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Abstract: In this article, we introduce a notion of capillary Schwarz symmetrization in the half-space. It can
be viewed as the counterpart of the classical Schwarz symmetrization in the framework of capillary
problem in the half-space. A key ingredient is a special anisotropic gauge, which enables us to transform
the capillary symmetrization to the convex symmetrization introduced in Alvino et al. https:/doi.org/10.1016/
S0294-1449(97)80147-3.
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1 Introduction

Symmetrization is an important technique to prove sharp geometric or functional inequalities. Schwarz
symmetrization is a classical one that assigns to a given function, a radially symmetric function whose super-
or sub-level sets have the same volume as that of the given function. Important applications include the proof
of the Rayleigh-Faber-Krahn inequality on first eigenvalue and the sharp Sobolev inequality (see [17,19]).

The classical Schwarz symmetrization is based on the classical isoperimetric inequality. It is in fact a
common principle that a symmetrization process is usually accompanied by an isoperimetric-type inequality.
Several new kinds of symmetrizations have been introduced, for example, Talenti [21] and Tso [22] introduce
the symmetrization with respect to quermassintegrals, based on Alexandrov-Fenchel inequalities for quer-
massintegrals. Alvino et al. [1] introduce the convex symmetrization with respect to convex gauge functions (or
anisotropic functions), based on anisotropic isoperimetric inequality. Della Pietra et al. [8] introduce symme-
trization with respect to mixed volumes, based on Alexandrov-Fenchel inequalities for mixed volume.

Let ≔ ∈ >+ x x E: , 0
n n

n� �{ ⟨ ⟩ } be the upper half-space, where En is the nth coordinate unit vector. The
relative isoperimetric inequality, due to De Giorgi, says that for ∈θ π0,( ) and a set of finite perimeter ⊂ +E

n� ,
it holds that
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where � denotes the domains − ∩ +B θEcos n

n

1 �( ) , and equality holds in (1.1) if and only if =E

− ∩ +B r θEcosr n

n�( ) for some >r 0. Here, −B r θEcosr n( ) denotes the Euclidean ball of radius r centered at
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−r θEcos n. Such family of balls shares the common property that their boundaries intersect∂ +
n� at the constant

contact angle θ. The functional − ∂+ +P E θP E; cos ;
n n� �( ) ( ) is usually referred to as the free energy functional in

capillarity problem, which is natural in the physical model of liquid drops (see, for example, [15]).
Our purpose of this article is to introduce a suitable symmetrization, which we shall call capillary Schwarz

symmetrization, to be accompanied by the isoperimetric-type Inequality (1.1).
For a non-positive measurable function u defined on +

n� , we define the capillary Schwarz symmetrization
to be

= ≤ < +⋆u x t r x r θEsup 0 : cos ,t t n( ) { ∣ ∣}

where >r 0t is such that − ∩ = <+B r θE u x tcosr t n

n

t
�∣ ( ) ∣ ∣{ ( ) }∣. It is clear by definition that < =⋆u x t∣{ ( ) }∣

<u x t∣{ ( ) }∣ and the level sets for ⋆u x( ) are the desired model domains − ∩ +B r θEcosr n

n�( ) .
In order to study the property of capillary Schwarz symmetrization, we introduce the following convex

gauge → +
F :θ

n� � given by:

= −F ξ ξ θ ξ Ecos , .θ n( ) ∣ ∣ ⟨ ⟩

We shall call it capillary gauge. One crucial observation for Fθ is that the Wulff ball of radius r with respect to
Fθ, <F x r

θ

o{ ( ) }, is equivalent to −B r θEcosr n( ), for any >r 0. This enables us to transform the capillary Schwarz
symmetrization to the convex symmetrization (due to Alvino et al. [1]) with respect to Fθ. Compared to [1,20],
there are two major differences. One is that the special gauge Fθ is not even, and the other is that we consider
the relative version of convex symmetrization. Nevertheless, we are able to show the Pólya-Szegö principle
and the partial differential equation (PDE) comparison result for such relative convex symmetrization, with an
additional non-positive (or non-negative) requirement on functions, following the proof of [1]. More generally,
the result holds true in any convex cones where the relative anisotropic isoperimetric inequality holds (see, for
example [2,9]). The corresponding results eventually can be transformed to the capillary Schwarz symmetri-
zation with the help of Fθ.

We remark that the idea of transforming the capillary Schwarz symmetrization to the convex symme-
trization is inspired by recent work of De Phillipis and Maggi [6], where they use similar idea to transform
regularity of local minimizers in capillarity problems to that in anisotropic problems. The idea may have
future applications in other capillary problems. Here, we mention one such application. In [12], Jia et al. proved
the following Heintze-Karcher-type inequality for capillary hypersurfaces in +

n� : for a bounded domain E with
∂ ∩ +E

n� sufficiently smooth and intersecting +
n� at a contact angle θ, there holds

∫ −
≥

−
∂ ∩ +
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n

n
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1

,
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n
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∣ ∣ (1.2)

where H is the mean curvature ∂ ∩ +E
n� . As a consequence, Wente’s Alexandrov-type theorem for capillary

constant mean curvature hypersurfaces in the half-space is reproved. We remark that by the gauge Fθ, (1.2) can
be reformulated as:

∫ ≥
−

∂ ∩ +

F ν

H

n

n

E

1

,

E

θ

Fn θ�

( )
∣ ∣ (1.3)

where HFθ
is the anisotropic mean curvature, which is equal to H , thanks to ∇ =F Idθ ν

2 ∣ , the identity matrix. On
the other hand, (1.3) is a special case of the result in [13], where (1.2) has been generalized to general
anisotropic capillary setting.

The rest of this article is organized as follows. In Section 2, we review the anisotropic isoperimetric
inequality in convex cones and study the relative convex symmetrization in convex cones. In Section 3, we
introduce the capillary gauge and study its associated properties. In Section 4, we introduce the capillary
Schwarz symmetrization in the half-space and restate the corresponding results in Section 2 by using the
capillary gauge.
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2 Convex symmetrization in a convex cone

2.1 Anisotropic isoperimetric inequality in a convex cone

In this subsection, we review the basic facts on anisotropic perimeter and anisotropic isoperimetric inequality
in a convex cone.

Following [2, (1.6)], we say that →F :
n� � is a gauge if F is non-negative, convex, positively one homo-

geneous, i.e., =F tξ tF ξ( ) ( ) for all >t 0, and >F ξ 0( ) for all ∈ −
ξ

n 1� . Note that F is not required to be even,
which is important for the applications on capillary symmetrization in the next section. We say that F is a
norm if in addition, F is even, namely, =F tξ t F ξ( ) ∣ ∣ ( ) for any ≠t 0.

Restricting F on −n 1� , we obtain →−
+F :

n 1� � . The Cahn-Hoffman map is given by:

→ ≔ ∇−
x F xΦ : , Φ ,

n n1� � ( ) ( )

where ∇ denotes the gradient operator in n� . The image −
Φ

n 1�( ) is called the Wulff shape.
The corresponding dual gauge →F :

o n� � is defined by:

= ⎧⎨⎩
∈ ⎫⎬⎭

−
F x

x z

F z

zsup

,

,
o n 1�( )

⟨ ⟩

( )
∣

where ⋅ ⋅,⟨ ⟩ denotes the standard Euclidean inner product. The following identities hold true for gauge and its
dual gage:

∇ = ∇ ∇ =F F x F F x

x

F x

1, .
o

ξ x θ

o

o
( ( )) ( ( ))

( )
(2.1)

See, for example, [7, (2.8)], [4, Lemma 2.2].
Denote

= ∈ <x F x 1 .
n o�� { ∣ ( ) }

We call � the unit Wulff ball centered at the origin. One can prove that ∂ = −
Φ

n 1�� ( ), the Wulff shape. More
generally, we denote

= +x r xr 0 0� �( )

and call it the Wulff ball of radius r centered at x0. We simply denote = 0r r� � ( ).
Let ⊂Σ

n� be an open convex cone with vertex at the origin, given by:

= ∈ ∈ +∞tx x ω tΣ : , 0,{ ( )}

for some open domain ⊆ −
ω

n 1� . The corresponding Wulff sector in Σ is ∩ Σ� .
For a measurable set ⊂E Rn, the anisotropic perimeter relative to Σ is defined by:

∫=
⎧
⎨
⎩

∈ ≤
⎫
⎬
⎭∩

P E σ x σ C F σ; Σ sup div d : Σ; , 1 .F

E
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One can check by definition that the quantity P E; ΣF( ) is finite if and only if the classical relative perimeter

∫=
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In particular, for a set of finite perimeter ⊂E Rn, the anisotropic perimeter (anisotropic surface energy) can be
characterized by:

∫=
∂ ∩

−

∗

P E F ν; Σ d ,F

E

E

n

Σ

1�( ) ( ) (2.2)
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where ∂∗
E is the reduced boundary of E and νE is themeasure-theoretic outer unit normal to E . Note that if E is

of C
1-boundary in Σ, then νE agrees with the classical outer unit normal.
A crucial ingredient for our purpose is the anisotropic isoperimetric inequality in a convex cone given

by [2,4,9].

Theorem 2.1. ([2, Theorem 1.3], [9, Theorem 4.2], [4, Theorem 2.5]) Let F be a gauge in n� and Σ be an open
convex cone with vertex at the origin. Then, for any measurable set ⊂E

n� with ∩ < ∞E Σ∣ ∣ , there holds

∩
≥

∩− −

P E

E

P; Σ

Σ

; Σ

Σ
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F F

n
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1 1
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(2.3)

Up to rotations, we may write = ×Σ Σ̃
k� , where ≤ ≤k n0 and, ⊂ −

Σ̃
n k� is an open convex cone containing no

lines. Then equality holds in (2.3) if and only if E is a Wulff ball of some radius r centered at { }∈ × −x 0
k

0
n k� � .

Remark 2.2. In [2], a more general weighted anisotropic isoperimetric inequality in a convex cone has been
proved, although without equality characterization. For unweighted case, the equality has been characterized
in [9], following the method of [11]. The original statement in [9, Theorem 4.2] is stated for norms. Nevertheless,
their proof works without change for general gauges (see [4, Theorem 2.5]).

2.2 Convex symmetrization in a convex cone

Let → −∞u : Σ , 0( ] be a non-positive measurable function, which vanishes at infinity, in the sense that the
distribution function

= ∈ <μ t x u x tΣ :( ) {∣ ( ) ∣}

is finite for all <t 0. It is clear that μ is increasing from −∞ =μ 0( ) to μ 0( ). For simplicity, we abbreviate the set
∈ <x u x tΣ :{ ( ) } simply by <u t{ }.
The increasing rearrangement of u is denoted by ∞ → −∞∗u : 0, , 0[ ] [ ], and is defined by:

= ≤ <∗u s t μ t ssup 0 : .( ) { ( ) }

The convex symmetrization of u in Σ is given by:
≔⋆ ∗u x u κ F x ,F F

o n

,Σ ,Σ( ) ( ) ( ( ( )) )

where = ∩κ ΣF ,Σ �∣ ∣. For simplicity, we omit the subscript F , Σ( ) and denote
≔ =⋆ ⋆u u κ κ, .F F,Σ ,Σ( )

Remark 2.3. When F is the Euclidean norm, the corresponding relative Schwarz symmetrization in Σ, which
we shall denote by u# below, has been considered in [16] and [14]. On the other hand, when F is a norm and

=Σ
n� , the corresponding convex symmetrization has been considered in [1].

We first prove the Pólya-Szegö principle for the convex symmetrization in a convex cone.

Theorem 2.4. (Pólya-Szegö principle in a convex cone) Let ≥p 1 and ∈u W Σ
p1, ( ) be a non-positive function,

which vanishes at infinity. Then, ⋆u is in the same function space as u and the following holds

∫ ∫∇ ≥ ∇ ⋆F u x F u xd d .
p p

Σ Σ

( ) ( ) (2.4)

Proof. The proof follows closely that of [1].
We first assume ∈ ∞

u C . By Sard’s theorem, =u t{ } is regular hypersurface for a.e. <t 0. The co-area
formula gives

4  Zheng Lu et al.



∫ ∫ ∫= =
⎛

⎝
⎜ ∇

⎞

⎠
⎟

< −∞ =

−
μ t x

u

r1d

1

d d .

u t

t

u r

n 1�( )
∣ ∣

{ } { }

It follows that for a.e. <t 0, there holds

∫=
∇

=

−
t

μ t

u

d

d

1

d .

u t

n 1�( )
∣ ∣

{ }

(2.5)

Using the co-area formula again, for a.e. <t 0, there holds

∫ ∫∇ =
∇

∇
< =

−
t

F u x

F u

u

d

d

d d .

u t

p

u t

p

n 1�( )
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∣ ∣
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(2.6)

Applying the Hölder inequality, we obtain

∫ ∫ ∫∇ ∇ ≤
⎛
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∇
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⎟

⎛

⎝
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=
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−
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d

1

.
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p

p
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p
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(2.7)

Substituting (2.5) and (2.6) into (2.7), we obtain

∫ ∫ ⎜ ⎟
∇

∇
≥

⎛

⎝
⎜

⎛
⎝

∇
∇

⎞
⎠

⎞

⎠
⎟ ′

=

−

=

− −F u

u

F

u

u

μ td d .

u t

p

n
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n

p

p1 1 1� �
( )

∣ ∣ ∣ ∣
( ( ))

{ } { }

(2.8)

Note that for a.e. t , the outward unit normal of <u t{ } along the boundary =u t{ } is given by = ∇
∇ν

u

u∣ ∣
, taking

(2.2), the anisotropic isoperimetric inequality (2.3) and also (2.6) into account, integrating (2.8) over −∞, 0( ), we
arrive at

∫ ∫∇ ≥ ′
−∞

− −
F u x μ t nκ μ t td d .

p p n n p

Σ

0

1 1/ 1 1 /( ) ( ( )) ( ( ) ) (2.9)

It is suffice to verify that the right-hand side (RHS) of (2.9) coincides with ∫ ∇ ⋆F u xd
p

Σ
( ) .

We proceed by noticing that ⋆u is anisotropic symmetric, radially increasing, and hence, the sub-level sets
of ⋆u are homothetic to the unit Wulff sector centered at the origin. This means that the anisotropic isoperi-
metric inequality holds as an equality for the sets <⋆u t{ }, namely,

∫ ⎜ ⎟
⎛
⎝

∇
∇

⎞
⎠

=
=

⋆

⋆
− −

⋆

F

u

u

nκ μ td .

u t

n n n1 1/ 1 1 /�
∣ ∣

( )

{ }

On the other hand, the Hölder inequality in (2.7) also holds as an equality when = ⋆u u . This is because ∇ ⋆F u( ) is
constant along the level sets =⋆u t{ }, which is due to the fact that ∇ =F F x 1

o( ( )) .
The proof is done by repeating the aforementioned argument and noting that every inequality indeed

holds as an equality for ⋆u . In particular, one obtains

∫ ∫ ∫ ∫∇ =
⎛

⎝
⎜

∇
∇

⎞

⎠
⎟ = ′⋆

−∞ =

⋆

⋆ −∞

− −

⋆

F u x

F u

u

t μ t nκ μ t td d d .
p

u t

p

p n n p

Σ

0 0

1 1/ 1 1 /( )
( )

∣ ∣
( ( )) ( ( ) )

{ }

(2.10)

We complete the proof for ∈ ∞
u C . The general case ∈u W

p1, follows from a standard density argument. □

2.3 PDE comparison principle

Let Σ be an open convex cone such that ∂ ⧹Σ 0{ } is smooth. Let ⊂Ω Σ be a bounded domain such that
≔ ∂ ∩Γ Ω Σ, the topological closure of ∂ ∩Ω Σ in n� , is a smooth hypersurface with boundary and
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≔ ∂ ⧹Γ Ω Γ1 . We always assume that >−
Γ 0

n 1

1� ( ) , and >−
Γ 0

n 1� ( ) . Such a domain is called a sector-like domain.
We use ν to denote the outward unit normal of ∂Ω, when it exists.

We consider the following mixed boundary value problem for elliptic equations of divergence type in Ω.

⎪

⎪
⎧
⎨
⎩

− ∇ =
=

− ∇ ⋅ =

a x u u f

u

a x u u ν

div , , in Ω,

0 on Γ,

, , 0 on Γ ,1

( ( ))

( )

(M)

where

≤ ∈ ≥ ∈ > =+f f L n f L p n0, if 3 and 1 if 2.
p

n

n

2

2 ( ) (2.11)

= = ⋯a x η ξ a x η ξ, , , ,i i n1, ,( ) { ( )} are Carathéodory functions satisfying:

⋅ ≥ ∈ ∈ ∈a x η ξ ξ F ξ x η ξ, , , for a.e. Ω, , .
n2 � �( ) ( ) (2.12)

We writeW Ω; Γ
0

1,2

( ) to be the space of functions lying inW Ω
1,2( ), which has vanishing trace on = ∂ ∩Γ Ω Σ.

∈u W Ω; Γ
0

1,2

( ) is said to be a weak solution of (M) if it satisfies

∫ ∫∇ ⋅∇ = ∀ ∈a x u u v x fv x v W, , d d , Ω; Γ .

Ω Ω

0

1,2

( ( ) ) ( ) (2.13)

In the case =a x η ξ F ξ, ,
1

2

2( ) ( ), we denote

= ⎡
⎣∇

⎛
⎝

⎞
⎠ ∇ ⎤

⎦u F uΔ div

1

2

.F ξ

2 ( )

The aim of this subsection is to establish a comparison principle for (M). Let ⋆Ω be the Wulff sector
centered at the origin with the same volume as Ω and = ∂ ∩⋆ ⋆Γ Ω Σ and = ∂ ⧹⋆ ⋆Γ Σ Γ1( ) .

Theorem 2.5. Let ∈u W Ω; Γ
0

1,2

( ) be a solution to (M). If ∈ ⋆ ⋆z W Ω ; Γ
0

1,2

( ) is the solution of the following mixed
boundary value problem:

⎧

⎨
⎪

⎩
⎪

− =
=

∇ ⎛
⎝

⎞
⎠ ∇ ⋅ =

⋆ ⋆

⋆

⋆

z f in

z on

F z ν on

Δ Ω ,

0 Γ ,

1

2

0 Γ ,

F

ξ

2

1( ) ( )

(2.14)

then
≥ ≥ ∈⋆ ⋆u x z x for any x0 Ω .( ) ( ) (2.15)

Remark 2.6. One sees that if z is radially symmetric with respect to F , namely, =z x z F x¯
o( ) ( ( )) for some one-

variable function z̄ , then z automatically satisfies ∇ ∇ ⋅ =F z ν 0ξ

1

2

2( )( ) on ⋆Γ1( ) . Hence, it follows from the
maximum principle that the solution z is radially symmetric with respect to F .

We first see that the solution to (2.13) is non-positive.

Lemma 2.7. If u is a weak solution of the mixed boundary equation (2.13), then ≤u 0 in Ω. In particular, ≤⋆u 0 in
⋆Ω and the weak solution of (2.14) ≤z 0 in ⋆Ω .

Proof. By testing the definition of weak solution (2.13) with = = ∈+
φ u u Wmax 0, Ω; Γ

0

1,2

{ } ( ), the ellipticity
(2.12) of a and the non-positive of f imply

∫ ∫ ∫≥ ≥ ∇ = ∇
>

+

>

+
fu x F u x x F u x x0 d d d .

u u0 0

2

Ω

2( ( )) ( ( ))

{ } { }

It follows that ≤u 0 in Ω. □
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Proof of Theorem 2.5. We follow closely the classical proof in [20].
Claim 1. For any ∈u W Ω; Γ

0

1,2

( ), the following inequality

∫≤ ′
⎛

⎝
⎜ ∇

⎞

⎠
⎟− +

<

n κ μ t μ t

t

F u x

d

d

d
n n

u t

2 2/ 2 2/ 2( ) ( ) ( )

{ }

(2.16)

holds for a.e. <t 0.
Indeed, by virtue of the fact that ∈u W Ω; Γ

0

1,2

( ), we know that u is of bounded variation in Ω, so that the
co-area theorem for BV functions (see, e.g., [10, Theorem 5.9]) gives the following: the sets <u t{ } have finite
perimeter (whose boundary is then given by =u t{ } and the outer unit normal is ∇

∇
u

u∣ ∣
) for a.e. t . We can then

use the co-area formula and recalling (2.2) to see that

∫ ∫ ∫ ∫∇ =
∇

∇
= <

< −∞ =

−

−∞

F u x

F u

u

s P u s sd d d ;Σ d ,

u t

t

u s

n

t

F

1�( )
( )

∣ ∣
({ } )

{ } { }

which implies for a.e. <t 0,

∫ ∇ = <
<

t

F u x P u t

d

d

d ; Σ .

u t

F( ) ({ } )

{ }

Using the anisotropic isoperimetric Inequality (2.3), we find

∫ ∇ ≥
<

−
t

F u x nκ μ t

d

d

d .

u t

n n1/ 1 1 /( ) ( )

{ }

(2.17)

On the other hand, writing ∫ ∇< F u xd
t u t

d

d
( )

{ }
in the form of differential quotients, we obtain

∫
∫

∫

∫

∇ =
∇

≤
< < +

⎛
⎝ ∇ ⎞

⎠

= ′
⎛

⎝
⎜ ∇

⎞

⎠
⎟

<
→

< < +

→

< < +

<

t

F u x

F u x

h

t u t h

h

F u x

h

μ t

t

F u x

d

d

d lim

d

lim

d

d

d

d .

u t

h

t u t h

h

t u t h

u t

0

0

1/2

1/2

2

1/2

1/2

1/2 2

1/2

( )

( )

∣{ }∣
( )

( ( )) ( )

{ }

{ }

{ }

{ }

(2.18)

(2.16) follows from (2.17) and (2.18), which proves Claim 1.
Claim 2. For any weak solution u to (M), the function

∫≔ ∇
<

t F u xΨ d

u t

2( ) ( )

{ }

is an increasing function on −∞ < <t 0, with

∫≤ ′ ≤ − ∗t f s s0 Ψ d .

μ t

0

( ) ( )

( )

For ≤t 0, by testing (2.13) with the following truncated function:

⎪

⎪

≔
⎧
⎨
⎩

− < −
− − < <

≥
v

h u t h

u t t h u t

u t

if ,

if ,

0 if ,

h

we find
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∫ ∫ ∫ ∫− − = ∇ ≤ = ⋅ − −
− < < < − < < < −

t t h F u x fv x f u t x h f xΨ Ψ d d d d ,

t h u t u t

h

t h u t u t h

2( ) ( ) ( ) ( )

{ } { } { } { }

dividing both sides by h and sending ↘h 0, by virtue of the integrability of f and u, we thus have: for a.e. <t 0,

∫ ∫∇ = ′ ≤ −
< <

t

F u x t f x

d

d

d Ψ d .

u t u t

2( ) ( ) ( )

{ } { }

The Hardy-Littlewood inequality yields that

∫ ∫− ≤ −
<

∗f x f s dsd d .

u t

μ t

0

( ) ( )

{ }

( )

Claim 2 follows.
A crucial consequence of Claim 1 and Claim 2 is the following inequality:

∫≤
′

−− ∗
μ t

n κ μ t

f s s1 d .
n n

μ t

2 2/ 2 2/

0

( )

( )
( )

( )

Note that the RHS is the derivative of an increasing function of t. Integrating both sides over t, 0( ), one obtains

∫ ∫≥ − +
∗t

n κ

r r f s s

1

d d .
n

μ t

n

r

2 2/

Ω

2 2/

0

( )

( )

∣ ∣

Invoking again the definition of the increasing rearrangement, we thus find

∫ ∫≥∗
− +

∗u s

n κ

r r f s s

1

d d .
n

s

n

r

2 2/

Ω

2 2/

0

( ) ( )

∣ ∣

(2.19)

By a standard ordinary differential equation computation, we know that

∫ ∫=∗
− +

∗v s

n ω

r r f s s

1

d d ,
n

s

n

r

2 2/

Ω

2 2/

0

( ) ( )

∣ ∣

where = ∩ω B Σ1∣ ∣ and ∗v s( ) is the increasing rearrangement of the solution v of the mixed boundary problem:

⎪

⎪
⎧
⎨
⎩

= −
=

∇ ⋅ =

v f

v

v ν

Δ in Ω ,

0 on Γ ,

0 on Γ ,

# #

#

1 #( )

(2.20)

where = ∩BΩ Σr# for some r such that =Ω Ω#∣ ∣ ∣ ∣ and f
#
is the Schwarz symmetrization of f (i.e., the convex

symmetrization when F is the Euclidean norm).
Hence, (2.19) can be rewritten as:

≥∗ ∗u s

ω

κ

v s .

n

n

2/

2/
( ) ( ) (2.21)

Claim 3. For = ∈⋆ ⋆ ⋆z z W Ω ; Γ
0

1,2

( ) that solves (2.14), there holds

= ∈
ω

κ

v x z x x, for Ω .

n

n

2/

2/
# #( ) ( )

Consider the functional

∫= ⎛
⎝ ∇ − ⎞

⎠ ∈⋆ ⋆ ⋆

⋆

w F w f w x w W

1

2

d , for Ω ; Γ .

Ω

2

0

1,2

�( ) ( ) ( )
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It is clear that = ⋆z z is the minimizer for � , which is non-positive by Lemma 2.7 and radially symmetric with
respect to F . Hence,

∫ ∫= = ∇ −⋆z z

κ

ω

z f z

1

2

.

n

n

Ω

2/

2/
#

2

Ω

# #

# #

� �( ) ( ) ∣ ∣

Note that, by Polyá-Szegö for the Euclidean norm, for any ∈ ⋆ ⋆z W Ω ; Γ
0

1,2

( ),

∫ ∫≔ ∇ − ≥z

κ

ω

z f z z

1

2

.

n

n
#

Ω

2/

2/

2

Ω

# # #

# #

� �( ) ∣ ∣ ( )

Hence, z# minimizes the functional #� . It follows that z
ω

κ
#

n

n

2/

2/
solves (2.20), Claim 3 follows.

Finally, Claim 3 together with (2.21) implies that

≥ = ∈⋆ ⋆ ⋆u x z x z x x, Ω ,( ) ( ) ( )

where ∈ ⋆ ⋆z W Ω ; Γ
0

1,2

( ) is a solution to (2.14). This completes the proof. □

3 Capillary gauge in the half-space

In this section, we first introduce a gauge in +
n� (as a special case of convex cone), by virtue of which we

transform the study of capillary problem in the half-space to the study of related anisotropic problem with
respect to such gauge in +

n� .
Denote =E 0, …,0, 1n ( ). Given ∈θ π0,( ), let → +

F :θ

n� � be given by:

= −F ξ ξ θ ξ Ecos , .θ n( ) ∣ ∣ ⟨ ⟩ (3.1)

It is direct to see that Fθ is indeed a gauge and it is smooth on ⧹ 0
n� { }. We call it capillary gauge (see Proposition

3.2 for the reason). Note that Fθ is not even except for the case =θ
π

2
. Since

∇ = −F ξ

ξ

ξ

θEcos ,θ n( )
∣ ∣

one sees that the Wulff shape with respect to Fθ is given by:

∇ = − = + <− −
F θE x θEcos cos 1 .θ

n n

n n

1 1� �( ) {∣ ∣ }

Proposition 3.1. The dual gauge →F :
θ

o n� � is given by:

=
+ −

F x

x

θ x E θ x θ x Ecos , sin cos ,

.
θ

o

n n

2

2 2 2 2

( )
∣ ∣

⟨ ⟩ ∣ ∣ ⟨ ⟩

Proof. Consider the convex body K determined by ∇ = + =−
F x θEcos 1θ

n

n

1�( ) {∣ ∣ }. We shall find the radial
function for K . Let ∈ ∇ −

y Fθ

n 1�( ) be given by = ∈ −
y ρ x x x,

n 1�( ) . Thus,

+ =ρ x x θEcos 1.n∣ ( ) ∣

It follows that

= + −ρ x θ x E θ θ x Ecos , sin cos , .n n

2 2 2( ) ⟨ ⟩ ⟨ ⟩

That is, the radial function for K is given by →−
ρ :

n 1� � as mentioned earlier. A classical result in the theory
of convex bodies says that the support function for the dual convex body K

o is equal to the reciprocal of the
radial function of K (see e.g., [18, (1.52)]). On the other hand, F

θ

o, when restricting on −n 1� , is exactly the support
function for K

o. Therefore, we see that →−
F :

θ

o n 1� � is given by:

Capillary Schwarz symmetrization in the half-space  9



= =
+ −

F x

ρ x θ x E θ θ x E

1 1

cos , sin cos ,

.
θ

o

n n

2 2 2

( )
( ) ⟨ ⟩ ⟨ ⟩

By one-homogeneous extension of F
θ

o to n� , i.e., )(=F x x F
θ

o

θ

o
x

x
( ) ∣ ∣

∣ ∣
, we obtain the assertion. □

Proposition 3.2. The Wulff ball r θ,� of radius r centered at the origin, with respect to Fθ, is given by
−B r θEcos ,r n( ) the Euclidean ball of radius r centered at −r θEcos n. In particular, ∂ r θ,� intersects with the

hyperplane ∂ = =+ x 0
n

n� { } at the contact angle θ.

Proof. Using Proposition 3.1, it is direct to check that <F x r
θ

o( ) is equivalent that + <x r θE rcos n∣ ∣ , the first
assertion follows. For any ∈ ∂ − ∩ =z B r θE xcos 0r n n( ) { },

− −
=

z r θE

r

E θ

cos

, cos .
n

n

( )

The second assertion follows. □

We set

≔ ∩ +b .θ θ

n

1, ��∣ ∣

One sees easily that

∩ =+ rb .r θ

n

θ

n

, ��∣ ∣

Using the gauge Fθ, we observe that the classical free energy functional can be reformulated as anisotropic
area functional.

Proposition 3.3. Let E be a set of finite perimeter in +
n� . Then,

= − ∂+ + +P E P E θP E; ; cos ; .F

n n n

θ
� � �( ) ( ) ( )

Proof. Since =Ediv 0n( ) , using the divergence theorem, one obtains

∫ ∫= = − ∂
∂ ∩

−
+

∗
+

E x ν E P E0 div d , d ; .n

E

E n

n n

Ω

1

n

�

�

�( ) ⟨ ⟩ ( )

On the other hand, the definition of Fθ yields

∫ ∫= = −+
∂ ∩

−
+

∂ ∩

−

∗
+

∗
+

P E F ν P E θ ν E; d ; cos , d .F

n

E

θ E

n n

E

E n

n1 1

θ

n n

� �

� �

� �( ) ( ) ( ) ⟨ ⟩

This completes the proof. □

From this, we see that the classical relative isoperimetric inequality in +
n� ,

− ∂ ≥+ +
−

P E θP E n Eb; cos ; ,
n n

θ

n

1
n

n

1

� �( ) ( ) ∣ ∣

is equivalent to the anisotropic isoperimetric inequality with respect to Fθ,

≥+
−

P E n Eb; ,F

n

θ

n

1

θ

n

n

1

�( ) ∣ ∣

where equality holds if and only if = ∩ +E r θ

n

, �� , up to a translation on ∂ +
n� .

In the same spirit, from [5, Theorem 2] and [3, Theorem A.1], we obtain the following optimal Sobolev
inequality.

Theorem 3.4. Given ∈θ π0,( ) and < <p n1 , let ∈ ≔ ∈ ∇ ∈+ + +−u W u L u L˙ :
p n n p n1,

np

n p� � �( ) { ( ) ( )} be a non-positive
function. Then,

10  Zheng Lu et al.



∫≤
⎛

⎝
⎜⎜ ∇ − ∇

⎞

⎠
⎟⎟− +

+

u C u θ u Ecos , .
L

θ p n

p

,
np

n p
n

n

p

1

�
�

‖ ‖ (∣ ∣ ⟨ ⟩)
( )

Here, Cθ p, is given by:

)(∫
=

∇ − ∇
+

C

U θ U E

1

cos ,

,θ p

θ p θ p n

p

,

, ,n

p

1

�
(∣ ∣ ⟨ ⟩)

with

= −
⎛

⎝
⎜⎜

+

⎞

⎠
⎟⎟

−

−

U x

σ F x

1

,θ p

p θ θ

o

p

p

,

,
1

n p

p

( )

( )

and >σ 0p θ, is determined by =
− +

U 1.θ p
L

,
np

n p
n�

‖ ‖
( )

Equality holds if and only if

= −u x CU λ x xθ p, 0( ) ( ( ))

for some constant ≥ ≠C λ0, 0 and some point ∈ ∂ +x
n

0 � .

Remark 3.5. It has been stated in [3, Theorem A.1] that the Sobolev inequality holds for possibly sign-changed
u. However, since Fθ here is not even, from the proof, one has to restrict to non-negative or non-positive
functions.

4 Capillary Schwarz symmetrization in the half-space

We define the capillary Schwarz symmetrization in a rather direct manner. Given a non-positive measurable
function → −∞+u : , 0

n� ( ], which vanishes at infinity, we set rt to be the radius of = −B r θEcosr θ r t n,t t
� ( ) such

that

= ∩ = ∈ < =+ +r x u x t μ tb : .θ t

n

r θ

n n

,t
� ��∣ ∣ ∣{ ( ) }∣ ( )

The capillary symmetrization of u is defined as:

≔ ≤ < − − = ≤ < +⋆u x t μ t x r θE t r x r θEbsup 0 : cos sup 0 : cos .θ t n

n

t t n( ) { ( ) ∣ ( )∣ } { ∣ ∣}

By definition, one sees readily that for any <t 0, the sub-level set <⋆u t{ } of the rearranged function ⋆u is given
by some ∩ +r θ

n

,t
�� that has the same measure with <u t{ }. This agrees with the classical idea for Schwarz

symmetrization.
Let us proceed by recalling the capillary gauge Fθ and its dual F

θ

o. As in the proof of Proposition 3.2, we see
that >F x r

θ

o( ) is equivalent that + >x r θE rcos .n∣ ∣ Therefore, the capillary symmetrization ⋆u of u can be
reformulated as:

=⋆ ∗u x u F xb ,θ θ

o n( ) ( ( ( )) )

where ∗u is the increasing arrangement. In the special case =θ π /2, we see =F x x
θ

o( ) ∣ ∣, and the capillary
symmetrization is just

= ⎛
⎝

⎞
⎠⋆ ∗u x u

ω x

2

.
n

n

( )
∣ ∣

From this point of view, we can translate the result in Section 2 to the capillary symmetrization. The following
is the corresponding Pólya-Szegö principle, following Theorem 2.4.
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Theorem 4.1. Let ≥p 1 and ∈ +u W
p n1, �( ) be a non-positive function which vanishes at infinity. Then, ⋆u is in the

same function space as u, and the following holds

∫ ∫∇ − ∇ ⋅ ≥ ∇ − ∇ ⋅⋆ ⋆

+ +

u θ u E x u θ u E xcos d cos d .n

p

n

p

n n

� �

(∣ ∣ ) (∣ ∣ ) (4.1)

Next, we consider the following mixed boundary problem for anisotropic PDE with respect to Fθ in sector-
like domain ⊂ +Ω

n� :

⎧

⎨
⎪

⎩
⎪

− =
= = ∂ ∩

∇ ⎛
⎝

⎞
⎠ ∇ ⋅ = = ∂ ⧹

+

u f

u

F u E

Δ in Ω,

0 on Γ Ω ,

1

2

0 on Γ Ω Γ.

F

n

ξ θ n

2

1

θ

�

( )

(4.2)

A weak solution ∈u W Ω; Γ
0

1,2

( ) of (4.2) satisfies

∫ ∫∇ ⎛
⎝

⎞
⎠ ∇ ⋅∇ = ∀ ∈F u v x fv x v W

1

2

d d , Ω; Γ .ξ θ

Ω

2

Ω

0

1,2

( ) ( ) (4.3)

By a direct computation, we see (4.3) is equivalent that

∫ ∫∇ − ∇
∇
∇

− ∇ = ∀ ∈u θ u E

u

u

θE v x fv x v Wcos , cos , d d , Ω; Γ .n n

Ω Ω

0

1,2

(∣ ∣ ⟨ ⟩)
∣ ∣

( ) (4.4)

We have the following comparison result for (4.2), following Theorem 2.5.

Theorem 4.2. Let ∈u W Ω; Γ
0

1,2

( ) be a weak solution to (4.2), where f satisfies (2.11). Let ⋆Ω be some ∩ +r θ

n

, ��

that has the same measure with Ω and ∈ ⋆z W Ω
0

1,2

( ) be the solution of the following rearranged mixed boundary
problem

⎧

⎨
⎪

⎩
⎪

− =
=

∇ ⎛
⎝

⎞
⎠ ∇ ⋅ =

⋆ ⋆

⋆

⋆

z f in

z on

F z E on

Δ Ω ,

0 Γ ,

1

2

0 Γ ,

F

ξ θ n

2

1

θ

( ) ( )

(4.5)

then

≥ ≥ ∈⋆ ⋆u x z x for any x0 Ω .( ) ( ) (4.6)

As a particular case, we are interested in the situation when = −f n, we proceed by the following observa-
tion, which gives a very well illustration of our motivation to define the capillary rearrangement.

Proposition 4.3. The function

=
−

u x

F x r

2

θ

o 2 2

( )
( ) (4.7)

solves

⎧

⎨
⎪

⎩
⎪

− = − ∩
= ∂ ∩

∇ ⎛
⎝

⎞
⎠ ∇ ⋅ = ∩ ∂

+

+

+

u n in

u on

F u E on

Δ ,

0 ,

1

2

0 ¯ .

F r θ

n

r θ

n

ξ θ n r θ

n

,

,

2

,

θ
�

�

�

�

�

�( )

(4.8)

Moreover, if u is radially symmetric with respect to Fθ and solves (4.8), then u must be of the form in (4.7).

Proof. A direct computation by using (2.1) leads to the assertion. □
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As a simple but important application of Theorem 4.2, we have

Corollary 4.4. Let ∈u W Ω; Γ
0

1,2

( ) be a weak solution to

⎧

⎨
⎪

⎩
⎪

− = −
=

∇ ⎛
⎝

⎞
⎠ ∇ ⋅ =

u n in

u on

F u E on

Δ Ω,

0, Γ,

1

2

0 Γ .

F

ξ θ n

2

1

θ

( )

Then, u is bounded in Ω with

⎜ ⎟≤ ⎛
⎝

⎞
⎠

∞u

b

1

2

Ω

.L

θ

Ω

n

2

‖ ‖
∣ ∣

( )

Proof. By virtue of Theorem 4.2, we know that ≥ ≥⋆u x z x0 ( ) ( ) for any ∈ ⋆x Ω , where = ⋆z z is the radially
symmetric solution (with respect to Fθ) to the mix boundary problem of the rearranged PDE

⎧

⎨
⎪

⎩
⎪

− = −
=

∇ ⎛
⎝

⎞
⎠ ∇ ⋅ =

⋆

⋆

⋆

z n

z

F z E

Δ in Ω ,

0, on Γ ,

1

2

0 on Γ .

F

ξ θ n

2

1

θ

( ) ( )

(4.9)

Thanks to Proposition 4.3, we know that = −
z x

F x r

2

θ

o 2 2

( )
( ) , where r is the radius of ⋆Ω , i.e.,

= =⋆rb Ω Ω .θ

n ∣ ∣ ∣ ∣

Hence,

⎜ ⎟≤ ≤ ⎛
⎝

⎞
⎠⋆u z

b

1

2

Ω

.

θ

n

2

∣ ∣ ∣ ∣
∣ ∣

The proof is thus completed by recalling that = ⋆∞ ∞u uL L‖ ‖ ‖ ‖ . □
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