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Abstract: In this article, we consider the following Schrédinger-Poisson problem:

—-&2Au + V(y)u + ®(y)u = [ufPu, y € R3
-AD(y) = 12, y €R?,

where € > 0 is a small parameter, 1 < p < 5, and V(y) is a potential function. We construct multi-peak solution
concentrating at the critical points of V(y) through the Lyapunov-Schmidt reduction method. Moreover, by
using blow-up analysis and local Pohozaev identities, we prove that the multi-peak solution we construct is non-
degenerate. To our knowledge, it seems be the first non-degeneracy result on the Schddinger-Poisson system.
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1 Introduction

From the point view of Quantum Mechanics, the Schrédinger-Poisson system describes the mutual interactions
of many particles [29]. The behaviour of a single particle of mass m > 0 can be described by the linear
Schrodinger equation:

ow h
th—— = ———AW + a(y))W + &y, )W, YERS tER,
at 2m
where i is the imaginary unit, A is the Laplacian operator, & is the Planck constant, and ® : R3x R - R. In
contrast to the single-particle case, in the presence of many particles, we can model the effect of mutual

interactions by introducing a nonlinear term. Then one leads to a non-linear equation of the form

oW  h
= ——AW + a(y)W + &y, OW - [WPW, yeER? tER,

oW _
! ot 2m

with1 < p < 5.If the particle moves in its own gravitational field, which is generated by the probability density
of the particle via the Newtonian field equation, then the potential
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1 rIW 0P
oy, t)=—|—d
0.0 47TJ; ly - 2| z
R
is a solution of the Poisson equation:
0D = [ WP

We look for standing-wave solutions with the form W(y, t) = u(y)eim, @ >0,y € R3,t €R, then the system
becomes

—-&2Au + V(y)u + ®(y)u = [ufP'u, y € R3,

1.1
-AD(y) = U2, y € R, a1

where £2 = % and V(y) = a(y) + hw. System (1.1) also described the interaction of a charge particle with an
electromagnetic field [6,10,11].

Mathematically, many results on existence of solutions for system (1.1) are established. For a fixed con-
stant € > 0, these works [10,11,25] studied the existence of solutions for system (1.1) when the function V(y) is a
constant-valued function, while the existence of solutions of Schrodinger-Poisson system with non-constant
potential functions V(y) was taken into consideration in [5]. On the other hand, there are a lot of results on the

existence of solutions for the singularly perturbed problem (1.1), that is, € is a small parameter. In [24], Ruiz

proved that for1 < p < % system (1.1) possesses a family of solutions concentrating around a sphere ase - 0

when V = 1. In [16,18], the authors investigated the existence of solutions to the Schrodinger-Poisson problem
and the solutions concentrate on the sphere when the weight function is radially symmetric. The single-peak
solution of the Schrodinger-Poisson problem was studied in [17] and the cluster solutions for system (1.1) was
constructed in [26]. More results about the Schrodinger-Poisson system can also refer to [1,2,4,7,13-16,21,27] and
the references therein.

It is known that the non-degeneracy of solutions is also an important property in the theory of differential
equations when one deals with the stability or instability of the solutions. On the other hand, the non-
degenerate nature of the solutions can be used to prove the existence results of solutions through the famous
Lyapunov-Schmidt reduction procedure. However, to the best of our knowledge, the non-degeneracy of solu-
tions for the Schrédinger-Poisson problem has not been investigated. Here, we focus on the non-degenerate
behaviour of a class of concentrating solutions to (1.1). For simplicity, we suppose V satisfies:

(V1) V(y) € C3(R3%R),0< < V(y) < 1
(V2) V(y) has m non-degenerate critical points p;,..., P,

In this article, our main concern is the non-degeneracy of peak solutions for Schrodinger-Poisson systems
with non-degenerate potentials. However, it is needed to note that there are some interesting results on the
existence of peak solutions for related problems with degenerate potentials, see [22,23] and the references
therein. Lu and Wei [22] studied concentrated positive bound states of nonlinear Schrédinger equations with
totally degenerate potentials, and showed how exactly the total degeneracy of potentials can affect the
existence and properties of solutions. Luo et al. [23] investigated the existence and uniqueness of normalized
solutions for Bose-Einstein condensates with degenerate potentials.

We will use the unique ground state w of

-Aw+w=wP, w>0, in R3,
w(0) = maxw(y), w € HY(R®)
yER?
to build up the approximate solution for system (1.1). As shown in [3,19], w(y) = w(|y|) satisfies

. . w(r)
w'(r) <0, limre'w(r)=C>0, lim =
(r) lim re"w(r) lim 2

-1

Moreover, w(y) is non-degenerate, that is,
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ow
KerlL = —, 1=1,2,3,
erlL spanlay i ’

1

where the operator is given by, for any ¢ € HY(R3),
Lo =-A¢ + ¢ - pwTlp.

Fixing x € R3, we denote

Uey) = (VOO)rw| S0y

JV(0 ]
- X)|.

The existence of multi-peak solutions for (1.1) can be established following by the similar way with the
work in [17], and the proof will be omitted here.

Theorem 1.1. IfV(y) satisfies (V1) and (V,), then there exist 6 > 0 and g, > 0 such that for any € € (0, &), system
(1.1) has a solution of the form

m
Ue = ) Upy,, + W (12)
j=1

for some x.; € Bo(p;), and ||wlle = O[eg], where ||u|? = ng(z:“2 |Vu? + V(y)u)dy.

Remark 1.2. The assumption on V(y) can be weaken in Theorem 1.1. In fact, the result holds when Condition
(V) is substituted by the degenerate condition, that is, there exists an even integer n € [4, ] such that p; is a

degenerate local minimum( or maximum) of V(y) and

3
DV(p)=0, k=1,2..,n-1j=12.,m and DW(p)lx]= Y ayx,
i=1

o"vV(p)
where Qij = 7 and a;j > 0 (or aj < 0).
s

Next, we will study the non-degeneracy of solution u,. Define

1 J-ug(z)v(z) dzu,

Aev = =20V + (V) + @y, — pluer™v + - e

R

for any v € H'(R3). Inspired by the non-degeneracy of solution for Schrédinger equation in [28], we have the
following non-degeneracy result through using the blow-up analysis and the local Pohozaev identities:

Theorem 1.3. If V(y) satisfies (V;) and (V,), v, satisfies A.v. = 0, then v, = 0 for sufficiently small € > 0.
Remark 1.4. Theorems 1.1 and 1.3 hold when the dimension N satisfies 3 < N < 6.

Following with [8], we argued by contradiction. By the linearity of the operator A., we can assume that
|[VellL=w3 = 1. For the estimates of v, near the non-degenerate points, we can use the blow-up analysis and local
Pohozaev identities, while we will use the comparison principle to get the estimates away from these points.

Before closing this section, we will point out the difficulties in this article. Compared with the classical
Schrodinger equation, there is a more non-local term in Schrédinger-Poisson system (1.1). The non-local term
brings in much more difficulties when we study the non-degeneracy of the multi-peak solution with the form
(1.2). For example, there exist two double-volume integrals in the local Pohozaev identities (2.5). To deal with
these two double-volume integrals, we need to estimate accurately and skilfully. On the other hand, much
more difficulties are brought by the non-local term as well when we estimate |v¢| and |Vv,|, where v, satis-
fies (3.2).
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Our article is organized as follows. In Section 2, we will carry out some basic results to apply in the proof of
the main theorem further. In Section 3, we will give the proof of Theorem 1.3. In the sequel, we will use C and o
to denote various generic positive constants and small positive constants, respectively.

2 Preliminaries

In this section, we will give some useful results to apply further in the proof. For every u € HY(R?), it follows
from Lax-Milgram theorem that there exists a unique ® = ®, € DY*(R®) such that -A® = u?, where

2
Py(x) = —I lu @ 4 2.1)

The properties of @, are as follows, which can be proved similar to Lemma 2.1 [9].

Lemma 2.1. For any u, v € HY(R®), we have

1D ||Dy|[pr
D (@l < JpllPy

@ [Py~ Dyllprogs) < 1||u = V|3 g Where S = inf iz [l VulPdx.

llell 6 3)=1

Next, we give some important estimates. The following result can be found in Lemma 3.2 [12], which can be
used later.

Lemma 2.2. For every a € {1, ...,N - 1} and f: R¥ = R such that (1 + |y|**1)f € LYRY) N L*(RY), set

f(2)
[Rle - Zladz

®lf1y) =

Then there exist two positive constants C(a, f) and C'(a, f) such that

c@pn|  c@f)
A BT

®lf1y) - y#0.

Corollary 2.3. Suppose f satisfies the condition in Lemma 2.2, then there exists a positive constant C”(a, f)
such that

C/I(a’ )
wifiois el yeo @2
Proof. When |y| = 1, (2.2) holds obviously by Lemma 2.2.
On the other hand, when |y| <1 and y # 0, we have
f@
9z < Wy, [ xS Clfllran 23)
-l X lyl
v Byy(0)
and
f@ 4
TEd T | o [ @iz = e e
RN\By(y)

It follows from (2.3) and (2.4) that (2.2) holds. O
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Lemma 2.4. (Pohozaev identities) If u, is a solution of

-&20u; + V(Y)ue + Oy ue = U 'u,, in R3

and v, is a solution of

1 [ u2)ve(2) .
-2, + V(y)ve + @,V + Eug[ﬁ[3 Sly —sz| dz = pluePtv,,
then it holds that, for any Q C R3,
av(y) ou, ov,  0v, ou,
uvedy = -€* | | ——— + ——|dS + &% | Vu,Vv.ndS
-S[ayi Ve Ianayi an oy, IS“

Z; us(z
7( ) |3( )dzuevgdy

zi = Y )Uu(2)ve(z
+ J-(Dususvsnids - rjjwdzufdy
T oR? ly

I(|uE|P e = V)tevenidS - —H

zp
J'J’ ua(Z)Ve(Z) dzuZnds,
B-Q[R

where n is the outward unit normal of 8Q and n = (ny, ny, n3).

Proof. Since

ov, ov,
(—e2Au; + V(y)u, + (I’ugua)a_); = Iuglp‘lusa—yj
and
1 u.(z)ve(z) , |ou, . ou,
—e2A 174 ® — ZEVGJVENT) 4| 22 p-1,, £
XAV + V(YIVe + Dy, Ve + 2”u8u£ -zl dz oy, DluelP™ve oy’
by the divergence theorem, we have
ou,
-&2 ||Aug— + Av,—|d
fluty -
oV, ou, ou,
= - |V(y)lu +v—dy cDSu = 4y, dy
_!; aay (3 I u s i eayi
oy . ou U(2)ve(z) ou,
+ p-1y =€ 4 p-1 €la — i utaiatay | —&d
E[. [uelP~ ug o, pluslP~*ve o, II _ ZU(y) ay. Ly
467
= I o ugvdy - JV(y)usvsn dS+I—usvsdy
Q
- _[d)ueusvsn,»ds + I|ue|l"1u€v€nid8
a9 )
Z; u:(2)ve(z 1
P JJ( i yl)_i's) e )dz 1 J'Ius(z)_vs(z) dzunds

I(|ua|p_1ua - V(y)ue)vendS + J ugvedy - _[’Duguevenzds

Q

vQ)
G

dzu?2dy

u&‘&‘

J’J’ (zi - yl)u (Z) _J’J’ (zi - yl)ua(Z)Va(Z)

-z

— J’ _[7“8(2)_"8(2) dzuZnds.

(2.5)

(2.6)
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By using integration by parts, we obtain

ou, 0%, ou, ov,
Au —dy = ——dS
-g[ £ ZJ J oy, aylay , on oy,
Similarly, we have
ov, 02 ov. 0
fan a5 [P Pe g, [Py
o ayl 6ylayl 20 on 9y,
Thus,
oy, ou
-e? || Aue——= + Av;——=1d
€ !; U o vg ly
_ ZZJ' aueavsl Y o)
o D 99y, A on dy, oOn ay,
ou, ov, ov; ou
= g2 IVuEVVEnidS - ezj — =+ ==
A A on 9y, on 9y,
The result follows from (2.6) and (2.7). O

3 The non-degeneracy result

In this section, we will prove that the solution with the form (1.2) of system (1.1) is non-degenerate. By the
similar way with [8], we can prove the following results, which will be used later.

Lemma 3.1. Assume that u, is a multi-peak solution of (1.1) with the form (1.2). Then there exist A € (0, \/Vp) and
C > 0, such that

m Aly-xe jl
|Wellp=w?y = 0), lw:I<CYe =, fory€R?
j=1
and

Vwe(y)| < Ce%, for y € dBa(Xe)),

1 .
where 0 < d < o minpjlp, - pjl.

According to Lemma 3.1, we have

Mo Ayxe i
) <CcYe <, fory€eR? 3.1)
j=1

and

Vue(y)| < Ce i, for y € dBy(xe)).

Proposition 3.2. Assume that u, is a solution of (1.1) with the form (1.2) concentrating at p,, p,,..., p,,, which are
different non-degenerate points of V(y). Then, there hold

Xej = Bl = 0D, j=1,2..,m
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Now, we prove Theorem 1.3 by contradiction. Due to the linear property of the operator A, we can
suppose that there are &, — 0 satisfying ||ve,||=r? =1 and AV, = 0. For simplicity, we drop the subscript

n. In order to get a contradiction, we want to prove [[ve(y)|[j=r3 < % when ¢ is small enough. At first,
we will prove that v, decays exponentially away from the concentrating points so that |v.(y)| <% for

y € R3\U7’:135R(x£,j), where R > 0 large enough. On the other hand, we study the local behaviours of v.
near each concentrating point through the blow-up analysis

VE,j(y) = v&‘(é)) + XS,j)s ] = 11 27---: m.

We will prove v;; — 0 in C'(Bg(0)) as € — 0, by using local Pohozaev identities.
Lemma 3.3. We have
Ivelle = 0fe?).

Proof. Because v, satisfies

i 1 u2)ve(z)
_EZAVg + V(y)vs = pluslp 1Va - (DuEVe - Euguiﬁ s 3.2
we have
- 1 Us(2)Vve(2)
|[vell? = pﬂiluslp "y - g;%gvgzdy - Eﬂ!;!g—iy . £z| dzuev.dy. (33)
It follows from (3.1) and ||Ve||;=g3 =1 that
m /\Iy—x | p—l
.[ |uelP~tvidy | < I |ueltdy < CI Yeo & | dy=o0(. 34
R3 R3 Rr3U=1
According to Hardy-Littlewood-Sobolev inequality and Holder inequality, we know
Us(z)ve(2) 2 2 2 211y (12
e/ < < < 3.5
T ety | < Clluawlfy ) < Clulfs o Il < ClE (35)
R°R
and
2 2 2 — 2 2 2 2
I;bugvg Y | < O, 1212 oy = Clels o Vel < CEuE (36)
R
By (3.3)-(3.6), we obtain
[[Velle < C(e® + eX[uel?),
which implies ||Vl = o[e%]. O
The next lemma shows the estimate of |v;| and |Vv|.
Lemma 3.4. There exist ¢ > 0 and C > 0 such that
m aly-xgjl
v(lsCYle =, y€eR® 3.7)

J=1

and
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ad

[Vve(y)| < Ce™%, y € 0Ba(Xe,), (3.8)
1 .
where 0 < d < o mings|p, = pjl.
Proof. By (3.1), for A in Lemma 3.1, there exists R > 0 such that

m
V() + @y, - plugPt 2 22,y € R\ UlBsR(xs,,»).
e

When y € Q; = {y € RA\UL Ber(Xe,) : Ve(y) 2 0}, we have

-2, + v, < f,,

where £, (y) = =5 ue(y) sty 0s dz.
Suppose & is the solution of equation,
—eE + N = ..
Define fg(y) = &(¢ey), then &, satisfies
~0(y) + PEO) = f(ey).

By Theorem 6.23 in [20], we have

E(y) = iks T e -7 (e2)dz.
Therefore,
— Yy i 1 —A ’gv—z
&0) = &) -+ [ Ji 2z

Next, we will give the estimates of |£.(y)|. It follows from Hélder inequality that

1 1 ug(x)vg(x)
&= |5 J Ed |I ez
R™| e
A
1 e luolve)l
< dx|u(z)|dz
8mle? D-J; -zl lz-x ¢ 39)
C a a 1 A-0 1
—_ —ely=Xe,jl - -zl
< ,Zf j LW e @@ )z
R
(A-0)
cZ e Iy—zI
< Yetn | 2| 190 19 s
J=1 R Y-z |5
where o € (0, A). It is easy to verify that
e~ syl .
[———az=ce. (3.10)
[R3 Iy - Z|§
By Lemmas 2.1 and 3.3, we have
1
2 5 5
1@y, |7 g, < Cet and ||<1>V€||L6(R) < Cei. G.11)

Thanks to (3.9)-(3.11), it holds
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m
|E(y)] < Ce2) e s xe,

j=1
Denote that g,(y) = vi(y) — &(y), then g, satisfies that
-e:\g, + A2g, <0, in Q.
Let
T(u) = —2Au + Au.

By the direct computation, we can obtain

aly-xgjl

Telee—= )>0.

Because of (3.12) and ||Ve||=g3 = 1, there exists M > 0, such that

8.l <M.
Denote
N R m _oly=xe,jl
L) =MeRye " - g
j=1
Thus,

TLg) >0 in Q.
Moreover, for y € 02,1, we have
5 > 0.
By the comparison principle, we obtain that
8&() 20, fory€Q,

which implies that

m aly-xe jl m aly-xe jl
V() < |EO)| + MeRYy e ¢ <CYye ¢, fory€ Q.
j=1 j=1

Analogously, when y € Q,, ={y € [R3\U;"=1BSR(XS,]') 1 ve(y) < 0}, it holds

aly-xe oy-xe

m m
0> v(y) 2 -[&()| - MeRYy e ¢ 2-CYe «
j=1 j=1
Therefore, we obtain
m " m
V)l < CY e bl y € R\ U Ber(xey).
j=1 j=1
For y € UTBer(Xe,j), we have

m
Ve(Y)| S 1< ey e evxefl,
j=1
Thus, (3.7) holds.
Next, we prove (3.8). Because V. satisfies

1 1 U (2)ve(z
~Ave = ? p|u8|p_1v8 = VO)ve - Dy, Ve — _UEJ’M(]Z s

2m bl ly - 2|

-_ 9

(3.12)
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by Li-estimate, one has, for x € 0By(x.;),q < 6
C 1 u(z)ve(z)
v, <— || pluglPtve = W - Dy v, - —u, | —dz + Cllv
Il ) 7| PP % = Vi = 9ue = 5 J 14
4 R 9 Bg(x)] 2
2
9 Us(2)ve(2)
<= + ||y, v, + llu I—dz + C||v,
&2 I E”Lq Bd(X)] (| P, SHL‘I[Bd(x)] £ ) -zl I SHL‘Z[Bd(x)’ (3.13)
2 2 R 9 Bg(x)] 2
2
C Ue(2)ve(2)
<—|Iv + || @,V U, | ———=dz
2| ] * Il J
2 2 R 9 BQ(X)]
2
When y EB%(X), then gs vV = Xl € %. If € is small enough, |X;; — Xgpnl 2 | - pul 2 2d, we obtain
V= Xel 2 Xej = Xenl = [y = Xejl 2 2d = 3 = &, h # j. Therefore,
1 1
q q
mo q mo o q .
v j wody| sc| [ |Teeral| gyl <cf [ |Yez| @y sce G
Lq[B"(X)] h=1 h=1
2 2( 0 Bd(x) Bg(x)

By Holder inequality and Lemma 2.1, we have

ad ad

[ONRY < ||, s < Ce 2||Dy, || 163 < Ce 2

1903 ) & 19l I ) = € Sl = 02
2 2

(3.15)
and
1
q
Ug dez I |(<Dus<l>vg)%ug|‘1 dy
R® il q ’ B
LBa0o| | Pdeo
2
1 1 (3.16)
< |y, o, |2
<l o ’n P o )’nu [T
<Cllugl| w( < Ce%
L16-4|B4(x)
2
It follows from (3.13)-(3.16) that
C w _ad
IVell o of (X)] e sCe®, for q<6. (317
Taking 3 < q < 6, according to (3.17) and Sobolev embedding theorem, (3.8) holds. (I

Now, we study the local behaviours of v, near each concentrating point
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Lemma 3.5. We have

in CY(Bg(0)) as e~- 0,

3 ow(,/V(p)y)
y;

1
vej () = 2 ay(V(p))e
i=1
for some constants a, 1=1,2,3, j=1,2,...,m.

Proof. We notice that v;; satisfies the equation
—AVSJ‘ + V(Ey + Xg’j)Vs,j + 82]&1 =L,2V€’j,

where

Jea ) = — %Zldzvg,j(y) + -z dzue(ey + Xej)

| e+ xy) 1 [ler  xe)u @
47T|R3 ly 27T[R3

and
Je2 ) = plue(ey + xe I

Since [|ve jll=®3) =1, we have |, (¥)| < C. By Lemma 3.1, we obtain

m
ug(ey + Xs,j) = Z Us,xg,h(éy + Xe,j) + we(ey + Xa,j)
h=1

= (VO ))rw(V(xe)y) + o(1)
= (V(p))yrw([V(py) + o(D), for y & Bx(0),
which implies
Je2O) = pV (WP [V (p)y) + o(D).
According to the L7 regular theorem and the Schauder estimate, we have v, ; — v; in C2(R®) and v; satisfies
=By + V(pv; = pV(ppwr ' [V(p) V-

It follows from the non-degeneracy of w that

L ow(JV(p)y)
%

3
Vj = Zaij(V(Pj))F
i=1
for some constants aj. O

Lemma 3.6. Let a; be as in Lemma 3.5, then we have

aij=0’ i=1,2,3;j=1,2,...,m.

Proof. We will use Pohozaev identities in Lemma 2.4 to prove by choosing Q = Bs(x, ;) with § = %minh¢j|ph - pl
At first, we compute the left-hand side of (2.5). By the Taylor’s expansion, we have

oV 2o vy
[ 2Dnay=3 [ 5o

Bs(xep) ! =1Bs(xe)

O - pj,l)usvsdy to J ly - pjlusvsdy : (318)

BJ(XS,]')

Letting y = €z + X, j, we obtain
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J O = by Duevedy = gl I (ez; + xslyj = D DU(EZ + Xe jIVe(€Z + Xe j)dZ
Bs(Xe,j) Bg(o)
(3.19)

!
Xej = Dj
] J.l

=gt J [Zl + f]ug(sz + X j)Vejdz.

Bg(O)

According to Lemma 3.1 and Proposition 3.2,

9 m _/\Ixfxsyhl 3
|X£,j_pj| =0(&%), |ug SCZe £, XER?
h=1

thus,

e_A|Z| + Ze_ €
h#j

XL = bl = 0(€?),  ugez + xej) < C

Aez+x£,j—xeyh'
Therefore, we have

ej ~ P
| = ez + xeveydz | < Cellvegllimsy [ lueCez + xe ldz
Bs(0) Bs(0)

Alez+xg j=xg pl
< Cel|Ve jll=®? I ezl + Ze‘ [ ’dz.
Bs(0) h=j
&

. 1 .
Since § = Zlfrliljnlph - p;l, we have

!
Xe; = D
I S . Mgez + XeVedz | < Ce I ‘e""z' +e?ldz < Ce. (3.20)

Bg(O) Bg(O)

Combining (3.19) with (3.20), we obtain

_[ o - pj,l)ueVsdy =gt _[ ZiU(€Z + Xe Ve, jAZ + 0(?). (3.21)
B&(Xs,j) Bg(o)

Next, we compute f

Bé(o)zlug(ez + Xgj)Ve,jdz. As we know,
£

m

W)= 3 Vo) + 0) = 3 (VO] [ T0e) 222 + ),
h=1

h=1

By Lemma 3.4, we obtain

1 1
2 2

I 210e(EZ + X j)Ve jAZ | < I wi(Ez + X )dz I |z[vZjdz
B%(O) Bg(O) Bg(O)

1
1 2

2
1
<Clz wa(y)dy J |z2e701"dz
R? B5(0)

(3.22)

C
< —

< || welle = 0(1)
2

&

and
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| ZIZ(V(XE,h))ﬁW[\/V(Xa,h 64)(”’] veydz | < C [ 121 lugldz = o). (3.23)

Bs(0) h* Bs(0)
According to (3.21)-(3.23) and Lemma 3.5, we have

[ 61 - ppuavedy = e vppys | 2w V() 2vesdz + o(e?)

Bg (Xe,7) Bg(O)
aw(ﬂ/V(pgz)

= e}V (p)iay jzzwc/V(p,)z) dz + o(e?),

which, together with (3.18), implies

v
_[ a(y)uevsdy—e‘*(V(p]))le 3.0y aa_[ZzW(ﬂ/V(p])z)
l R®

B&(Xs,j) t

aw@/V(p,)z)

dz + o(e"). (3.24)

Next, we estimate the right-hand side of (2.5). Using Lemmas 3.1 and 3.4, there exists y > 0 such that

Uz 0V, 0V, Ou
e [ |52 TS lgsy gz [ vuvunds ¢ [ (VO - [l tugvnds = 0(e ) (3.25)
n dy, on oy
aBé(Xs,j) aBJ(Xs,j) aB&(Xs,j)
and
[ ouumn ds+ o _[ J’”E(Z)"E(Z)dz 2nds = 0(e™). (3.26)
8Bs(Xe ;) aBs(X RS
Denote
[ [ = pu@naomoiy = i+ B+ v B+ B
B&(ij)[R3
where

- ij ;‘3 u22)dze05(y e (y)y;

BS(ij)[R
yi )
- I u2(2)dz| Y Ui, ) re)d;
B5(X£])R h#j
-
- j U2 Vo (2) + 02)|A20r e, 9V )
B(S(ij)[R h#j
Zj — yl
- I 25U (D200 (V)
BS(XE])[R

Z‘ U;",xgyh(z) + we(2)

I J X e,xgyj(z) Z

Bs(x;, ])[R

dZUs,xgj(Y)VS(Y)dy-

By Hardy-Littlewood-Sobolev inequality, Hélder inequality, Theorem 1.1, and Lemma 3.3, we have

|Eal < [[uel s g, l0el 3wy Vel 2wy = OC(e®)
R”)

and
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|Es| < ‘ 2 UereUeren ||+ Nl ell 2 1o Vel 3
hzj L2(RY)
< ZU‘a,xa,;Ua,xe,n + || Us e 133 | el l 233 |1 Ue e 13w 3 Vel 3 w3
h#j Lg([Rs)

h#j

= 0(e%).
Similarly, we have

exi + XL =y,
|Eo| = | % I _[ ul(ex + xgj)dx
Bitn )[R — (SX + X, )|3 &,J

2 Vo)

h#j

ve(y)dy

J- J- ex; + x5 — (ez; + XE))

2
us(ex + x.;)dx
(SZ + XS,j) - (8X + XS,j)IB 8( 8:])

2 Ve (€2 + Xe )
h#j

Ve j(2)dz

B(O) 3

= O[e‘V

By utilizing Lemma 3.5 and the symmetry of w, we obtain

il = V(s | j[y w2 [V (B W V(B Y)Ve (y)dzdy + o(e*)

Bs (0)[R
,/ <p,) y)

—s%V(p))wZah, | jLV o [ o Ty iy + ot
h=1 s (0)[R
,/ ®)y)
= V(e [ j 2<1/V<p]>z)w<1/v<p] DD 4+ ot

Ba (0)[R

Next, we estimate Es. Expand E3 as follows:

E3 = E3 + E3p + Ez3 + E3y,

where

| j |3u5<z)w£(z>wx€](y>ve(y>dzdy,

Bs(xe ])[R

Ex = J .[ € XfJ(Z) Z Ue JXe, h(Z)U&‘ xej(y)vg(y)dZdy,

B&(ij)[Rs

e | Vl

Bs(xe ])[R

- I J5e

B&(ij)[R3

2
U xg,(Y)Vs(Y)dZdy:

z U Xe, ;,(Z)

wgcz) Z Us x. /() U x, (Ve (y)dzdy.

Similarly, by using Hardy-Littlewood-Sobolev inequality, Holder inequality, Theorem 1.1, and Lemma 3.3, we
obtain
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Ey = 0(%), Ep= 0[9_%], Ey = 0(&°).

By Corollary 2.3 and Fubini theorem, we have

|Es3| < Z _[ 2P axeh(Z)Us xg,(Y)dZdy + O[ _7]
h#] Bs(xe, >rR
1
=e _[ JTHZ U2 {(D)(V (X )" 1W(\/W€])X)dZdX + 0[ ]
e pyortX T T |
1
sced ) | ———U2, zdz+0[“]
hzﬂ[lilz - X51|2 eh( )
a3 [ T + e
Ce®(V(Xe,n)r hz:] &Y+ Xen — Xe |2W( V(Xen)y)dy +
<Ceb ) ——— + O[ ] = 0(eb
hz;ejlxeh Xs;lz -

Thus,

| [y puenmaomony

Bs(Xe, ])[R

,/ )
2(1/V(p,)z)w(‘/V(p] y) 72 dady + ofe)

,/ (ppy)
WX V() 2w( [V (p) B dzdy + o(e).

e V(pay | I

Ba(O)[R

. z
YV (p))r-iay
-

Analogous to (3.27), we have

.[ .[ e ue(Z)Vs(Z)dZugz(y)dy

Bs(xe ])|R

GW(‘/V(p )Y)
= e V(p) 1al,” |3wZ(,W(ppz)w(x/vuo, y)—————dzdy + o(e?).

Therefore, it follows from (2.5) and (3.25)-(3.28) that

I aV—(y)ugvgdy = o(e"h),
Bs(xe,)) t
which, together with (3.24), gives
)
(D*V(p)3xs| % | = o(D).
as

By (V;), we have
a; =0, 1=123j=12..,m

Proof of Theorem 1.3. By Lemma 3.4, there exists R > 0 such that

1 m
)l < Ce™ <o,y €RY U B,
-

(3.27)

(3.28)

(3.29)
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According to Lemmas 3.5 and 3.6, we have
Vej = 0 in CY(Bp(0)) as €~ 0,
which implies
ve(y) = 0(1), ¥ € Bxp(Xej), j=12,..,m (3.30)

It follows from (3.29) and (3.30) that
1 3
el < 5. yERS,
which is a contradiction to ||v||;~®? = 1. Therefore, v, = 0 for small €. O
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