show the following result:

Theorem 4.4. Let u® € W&j” (R?) be the sequence of weak solutions of (1.5) for a <1 and B = 1. Suppose that
fe € LP'(R®) is such that |||f¢]|| 7' (ge) IS uniformly bounded and
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Tef = f weakly in L' (w x Y*).

Then, there exists unique (u, ;) € WyP(w) x LP(w; WyP(Y*)) such that
Teuf — u strongly in LP(w *x Y*),
TUe — Vi + Vy, up weakly in [LP(w x Y*)IV,
T bus - u strongly in LP(w x 8,Y*),

. gﬂ-: . .
with >, 0 satisfying

[ Ay, vu + Tu)@p + T p)dxdy, + v(B) [ Bux, y,, widxdy,

wxY wxY

= | Fodxdy,dy, + v) [ Boyy, W)pdxdy,,
Y

wx wxY

for all (¢, ) € WyP(w) x LP(w; WyP(Y)) with v(1) = 1 and v(B) = 0 for B > 1, where

&0n)
x Iy« .
Aoy ="V | [ ey Odn, By, 2) = bk, 801, 2) and
0
&0

Foo= [ Fooy,ymdy,.

0

Moreover,
J1acx, Bawg + v(pBG, wigldx = [(F + v()E)odx, Vo € WG (w),
where
Alx, z) = IN(;N 8 Ia(x,yl,yz, (z,0) + (VleZ, 0))dy1dy2,

y*

fox= If (6 Yy, Yy )dy; dy,
Y*
B(x,z)= Ib(x,yl,g(yl), 2)dy;, HX) = Ib(x,yl»g(yl), h())dy, ,
Y Y

and, for each z € RY, X, is the unique solution of the auxiliary problem:

Aoy, 2+ v x)w,pdy, =0, vy e W),
Y

for a.e. x € RY, satisfying JYXZdy1 = 0.

23

Proof. We are in condition of applying Theorem 3.7, thanks to Proposition 4.1, which means that there exists

(W, w) € WpP(w) x LP(w; WiP(Y*)) with % = 0 such that, up to subsequences,
2
Teut —» u  strongly in LP(w x Y*),
TVut — Vi + Vyu;  weakly in [LP(w x Y*)IV.
Let ¢ € WyP(w) and ¥ € C*(w x Y). Define

X

’Sa

PE(x,y) = ¢(x) + eYlx for (x,y) € Re.

Note that, by Proposition 3.5,
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Tt — ¢ strongly in LP(w x Y*),
TVF > (V§ + V,9)  strongly in [LP(w x Y*)[V*1,

Arguing as in (4.11), we have that:

J

wxY*

’

dxdy,dy, -~ 0, ase— 0.

a L+ €%, Y1, Yy, TeVQ?| = a(x’yl’)’z’ Vo + v,vllp)

ES
8&

Take ¢ = ¢ as a test function in (4.9) and use the aforementioned convergences. Suppose 8 > 1. Passing to
the limit as € — 0, we obtain

[ ate.y1.y,.90 + 0,0 + Vyus - (V9 + Typ)dxdydy, < | - p)dxdy,dy,.
wxY* wxY*

Since C;/(w x Y) is dense in LP(w; W,}’p(Y)), the aforementioned variational inequality holds for any
Y € LP(w; W,}‘p (Y)). Moreover, it is equivalent to:

[ Ay, B+ v)W + Vraxay, = [ Foaxdy, @1
wxY wxY
where
80 80y)
A(X))ﬁxf) = I a(X’)ﬁ:)h)E)dyz and‘f = I f(X))ﬁ;)Q)dYT
0 0

We point out that (4.14) has a unique solution in WP(w) x LP(w; W;’p (Y)/R), due to Proposition A.2.
Now, take ¢ = 0 in (4.14). One has

_[ AQGyp, Y+ Vyup)Vy pxdy, =0, (4.15)

wxY

forally € LP(w;W;”’ (Y)). Since C;°(w x Y) is dense in Lp(w;W;’p (Y)), we can proceed as in (4.13) to prove that
(4.15) is also a uniquely solvable problem. Moreover, one can see that:

ul(nyl) = vau(yl):

where X, is the solution of the auxiliary problem:

Ja(ey,. 2 + v x)0dy, =0, vy e w ),
Y

for each z € RN. Hence, we rewrite (4.14) as follows:

Jace vavgdx = [Fodx,  vo € ui?(w),

where

Iyvxv O

A =170

Ia(xa)’p)’z’ &+ vy1X§)d)’1d)’z and f = _[f(x:)’p)’z)d)ﬁdyz-
Y*

Y*
For B =1, we can proceed as in the proof of the case a = 1. We just write the limit problem as:

[ Aceyy, van(%g + Typ)axdy, + [ Box,yy, wypdxdy,

wxY wxY

= [Foaxay, + [ Boxyi, Woaxay,

wxY wxY

for all (¢, ) € WyP(w) x LP(w; WyP(Y)), where
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EO(X))H’ z) = b(y;, 800y, 2).

Consequently, the N-dimensional problem for § =1 is

J1ac, vaoug + Box, wglax = [IF + Hlgdx, v € Whnw),

w w

where

B(x,2) = [bx,y;, g0), 20y, and HCO) = [b(x,y;, g0y), ROy, .0
Y Y

4.3 Casea>1

Finally, we consider the strong oscillation case. Differently from the previous subsections, we will rewrite (1.5)
as follows:

X Y g X Y g e B x )y
;?[a X, et S,Vu+]V(pdxdy + E[a X, et E,Vu_]Vgodxdy + ¢ lb X, i uf](pds
" - (4.16)
= If‘%pdxdy + eﬁbe x 2 h](pdS
RS FE b Sa’ 8 ) 3

for all 9 € W,P(R®), where

2

RE= ‘(x,y) ERN1: x € w, eming(x) = eg, <y < &g
XER
Ri(x,y) ER¥*1:x € w,0<y<egy),

uf = uf |ge and uf = uf |ge.

Before presenting the proof of the main result of this subsection, we need to complete the functional
framework in order to be able to pass to the limit in Problem (4.16). We denote by 7 ; the unfolding operator of
functions defined in Rf to functions set in w x Y, where

Y¥={0,y,) ERM:y €7, gy <y, <gly)}

The operator 7 ; also has the properties described in Propositions 3.2 and 3.4.
For the second term on the left-hand side of (4.16), we consider the unfolding operator for oscillating
coefficients T, : Rf - w x Y* given by:

X
Ted(X,y,,Y,) = ¢l8“[§ L + &%, 63/2] for (x,y;,y,) € wf x Y*
0 for wf x Y*,
where
Y¥*=Yx (0’ go)

T, satisfies analogous properties given by Propositions 3.2-3.6 with obvious changes.

Remark 4.5. If II, : LP(Rf) - »LP(R.), R- = w x (0, ), is the rescaling operator
Lo, y) = o(x,ey), (x,y) €ER-

and %, : LP(R_) — LP(R- x Y) is the partial unfolding operator for oscillating coefficients, presented in [16] and
defined by:
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X
ot

lp[e“ L + S“yl,y] for (x,y,y,) € wg x (0, 8,) XY,

0 fOI‘ (Xx,yx,yl) € wlg X (01 g()) x Y

LYY, yp) =

Then,
We‘I’(X,yl a)’z) = Te[Ha‘P](X,yl :yz)-

In Proposition 3.6, the last two convergence are read as:

Tep, —» ¢ strongly in LP(w x Y¥), [|Te@, = @|lrwxy*) = 0.
Moreover, a version of Theorem 3.7 becomes as follows:

Proposition 4.6. Let ¢, € WP(R®) be such that |||@,||lytr»ze is uniformly bounded by a positive constant
independent of . Then, there are ¢ € W(w) and ¢, € LP(R-; W;’p (Y)) such that, up to subsequences,

Tep, = ¢ strongly in LP(w x YZ), TN, — %o +V, 0,

Proof. Since |||@,|[lytrg# is uniformly bounded, Proposition 3.6 implies that there exists ¢ € WLP(w) such that

T.p, > ¢ stronglyin LP(w x Y¥),
1T, = @llrwxys — 0.

Let

1
Ze(X, Y12 Yy) = | Ve@e(Xo Y12 3,) = J’Wewg(x,yl,yz)dyl
Y

Note that, from the Poincaré-Wirtinger inequality,

c
= F | |vy11rs(pg”LP(R_x Y)-
LP(R-xY)

1
1ZellLprxyy = o

o, - [TpCyy, dy,
Y

Due to V, T.p, = TV, we have
1Zellproxyy < CllTeV@y|lproxy) < C.

Define

’

0. =Ze -V~ F/l - %;!—)ﬁd)’l
which has average zero in Y. We have that ||@,||r7@.xy) is uniformly bounded, since ||Z||rp@.xy) is uniformly
bounded. There is ¢, € LP(R_; W?P(Y)) such that, up to subsequences,

®. = ¢, weakly in LP(R; WP(Y)),
that is,
T, — %o +Vy0, weaklyin LP(R- x V).

The periodicity follows from proving that:

I [ZS(Xryl + L,yz) - Zs(X,)ﬁ;yZ)]l/’(X,yly)’z)dXd)ﬁd)’z - O;

R-xY

which is not a difficult task (see, for instance, [7, Theorem 3.1] for details). O
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We unfold (4.16), and we ignore the “integration defect” set by item 3.2 of Proposition 3.2 obtaining

J a(X’ylxyzyTzvuf)T;v(DdXdyldyZ + I a(X’ylxyzy—[rsvuf)—[rsv(DdXdydyl

wxY} R-xY

+ o8 [ bonyy,y,, TIOT Ypd.dxd(y) 417)

wWx9,Y*

= | TofTodxdydy, + 80 [ bGxy,, 3, TIT pd.dxd(y),

wxY* wx9,Y*

forall g € Woljp (R?). We point out the term d, in the integrals on the border. It was introduced in item 2 at
Proposition 3.12. Combining such term with Proposition 4.1 for a > 1, we can prove the main result of this
subsection:

Theorem 4.7. Let u® € W&,’” (R®) be the sequence of weak solutions of (1.5) for B = 1. Suppose that f¢ € L? (R?) is
such that ||[f*|||.» ge) is uniformly bounded and
Tef = f weakly in L' (w x Y*).
Then, there exist (u, u-) € WyP(w) x LP(R-; W;P(Y)) such that

TeUf — u strongly in LP(w;WLP(Y*)), 418)
Teuf — Vu + Vy,u- weakly in [LP(R- x V)]V, '
If1< B <a, then
u=hae. inuw,

with u® satisfying the convergences (4.18).
If1<a< B, (u, w-) is the unique solution of

[ (313, % + 9 )W + B )ixdy,dy, = [Fodx, if p>a o

R_xY
[ alx, 31,3, B + Ty )W + Wy )dxdydy, + [ Blx, wigdx
R_xY wxY

_ J’f¢dx + J'B(x, hedx, if B =a,

for any (¢, ¥) € WyP(w) x LP(w; WyP(Y)), where

B(x,z) = J'b(xr)’pg()ﬁ)’ Z)|vy1g(y1)|d)’1: f(x) = If(XsY1»yZ)dY1dyz,
Y v*

and

- = Xy

where, for each &€ € RY, X; is the solution of

Ia(x;y1’y21 E + Vlef)vyll)bdyl = 0 ae. (X,)’z) € [RN x (0’ g())’ Vw € M/;}p(Y)
Y

Then, u is the unique solution of
[ax wwwgax = [Foax if p>a or
w w

Jtac, vaoug + B, wgldx = [IF + Higdx i f=a,

w w
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for all g € W,P(w), where

Iyxy O
0 0

a(X’yl’)’z’ §+ Vyle)d)ﬁ dy,.

Y*

A(x, §) =

Proof. From Propositions 41, 36, and 46, there are u, u_ € Wyp”(w), a1 € [LP (R_ x V)|V anduy_ € LP(R_; WP(Y))
such that, up to subsequences,

Teuf - u  strongly in LP(w x Y*),

alea - u weakly in [LP(w x Y})IN*,

X
e

L + %y, 1Yy, T eVus

aley|—|L + €%,,y,,¥,, T,Vu’| = a; weakly in [LP(R- x Y)]N*1,

X
e

TVu® = V- +Vyu-  weakly in [LP(R- x V)V,

Take ¢ = ¢(x) € Wol’p (w) in (4.17). Assuming 1 < B < a, we multiply (4.17) by £2°# obtaining from Proposition
3.12 and Remark 3.13 that

[ by, weddxdo) = | bx,y;,y,, hypd dxdo(y),

WX Y* Wxd,Y*
Vg |

where d = =
On) I+ Ve P

In particular, if we take ¢ = u - h, it follows from Hypotheses (H3) and (H4) that
u=h ae in w.
Furthermore, also by Propositions 3.6 and 4.6, we have
ITeul = Teullrrrxyy < ¢ llus = ulllrgs) < ¢ |llu® = ulllpge = 0,
and then,

u-=u ae. in w.

Suppose B 2 a. Let p € [D(Y)]Y, ¥ € C;°(Q), where Q = {(x,y) : X € w, g, <y < g}. Choose v € D(Y)

such that V,,v = p. Define
ut(x,y) = e“v[{g—i}

where * denotes the extension by zero. Note that u¢ is well defined and continuous in Ré. It is not difficult to see
that

v4

X, % (x,y) € R?,

T wuf— 0 strongly in LP(w x Y}¥),
T uf > V,v¥  strongly in [LP(w x YV,

€

d
T ;’% - 0 strongly in LP(w x Y).

Take u¢ as a test function in (4.17) and pass to the limit to obtain

I wVy, v¥dxdy, dy, = 0.

wWxY¥

Then,

0= [ wopwdrdydy, = [ @0y, 0,000k, y,dxdy,dy,,

wxY¥ wxY*(gy,87)

implying that
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Iﬁl(X,Y1:yZ)P(Y1)dY1 =0 ae (X,y,) € wx (8 &)

Y
Thus,
h=0 aewxYx(g,g).

Let ) € Ci(w % Y*) and ¢ € Wy ”(w). Define

Xy _
X: Ey ;] = ¢ + eawé"

u(x, y) = o(x) + Y

In order to determine the limit problem, we use the monotonicity of functions a and b. We have

0< J’
R_xY'

g (T.Vut - T,Vut)

X X
ale® pr L + €%, 9, Yy, TVUE| - a pr L+ &%, Y1, Yy, TVUE

+ gb1 I b|e® % L + 8“)’1 s Y15 Y95 Tlg)us] - b[&'alg L + 8“)’1:)’1’)’2: Teug]}(i-g(ug - uf)dedxdo(y)
wWwx9,Y*
+ J aleq XL + Yy, Yy, T VUE |7 Vufdxdy, dy.
e 1 Y1 Y2 T VUL VUL 1952 4.19)
wxYF .
20, by (H3) or (H4)
X + +
- I ale” prs L + €%, Y, s, ‘TEVuf]‘Tquﬁdxdy1 dy,
wxY¥
+ [ aled L+ e T IVuE [T Vdxdy, d
aje P EY Y1, Yy, T VUL T Vedxdy, dy, .
wxY¥

Now, for ¢ = u® - ¢ in (4.17), let us set

L= .[ ale % L+ €Y1, Y, 'TEVUE]TEV(ME - ¢)dxdy, dy,
wxY¥
X
* J ale\ | + €Y1, Y15 Yy, TVuf]]IEV(uf - ¢)dxdydy,
R_xY

+ 8/3‘1 I b[ea[g_); L + Sayl,yl’yz’TguS]Tg(ug _ ¢)dngd(y)

wWwx9,Y*
= | T - oy ay,

WxY*

+ 8/3_1 I b[{;‘ali% L + Sayl’yl’yz’(]"gh](]"g(us — ¢)dgdxd(y)
Wx0,Y*

Then, from Proposition 3.12 and Remark 3.13, we obtain

[ F- ¢raxay,dy, if > a
LI ={""
e E=d ﬁ = . .
[ Fau-oaxdyay, + [ booy,y, W= ) dxdo(y) i f=a
wxY* Wx9,Y*

as € —» 0. Moreover,
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Je== I ae“ﬁ%L+s%@ypypﬁvw(LVuf—vvwxuqmqh
R_xY
- el I bje® % L + €%y, ¥y, Y,, T [T 2(uf - u)d.dxda(y)
wWx9,Y*
X
+ I a[sa = L + €%, 91, Yy, T;Vufl‘]'gv¢dxdy1dyz ~Jp»
WxY¥
where
Jp=- I a(x, 31, Y5, % + Vy, ) (%u ~ §) + ¥y, (s =~ ))dxdy, dy,
R_xY
- _[ b(x,y,,¥,, ®)(u - ¢)d dxda(y), if p=a,
WxB,Y*
or

Jp=- _[ a(x’)ﬁ Yo, U + vyll/))(vx(u = ¢) + V), (- - ¥)dxdy,dy,, if B>a.

R_xY

Furthermore, note that:

aj X a el ca T i ea-1 alﬁg
L= I aje| — L + €%y, y1, Yy, TVul (| e Ty, + TV 0, € Fga—
RxY € Y2
X _

+ Eﬁ_l I b[ga E]L + anl ))’1 )yza TIEJHE]Tg(_gawg)db‘dXd(y)
wWwx0,Y*

- J. al(v)ﬁw’ 0) = 0’

R.xY

since taking (u® - ¢) as a test function in (4.17) leads us to

I al(Vylw, O)dxdyldy2 =0, VYeEC (wxY*, ase—0.
Y

R_x
From (4.19), we have

0<L+] +L
Therefore, when € — 0,

L+J, +Le~Ig+J; 2 0.

When B = a, we obtain

o< [ fau-)xdydy, + [ by, (- ¢)d dxdo(y)

wxY* WXx9,Y*

B _[ a(X’yl’yz’ Vo + Vylw)(vx(u -¢)+ Vyl(Lh- - ¥))dxdy, dy,
R_xY

- | by, 9 - $) dxdo(y).
wWx0,Y*

Using that C;°(w x Y*) is dense in LP(R_; W;}’p (Y)), we have that the aforementioned inequality holds for any
¥ € LP(R_; WLP(Y)). Hence, it holds for any (¢, ¥) € WP (w) x LP(R_; Wy (Y)).

Arguing as in the previous subsections, we obtain that the aforementioned variational inequality is
equivalent to
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[ alx.yy. 3, B + T )W + Gpddxdydy, + [ by, wed dxda(y)

R-xY wx9,Y*

= Jf ¢dxdy, dy, + _[ b(x,y,,y,, N¢d dxda(y).

wxY* Wx9,Y*

We remark that when § > a, the integrals on w x 9,Y* will not appear. Hence, one obtains

[ alx.yy.3,, B+ 9y )W + Vypyaxdydy, = [ fodxdydy,, i£p>a or

RxY wxY*
I a(x, Vi, Yy, N + Vy1u1_)(Vx¢ + V), ¥)dxdy, dy, + I b(x,y;,y,, Wod dxda(y)
R-xY WXy Y*
= [ foaxdydy, + [ b0oyy.y, hgd dxdo(y), if p=a.
wxY* Wx0,Y*

One rewrites the aforementioned expression as follows:

[ a1y, Bt + Uy )W + U p)dxdy, dy, = [Fodx, if p>a or

R_xY
[ alx.yy.3,, B + Ty )W + Ty )dxdydy, + [ Box, wigdx (4.20)
R-xY wxY

- j Fodx + jB(x, nedx, if B=a,

where

B(x,z) = _[b(x’)ﬁ:g()ﬁ)) Z)|vy1g()’1)|dy1 and f(x) = J.f(x:yp))z)d)ﬁd)’z'
Y Y*

We point out that the aforementioned equations have unique solution in Wol’p (w) x LP(R-; W;}’p (Y)/R).
Indeed, it is due to (H3), (H4) and Proposition A.3.
It remains to identify u;-. However, if one takes ¢ = 0 in (4.20), then

[ alx. 3.y, W + vy )0, pxdy,dy, =0, V9 € LR WiP(Y)).

R_xY

Hence, we can proceed as in the previous subsections obtaining u;- = Xy, where for each £ € RY, X; is the
auxiliary solution given by:

Ia(x,yl,yz, E+ Vle,’:)Vyll/)dy1 =0 forae. y, €(0,g) V¢ € WY
Y

To obtain the N-dimensional limit problem, we just have to take ¥ = 0 in (4.20) obtaining

A vaugdx = [Foax it p>a or

[1a0e vawe + Bagldx = [ + Bo, migdx if = a,

w w
where

Inxy O

A =170

a(x,y1 Yy, &+ Vleg)dy1 dy, .00

Y*
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Appendix

Here, we prove some results that are necessary to guarantee existence and uniqueness of the solutions of our
quasilinear homogenized equations. The well posed of the auxiliary problems follows from the Minty-
Browder’s theorem and are left to the interested reader. First, we deal with the limit problem set in
Theorem 4.3.

Proposition A.1. Let

Iyxn

0
Az ="

Ja(x, Y15 Y55 (2,0) + V), X)dy, dy,,

y*

where Iyxy is the identity matrix N x N dimensional and X, is the unique solution of:

.[ a0, 31,y 2,0) + ¥y, XV, by, dy, =0, VY € WP (V¥), (A1)

y*

with L,,.,dey1 dy, = 0 and for each z € RY. Then, A satisfy Hypotheses (H2), (H3), and (H4).

Proof. First, we mention that (A1) has a unique solution thanks to Minty-Browder’s theorem (since it satisfies
Hypotheses (H2), (H3), and (H4)). Next, let us take p = 2. Note that for any z € RY, it follows from (H3) that, for
a.e. x €ERYV,

I (z,0) + v, , X, <c Ia(x, Vi, Yy, (2,0) + V), X))[(2, 0) + V), X, ]
Y* Yv*
=c _[a(x, Vi, Yy, (2,0) + V), X;)(z, 0)
Y*
<c [lzll(z, 0) + Vyy XP2I(2,0) + Ty, X,]
Y*
C |zP|Y™|
<——— 4

1
; = Y[Kz, 0) + Vy, X,JP.

Thus, there is a constant ¢ > 0 such that, for a.e. x € RY,

Il(zy 0) +Vy, Xl < a |zfP. (A2)
Y*

Let us prove that the solutions are continuous with respect to the parameter z. Let zy € RY and consider a
ball centered in z, with radius § > 0, Bs(z). We have to prove that for any z € Bs(zg), there is A > 0 such that
X, € By(X,,) the ball centered in X,, in Wy?(Y*).

Now, due to (H3) or (H4), (A1), (A2), and Young’s inequality, we obtain for a.e. x € RV
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_[KZ - 2,0) + vylyZXz - VylyZXz[]lp
Y*

< CI [a(x,yl,yz, (z,0) + VylszZ) - a(X:)’p)’z’ (20,0) + VylszZo)][(Z = 20,0) + V), % = V), X
Y*

= cI[a(x, Y1, Y,, (2,0) + VylyZXZ) - a(x, Y1, Yy, (20, 0) + VMZXZO)](Z - 7y, 0)
7

IA

clz - ZOljl(z - 20,0) + Vy Xz = VylyZXz[]l(l +1(z,0) + vylyZle + (2o, 0) + Vylszz[]l)p_z
Y*

<z - ZOljl(z = 20,0) + Vyy, X = V), Xz |(1 + {2, 0) + V), Xp| + |(20, 0) + vylszz[]l)p_l (A3)
Y*
1
p
< oz - 2ol [1(z = 20,0) + Ty X, = Ty X | | [A 41 0) + Ty Xl + 120, 0) + Uy Ko P
Y* Y*
1
P
1
< alz - 2ol [ Iz - 20, 0) + Yy X, = Uy, X P | (2P + o)
Y*
)
<

1 c .
5 [z = 20,00 + v,,%, - 9y, %, + 7l 2z = 2
Y*

Consequently, since z € Bs(z), we have
1 » v
—,_[I(z = 20,0) + V), Xp = V)3, X0 P < (|21 + |20/P)|Z2 = 20" < ¢ |z = zo]” .
Y*
Now, let 1 < p < 2. One obtains from (H4) and the Young’s inequality that
2-p

e Ja+i@ o +v,x0,
Y*

2
pwr -
I|(Zs 0) + Vyy, X P < TI'(Z: 0) + vylyZXz|2(1 + (2, 0) + V), X;[)P 2+
v v

for any constant ¢ > 0. In this case, we have

1
L1 0+ DX+ 12,0 + Ty XD s et + 12,
Y*

Therefore, if u is big enough, we obtain

[z, 0) + vy, X < et + 12p).
Y*

Next, we also prove that X, and X, are close, if z and z, are close. This will hold similarly to the case p = 2.
Observe that

Il(z - 2p,0) + vylszz - vylyZXzolp
Y*

p

2

Il(z - 2p,0) + Vyy Xz = Vy,y, zolz(l +](z,0) + vylszzl + (20, 0) + Vylszz()Dp_z
Y*

<

2-p
2

x j(l +1(z,0) + V), X + [(20, 0) + Yy, Xy])?
Y*

Furthermore,
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Il(z = Zy, 0) + VYJZXZ )’1)’2 |2(1 + |(Z 0) + VY1Y2X| + |(Z°’ O) +V )’1)’2 |)P—

< CI[a(x, X, V1,5, (2,0) + Yy, X,) = a(X, X, 1, ¥y, (2, 0) + Vy,, X, )1z ~ 2o, 0)
Y*
< ¢z - 20|I|(z = 20,0) + Vy,, X, = ¥y, X P!
Y*
1
1
< clz - 2ol 1z - 20,0) + Vy X, = ¥y X P
y*

Putting together the two previous inequalities,

C4I|(Z =20, 0) + Yy, X = V)Xo P

2-p
2

j(1+|<z 0) + Uy Xl + (2o, 0) + Wy X )P

b
2p

<lz- zft Jl(z—zo, 0) + VX = Vo Xel?

for a constant ¢, > 0. Thus,
-t
14
Sclz=zol2(L+ |z] + [z|P + |zo| + |2olP),

Jl(Z = 2o, 0) + leszZ - le)’zXZOlp

which implies

I|(z - 20,0) + Yy, X, — Uy, X, < € |2 = zolotn

for z € Bs(zp). In summary, one concludes, for a.e. x € RY,

J| P <+ 12P), p>1

and

14
|z - zgl1, p=2

Iz = 20, 0) + ¥y, X, = V), Xz P < C
I v pe |z - zolr1, 1<p<2.

Hence, we can conclude, using the aforementioned relationships, that, for a.e. x € R,

Ja(x Y12 Y5 (2,0) + 9y, Xp)dy, dy,
v

406, ) =‘ o

j|(z 0) + Ty Xl (1 + 12, 0) + Ty, X2 p22,

jl(z, 0) + Uy X1, 1<p<2,

<c(1+ |z[P).

Also, from (H3) and (H4), for a.e. x € RV,



DE GRUYTER Quasilinear problems in higher-dimensional thin domains == 37

|A(X, 2) = A(X, 2o)|
< I[a(x Vi Y5, (2,0) + V), %) — a(x, y;, Y, (2o, 0) + V)5, X,)]
Y*

IKZ =20,0) + VX, y1y2X20|(1 +1(z,0) + V), X;| + [(20, 0) + V) y, zUl) P22

IKZ = Zo; 0) +V )’1Y2 Y1)’X20|p ! 1< p< 2.

Arguing as earlier, we obtain, by the Holder’s inequality, for a.e. x € RY,
|A(x, 2) = A(X, 20)|
”(Z - Zp, O) + v)’leXZ - V)’l)’ZXZU“LP(Y*)

1
S A+(z,0)+Vy,X ||LP(Y*) [I(zo, 0) + ylyZXzOHfP(y*))”'r p=z2,
”(Z - Zy, 0) + VylyZX V)’lJ/ZXZU“Lp(Y*)’ 1< p < 2,

lz-zl, pz2,
|z - zol'i, 1<p<2,

which proves the continuity of A(:).
Let p = 2. We will show that for all z, z € RY, there is a constant ¢ > 0 such that
|z — P < c(A(x, ) — A(x, ))(z — 2,) forae. x € RV,
Suppose that the aforementioned inequality does not hold. Then, for any k > 0, there are z, z, € RY such that
121 = 2P > k(A(X, z1) = A(X, )z - 2).

From Inequality (A3), we have

j|(zl - Z, 0) + V)’D’ZXZl - VYJZXZle

Y*
< ¢ [la(x.y,. 3, (@ 0) + 9y, %) = a(x, 31,3, (22,0 + ¥y, X,.) (& - 2, 0)
Y*
= (A, z) - A, ))& — 1) < | - .

Since k is arbitrary, we can conclude that

(2 - 2,0) + Yy X;, — Vy, Xy, = 0.

X, =
Let ¢ € C;°(Y*) and choose ¥ € [C;°(Y*)]V*! such that div ) = ¢. Note that
[ e = Ty Xl = = [ (% - X2,) div y = - [ (x,, - X.,)9.
v* v* v*
Also,
[12- 219 = [, 1@ - 2,000yl
v* v*

- [1@ - 2, 0y, y,)1div ¥

)

~

- [1@ - 2,0y, 3,19,

y*

which implies that
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le - Xzz + (74 - 2, 0)'()/1;)’2 )] =0.

Using that X, and X,, have zero average in Y*, we conclude that
(z - Zz)Iyl =0
Y*

and z = z, which is impossible.
The case 1 < p < 2 is analogous and is left to the reader. (I

The next results state analogous properties for the limit operators introduced in Theorems 4.4 and 4.7. We
do not show them here since their proof are completely analogous to the aforementioned one. Any way, we
state the proposition to the convenience of the reader.

Proposition A.2. The operators A and A, from Theorem 4.4, satisfy Hypothesis (H2), (H3), and (H4).

Proposition A.3. The operators B and A, from Theorem 4.7, satisfies Hypothesis (H2), (H3), and (H4).
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