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Abstract:Wewill show that if a gradient shrinking Ricci soliton has an approximate symmetry on one scale,
this symmetry propagates to larger scales. This is an example of the shrinker principle which roughly states
that information radiates outwards for shrinking solitons.
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1 Introduction

A time-varying metric g on a manifold M is a Ricci flow if

g 2Ric .t g∂ = − (1.1)

This is a nonlinear geometric evolution equation where singularities can form, and understanding them is
the key for understanding the flow. For instance, one important ingredient in the rigidity of cylinders for the
Ricci flow in [16] was a new estimate called propagation of almost splitting. This showed that if a gradient
shrinking Ricci soliton almost splits off a line on one scale, then it also almost splits on a strictly larger set,
though with a loss on the estimates.

tA manifold splits off a line if it is the metric product of a Euclidean factor R with a manifold of one
dimension less. A splitting gives a linear function whose gradient is a parallel vector field. Similarly, an almost
splitting gives an almost parallel vector field, which is a special type of almost Killing vector field. Thus, the
propagation of almost splitting is equivalent to showing that a certain type of approximate symmetry extends to
larger scales [16,17]. We will see here that this holds also for more general approximate symmetries.

A triple M g f, ,( ) of a manifold M , metric g , and function f is a gradient Ricci soliton if there is a
constant κ so that

κgRic Hess .f+ = (1.2)

Up to diffeomorphisms, the Ricci flow of a gradient Ricci soliton evolves by shrinking when κ 0> is static (or
steady) when κ 0= , and expanding when κ 0< . Gradient shrinking Ricci solitons model finite time singu-
larities of the flow and describe the asymptotic structure at minus infinity for ancient flows.
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A Killing field V is a vector field that generates an isometry, i.e., the Lie derivative of the metric g
vanishes

gL 0.V =

Equivalently,V is Killing when its covariant derivative V∇ is skew-symmetric. Many of the most important
examples of solitons are highly symmetric; cf. [1,3–5,12,16,20–22].

On Euclidean space, there are two types of Killing fields: the parallel vector fields that generate
translations and the linearly growing rotation vector fields. There are two very different types of symmetries
on Ricci solitons depending on whether the symmetry preserves the function f . This dichotomy is already

seen in the simplest examples of shrinkers: the Gaussian soliton δR , ,n
ij

x
4

2∣ ∣

( ) and cylinders. Rotations

around the origin on the Gaussian soliton preserve both the metric and f x
4

2∣ ∣
= , while the translations along

the axis of a cylinder preserve the metric but not the level sets of f . It is not hard to see that this is typical. To
make this precise, use the metric g and function f , to define a weighted L2 norm on functions, vector fields,
and general tensors by

e .L
M

f2 2
2 ∣ ∣∫‖⋅‖ = ⋅ − (1.3)

Proposition 1.1. If Y is an L2 Killing field on a gradient shrinking Ricci soliton, then either Y preserves f or M
splits off a line.

The metric and weight induce weighted divergence operators divf on vector fields and symmetric two
tensors and a drift Laplacian � on general tensors. The adjoint divf

∗ of divf takes a vector field V to the
symmetric two tensor:

V gLdiv 1
2

.f V= −
∗ (1.4)

As in [16], define a self-adjoint operator � on vector fields by

Y Ydiv div .f f� = ∘
∗ (1.5)

For a Killing field V , Vdivf
∗ vanishes and, thus, V 0� = .

For an approximate Killing field, the associated flow almost preserves the metric g . As mentioned
earlier, approximate translations played an important role in [16] to show “propagation of almost splitting.”
Our interest here will be a corresponding propagation for more general symmetries.

We will show that if a gradient shrinking Ricci soliton (shrinker) has an approximate symmetry on one
scale, then this approximate symmetry propagates outwards to larger scales. This is an example of the
shrinker principle [12,16,18], which roughly states that information radiates outwards for these types of
equations.

Theorem 1.2. Let M g f, ,( ) be a non-compact shrinker andC1 be a constant with R C1∣ ∣ ≤ . There existC2 and R
so that if Y is a vector field on f r 42{ }< ∕ with r R≥ and

(1) Y e 1
f r

f
4

2
2 ∣ ∣∫ =

< ∕

− and Y μdiv e ¯
f r f

f
4

2 1
42 ∣ ∣∫ ≤ ≤

< ∕

∗ − .

(2) Y Y C r1∣ ∣ ∣ ∣+ ∇ ≤ on f r 42{ }< ∕ .

then there is a vector field Z on M with Z 1L2‖ ‖ = , Z μZ� = , and satisfying

(Z1) Z μ C μ rdiv ¯ ef L
n2 2

4 r
2

2
4( )‖ ‖ = ≤ +

∗ + − .

(Z2) For s r r4,2 2( )∈ ∕ , we have Z C r μdiv
f s f

C2
2 2∣ ∣∫ ≤

=

∗ .
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The theorem shows that the approximate symmetry extends to the larger set, though with a loss in the
estimates. This extension is powerful in situations where the loss can be recovered using some additional
structure particular to the situation, thus leading to a global symmetry. In Theorem 0.2 in [16], the loss was
recovered by solving a gauge problem and then using a rigidity property of cylinders that showed up at the
quadratic level. This quadratic rigidity relied on the structure of the compact factor of the cylinder and not
just on the existence of the approximate translation.

This kind of propagation of symmetry often plays an important role in understanding the structure of
solutions, as well as the rate of convergence of a Ricci flow to a singularity.

2 Weighted manifolds and Killing fields

We will be most interested in gradient shrinking Ricci solitons, but many of the results hold more generally.
Killing fields preserve the metric, so they also preserve volume and, thus, are always divergence free.
However, they do not necessarily preserve the weighted volume, so the weighted divergence Ydivf of a
Killing field Y need not vanish. We will see, however, that it does satisfy an eigenvalue equation on any
gradient Ricci soliton (equation (2.3)).

To show this, we recall some general formulas from Lemma 2.8 in [16] on any gradient Ricci soliton (i.e.,
M g f, ,( ) satisfies (1.2) for some constant κ) for any vector field Y :

κ Y Ydiv div ,f f� �( ) ( )+ = − (2.1)

Y Ydiv div .f f� �( ) ( )∇ = −∇ (2.2)

If Y is a Killing field on a gradient Ricci soliton, then (2.1) gives that

κ Ydiv 0.f�( )+ = (2.3)

As a consequence of this, Ydivf is harmonic:

Corollary 2.1. If Y is a Killing field on a gradient Ricci soliton, then Ydivf is harmonic.

Proof. By (2.3), κ Ydiv 0f�( )+ = . Since Ydiv 0= for any Killing field, it follows that

Y Y f Y
κ Y f Y f

κ f Y Y f Y f

Δdiv div , div
div , ,

, , Hess , .

f f f

f

f f

�

( )

= + ⟨∇ ∇ ⟩

= − − ⟨∇ ∇⟨ ∇ ⟩⟩

= ⟨∇ ⟩ − ⟨∇ ∇ ⟩ − ∇∇

(2.4)

The second to last term vanishes because of the Killing equation. For the last term, we bring in the soliton
equation κgRic Hessf+ = to obtain

Y f YΔdiv Ric , .f ( )= ∇ (2.5)

Finally, this last term vanishes since f Y S YRic , ,1
2( )∇ = ⟨∇ ⟩ (see, e.g., (1.14) in [16]) and the scalar curvature

must be constant along a Killing field. □

Later, we will need a second-order self-adjoint operator L defined on symmetric two-tensors by

Lh h R h2 ,� ( )= + (2.6)

where R is the Riemann curvature acting on h in an orthonormal frame by

R h R h .ij
m n

imjn mn
,

[ ( )] ∑= (2.7)

Theorem 1.32 in [16] gives the following relation between L and divf
∗
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L Y κ Ydiv div .f f �( ) ( )= +
∗ ∗ (2.8)

It will also be useful that the operator � is related to � by

κ2 div .f� �− = ∇ + + (2.9)

Finally, an easy integration by parts argument shows that if Y and Y� are in L2, then Y W 1,2∈ and
Y Ldivf

2∈ ; this is given by the next lemma:

Lemma 2.2. (Lemma 2.15, [16]) For any gradient Ricci soliton if Y , Y L2� ∈ , then Ydivf( ), Y L2∇ ∈ and

Y Y Y κ Ydiv 2 2 .L f L L L
2 2

2 2 2 2�( )‖∇ ‖ + ‖ ‖ ≤ ‖ ‖ ‖ + ‖ (2.10)

2.1 Shrinkers

We now specialize to shrinkers, where κ 1
2= . We will use the spectral theory of cL in the next proof; see, e.g.,

[9,14,17,21].

Proof of Proposition 1.1.We consider two cases. Suppose first thatY preserves f , so that f Y, 0⟨∇ ⟩ = . Since
Y is Killing, Ydiv 0= , and, thus, Ydivf vanishes.

Suppose now thatY does not preserve f and, thus, Ydivf does not vanish identically. In this case, (2.3)
gives that Ydivf is a non-trivial solution to

Y Ydiv 1
2

div .f f� = − (2.11)

Moreover, Lemma 2.2 implies that Y Ldivf
2∈ . If v μv� = − , then the drift Bochner formula gives that

v μ v1
2

Hess 1
2

.v
2 2 2�∣ ∣ ∣ ∣ ⎛

⎝
⎞
⎠

∣ ∣∇ = + − ∇ (2.12)

Applying this with v Ydivf= and μ 1
2= and integrating over M , we conclude that

Hess 0.Y Ldivf
2‖ ‖ = (2.13)

It follows that Ydivf∇ is a non-trivial parallel vector field, giving the desired splitting. □

There is an interesting distinction between the Killing fields that preserve f and those that do not. The
Killing fields that preserve f turn out to be orthogonal to all gradient vector fields. The translations, which
do not preserve f , are generated by gradient vector fields coming from least eigenfunctions on the shrinking
soliton. Both types of vector fields satisfy eigenvalue equations for the drift Laplacian � , but at different
eigenvalues.

2.2 Geometric estimates for shrinkers

We will next recall several useful formulas for shrinkers and some geometric estimates. First, taking the
trace of the shrinker equation gives that

f S nΔ
2

,+ = (2.14)

where S is the scalar curvature. On a complete shrinker, it is well known ([19], cf. [6,10]) that f can be
normalized so that
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f S f .2∣ ∣∇ + = (2.15)

Since S 0≥ by [8] (see [11] for an improved bound on non-compact shrinkers), the function b f2= is
nonnegative and satisfies

b 1.∣ ∣∇ ≤ (2.16)

We will also need some geometric estimates by Cao-Zhou for shrinkers. First, Theorem 1.1 in [7] gives c1
and c2, depending only on B x M1 0( ) ⊂ so that

r x c f x r x c1
4

1
4

,1
2

2
2( ( ) ) ( ) ( ( ) )− ≤ ≤ + (2.17)

where r x( ) is the distance to a fixed point x0 (the constants can be made universal if x0 is chosen at the
minimum of f ). Second, Theorem 1.2 in [7] gives that shrinkers have at most Euclidean volume growth:
There exists c3 so that

B x c rVol .r
n

0 3( ( )) ≤ (2.18)

3 Small eigenvalues and almost Killing fields

Throughout this section, M g f, ,( ) is a complete non-compact gradient shrinking Ricci soliton (i.e., κ 1
2= ).

The operator � was constructed to vanish on Killing fields. The next lemma uses the variational
characterizations of eigenvalues and the exponential decay of the weight to find low eigenvalues for �

when there is an approximate symmetry on a large ball.

Lemma 3.1. Suppose that there is a (non-trivial) compactly supported vector field V with

V μ Vdiv ¯ ,f L
2 2

2‖ ‖ ≤ ‖ ‖
∗ (3.1)

where μ̄ 1< . Then there is a W 1,2 vector field Z with Z 1L2‖ ‖ = , so that
(A) Z μZ� = , with μ μ0, ¯[ ]∈ , and Z μdivf L

2
2‖ ‖ =

∗ .

(B) Z Wdivf
1,2∈ satisfies Z μ Zdiv divf f

1
2� ( )= − + and Z μdiv 4 1f L

2
2‖ ‖ ≤ + .

Proof. The operator � is self-adjoint by construction. Lemma 4.20 in [16] gives that � has a complete basis
of smooth W 1,2 eigen-vector fields Yi with eigenvalues

μ ,i → ∞ (3.2)

and with Y 1i L2‖ ‖ = . Moreover, Lemma 4.20 in [16] also gives that

Y Y Y μdiv e , e .f i
f

i i
f

i
2 �∣ ∣∫ ∫= ⟨ ⟩ =

∗ − − (3.3)

Expanding V by projecting onto the Yi’s, we write V as follows:

V a Y ,
i

i i∑= (3.4)

where each a Ri ∈ and

a V .
i

i L
2 2

2∑ = ‖ ‖ (3.5)

Since the Yi’s are L2-orthonormal, (3.1) gives that
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μ V V V V a μ μ a¯ div , e .L f L
f

i
i i

i
i

2 2
1

2
2 2 �∫ ∑ ∑‖ ‖ ≥ ‖ ‖ = ⟨ ⟩ = ≥

∗ − (3.6)

Comparing this with (3.5), we see that μ1 (the smallest μi) is at most μ̄. Set Z Y1= .
Since Z Z L, 2� ∈ , Lemma 2.2 and Proposition 3.3 give that

Z W Z Ldiv and .f
1,2 2∈ ∇ ∈ (3.7)

The L2 bound on Zdivf in (B) follows from Lemma 2.2. Finally, (2.1) gives that Zdivf satisfies the eigenfunc-

tion equation Z μ Zdiv divf f
1
2� ( )= − + . □

The weighted L2 bound on Zdivf
∗ forces it to be small in the region where f is small, but it says almost

nothing where f is large and the weight e f− is very small. To obtain better bounds when f is large, we
instead rely on polynomial growth estimates developed in [16]. To explain this, given a tensor w define the
“weighted spherical average” I rw( ) by

I r r w b .w
n

b r

1 2( ) ∣ ∣ ∣ ∣∫= ∇−

=

(3.8)

A priori, this is well defined at regular values of b, but Lemma 3.27 in [16] shows that I rw( ) can be extended
to all r, this extension is differentiable almost everywhere and is absolutely continuous as a function of r; cf.
[2,13,15].

We have the following polynomial growth bounds:

Proposition 3.2. [16] Given λ̄, there exists r0 so that if w is an L2 tensor with

w w λ w, ¯ ,2� ∣ ∣⟨ ⟩ ≥ − (3.9)

then for any r r r2 1 0> ≥ , we have that

I r r
r

I r2 .w

λ

w2
2

1

5 ¯

1⎜ ⎟( ) ⎛

⎝

⎞

⎠
( )≤ (3.10)

Proposition 3.2 is a special case of Theorem 3.4 in [16]. This proposition requires the lower bound (3.9)
for w w,�⟨ ⟩, which would hold if w satisfied an eigenvalue equation for � . However, we will want to apply it
to a vector field that satisfies an eigenvalue equation for � . The next result gives a decomposition for that
equation that makes this possible (this is a special case of Proposition 4.6 in [16]):

Proposition 3.3. [16] If Y μY� = , and we set Z Y Ydivμ f
2

2 1 ( )= + ∇
+

, then Zdiv 0f( ) = and

μ Ydiv 0,f�( ) ( )+ ∇ = (3.11)

μ Z2 1
2

0.�⎛
⎝

⎞
⎠

+ + = (3.12)

Moreover, if Y L2∈ , then Y Z μ Ydivf
2 2 1

2
2 2( )( )‖ ‖ = ‖ ‖ + + ‖∇ ‖

−

.

We are now prepared to prove that Ydivf
∗ grows at most polynomially when Y is an eigenvector field

for � .

Theorem 3.4. Suppose that M g,( ) has bounded curvature R C1∣ ∣ ≤ and Y is a W 1,2 vector field with Y 1L2‖ ‖ =

that satisfies (A) and (B). There exist C R,2 so that for all r R≥

I r C r μ.Y
C

div 1f
2( ) ≤∗ (3.13)
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Proof. Since Y μY� = , Proposition 3.3 gives that Z Y Ydivμ f
2

1 2= + ∇
+

satisfies

Z μ Z2 1
2

,� ⎛
⎝

⎞
⎠

= − + (3.14)

Y μ Ydiv div .f f�∇ = − ∇ (3.15)

Applying (2.8) to (3.14) and (3.15) gives

L Z Z μ Zdiv div 1
2

2 div ,f f f�⎛
⎝

⎞
⎠

= + = −
∗ ∗ ∗ (3.16)

L Y Y μ Ydiv div div 1
2

div 1
2

div div .f f f f f f�⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∇ = + ∇ = − ∇
∗ ∗ ∗ (3.17)

The last equation can be rewritten as follows:

L μHess 1
2

Hess .Y Ydiv divf f
⎛
⎝

⎞
⎠

= − (3.18)

Since M g, has bounded curvature and μ is also bounded, (3.16) and (3.18) give C so that

w w C w w w Z, for Hess or div .Y f
2

divf� ∣ ∣⟨ ⟩ ≥ − = =
∗ (3.19)

Thus, Proposition 3.2 applies, giving R and C1 so that

w ZHess or divY fdivf=
∗

both satisfy

I r r
r

I r r r Rfor any .w

C

w2
2

1
1 2 1

1

⎜ ⎟( ) ⎛

⎝

⎞

⎠
( )≤ > ≥ (3.20)

Next, observe that (B) and the drift Bochner formula give that

μHess .Y Ldiv 2
f 2‖ ‖ ≤ (3.21)

On the other hand, (A) gives that Y μdivf L
2

2‖ ‖ ≤
∗ as well. It follows that

Z Cμdiv .f L
2

2‖ ‖ ≤
∗ (3.22)

Since b 1∣ ∣∇ ≤ , the co-area formula gives some r R1 ≥ and a constant C2 so that

I r C μ w w Zfor Hess or div .w Y f1 2 divf( ) ≤ = =
∗ (3.23)

Using this in (3.20) and then writing Ydivf
∗ as a combination gives the theorem. □

We are now prepared to prove the main theorem.

Proof of Theorem 1.2. The first step is to cutoff the vector field to obtain a compactly supported vector field
V that we can use in Lemma 3.1. To do this, define a cutoff function η with η0 1≤ ≤ that has support in

f r
4

2
< , cuts off in distance r 1− , has η r2∣ ∣∇ ≤ and so that

ηe e e on the support of .f 1 r2
4 ∣ ∣≤ ∇− − − (3.24)

The last bound uses that b 1∣ ∣∇ ≤ by (2.16). Now setV ηY= . Since Y C r1∣ ∣ ≤ on the support of η, it follows that

V Y Y Cre 1 e 1 e ,L
η

f

η

f n2

1

2

0 1

2 2 r
2

2
4∣ ∣ ∣ ∣∫ ∫‖ ‖ ≥ = − ≥ −

=

−

≤ <

− + −

(3.25)

where the last bound also used the volume bound (2.18). Similarly, we have that

V Y Cr μ Crdiv 2 div e e 2 ¯ e .f L
f r

f
f n n2

4

2 4 4r r
2

2

2
4

2
4∣ ∣∫‖ ‖ ≤ + ≤ +

∗

< ∕

∗ − + − + −

(3.26)
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After multiplying V by a constant so that the L2 norm is one, we have that

V μ Crdiv 3 ¯ e 1.f L
n2 4 r

2

2
4‖ ‖ ≤ + <

∗ + − (3.27)

Lemma 3.1 gives a W 1,2 vector field Z with Z 1L2‖ ‖ = and satisfying (A) and (B). In particular, Z μZ� = with

μ μ Cr3 ¯ e 1.n4 r2
4≤ + <+ − (3.28)

This gives (Z1). Theorem 3.4 now gives a polynomially growing bound on I Vdivf
∗ . Since the scalar curvature is

bounded in this range, there is a lower bound for b∣ ∣∇ here. Therefore, the bound on I Vdivf
∗ implies the fine

growth bound (Z2). □
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