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Abstract: We will show that if a gradient shrinking Ricci soliton has an approximate symmetry on one scale,
this symmetry propagates to larger scales. This is an example of the shrinker principle which roughly states
that information radiates outwards for shrinking solitons.
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1 Introduction

A time-varying metric g on a manifold M is a Ricci flow if
0:g = —2Ricg. (1.1)

This is a nonlinear geometric evolution equation where singularities can form, and understanding them is
the key for understanding the flow. For instance, one important ingredient in the rigidity of cylinders for the
Ricci flow in [16] was a new estimate called propagation of almost splitting. This showed that if a gradient
shrinking Ricci soliton almost splits off a line on one scale, then it also almost splits on a strictly larger set,
though with a loss on the estimates.

tA manifold splits off a line if it is the metric product of a Euclidean factor R with a manifold of one
dimension less. A splitting gives a linear function whose gradient is a parallel vector field. Similarly, an almost
splitting gives an almost parallel vector field, which is a special type of almost Killing vector field. Thus, the
propagation of almost splitting is equivalent to showing that a certain type of approximate symmetry extends to
larger scales [16,17]. We will see here that this holds also for more general approximate symmetries.

A triple (M, g, f) of a manifold M, metric g, and function f is a gradient Ricci soliton if there is a
constant x so that

Ric + Hessy = kg. (1.2)
Up to diffeomorphisms, the Ricci flow of a gradient Ricci soliton evolves by shrinking when k > 0 is static (or

steady) when x = 0, and expanding when k < 0. Gradient shrinking Ricci solitons model finite time singu-
larities of the flow and describe the asymptotic structure at minus infinity for ancient flows.
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A Killing field V is a vector field that generates an isometry, i.e., the Lie derivative of the metric g
vanishes

LVg = 0.

Equivalently, V is Killing when its covariant derivative VV is skew-symmetric. Many of the most important
examples of solitons are highly symmetric; cf. [1,3-5,12,16,20-22].

On Euclidean space, there are two types of Killing fields: the parallel vector fields that generate
translations and the linearly growing rotation vector fields. There are two very different types of symmetries
on Ricci solitons depending on whether the symmetry preserves the function f. This dichotomy is already
seen in the simplest examples of shrinkers: the Gaussian soliton (R", Bij, %) and cylinders. Rotations
Ix2

4
the axis of a cylinder preserve the metric but not the level sets of f. It is not hard to see that this is typical. To
make this precise, use the metric g and function f, to define a weighted L? norm on functions, vector fields,
and general tensors by

around the origin on the Gaussian soliton preserve both the metric and f = while the translations along

12 = [1pe. 13)
M

Proposition 1.1. If Y is an L? Killing field on a gradient shrinking Ricci soliton, then either Y preserves f or M
splits off a line.

The metric and weight induce weighted divergence operators divs on vector fields and symmetric two
tensors and a drift Laplacian £ on general tensors. The adjoint div} of div; takes a vector field V to the
symmetric two tensor:

diviV = —%ng. (1.4)

As in [16], define a self-adjoint operator # on vector fields by
PY = divy o div}Y. (1.5)

For a Killing field V, div;V vanishes and, thus, PV = 0.

For an approximate Killing field, the associated flow almost preserves the metric g. As mentioned
earlier, approximate translations played an important role in [16] to show “propagation of almost splitting.”
Our interest here will be a corresponding propagation for more general symmetries.

We will show that if a gradient shrinking Ricci soliton (shrinker) has an approximate symmetry on one
scale, then this approximate symmetry propagates outwards to larger scales. This is an example of the
shrinker principle [12,16,18], which roughly states that information radiates outwards for these types of
equations.

Theorem 1.2. Let (M, g, f) be a non-compact shrinker and C, be a constant with |R| < C,. There exist C, and R
so that if Y is a vector field on {f < r2/4} withr > R and

2ef = iviYRef <<l
M f_.,¥Pe” =1and ff<r2/4|d1v}Y| ef<p<y.
(2) Y| + |VY| < Cr on {f < r?/4}.
then there is a vector field Z on M with || Z||;2 = 1, PZ = uZ, and satisfying
(Z) 1div;ZI2, = < cz(;z + r‘”"e‘%z).

(Z,) Fors € (r’/4,r%), we have J’f div;iZ* < Gré.
=s
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The theorem shows that the approximate symmetry extends to the larger set, though with a loss in the
estimates. This extension is powerful in situations where the loss can be recovered using some additional
structure particular to the situation, thus leading to a global symmetry. In Theorem 0.2 in [16], the loss was
recovered by solving a gauge problem and then using a rigidity property of cylinders that showed up at the
quadratic level. This quadratic rigidity relied on the structure of the compact factor of the cylinder and not
just on the existence of the approximate translation.

This kind of propagation of symmetry often plays an important role in understanding the structure of
solutions, as well as the rate of convergence of a Ricci flow to a singularity.

2 Weighted manifolds and Killing fields

We will be most interested in gradient shrinking Ricci solitons, but many of the results hold more generally.
Killing fields preserve the metric, so they also preserve volume and, thus, are always divergence free.
However, they do not necessarily preserve the weighted volume, so the weighted divergence divfY of a
Killing field Y need not vanish. We will see, however, that it does satisfy an eigenvalue equation on any
gradient Ricci soliton (equation (2.3)).

To show this, we recall some general formulas from Lemma 2.8 in [16] on any gradient Ricci soliton (i.e.,
(M, g, f) satisfies (1.2) for some constant k) for any vector field Y:

(£ + KdivfY = -div(PY), (2.1)
LVdiv(Y) = -Vdivg(PY). (2.2)

If Y is a Killing field on a gradient Ricci soliton, then (2.1) gives that
(£ + x)divY = 0. (2.3)

As a consequence of this, divfY is harmonic:
Corollary 2.1. If Y is a Killing field on a gradient Ricci soliton, then divfY is harmonic.

Proof. By (2.3), (£ + x)divY = 0. Since divY = 0 for any Killing field, it follows that

AdivY = £diveY + (Vf, Vdiy V)
= —xdivY - (V, V(Y, Vf)) (2.4)
=x(Vf, Y) — (VysY, Vf) — Hessy(Y, Vf).

The second to last term vanishes because of the Killing equation. For the last term, we bring in the soliton
equation Ric + Hessy = kg to obtain

AdivfY = Ric(Vf, Y). (2.5)
Finally, this last term vanishes since Ric(Vf, Y) = %(VS , Y) (see, e.g., (1.14) in [16]) and the scalar curvature

must be constant along a Killing field. O

Later, we will need a second-order self-adjoint operator L defined on symmetric two-tensors by
Lh = Lh + 2R(h), (2.6)
where R is the Riemann curvature acting on h in an orthonormal frame by

[RW)j = Y. Rimjnhimn- (2.7)

m,n

Theorem 1.32 in [16] gives the following relation between L and div}
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Ldivi(Y) = divi(L + x)Y. (2.8)

It will also be useful that the operator # is related to £ by
-2P = Vdivy + L + k. (2.9)

Finally, an easy integration by parts argument shows that if Y and PY are in L?, then Y € W2 and
divfY € I?; this is given by the next lemma:

Lemma 2.2. (Lemma 2.15, [16]) For any gradient Ricci soliton if Y, PY € 2, then dive(Y), VY € I? and
IVYIZ, + Idive YT, < 21YN212P + ©)Y 2. (2.10)

2.1 Shrinkers

We now specialize to shrinkers, where k = % We will use the spectral theory of cL in the next proof; see, e.g.,
[9,14,17,21].

Proof of Proposition 1.1. We consider two cases. Suppose first that Y preserves f, so that (Vf, Y) = 0. Since
Y is Killing, divY = 0, and, thus, divfY vanishes.

Suppose now thatY does not preserve f and, thus, divfY does not vanish identically. In this case, (2.3)
gives that divyY is a non-trivial solution to

LdivfY = —%diva. (2.11)
Moreover, Lemma 2.2 implies that divfY € L2, If Lv = —uv, then the drift Bochner formula gives that
%LWVF = |Hess,|? + (% - ;1) [VVv]. (2.12)
Applying this with v = divY and y = % and integrating over M, we conclude that

HesSdiyyllz2 = O. (2.13)

It follows that VdivfY is a non-trivial parallel vector field, giving the desired splitting. O

There is an interesting distinction between the Killing fields that preserve f and those that do not. The
Killing fields that preserve f turn out to be orthogonal to all gradient vector fields. The translations, which
do not preserve f, are generated by gradient vector fields coming from least eigenfunctions on the shrinking
soliton. Both types of vector fields satisfy eigenvalue equations for the drift Laplacian £, but at different
eigenvalues.

2.2 Geometric estimates for shrinkers

We will next recall several useful formulas for shrinkers and some geometric estimates. First, taking the
trace of the shrinker equation gives that

Af+S= % (2.14)

where S is the scalar curvature. On a complete shrinker, it is well known ([19], cf. [6,10]) that f can be
normalized so that
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IV +S=f. (2.15)

Since S > 0 by [8] (see [11] for an improved bound on non-compact shrinkers), the function b = 2,/f is
nonnegative and satisfies

V| < 1. 2.16)

We will also need some geometric estimates by Cao-Zhou for shrinkers. First, Theorem 1.1in [7] gives ¢
and ¢, depending only on B;(xg) ¢ M so that

%(r(x) — < f0) < %(r(x) F o @.17)

where r(x) is the distance to a fixed point xy (the constants can be made universal if xy is chosen at the
minimum of f). Second, Theorem 1.2 in [7] gives that shrinkers have at most Euclidean volume growth:
There exists ¢; so that

Vol (B,(xp)) < cr™. (2.18)

3 Small eigenvalues and almost Killing fields

Throughout this section, (M, g, f) is a complete non-compact gradient shrinking Ricci soliton (i.e., x = %).
The operator £ was constructed to vanish on Killing fields. The next lemma uses the variational

characterizations of eigenvalues and the exponential decay of the weight to find low eigenvalues for
when there is an approximate symmetry on a large ball.

Lemma 3.1. Suppose that there is a (non-trivial) compactly supported vector field V with

IdiviVI* < alvIE,, 3.1

where ji < 1. Then there is a W2 vector field Z with ||Z|;2 = 1, so that
(A) PZ = uZ, with p € [0, fi], and IIdivj‘cZIIi2 =L

(B) div;Z € W'2 satisfies LdiviZ = —(% + y)diva and ||dinZ||§2 <4u+ 1.

Proof. The operator P is self-adjoint by construction. Lemma 4.20 in [16] gives that # has a complete basis
of smooth W12 eigen-vector fields ¥; with eigenvalues

I’li - 00, (3.2)

and with || ¥l|;2 = 1. Moreover, Lemma 4.20 in [16] also gives that
[ e = [ Pxyes - p, (33)
Expanding V by projecting onto the ¥;’s, we write V as follows:
V=2at, (3.4)
i
where each a; € R and

Zaiz = VI (3.5)
1

Since the Y;’s are L2-orthonormal, (3.1) gives that
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FIVE, > 1V = [ (V. PVye s = Yaiu, > mYa?. (G.6)
i i

Comparing this with (3.5), we see that y, (the smallest ;) is at most ji. Set Z = Y;.
Since Z, PZ € I?, Lemma 2.2 and Proposition 3.3 give that

diviZ €e W2 and VZ e L2 (3.7)

The L2 bound on div¢Z in (B) follows from Lemma 2.2. Finally, (2.1) gives that div;Z satisfies the eigenfunc-

tion equation LdiviZ = —(% + ,u)diva . O

The weighted L? bound on div}Z forces it to be small in the region where f is small, but it says almost

nothing where f is large and the weight e is very small. To obtain better bounds when f is large, we
instead rely on polynomial growth estimates developed in [16]. To explain this, given a tensor w define the
“weighted spherical average” I,(r) by

L@ = [ vl (3.8)
b=r
A priori, this is well defined at regular values of b, but Lemma 3.27 in [16] shows that I,,(r) can be extended
to all r, this extension is differentiable almost everywhere and is absolutely continuous as a function of r; cf.
[2,13,15].
We have the following polynomial growth bounds:
Proposition 3.2. [16] Given A, there exists 1, so that if w is an L? tensor with

(Lw, w) = - |w, (3.9

then for any r, > n, > 1y, we have that
r 51
I(n) < 2(—2) I(r). (3.10)
n

Proposition 3.2 is a special case of Theorem 3.4 in [16]. This proposition requires the lower bound (3.9)
for (Lw, w), which would hold if w satisfied an eigenvalue equation for £ . However, we will want to apply it
to a vector field that satisfies an eigenvalue equation for . The next result gives a decomposition for that
equation that makes this possible (this is a special case of Proposition 4.6 in [16]):

Proposition 3.3. [16] If PY = uY, and we set Z =Y + zyivdivf(Y), then dive(Z) = 0 and

+1
(£ + p)Vdiv(Y) = 0, (3.11)
(L + 2 + %)Z =0. (3.12)

-2
Moreover, if Y € I2, then |YI2 = |IZJ? + (y + %) IVdive(Y)I? .

We are now prepared to prove that diviY grows at most polynomially when Y is an eigenvector field
for P.

Theorem 3.4. Suppose that (M, g) has bounded curvature |R| < C, and Y is a W2 vector field with | Y2 = 1
that satisfies (A) and (B). There exist G, R so that for allr > R

Laivyy(r) < G (3.13)
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Proof. Since PY = uY, Proposition 3.3 gives that Z = Y + ﬁvdivﬂ satisfies
L7 = —(2}1 + %)Z,
LVdivfY = —uvdivY.
Applying (2.8) to (3.14) and (3.15) gives

LdiviZ = div’}([ ¥ %)z = —oudiviZ,

Ldiv;vdivY = div’}([ + %)Vdiva = (% - y)div’}vdiva.
The last equation can be rewritten as follows:
LHessgiyy = (% - y)Hessdivfy.
Since M, g has bounded curvature and y is also bounded, (3.16) and (3.18) give C so that
(Lw,w) = -Clw|* for w = Hessgiy,y or w = diviZ.

Thus, Proposition 3.2 applies, giving R and C; so that
w = Hessgiy,y Or diviZ

both satisfy

G
L(n) < (2) I,(r) forany rn>rn=>R.
n

Next, observe that (B) and the drift Bochner formula give that
[Hessdiyy[7. < p.

On the other hand, (A) gives that IIdiV’}Ylli2 < u as well. It follows that
||div’}Z||i2 < Cu.

Since |Vb| < 1, the co-area formula gives some r; > R and a constant G, so that

I,(n) < Gu for w = Hessqiyy or w = diviZ.

Using this in (3.20) and then writing div;Y as a combination gives the theorem.

We are now prepared to prove the main theorem.

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

Proof of Theorem 1.2. The first step is to cutoff the vector field to obtain a compactly supported vector field
V that we can use in Lemma 3.1. To do this, define a cutoff function n with 0 < n < 1 that has support in

f< %2, cuts off in distance r~!, has |Vn| < 2r and so that

12
e’ < ele~% on the support of |Vr)|.

(3.24)

The last bound uses that|Vb| < 1by (2.16). Now set V = Y. Since|Y| < Cyr on the support of 1, it follows that

VI = _[ [YPel =1- J |[YPef >1- Critne ",
n=1 0<n<1
where the last bound also used the volume bound (2.18). Similarly, we have that
Idivi VIR, <2 j (div,¥P e + Crivne s < 2 + Crivne .

f<ri/

(3.25)

(3.26)
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After multiplying V by a constant so that the L? norm is one, we have that
2
IdiviVI2, < 3 + Crme-% < 1. (3.27)

Lemma 3.1 gives a W2 vector field Z with [|Z|;2 = 1 and satisfying (A) and (B). In particular, PZ = uZ with

2

M <3+ Critte s < 1, (3.28)

This gives (Z1). Theorem 3.4 now gives a polynomially growing bound on Idiv7v~ Since the scalar curvature is
bounded in this range, there is a lower bound for |Vb| here. Therefore, the bound on Laivyv implies the fine
growth bound (Z2). (|

Funding information: The authors were partially supported by NSF DMS Grants 2104349 and 2005345.

Conflict of interest: The first author has no conflicts; the second author is on the editorial board, but this did
not affect the final decision for this article.

References

[1] R. Bamler and B. Kleiner, On the rotational symmetry of 3-dimensional k-solutions, ). Reine Angew. Math. 779
(2021), 37-55.

[2] ). Bernstein, Asymptotic structure of almost eigenfunctions of drift Laplacians on conical ends, Amer. |. Math. 142 (2020),
no. 6, 1897-1929.

[3] S. Brendle, Rotational symmetry of self-similar solutions to the Ricci flow, Invent. Math. 194 (2013), no. 3, 731-764.

[4] S. Brendle, Ancient solutions to the Ricci flow in dimension 3, Acta Math. 225 (2020), no. 1, 1-102.

[5] S. Brendle and K. Choi, Uniqueness of convex ancient solutions to mean curvature flow in R?, Invent. Math. 217
(2019), 35-76.

[6] H.D. Cao, Recent progress on Ricci solitons, Recent Advances in Geometric Analysis, Advanced Lectures in Mathematics
(ALM), vol. 11, Int. Press, Somerville, MA, 2010, pp. 1-38.

[71 H.D. Cao and D. Zhou, On complete gradient shrinking Ricci solitons, JDG 85 (2010), 175-186.

[8] B-L. Chen, Strong uniqueness of the Ricci flow, ). Differential Geom. 82 (2009), no. 2, 363-382.

[9] X.Chengand D. Zhou, Eigenvalues of the drifted Laplacian on complete metric measure spaces, Commun. Contemp. Math.
19 (2017), 1650001.

[10] B. Chow, P. Lu, and L. Ni, Hamiltonas Ricci flow, GSM vol. 77, AMS, Providence, RI, 2006.

[11] B. Chow, P. Lu, and B. Yang, Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons, C. R. Math.
Acad. Sci. Paris 349 (2011), no. 23-24, 1265-1267.

[12] T. H. Colding, T. Ilmanen, and W. P. Minicozzi ll, Rigidity of generic singularities of mean curvature flow, Publ. Math. Inst.
Hautes Etudes Sci. 121 (2015), 363-382.

[13] T. H. Colding and W. P. Minicozzi Il, Harmonic functions with polynomial growth, |. Differential Geom. 46 (1997),
no. 1, 1-77.

[14] T. H. Colding and W. P. Minicozzi I, Heat equations in analysis, geometry and probability, to appear.

[15] T. H. Colding and W. P. Minicozzi ll, Sharp frequency bounds for eigenfunctions of the Ornstein-Uhlenbeck operator, Calc.
Var. PDE 57 (2018), no. 5, Art. 138.

[16] T. H. Colding and W. P. Minicozzi Il, Singularities of Ricci flow and diffeomorphisms, preprint.

[17] T. H. Colding and W. P. Minicozzi Il, Eigenvalue lower bounds and splitting for modified Ricci flow, preprint.

[18] T. H. Colding and W. P. Minicozzi Il, Complexity of parabolic systems, Publ. Math. Inst. Hautes Etudes Sci. 132 (2020),
83-135.

[19] R. Hamilton, The formation of singularities in the Ricci flow, Surveys Differential Geom. 2 (1995), 7-136, International
Press.

[20] B. Kotschwar, On rotationally invariant shrinking Ricci solitons, Pacific ). Math. 236 (2008), 73-88.

[21] B. Kotschwar and L. Wang, A uniqueness theorem for asymptotically cylindrical shrinking Ricci solitons, ). Differential
Geom, to appear.

[22] Y. Li and B. Wang, Rigidity of the round cylinders in Ricci shrinkers, preprint.



	1 Introduction
	2 Weighted manifolds and Killing fields
	2.1 Shrinkers
	2.2 Geometric estimates for shrinkers

	3 Small eigenvalues and almost Killing fields
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


