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1 Introduction

In this article, we are interested in the following Gagliardo-Nirenberg inequality:
For every 0 < o < ay, and for 1 < p,, p,, ¢ < =, there holds

g oG L1
Illwrerer = Uf1Iza ™ U lliazes .
where
1 _ 1 @, lﬂ’
P 9 a D, @

and W*?(R") denotes by the homogeneous Sobolev space (see its definition in Section 2).

It is known that such an inequality of this type plays an important role in the analysis of partial differ-
ential equations. When a;, i = 1, 2, are nonnegative integer numbers, equation (1.1) was obtained indepen-
dently by Gagliardo [9] and Nirenberg [17]. After that, the inequalities of this type have been studied by many
authors, see, e.g., [1-4,6-8,11,13-16,20], and the references cited therein.

The case g = = can be considered as a limiting case of equation (1.1), i.e.,

a 1_% a % 0 (MmN 179Dz n (12)
IDUf ||z = (Ifll=" ID%f Iz, Vf € L7(R™) 0 WH(RT),
with p; = %12. Obviously, this inequality fails if a; = 0.

An improvement of equation (1.2) in terms of bounded mean oscillation space was obtained by Meyer and

Riviere [15] as follows:

IDAIIEs = [1f llento D lz2 (13)

for all f € BMO(R™) N W%2(R"). Equation (1.3) allowed the authors to prove a regularity result for a class of
stationary Yang-Mills fields in high dimension.
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After that, equation (1.4) was extended to higher derivatives by Miyazaki [19] and Strzelecki [16]. Precisely,
there holds true
a a
Q

1-4
ID%f Nl = |If llsad§ 11D 1155 1.4)

for all f € BMO(R™) N W%P(R™), p, > 1.
Recently, Dao et al. [7] improved equation (1.4) by means of the homogeneous Besov spaces. For conve-
nience, we recall the result here.

Theorem 1.1. (see Theorem 1.2, [7]) Let m and k be integers with 1 < k < m. For every s = 0, let f € S'(R™) be

such that D™f € LP(R"), 1 < p < o, and f € B~(R"). Then, we have D¥f € L'(R"), r = p[’:%j . and
mEs || pmfyms 15
IDXfller = I ID™FIEE, 1.5

50

where we denote B’ = B.", 0 € R (see the definition of Besov spaces in Section 2).

Remark 1.1. Obviously, equation (1.5) is stronger than equation (1.4) when s = 0 since BMO(R") = B"R"). We
emphasize that (1.5) is still true for k = 0 when s > 0.

Remark 1.2. In studying the space BV(R?), Cohen et al, [5] proved equation (15) for the case k=0, m =
p=1s=n-1andr= % by using wavelet decompositions (see [11] for the case k = 0,m = 1,p = 1, and

r= p[%], with s > 0).
Inequality (1.1) in terms of fractional Sobolev spaces has been investigated in many studies, see e.g.,

[1-3,20] and the references therein. Surprisingly, there is a border line for the limiting case of Gagliardo-
Nirenberg-type inequality. In [1], Brezis-Mironescu proved that the following inequality

I lwesen < (118 IIf 1y &re, (1.6)
with @ = 0a + (1 - O, pil = % + % and 0 € (0, 1) holds if and only if
a-t<aq-— L7)
pC p, '

As a consequence of this result, the inequality
I llirerer = (UFlle=l1Df Iz

fails whenever 0 < a; < 1.
We note that the limiting case of equation (1.6) reads as follows:

Fllreser = (1= VP llireze2, (18)

where ¢; < a3, and a1 p; = @z p,.

When a; < 1, Brezis-Mironescu improved equation (1.8) by means of BMO(R™) using the Littlewood-Paley
decomposition. Very recently, Van Schaftingen [20] studied equation (1.8) for the case a; = 1 on a convex open
set Q C R" satisfying certain conditions. Particularly, he proved that

IFllmen < PN DS NIEha (1.9)

where 0 < a; <1, p;oy = p,, and p, > 1.
Inspired by the above results, we would like to study equation (1.1) by means of fractional Sobolev spaces
and Besov spaces. Moreover, we also improve the limiting cases (1.8) and (1.9) in terms of B"RM).
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1.1 Main results
Our first result is to improve equation (1.1) by using fractional Sobolev spaces and homogeneous Besov spaces.
Theorem 1.2. Let 0 > 0 and 0 < @ < ap < ». Let 1 < p,, p, < o be such that p, = pz[%] and p(az + 0) > 1. If

f€ BRY N W*P(RM), then f € W*™P(RM). Moreover, there is a positive constant C = C(n, a, dz, p,, 0) such
that

- m+o
ik < CIFIGE ISP, (110)

Remark 1.3. Note that equation (1.10) is not true for the limiting case 0 = a; = 0 and p; = o, even equation (1.7)
holds, i.e., a; - piz > 0. Indeed, if it is the case, then equation (1.10) becomes

Flle= = I1fll50-
Obviously, the inequality cannot happen since L*(R") = BMO(R") = BO([R").

However, if q; is positive, then equation (1.10) holds true with ¢ = 0. This assertion is in the following
theorem.

Theorem 1.3. Let a; > a; > 0, and let 1< p,,p, < © be such that p, = afl—fz, and q;p, > 1. If f€ B'RM N
W*PRM), then f€ W™P(RM). Moreover, we have

a—aq ag

Flheron < WFIL™ (1 gzrs- (1.11)

Our article is organized as follows: in Section 2, we provide the definitions of fractional Sobolev spaces and
homogeneous Besov spaces; Section 3 is devoted to the proofs of Theorems 1.2 and 1.3. Moreover, we also
obtain the homogeneous version of equation (1.6) with an elementary proof, see Lemma 3.3. Finally, we prove
Ifllis? = |If]lgs» for 0 < s <1 and 1 < p < = in the Appendix section.

2 Definitions and preliminary results

2.1 Fractional Sobolev spaces

Definition 2.1. For any 0 < a <1 and 1 < p < », we denote W*?(R") (resp. W%P(R™)) by the homogeneous
fractional Sobolev space (resp. the inhomogeneous fractional Sobolev space) endowed by the semi-norm:

J’J’If(X+h)-f(X)|”dth;

|h|n+ap

WFllrer =

R"R"
and the norm

Fllwer = (UF1Ee + 11 e ).

When a > 1, we can define the higher-order fractional Sobolev space as follows:

Denote La] by the integer part of a. Then, we define
(IDLef| e, ifaez".
||DLelf ||5.V e-lap, Otherwise.

W lhirer =
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In addition, we also define
I llwer, ifae z*.

Wa,p = 1 .
b = 18 s+ IDIE, )b, otherwise.

Notation. Through the article, we accept the notation W*“(R®) = C*(R"), a € (0, 1), and W*(R") = LP(R™),
1<p< oo
In addition, we always denote constant by C, which may change from line to line. Moreover, the notation

C(a, p, n) means that C merely depends on a, p, n. Next, we write A < B if there exists a constant ¢ > 0 such
that A < ¢B, then we write A = Biff A s B s A.

2.2 Besov spaces

To define the homogeneous Besov spaces, we recall the Littlewood-Paley decomposition (see [21]). Let ¢;(x) be
the inverse Fourier transform of the jth component of the dyadic decomposition, i.e.,

2 $CIE) =1

J€Z
except ¢ = 0, where supp(¢) C {5 < [¢] < 2
Next, let us put

Z(R") = {f€ S(RY, D (0) = 0, Va € N*, multi-index},

where S(R™) is the Schwartz space as usual.

Definition 2.2. For every s € R and for every 1 < p, q < =, the homogeneous Besov space is denoted by
Bpq={f€ ZRM : |flly:, <}

with

1
q
[ 2 25%|¢, *f||%p’ , flsq<o,
Flls;, = sz
sup{2||g; * fl|re},  if q = 0.
jez
When p = q = «, we denote B. ., = B for short.

The following characterization of B‘j,w is useful for our proof below.

Theorem 2.1. (see Theorem 4, p. 164, [18]) Let {¢,}. be a sequence of functions such that

C {$,(¢) # 0},

1 2
supp(g,) C B(0, &), [E <8l < 2

Ixng(x)dx =0, for all multi-indexes |y| <k, where k is a given integer,
R"
IDYg,(x)| < Ce~™*WD for every multi-index y.

Assume s < k. Then, we have
f€ B RY & supfe™|g, * fll;=} < .
>0

We end this section by recalling the following result (see [7]).

Proposition 2.1. (Lifting operator) Let s € R, and let y be a multi-index. Then, 3 maps B*(R") — BSV(R).
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3 Proofs of the Theorems

3.1 Proof of Theorem 1.2

We first prove Theorem 1.2 for the case 0 < a; < @, < 1. After that, we consider a; > 1,i = 1, 2.
(i) Step 1: 0 < iy < az < 1. We divide our argument into the following cases:
(a) The case p; = p, = ©,0 < @ < a; < 1. Then, (1.10) becomes

a—-a aq+o

Iflleer = IIFI1G% IIfIIe° - (3.1)

To prove equation (3.1), we use a characterization of homogeneous Besov space B® in Theorem 2.1, and the fact
that B°(R™) coincides with C*(R"), s € (0, 1) (see [10]).

Then, let us recall sequence {@,}-o in Theorem 2.1.

For § > 0, we write

4@, * flli= = £ e |@, * fllr=Tie<sy + €7 Ve, * fll=iezey < 8% fllg2 + S|z, (B.2)

Minimizing the right-hand side with respect to § in the indicated inequality yields

a—aq ato

- + +
&g, * fll= = IFll%° 111"

Since the last inequality holds for every ¢ > 0, then we obtain equation (3.1).

Remark 3.1. It is not difficult to observe that the above proof can also be adapted to the two following cases:
o =0,a<1,0>0. Then, we have

flle= = IU"II"”“IVH;%Z“- (3.3)
s a4 =0,a <1, 0> 0. Then, we have
Q- aq
WFllge = (1L 111 3.4)

This is Theorem 1.3 when p; = ,i =1, 2.

To end part (a), it remains to prove equation (1.10) for the case a; = 1, i.e,,

il = Ilflll DA 35)
The proof is similar to the one in equation (3.1). Hence, it suffices to prove that
eM|@, * flli=lie<sy < 8 4||Df || (3.6)

Indeed, using the vanishing moment of ¢, and the mean value theorem yields

0.+ f001=| | (FO) - FGx = oy

B(0,¢)

| DAl Wle.)1dy < ellg.ll DAl = DIl

B(0,¢)

Thus, equation (3.6) follows easily.
By repeating the proof of equation (3.2), we obtain equation (3.5).
(b) The case p; < o, i=1,2. Then, the proof follows through the following lemmas.
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Lemma3.1. Let0 < a <1and1<p < ». Foreverys > 0, if f € B(R") N W*P(R"), then there exists a positive
constant C = C(s, a, p) such that

IFCOl = ClIfIlz ”“ [Gap(N)CO]s,  for x € R, @7

with

100 = F =P b

ew

Ga,p(f)(x) = sup j:

>0 | B(0,¢)
Remark 3.2. When a = 1, then equation (3.7) becomes

FCOl = CIfI MDD, for x € R, 3.8)
This inequality was obtained by Dao et al. [7]. As a result, we obtain

IIfllzes = |lf||s+1||Df||LP2’ 3.9)
with p; = pz[ s ] p,z1

This is also Theorem 1.2 whena; =0, a0=1,s =0 > 0.

Remark 3.3. Obviously, for 1 < p < », we have ||Gy,p(/)llzz = |If|ly*r, and Gg1(f)(X) £ G p(f)(X) for x € R™
Next, applying Lemma 3.1to s = 0,a = a, and p = p,, and taking the LPi-norm of (3.7) yield

fllees ufn"*“z Jica, pz(f)(X)IMde m”u;*“z 1G5,

with p, = pz[ozaz].

Hence, we obtain Theorem 1.2 for the case a; = 0.

Proof of Lemma 3.1. Let us recall sequence {,}.>o above. Then, we have from the triangle inequality that
FOOI < 1@, * FOOI + If ) = @, * fOOI = T + L.
We first estimate I in terms of B™®. Thanks to Theorem 2.1, we obtain
L = £7%%g, * fOO| < Ce™|[f]| 5. (3.10)
For I, applying Holder’s inequality yields

[ 7 - o=yl ay = eive [ LOTEEIN, g,

B(0,¢) B(0,¢) e

. p 3.11)
o] [ IR

B(0,¢)
< 599,112 IB(0, £)]7 G p(f)(X) < %G p(F)(X).

Note that the last inequality follows by using the fact ||g,||.» < Ce™.
By combining equations (3.10) and (3.11), we obtain
IFOOI = CEeIIfllg + £%Gap(FI0O).
Since the indicated inequality holds true for € > 0, then minimizing the right-hand side of this one yields the

desired result.
Hence, we complete the proof of Lemma 3.1. O

Next, we have the following lemma.
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Lemma 3.2. Let 0 < < ay < 1. Let1 < p;, p, < %, andr > 1 be such that
11 Lla
b r p, @

If f€ L'(R) N WPPR™), then f€ W™P(RM). In addition, there exists a constant C = C(ay, Gz, Py, Py, 1) > 0
such that

a
a

(312)

(&1 aQ

1_7 Rty
ik < ClFI % 1) (3.13)

Proof of Lemma 3.2. For any set Q in R", let us denote fof (x)dx = ﬁfgf (x)dx.
For any x, z € R", we have from the triangle inequality and change of variables that

fx+2) - fOOI<slfx+2) - fO)dyl+1fC) - § FO)dyl

B(xz)) Blx.lz))
< f Fx+2-fOldy+ f [F() - fldy
B(x,lz)) B(xlz))
sC)| f fx+)-fx+z+yldy+ § [fO) - fx+yldy|-
B(0.2]2]) B(0,2]21)

With the last inequality noted, and by using a change of variables, we obtain

0 + 2) = FOO
[ e dzdxsﬂ[ f P00 = foc+ yldy

B(0,2|z])

p
' dzdx
|z|n+eaps

(3.14)

Next, for every p = 1, we show that

121
(a2-a1)py aipy

d
J[ P00 = fOC+ DIy | i = IMOD00T 5 Gy (01 . (315)

B(0,2]z])

Thanks to Remark 3.3, it suffices to show that equation (3.15) holds for p = 1.
Indeed, we have
121

fIf00 - f(x + y)ldy

B(0,2|z[)

|Z|"+01P1 -

[FO0) = fx + )| dy]"l lz|ePidz

a; n+a:
{|Z|<t}[B(O,2|z|) |z|% |z|" P

1 (3.16)
= [Gau 0 [

|z| (@-a)py
{lzl<t}

<t @Gy, 1 ()P,

{lzl<t}

On the other hand, it is not difficult to observe that

12}

= [M(f)C0]P

dz a
J |z|”+a1p1’ S CORM()0 B17)

|z|=t

| [ f 00 - O+ y)ldy
|z|=t

B(0,2]z]) |z[* Py

From equations (3.16) and (3.17), we obtain

121

< t(az_al)pl[Gaz,l(X)]pl + 7@ M(f)(x)]P.

I[ f G0 - fOx + y)ldy

B(0,21z]) |z|"* P

Minimizing the right-hand side of the last inequality yields equations (3.15).
Then, it follows from equations (3.15) that

" dzdx (ag-ap
az-appy a1p1
|Z|n+a1p1dx s I[M(f)(x)] 2 [Ggyp,(X)] o2 dx.

H[ f P00 - fOc+ yldy

B(0,2|z])
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Note that a;p, > a;p, and r = o

/
Qp, G P,
ap |’ ap

see equations (3.12). Then, applying Holder’s inequality with

to the right-hand side of the last inequality yields

]

Thanks to Remark 3.3, and by the fact that M maps L"(R™) into L'(R™r > 1, we deduce from the last
inequality that

121 (w-a1)p, apy

dZdX Qa a:
e < IMCDI 6o

f 00 = fx + y)ldy

B(0,2]z])

121 dz (ay-ay)p; ap,
|Z|n+011p1 = Hf”L’ @ ”f”m%zypz- (318)

H[ f 00 - £+ y)ldy
B(0,2|z])
Combining equations (3.14) and (3.18) yields equation (3.13).

Hence, we obtain Lemma 3.2. (I

Now, we can apply Lemmas 3.1 and 3.2 alternatively to obtain Theorem 1.2 for the case 0 < @, < 1. Indeed,
we apply equation (3.7) to s = 0, @ = @y, and p = p,. Then,

a

flle Ilfll"”"IIG&‘%E‘Z e = ufn“”” o, 157 < Ilfll"””IIfII“ZZz"m (319)

with q = pz[az;rc].

Since p, = p,

“ +G], then it follows from equation (3.12) thatr = ¢ > 1.
Next, applying Lemma 3.2 yields

(11 al - aqto
Wtk = A1 1 Geare < IFIICEEC 1P (3.20)

Hence, we obtain Theorem 1.2 for the case 0 < a; < ay <1 and p;, < 0,1 =1,2.
To end Step 1, it remains to study the case a; = 1, i.e,,

lay a0
If Il < ClIFIIES 1IDFII 7 - 3.21)
This can be done if we show that
fllwesrs < CIAII“ DA (3.22)

1 1-
w1th1<r<oo—=—0”+ﬂ

Indeed, a combmatlon of equation (3.22) and (3.9) implies that

1-o o(1-ay) 1-o q+o

1
Fllyese = 1F11 “IDANZe: = IFIEE IDANL™ 1IDfNee = 11157 IDS117 -

,andr = pz[lza].

Hence, we obtain Theorem 1.2 when a; = 1.

Now, it remains to prove equation (3.22). We note that equation (3.22) was proved for p, = 1 (see, e.g., [3,5]).
In fact, one can modify the proofs in [3,5] to obtain equation (3.22) for the case 1 < p, < ». However, for
consistency, we give the proof of (3.22) for 1 < p, < o,

To obtain the result, we prove a version of equation (3.15) in terms of M(|Df|)(x) instead of Gy ,(x).
Precisely, we show that

J

m+o

Note that p, = pz[ m

121
fIF00 - fOx+ yldy < [MCF )00 PM(DF 0021 (323)

B(0,2)z]) |Z|"+0“p1
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for x € R™.
Indeed, it follows from the mean value theorem and a change of variables that

PO (O3 I (OB L £20TI
BO2lz) |z| BO212) Iyl

s oy e
d
i Y

B(0,2]z])
1

1
<[ § Ipr@idcdr < [MADAYCOAT = MADAG).
0

0B(x,2r|z|)
Thus,
" Fo0 - foce i | lzipdz
[ $ ireo-roce iay| —o = ay|
{lz<e\BO.212D) |z| (21« \BO.212D |z| ||
3.24
<IMDACOI [ Jzfmra-amdz (324
{lz|<t}
< tA-@P[M(|Df)(x)] .
From equations (3.24) and (3.17), we obtain
"z
Il § 1o -rocs iy pran = LPIMADADOOT + CARMOP0O]™ (3.25)
B(0,2]z[)

Hence, equation (3.23) follows by minimizing the right-hand side of equation (3.25) with respect to ¢.
If p, > 1, then we apply Hélder’s inequality in equation (3.23) to obtain
F1f0O - fx+y)ldy

i = [ |
B(0,2|z])

= [IM(F)CO1n MDA Pidx
< IMCHIS P IMADFDE:
< |If1I P DA,

121

|Z|"+111P1

1+o

where r = PZ[T] > 1. Note that the last inequality follows from the LP-boundedness of M, p > 1. Thus, we

obtain (3.22).

This puts an end to the proof of Step 1.

(i) Step 2. Now, we can prove Theorem 1.2 for the case a; = 1. At the beginning, let us denote a; = La;| + s;,
i =1, 2. Then, we divide the proof into the following cases:

(@) The case La;] = Layl: By applying Theorem 1.2 to D'%)f, gyey = 0 + LayJ; and by Proposition 2.1, we
obtain

S2=$1 sito+lag)

IF llggenes = 1DV || sven < DL || S22t DReslf |2y

S7—81 sy+a+lag] a-a wm+o
Lyl Lay]
< |IF 115D || 2 = 1l g2 I Il geeseas

. S2+ Opew | _ a+a
with p, = pz[—;)ranew] = pz[ajm].
Hence, we obtain the conclusion for this case.
(b) The case Lay] > Layl: If s, > 0, then we can apply Theorem 1.2 to D', Gpe = 0 + LayJ. Therefore,
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sz o+layl Sy LayJ+o
IDRelf || s ([DeSf | S DR 22t < W G 1 (3.26)

with q = pz[mz T+ o |- Again, the last inequality follows from the lifting property in Proposition (2.1).

Next, applying Theorem 1.2 to D'4)f, g,e,, = 0 + Lay] yields

1-51 sy+a+lag]

IF llygeses = DY) || s < | DRl || 2L DRt p | ot

1-5 si+a+laq]

1+o+la] 1+a+la]
< |If Il e plasteap | ol

(3.27)

bl

. s;to+lal
with 4= pl[ 1+0+La1J]

If Lazl = Loyl + 1, then observe that ¢ = g;. Thus, we deduce from equations (3.26) and (3.27) that

alto
lagl+o a—-q at+a

= I g2 I Nl e

1-5 Sy lazl+o
1+ +Lag) + +
f peon = I1F I8 P I I N et

This yields equation (1.10).
1-5 So(ag + 0) _m-a . _
Note that 177 + Gronimiso) = aro SiNCeLlal=lal+1.

If lay] > Lyl + 1, then we apply [7, Theorem 1.2] to k = Lay| + 1, and m = La . Thus,

Lagl-Layl-1 layJ+1+0 (3.28)
layl+o lazl+o .
DY || o s ([ ] ™ IDYIF || g2

lapl+1+
with ¢, = G|, 7 cra]
Combining equations (3.27) and (3.28) yields

H +0
1-s1 ( Lap)-LayJ-1 layJ+1+0)T+layl+o

1+o+lay] Lagl+ Lagl+
IF llygeson < I 1) 511 an-ﬂz o ||plef | e+

(3.29)

1-5

. lagl-layl-1
1+o+LaJ
=[fllye

Ltl2J+ g

ato
layl+1+a

ato

Lay]
|IDLelf |1 7.

%29 | Thus, it follows from equations (3.29) and (3.26) that

Observe that q = q, = pz[

LazJ +0
1-s1 LazJ-Lth—l m+o s Lapl+a LZ;LJU
rotlal | lep+o  \lal+ivo at [
If e < If Nl e ’ ' [Ilfll 2 Nf Nl eare
- ato
=f il SN s
A straightforward computation shows that
1-s lap]l = Loyl -1 y+ao So(ag + 0) M-
1+0+ Loyl layl + 0 lyl+1+0] (m+o)lml+o) a+o’

This puts an end to the proof of Theorem 1.2 for s, > 0.
The proof of the case s, = 0 can be done similarly as above. Then, we leave the details to the reader.
Hence, we complete the proof of Theorem 1.2.

3.2 Proof of Theorem 1.3

At the beginning, let us recall the notation a; = La;l + s;, i = 1, 2. Then, we divide the proof into the two
following cases.
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(i) The case p; = p, = . If 0 < @y < a; < 1, then equation (1.11) becomes
a

La o a
WPlles = 171 ™ 17 (330)

Inequality (3.30) can be obtained easily from the proof of (3.1) for o = 0. Then, we leave the details to the
reader.
If 0 < <1< a, and a; is integer, then equation (1.11) reads as follows:

1 L
Iflleer = 11110 191152 (33D

To obtain equation (3.31), we utilize the vanishing moments of ¢, in Theorem 2.1. In fact, let us fix k > a,. Then,
it follows from the Taylor series that

0, * 101 = | [0 = ) = FONRD|
DYf(x) Df()
= (yy + ). (nd
Lo OV 2 T Yo 332
Df(9)
-1 3 22D g pay
e, 12!
for some ¢ in the line-xy. Note that
D'f(x)
[P oy =0
for every multi-index |y| < k.
Hence, we obtain from equation (3.32) that
o, * fOOI = |[VEf|- _[ WI%1@.(Dldy < ®||[Vf ]|
B(0,¢)
Inserting the last inequality into equation (3.2) yields
e, * flle= = 87N VEf||p= + 67|f]| 0.
By minimizing the right-hand side of the indicated inequality, we obtain
s
7@, * flle= = [Ifllo ™ [IVfII=.
This implies equation (3.31).
If 0 < a; <1< @, and a; is not integer, then equation (1.11) reads as follows:
@ @
Flles = 17150 N2 6339

To obtain equation (3.33), we apply equation (3.32) to Lay]. Thus,

DYf({)
> AT (=¥, (y)dy

lg, * F0OI= ‘J

lyl=lazl

DY - DV
= z M(_y)y(pg(y)dy
Iyl=la) La, 1!

< It len [ x = g lybe o, (y)ldy
<ol | ielelo.mldy < e@Diefes.

B(0,¢)
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Thus,
7|, * fll= s 8% || DLf]|ps2 + E7||f]] .

By the analog as in the proof of equation (3.31), we also obtain equation (3.33).
In conclusion, Theorem 1.3 was proved for the case 0 < a; < 1.
Now, if ¢y 2 1, then equation (1.11) becomes

1-a @
D1l = [0 1D (334

Again, we note that ||. ||o+ is replaced by ||. ||;~ whenever s; = 0,i=1,2
To obtain equation (3.34), we apply Theorem 1.2 to f,,,, = D!%Jf and ¢ = Lay .
Hence, it follows from Proposition 2.1 that

a-lagl-$ $1+0
— LagJ+ Lo I+
[[Flleer = DM lesr = IDRSF || S (IDRF | i
Q- Q- Q

=[Ifll0° IIDL“ZJfII“z = 1l Il

This puts an end to the proof of Theorem 1.3 for the case p, = p, = .
(ii) The case p; < «, i = 1, 2. We first consider the case 0 < a; < 1.

@) If a; € (a1, 1), then we utilize the following result [|-[lys» = ||| for s € (0,1), p > 1, see Proposition
A.lin the Appendix section. Therefore, equation (1.11) is equivalent to the following inequality:
(11 (11
WAl = Ilfll o IlfllBaz : (3.35)
Note that ¢, p; = azp,. Hence,
27abi|[f « [T < 2ebrf » BT IIf * G172 nellf x gy A1 P2 (3.36)

This implies that
Ilfll’“al < Ifitgh "Il o

S0, (3.35) follows by taking the power 1/p; to both sides of the last inequality.
(b) If a; = 1, then we show that

Fllweses < (V1™ DA - (3.37)

To obtain equation (3.37), we prove the homogeneous version of equation (1.6).

Lemma 3.3. Let0 < ay < ay < @z £ 1, and p, = 1 be such that a, - Plo <a - i, and

P2
l=i+ 1—0’ 0= az—a1.
Py Do D, =
Then, we have
Q-q Q-ap
Wl < FlEslF s Vf € WOPR™ 0 WP RD). (3:38)

Proof of Lemma 3.3. The proof is quite similar to the one in Lemma 3.1. Indeed, the proof follows by way of the
following result.
If f€ W*PRM N W*P(R™M), then the following equation holds true:

121

[l # reo-rac+yiay

B(0,2|z])

w-ar a-a
Iz an =[Gy p, ()OO PGy, p, (f)()] Cez-aa )Pt (3.39)
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if provided that a; < 1, and
121

f 00 - fOx+ y)ldy

dz 1-aq a1-a9
Trap, = [Gap ()X )]G Pi[M(|Df ) (x)]C1-a0 P (3.40)
B(0,21z]) |z|"+

if a = 1.

The proof of equation (3.39) (resp. (3.40)) can be done similarly as the one of equation (3.15) (resp. (3.23)).
Therefore, we only need to replace M(f)(x) by Gy, p,(f)(x) in equation (3.15) (resp. (3.23)).

In fact, we have from Holder’s inequality:

23
Po

f 00 = f(x + y)|Pdy

<
ntap; ~ [
l2I (oalBO21zD

121
foUfO0 = fx +y)ldy

{lzl2e\BO.212D) |z
%
X) = fOc+ )P |7 |z|%Pdz
- [ If( ) |Zf|‘¢fop0 y)| dy’ ||Z||n+a1p1 (341)
{22\ B(0.21z])
= [Gayp(NOOI?: [ 12 eomdz
{lz|2t}

< t’(al’aO)pl[Gag,pO(f)(X)] b,

If a; < 1, then it follows from equations (3.40) and (3.16) that
Py

f 00 = fOx+ y)ldy

Rl BO.212])

dz
S UGy OOV + (PG (NOOIP

Thus, equation (3.39) follows by minimizing the right-hand side of the indicated inequality.

Polaz—ag) pylaz—ag)| .
(- a)’ pylaz-a) ] elds

Next, applying Hélder’s inequality in equation (3.39) with [

Wan= [ | § 1re0- f(x+y)ldy

RIRA(BO21z) 2|
amag ag-do.
< [(Gaun NOONEBILG,, (01l
Q—aq a—ap

(o=ay)P1 (w=a, )1
<N Gagpy 26 " NGayp, Il 55

Q- a—ap
( p (@=ayP
< I E e ™,

Note that the last inequality is obtained by Remark 3.3. Hence, we obtain equation (3.38) for a, < 1.
If @, = 1, then it follows from equatlons (3.41) and (3.24) that

f e - f(x+y)|dy

Rl BO.21z])

IZI"““ o S TG, p (F)O1P + LMD ()11

which implies equation (3.40).

p(1-a0) p,(1-ao)
pl-a)’ pd-a)

£ IO = O+ y)ldy

B(0,2]z])

], we obtain
Py

By applying Hoélder’s inequality with [

o= [ |

R"R™

Jzees

1-a al-ay
= [ 16ay (N1 EPMADFDCON e Prdlx
Rn
-ayp (oo
1 — 1
< IGaup, (NIl " IMADFDI

1 a1 ([11 ap

)2
1 1
Ilfllwao“ 0
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This yields equation (3.38) for a; = 1.
Hence, we complete the proof of Lemma 3.3. O

Now, we apply Lemma 3.3 when a, = 1 in order to obtain
1-m a—-ay

1 1-
”f”W“lvm = Hf” H%OPUHDf”LPZaU)

where qq and p, are chosen as in Lemma 3.3.
After that, we have from equation (3.35) that

Qo
[Iflleoro = |If|| 0 Ilfll“lam

Combining the last two inequalities yields the desired result.
The case a; > 1.
If a; is not integer, then we apply Theorem 1.2 to ¢ = La,] to obtain

LazJ Sz |_(l2J

D < D D o, < WS, (342

with ¢ = p,7,j. Recall that @; = Lay] + s,.
If La,] = 1, then it follows from equation (3.37) and the last inequality that

1 - a

= Wlle® W lieeees

1- 1-
[IFllyee = 1FI™ IDANEE = (1™ IIfII IIfIIWam

with ¢ = a1p; = @ p, since Lay] = 1.
This yields equation (1.11) when Lay] = 1.
If La,] > 1, then we can apply Theorem 1.1 to obtain
Lazl-1 1
IDfllce = IIfIL™ 1D\ 11562,

_ @py
with ¢, = a;p, and g, = Laz 1= o

A combination of the last inequality and equations (3.42) and (3.37) implies that
Lazl-1 @

1
1 1-
Il < 1 DA = I | IF1L6° Dtes)f 155"
B

a
S Lazl ] Lag] ay

“lay]
IIfII o [Ilfll o 1 llyere = Il o“zllfllwam
Hence, we obtain (1.11) when La,] > 1.
The case where a, > 1 is integer can be done similarly as the above. Then, we leave the details to the
reader.
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Appendix

Proposition A.1. The following statement holds true

WFllwree = Wl VF € SRD. (A1)

Proof of Proposition A.1. To obtain the result, we follow the proof by Grevholm [10].
First of all, for any s € (0,1),1 < p < «, and it is known that (see, e.g., [12,22])
n® 1/p
P de S, n
> [18ef e |  VF € WoRR,

k=17

Wl = [

where A, f(X) = f(x + tex) — f(x) and e is the kth vector of the canonical basis in R", k = 1,..., n.
Thanks to this result, equation (A1) is equivalent to the following inequality:

n dt
p ~ [IfIPP
é{nmgkfny v = F1e (42)
Then, we first show that
n dt
p D
gllnmekfnytw < W1 *3)
It suffices to prove that
I dt
p p
{uAtelfantwp < I (a9

Indeed, let ¢ € S(R™) be such that supp(¢) C
JEZ, and 2jez9(§) = 1for & # 0.
Next, let us set

<8< 2], 9(%) # 0 in [i <1l < 1], 9,0x0) = 27p(27x) for

B(&) = (4 - DPE), &= (&, ...E).
Note that for any g € S(R"),
FH(e - 1g} = g(x + tey) - g0),

where #! denotes by the inverse Fourier transform.
Since supp(¢;) N supp(p;) = & whenever |l - j| = 2, then we have

Z(Dj

i€z

Y xf=19* (@t 0+ @) *f. (A5)

Applying Young’s inequality yields

1%, * @ * fllee < [1Yllz: oy * fllee
= |7 (e - DAE} pllg; * fllor (A6)
=[lgi(-+ter) = gOllz 1oy * fllee < Cllg; * fllze,
where C = (, is independent of j.
On the other hand, we observe that

1
ID¢j(x + Ttey) tedt
0

1 1
< tI|D¢j(X + ttey)|dr = zz-fz-f"j|D¢(2-f(x + ttey)|dr.
0 0

lp;(x + te) - g;(x)| =
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Therefore,

lp(-+ter) = gl < L2729 |Dp@I(x + tten)l pdr = 27 [Pl dr = C(p) €27, (A7)

Combining equations (A5), (A6), and (A7) yields
2 119 * fllr < minfl, €29} 3 |lg; * flle. (A8)

J€Z JEZ

Now, remind that f(x + te;) - f(x) = Z,EZI/J]. * f(x) in S’(R™). Then, we deduce from (A8) that

O+ te) - fOOP p_dt
II 1+ap =_[ Z 'pj *f t1+ap
olljez b
Zk
de
<3 [ 3 minft, 22, « A5
kEsz 1jEZ
< ) 27k Y min{l, 28|, * £
kez jez
= ) > min{l, 20kipyp-tkepap (25|, + f]175]
kez jez
= Y Y min{2" kD, 2= OPy 25|, * f1[7p]
kez jez
< ) X 2WIw|g « flify], 6 = minfap, (1 - a)p}
kez jez
<Cs 2 27|y * fllfp] = Collf Il -
kez 124

Similarly, we also obtain

]'? [ F(x + te) = FOOP

P _
f+ap dxde = ||f]l jo k=2,..,n.

This yields equation (A4).
For the converse, let {(pj}jez be the sequence above. By following [10, page 246], we can construct function

¥ € S(R™ such that (&) = 1 on {1/2 < || < 2}, and § = Y",h", with k¥ € S(R) satisfies

NG
sup

——1| <¢C, k=1,..,n, (A9)
te@2i-12)) eltt - 1

L]
where h}‘(x) = 2‘j"h]’-‘(2‘7x), and constant C > 0 is independent of k, j. Actually, we only need equation (A9)

~k
hj (§)
elté -1

iG]

holds for oy

instead of
M
total variation of p.

Next, from the construction of functions k¥, k = 1,..., n, there exists a universal constant C; > 0 such that

, where M is the space of bounded measures on R", and ||u|| is the
Ll

= ~k
4 He) - h; (§)
T e -1 -] ettt - 1
! !

With the last inequality noted, we deduce from equation (A9) that
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)
sup || F =z <$C0, k=1..,n (A10)
te@i127) etk -1 B
Now, observe that
k@)
— ]
R f= T+ B

Thus, it follows from the triangle inequality, equation (A10), and Young’s inequality that

. - i G
g« Pl =|| ZHf )| < TR« Fllr = 2 || F g * Do
] et — 1
k=1 P k=1 k=1 Lp
o ) (a1
DX e ey 1| WA T
k=1

Ll

n
< ) Mg Sfllr forall t € (2071, 2)).
k=1

On the other hand, it is clear that Y(£)@(€) = ¢(§) since supp(¢) C {1/2 < |&| < 2}.
Hence, we obtain from equation (A11) that

n
10y * £1Lr = 119y * Uy * fIle < BILulle; * FIr < 3 e f N30
k=1

for all t € (2771, 2)).
Thus,
, we L L dt

2 27%)g; % flifp < 3 27P Y S [|A,f I pdt < ZJ'||Atekf||§,,tl+—ap,

jez jez k=12 k=17
which yields

n 0o
dt
P P
Wifye = %{nAmkaLP T

This completes the proof of Proposition A.1. O



	1 Introduction
	1.1 Main results

	2 Definitions and preliminary results
	2.1 Fractional Sobolev spaces
	2.2 Besov spaces

	3 Proofs of the Theorems
	3.1 Proof of Theorem 1.2
	3.2 Proof of Theorem 1.3

	Acknowledgement
	References
	Appendix


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


