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Abstract: In the present article, we prove the existence and uniqueness of smooth solutions to an anisotropic
Lp Minkowski problem for the log-concave measure. Our proof of the existence is based on the well-known
continuous method whose crucial factor is the a priori bounds of an auxiliary problem. The uniqueness is
based on a maximum principle argument. It is worth mentioning that apart from the C2 bounds of solutions,
the C1 bounds of solutions also need some efforts since the convexity of S cannot be used directly, which is
one of great difference between the classical and the anisotropic versions. Moreover, our result can be seen as
an attempt to get new results on the geometric analysis of log-concave measure.
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1 Introduction

The main focus of this article is on the integral geometry of log-concave measure.
We first provide the definition of log-concave measure.
Definition A.1 (Log-concave measure (see [11,37])). A measure μ is called log-concave if its density

( )μ x
x

d
d

is log-concave, i.e., ( ) ( )
=

−eμ x
x

φ xd
d for some convex function φ, which means that

( ) ( )
∫=

−μ E e xd
E

φ x (1.1)

for every Borel set �⊆

+E n 1 and some convex function φ.
Since the constant value function ≡φ 0 is convex, the standard Lebesgue measure is the most trivial

example for log-concave measure. Besides this example, there are many other important examples for the
log-concave measure, which are listed as follows.

Examples A.2 (Log-concave measure).
(i) Gauss measure. The ( )+n 1 -dimensional Gauss measure is defined as follows:

( )
=

−

+

∣ ∣γ
π

e xd 1
2

d ,n n

x

1
2

2
2 (1.2)

which characterizes the Gaussian generalized random processes in stochastic analysis (see [17], pp.
246–261).
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(ii) Gibbs measure of some nonlinear Schrödinger equation. The Gibbs measure �( )ud of some
nonlinear Schrödinger equation is defined as follows:

�( ) ( )
=

−u e ud d ,H u (1.3)

where

�

( ) (∣ ∣ ( ) ( ))∫= ∇ +H u u V x u x x1
2

d .2 2

n
(1.4)

That is, ( )H u is the Hamilton functions for the Schrödinger equation with unit mass and positive potential
function V ,

( )∂ = − +i u u V x uΔ ,t (1.5)

(see a similar description of [14]).
It may be interesting to mention that some of classical concepts and results in integral geometry have

been generalized to the log-concave measure, such as the support function, mean width, and Steiner-type
formulas, [3,26,37]. Moreover, the convexity ofφ can be used to deduce some interesting geometric inequal-
ities for the measure μd , such as Brunn-Minkowski inequality, Prékopa-Leindler inequalities, or Blaschke-
Santaló inequalities, see [4,6,11,13,16,38]. With the help of these geometric inequalities, it is natural to pose
the Lp Minkowski problem for log-concave measure, see [11,12,24,25,28,37]. In a united way, the works
[11,12,24,28] can be formulated in the following way:

Problem A.3 (Minkowski-type problem). For any fixed ≥n 1 and �∈p , given any Borel measure
( )ϕ x xd that is supported in �⊆

+N n 1, find a convex function h such that

( ) ( ( ) ) ( )
∇ =

♯

− − ∣ ∣h ϕ x x h e yd d .p φ y1 2 (1.6)

In particular, if �=N n, φ vanishes, h is the support function of a hypersurface �⊆

+M n 1, Problem A.3
is associated with the following classical Minkowski problem that were introduced by Schneider [38] and
Lutwak [29] for =p 1 and general p, respectively.

Problem A.4 (Classical Lp Minkowski problem). For any fixed ≥n 1 and �∈p , given any Borel
measure μ that is supported on the unit sphere �n, under what conditions, there exists a (unique) convex
hypersurface �⊆

+M n 1 such that

( ) ( )=
♯

−ν S σ μ ξ˜ ˜ d d ,p1 (1.7)

where ν̃, S̃, and σd are the standard unit normal mapping, support function, and surface measure of M ,
respectively.

It is easy to see that in smooth frame, suppose that μd is absolutely continuous with respect to the
spherical Lebesgue measure ξd and

( )=

μ
ξ

ϕ ξd
d

, (1.8)

then the Problem A.4 is equivalent to the following Monge-Ampère equation on �n:

( )=

−S
κ

ϕ ξ
˜

˜
,

p1
(1.9)

where κ̃ is the standard Gaussian curvature of M . It follows from (1.9) that Problem A.1 is equivalent to a
geometric problem prescribed the reciprocal of Gaussian curvature. In particular, if =p 1, Problem A.4 was
posed and solved by Minkowski [31,32] for the discrete measure or the measure with continuous density.
Aleksandrov, Fenchel, and Jensen [38] extended the works of Minkowski [31,32] to the general Borel
measure independently by the approximation argument. By the theory of Monge-Ampère equation, Lewy
[27], Nirenberg [33], Cheng and Yau [9], Pogorelov [35], and Caffarelli [7,8] resolved the classical problem.
For general p, Problem A.4 was posed and solved by Lutwak [29]. For more interesting results on Problem
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A.4, see. e.g., [5,10,30]. One of the advances to Problem A.4 is to analyze some similar problems when one
may replace the surface measure σd by other geometric measures deduced by Steiner formulas, such as
k-surface area measure, k-curvature measure, integral Gaussian curvature, and their Lp or dual versions,
see [19,21–23,29,34,38] and so on.

If �=

+N n 1, Problem A.3 is the so-called Lp Minkowski problem for log-concave measure, see

[11,12,25,37]. If ( )

( )
=

− ∣ ∣ −

+

∣ ∣

e eφ y
π

1

2
n

y2
1

2

2
2 , �=N n, and h is the support function of a convex hypersurface

�⊆

+M n 1, Problem A.3 is Lp Minkowski problem for Gaussian measure, see [24,28].
In the point of view of the development of geometric analysis, the main focus of the this article is to

analyze Problem A.3 when the target geometry N enjoys more interesting metric structure.
Among them, there is an interesting metric space, which can be called the anisotropic version of

classical metric space. Recently, some interesting geometric and analysis results have been extended to
the anisotropic frame, such as the Moser-Trudinger inequalities [40,43], Brunn-Minkowski inequality for
Finsler-Laplacian [39], geometric flows [1,15,36,42], and so on.

The main focus of the this article is on Problem A.3 in the frame of anisotropy, which can be stated as
follows.

Problem A.5 (Anisotropic Lp Minkowski for the log-concave measure). For any fixed ≥n 1 and

�∈p , find a strictly convex domain �⊆

+M n 1 with anisotropic normal mapping ν, such that

�( )( )
( ) = ∀ ∈

♯

− −ν S e σ ϕ ξ ξ ξd d , ,p φ ρ1 2 (1.10)

where �� ⊆

+n 1 is a Wulff shape, S and ρ are the anisotropic support function and anisotropic radial
function of a strictly convex hypersurface �⊆

+M n 1, respectively, and ϕ is a fixed smooth convex function.
In smooth case, equation (1.10) is equivalent to the following prescribed anisotropic Gaussian curvature

problem on Wulff shape �� ⊆

n,

( )
( )

=

− −S e
K

ϕ ξ ,
p φ ρ1

aniso

2

(1.11)

where Kaniso is the anisotropic Gaussian curvature. Direct calculus show that equation (1.11) is equivalent to
the following Monge-Ampère equation in Wulff shape �� ⊆

+n 1:

⎛
⎝

⎞
⎠

( )( )
− + =

− −S e S Q S δ S ϕ ξdet 1
2

p φ ρ
ij ijk k ij

1 2 (1.12)

for any �∈ξ , where S and ρ are the anisotropic support function and anisotropic radial function of a
strictly convex hypersurface �⊆

+M n 1, respectively, and φ is a smooth convex function (see Lemma 2.5 in
Section 2).

The left-hand side of equation (1.12) is called the density of the Lp anisotropic surface area measure for

log-concave measure ( )− ∣ ∣e xdφ x 2
in the present article.

In particular, if =p 1 and the factor ( )− ∣ ∣e φ x 2
vanishes, Problem A.5 was first posed and solved by Xia

[41], which can be stated as follows:
Theorem A.6[41]. For any fixed ≥n 1 and �( )< ∈ϕ C0 4 , then there exists a (unique) strictly convex

function S such that

⎛
⎝

⎞
⎠

( )− + =S Q S δ S ϕ ξdet 1
2ij ijk k ij (1.13)

and

�( )< ≤ ‖ ‖ ≤ < ∞

−c S c0 .C
1 τ2, (1.14)

The main focus of this article is on the a priori bounds, existence, and uniqueness of smooth solutions

to Problem A.5 for general p and log-concave measure ( )− ∣ ∣e xdφ x 2
, and the main result can be stated as

follows.
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Theorem 1.1. For any fixed ≥n 1 and > +p n 1, there exist positive constants c and τ and a positive solution
�( )∈S C τ2, to the equation (1.12) satisfying

�( )< ≤ ‖ ‖ ≤ < ∞

−c S c0 ,C
1 τ2, (1.15)

where ( )∈τ 0, 1 , c is independent of S, ( ) ( )∞ ↦ ∞φ : 0, 0, and � ( )↦ ∞ϕ : 0, , and the following condi-
tions hold:

(A.1.) �( )< ∈ϕ C0 4 , φ is a nonnegative, radially symmetric, increasing, smooth, and convex function in
� , �( )< ∈φ C0 4 , and

��( ) ( )‖ ‖ + ‖ ‖ < ∞ϕ φ .C C4 4 (1.16)

(A.2.)

( ) ( )
= = ∞

→∞

+ −

→

+ −t
e

t
e

lim 0, lim .
t

n p

φ t t

n p

φ t

1

0

1

2 2 (1.17)

(A.3.) There exists a >δ 00 such that

( )′ ≥ >

>

φ t δmin 0.
t 0

0 (1.18)

Our proof of uniqueness part is based on delicate analysis of the linearized problem to problem (1.12)
and a Maximum principle. The proof of existence part is based on the powerful continuous method. We let
the set of the positive continuous function on � be �( )

+
C and

� �
⎧

⎨
⎩

( ) ⎛
⎝

⎞
⎠

⎫

⎬
⎭

= ∈ − +

×

S C S Q S δ S: 1
2

is positive definite .τ
ij ijl l ij

n n

2, (1.19)

The main ingredient is the a priori bounds of solutions to the following auxiliary problem for any �∈S :

⎛
⎝

( ) ( )⎞
⎠

( ) ( )( ) ( )
− + = + −

− − −S e S ξ Q S δ S ξ tϕ ξ t edet 1
2

1p φ ρ
ij ijk k ij

φ1 12 (1.20)

for [ ]∈t 0, 1 , where ∣ ∣= ∇ +ρ S S2 2 2.

Remark 1.2. It may be worth mentioning that the convexity of S cannot be used to deduce the C1 bounds

due to the presence of the term Q Sijk k
1
2 , which is a major difference between the classical and anisotropic

Minkowski problems. Similar difficulties also arise in the prescribed curvature measure, which is to the
following fully nonlinear equation on �n:

⎜ ⎟⎜ ⎟
⎛

⎝

⎛

⎝

⎞

⎠

⎞

⎠ ( ∣ ∣ )
( )− + + =

+ ∇

+

σ λ ρ
ρ

ρ ρ δ ρ u
ρ ρ

ϕ ξ2 .k ij i j ij 2 2 n 1
2

(1.21)

However, by some transforms =v ρ
1 , the matrix− + +ρ ρ ρ δ ρij ρ i j ij

2 becomes ( )+v δ vv ij ij
1
2 . Then, theC1 bounds

of v can be deduced by the convexity of v, see [20]. By =vρ 1, we can obtain C1 bounds of ρ; similar
technique can also be referred to [2]. However, such an idea cannot be used here, and therefore, we need to

find a good test function to obtain C1 bounds.

Remark 1.3. Since there is no Brunn-Minkowski-type inequality for the log-concave measure in the frame of
anisotropy, our proof of uniqueness follows from the delicate analysis of the linearized problem to problem
(1.12), which is motivated by Huang and Zhao [23]. It may be interesting to prove the Brunn-Minkowski-type
inequality for the log-concave measure in the frame of anisotropy and give a direct proof for the uniqueness.

This rest part of the present article is arranged as follows: in Section 2, we recall some knowledge on
anisotropic differential and convex geometry; in Section 3, we prove the a priori bounds of S to the problem
(1.20); and in Section 4, we prove Theorem 1.1.
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2 Anisotropic differential and convex geometry

In Section 2, we list some basic differential geometry and convex geometry, which are needed in the present
article and can be referred to [1,15,36,41].

Definition 2.1. [41] A function � [ )↦ ∞

+F : 0,n 1 is called a Minkowski norm if
(i) F is a norm of � +n 1, i.e., F is convex, 1-homogeneous function satisfying ( ) >F x 0 when ≠x 0;
(ii) �( { })∈ ⧹

∞ +F C 0n 1 ;

(iii) F satisfies a uniformly elliptic condition in the sense that there exists λ and Λ such that ≤ < ∞1 Λ
λ ,

∣ ∣ ⎛
⎝

( )⎞
⎠

∣ ∣≤

∂

∂ ∂

≤λ ζ
x x

F x ζ ζ Λ ζ1
2i j

i j
2

2
2 2 (2.1)

for any �( )= … ∈

+

+ζ ζ ζ ζ, , , n
n

1 2 1
1.

Definition 2.2. [41] The dual norm of F is defined as follows:

( )
( )

=

⋅

≠

F ξ x ξ
F x

sup
x

0

0
(2.2)

for any �∈

+ξ n 1.

Lemma 2.3. [41]
(a) For any �∈

+x ξ, n 1,

( ) ( ) ( ) ( )
∂

∂

=

∂

∂

=

F
x

x x F x F
ξ

ξ ξ F ξΣ , Σ ,i
i

i j
j

j

0
0 (2.3)

(b) For any � { }∈ ⧹

+x ξ, 0n 1 ,

( ) ( )
∂

∂ ∂

= =

∂

∂ ∂

F
x x

x x F
ξ ξ

ξ ξΣ 0 Σi
i j

i i
i j

i

2 2 0
(2.4)

for any fixed { }∈ … +j n1, 2, , 1 ,
(c) For any � { }∈ ⧹

+x ξ, 0n 1 ,

( ( )) ( ( ))= =F DF x F DF ξ1 ,0 0 (2.5)

(d) For any � { }∈ ⧹

+x ξ, 0n 1 ,

( ) ( ( )) ( ) ( ( ))= =F x DF DF x x F ξ DF DF ξ ξ, ,0 0 0 (2.6)

where

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
=

∂

∂

…

∂

∂

=

∂

∂

…

∂

∂

+ +

DF F
x

F
x

DF F
ξ

F
ξ

, , , , , .n n1 1
0

0

1

0

1 (2.7)

Definition 2.4. [41] We let F is a Minkowski norm defined in Definition 2.1. A Wulff shape �� ⊆

+n 1 is a
subset of � +n 1, which is defined as follows:

�� { ( ) }= ∈ =

+x F x: 1 .n 1 (2.8)

The anisotropic unit outer normal is defined as follows:

( )≜ ∇

∼ν F ν ,0 (2.9)

where ∼ν is the standard unit outer normal and F0 is the so-called dual norm of F .

Anisotropic Lp Minkowski problem for log-concave measure  5



Lemma 2.5. [41]
(a) The metric G associated with the norm F is defined as follows:

( )( ) ( ) ⎛
⎝

( )⎞
⎠

≜ =

∂

∂ ∂

G x ξ η G x ξ η
x x

F x ξ η, Σ Σ 1
2ij ij i j ij

i j
i j

2
2 (2.10)

for any �∈

+x n 1 and �∈

+ξ η T, x
n 1. We let ( )∣=g G ν T Mx for any ∈x M .

(b) The anisotropic support function of a strictly convex hypersurface M is defined as follows:

( ) ( )( )= ⋅

∈

S ξ G ξ ξ ysup
y M

(2.11)

for any �∈

+ξ n 1.
(c) The anisotropic radial function � ↦ρ M: of M is defined as follows:

�( ) ( )= ∇ = ∇ ++ρ ξ S S SeΣ ,G i
n

e, 0n
i

1 (2.12)

where { }
=

ei i
n

1 is a local orthonormal frame field with respect to g on � . Furthermore,

( ) ∣ ∣ ( ) ( )= ∇ +ρ ξ S ξ S ξ2 2 2 (2.13)

for any �∈ξ .
(d) The anisotropic Gaussian curvature of M satisfies

⎛
⎝

⎞
⎠

= − +

K
S Q S δ S1 det 1

2
,ij ijl l ij

aniso
(2.14)

where

( ) ⎛
⎝

( )⎞
⎠

=

∂

∂ ∂ ∂

Q x
x x x

F x1
2ijl

i j l

3
2 (2.15)

for any fixed { }∈ … +i j l n, , 1, 2, , 1 and �∈

+x n 1.

Remark 2.6. If ( ) ∣ ∣=F x x , this is the classical norm in Euclidean space and the Wulff shape � is the sphere
�n, =G δij ij and ( ) = ⋅

∈
S x x ysupy M .

More interesting differential geometric theory on the Wulff shape can be referred to [1,15,36,41].

3 A priori bounds of S
In Section 3, we consider the a priori bounds of solutions to the Monge-Ampère equation (1.12) on � .

We let the set of the positive continuous function on � be �( )
+

C and

� �
⎧

⎨
⎩

( ) ⎛
⎝

⎞
⎠

⎫

⎬
⎭

= ∈ − +

×

S C S Q S δ S: 1
2

is positive definite .τ
ij ijl l ij

n n

2,

This main result of this section can be stated as follows.

Theorem 3.0. For any fixed ≥n 1 and > +p n 1, we let � �( )∈ ∩
+

S C be a solution to (1.12). Suppose that
the conditions (A.1)–(A.3) hold. Then, there exists a positive constant c, independent of S, such that

�( )< ≤ ‖ ‖ ≤ < ∞

−c S c0 ,C
1 τ2, (3.1)

where ( )∈τ 0, 1 .

Now, we divide the proof of Theorem 3.0 into the following lemmas.
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Lemma 3.1. For any fixed ≥n 1 and > +p n 1, we let � �( )∈ ∩
+

S C be a solution to (1.12). Suppose that the
conditions (A.1)–(A.3) hold. Then, there exists a positive constant c such that

�( )< ≤ ≤ < ∞ ∀ ∈

−c S ξ c ξ0 .1 (3.2)

Proof. We consider the following extremal problem:

�

( )=

∈

R S ξmax .
ξ (3.3)

It follows from the compactness of � and the continuity of S that there exists �∈ξ1 such that

( )=R S ξ .1 (3.4)

It follows from the equation (1.12) that at the point =ξ ξ1,

�

( ) ( )
( )

≥ ≥ >

+ −

∈

R
e

ϕ ξ ϕ ξmin 0.
n p

φ R ξ

1

12 (3.5)

Combining this and condition (A.2) that there exists a positive constant >c 0 such that

≤ < ∞R c . (3.6)

We next consider the following extremal problem:

�

( )=

∈

r S ξmin .
ξ (3.7)

Adopting a similar argument, we also see that there exists a positive constant >c 0 such that

≥ >r c 0. (3.8)

Equations (3.6) and (3.8) yield the desired conclusion of Lemma 3.1. □

Before getting the estimates of high-order term of S, for any fixed { }∈ …i j n, 1, 2, , , we let

= − +u S Q S δ S1
2

.ij ij ijk k ij (3.9)

Then, equation (1.12) becomes

�( ) ( ) ( )
= ≜ ∀ ∈

−u ϕ ξ S e B ξdet , .ij
p φ ρ1 2 (3.10)

Lemma 3.2. For any fixed ≥n 1 and > +p n 1, we let � �( )∈ ∩
+

S C be a solution to (1.12). Suppose that the
conditions (A.1)–(A.3) hold. Then, there exists a positive constant c such that

�∣ ( )∣≤ ∇ ≤ ∀ ∈S ξ c ξ0 . (3.11)

Proof. The proof is based on maximum principle. We let ∣ ∣= = ∇

− −G e v e SαS αS2 2 2, where >α 0 to be chosen.
Suppose that Gsup is achieved at the point �= ∈ξ ξ3 . Then, at =ξ ξ3,

( )= = −

−G e S S αS v0 2 Σi
αS

l l li i
2 (3.12)

for any fixed { }∈ …i n1, 2, , and ( )
×

Gij n n is nonpositive. Direct calculation deduces that

( )= + − −

−G e S S S S αvS α S S S2 Σ Σ 2 Σij
αS

l lj li l l lij ij l l lj i
2

at the point =ξ ξ3 for any fixed { }∈ …i j n, 1, 2, , . For any fixed { }∈ …i j n, 1, 2, , , we let uij be the function
defined in (3.9) and

( )=

∂

∂

F
u

udet .ij
ij

ij (3.13)

It is easy to see that ( )
×

Fij n n is positive. Therefore, we have
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( )≥ + − − =
=

F S S S S αvS α S S S I0 Σ Σ Σ 2 Σ Σij ij l lj li l l lij ij l l lj i i i1
4 (3.14)

at the point =ξ ξ3, where

= =I F S S I F S SΣ , Σ ,ijl ij li lj ijl ij l lij1 2 (3.15)

and

= − = −I αv F S I α F S S SΣ , 2 Σ .ij ij ij ijl ij l lj i3 4 (3.16)

Without loss of generalization, we may assume that ( ) ∣ ( )∣= ∇ ≫v ξ S ξ 13 3
2 . Otherwise, inequality (3.11) is

trivial.
By choosing suitable coordinate, we may assume that

=S δ vi i1 (3.17)

at the point =ξ ξ3 for any fixed { }∈ …i n1, 2, , . This means that ( )
×

Fij n n is diagonal at the point =ξ ξ3.
Moreover, it follows from (3.12) and (3.17) that

=S αvδi i1 1 (3.18)

for any fixed { }∈ …i n1, 2, , .
We now obtain the bounds of

=

IΣi i1
4 . At the first step, we first analyze the term =I F S SΣijl ij li lj1 . It is easy to

see that

= = =I F S S F S α F vΣijl ij li lj1 11 11
2 2

11
2 (3.19)

at the point =ξ ξ3.
We next estimate the term =I F S SΣijl ij l lij2 . Since ( ) =u Bdet ij , we have

=F u BΣi ii iit t (3.20)

for any fixed { }∈ …t n1, 2, , . Therefore, multiplying St on both sides of (3.20) and taking sum for the index t,
we obtain

=F S u B SΣ Σ .it ii t iit t t t (3.21)

By Ricci identity,

( )− = = ≥S S S R S S R vΣ Σ 0ti t tii iit it it i t 11 (3.22)

at the point =ξ ξ3 due to the convexity of � . Combining (3.17), (3.21), and (3.22), we have

( )

⎛
⎝

⎞
⎠

( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=

= +

= + + −

= + + −

= + + −

= + + ≥ +

I F S S
vR F F S S

vR F F S u Q S S

vR F F S u F S Q S S

vR F B S F S Q S S

vR F I I I I

Σ
Σ Σ

Σ Σ 1
2

Σ Σ Σ 1
2

Σ Σ 1
2

Σ ,

i ii ii

l ll i ii ii

l ll i ii ii ii

l ll i ii ii i ii ii

i ii i ii ii

i ii

2 1 1

11 1 1

11 1 1 1
1

11 1 1 1 1 1
1

11 1 1 1 1 1
1

11 21 22 21 22

(3.23)

where

⎛
⎝

⎞
⎠

= = −I B S I F S Q S S, Σ 1
2i ii ii21 1 1 22 1 1 1

1
(3.24)

We first estimate the term =I B S21 1 1. By the definition of B, we have

(( ) ( ) ) ( ) ( )( )

( ) ( )

( ) ( )

( )

( )= − + + ′ +

≜ + ′

− −

−

B S e S p ϕ ξ S Sϕ e S ϕ ξ φ ρ SS S S S

B S e S ϕ ξ φ ρ S S

1 2

2 ,

φ ρ p φ ρ p

φ ρ p

1 1
2

1 1
1 2

1 1 11 1

1,1 1
1 2

1
2

11

2 2

2
(3.25)
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where

(( ) ( ) ) ( ) ( )( ) ( )
= − + + ′

− −B S e S p ϕ ξ S SS ϕ e S ϕ ξ φ ρ SS1 2 .φ ρ p φ ρ p
1,1 1

2
1
2

1 1
1 2

1
22 2 (3.26)

It is easy to see that

∣ ∣ ( )≤ +B S c v1 ,1,1 1 (3.27)

which means that

( )≥ − +B S c v1 .1,1 1 (3.28)

Noting that

=S S αv ,1
2

11
2 (3.29)

we have

( ) ( ) ( ) ( )( ) ( )
′ = ′

− −e S ϕ ξ φ ρ S S αe φ ρ S ϕ ξ v2 2 .φ ρ p φ ρ p1 2
1
2

11
2 1 22 2 (3.30)

Since φ is increasing, we can see that

( ) ( )( ) ( )
≥ ≥

− −e S ϕ ξ e S ϕ ξ δ ,φ ρ p φ p1 0 1
5

2 (3.31)

where � { ( ) ( )}( )
= >

∈

−δ e S ξ ϕ ξmin 0φ
ξ

p
5

0 1 . It follows from condition (A.3) and (3.30) that

( ) ( )( )
′ ≥

−e S ϕ ξ φ ρ S S αδ δ v2 2 .φ ρ p 1 2
1
2

11 0 5
22 (3.32)

Therefore, putting (3.28) and (3.30) into (3.25), we obtain

= ≥ − −I B S αδ δ v cv c221 1 1 0 5
2 (3.33)

for sufficiently large ( )v ξ3 .

We next deal with the term
( )

= −I F S Q S SΣi ii ii22 1
1
2 1 1

1
. It follows from (3.17) and (3.18) that

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= − = + − ≥ −I F S Q S S F Q S Q S S S c cvΣ 1
2

Σ 1
2

1
2i ii ii i ii ii ii22 1 1 1

1
11 1

2
1 1 11 1

2 3
2 (3.34)

at the point =ξ ξ3.
Therefore, putting (3.33) and (3.34) into (3.23), we obtain

≥ − − − ≥ −I αδ δ v cv v c αδ δ v c22 0 5
2

0 5
23

2 (3.35)

for sufficiently large ( )v ξ3 .
We next estimate the term = −I αv F SΣij ij ij3 . It is easy to see that

⎛
⎝

⎞
⎠

= − = − + − ≥ − −I αv F S αv F u Q S S cv cΣ Σ 1
2

,ij ij ij ij ii ii ii3 1 1
3
2 (3.36)

at the point =ξ ξ3.
We next estimates the term = −I α F S S S2 Σijl ij l lj i4 . It follows from (3.17) and (3.18) that

= − = − = −I α F S S S αF S S α F v2 Σ 2 2 .ijl ij l lj i4 11 1
2

11
2

11
2 (3.37)

Therefore, it follows from (3.19), (3.35), (3.36), and (3.37) that

( )≥ ≥ − − −
=

I α δ δ αF v cv c0 Σi i1
4

0 5 11
2 3

2 (3.38)

at the point =ξ ξ3. Since >δ δ 00 5 and F11 is bounded and positive, we choose >α 0 such that

≤ ≤

δ δ αF δ δ
4 2

.0 5
11

0 5 (3.39)

Therefore,

Anisotropic Lp Minkowski problem for log-concave measure  9



�

( ) ( )
≥ − − ≥ −

∈

δ δ
F

v cv c δ δ
F

v c0
8 16 max

ξ

0 5
2

11

2 0 5
2

11

23
2 (3.40)

for sufficiently large ( )v ξ3 , and thus, there exists a constant c, depends only on p n, , φ, ϕ, such that

≤v c2 (3.41)

for sufficiently large ( )v ξ3 . This completes the proof of Lemma 3.2.
By the definition of uij, we let

�( ) ( )=u udetij ij n
1 (3.42)

and

( ) ( )
( )=

−ψ ϕ ξ S e .p φ ρ1 n
2 1 (3.43)

Then, equation (1.12) becomes

�( ) ( )=u ψ ξ .ij (3.44)
□

Lemma 3.3. For any fixed ≥n 1 and > +p n 1, we let � �( )∈ ∩
+

S C be a solution to (1.12) and uij be the
function defined in (3.9). Suppose that the conditions ( ) ( )A A.1 – .3 hold. Then, there exists a positive constant c
such that

≤u cΔ . (3.45)

Proof. The proof is also based on maximum principle. We let

=H uΣ .i ii (3.46)

Suppose that H achieves its maximum at the point =ξ ξ4. Without loss of generality, we may assume that
( )

×
Hij n n is diagonal at the point =ξ ξ4. Therefore, at the point =ξ ξ4,

=H 0j (3.47)

for any fixed { }∈ …j n1, 2, , , and ( )
×

Hij n n is nonpositive at the point =ξ ξ4. For any fixed ∈i j s t, , ,
{ }… n1, 2, , , we let

� �
=

∂

∂

=

∂

∂ ∂

G
u

G
u u

, .ij

ij

ij rs

ij rs

,
2

(3.48)

Therefore, at the point =ξ ξ4,

≥ =G H G H0 Σ Σ .ij
ij

ij i
ii

ii (3.49)

By the commutator identity, we have

= − +H u nu HΔ .ii ii ii (3.50)

Putting (3.50) into (3.49), we obtain

≥ − +G u n G u H G0 Σ Δ Σ Σ .i
ii

ii i
ii

ii i
ii (3.51)

Taking the lth partial derivatives on both sides of (3.44) twice for any fixed { }∈ …l n1, 2, , , we have

( )= + =G u ψ G u u G u ψΣ , Σ Σij
ij

ijl l ijst
ij rs

ijl rsl ij
ij

ij ll ll
, (3.52)

for any fixed { }∈ …l n1, 2, , . It follows from the concavity of � that

≤G u uΣ 0.ijstl
ij rs

ijl rsl
, (3.53)

This implies that

≥ + =G u G u u G u ψΣ Δ Σ Σ Δ Δi
ii

ii ijstl
ij rs

ijl rsl ij
ij

ij
, (3.54)

at the point =ξ ξ4.
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It follows from Newton-MacLaurin inequality that

≥GΣ 1,i
ii (3.55)

see [21]. Putting (3.54) and (3.55) into (3.51), we have

≥ − + ≥ − + ≥ −ψ nψ H G ψ nψ H ψ nψ0 Δ Σ Δ Δi
ii (3.56)

at the point =ξ ξ4.
Now, we claim that

≥ ≥ − −
=

ψ
ψ

I δ S c S cΔ Σ Σ Σi i ij ij ij ij1
4

0
2 2 (3.57)

at the point =ξ ξ4, where ( )= ′ >
>

δ φ tmin 0t0 0 .
Indeed, noting ∣ ∣= ∇ +ρ S S2 2 2, for any fixed { }∈ …l n1, 2, , , taking lth partial derivatives on both sides

of (3.43) twice, we have

( ) ( ) ( )( )= ′ + − + ′ +

nψ
ψ

ϕ p S
S

φ ρ S S SSlog 1 2 Σl l
j j jl l

2 (3.58)

and

⎜ ⎟

∣ ∣ ⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )⎛

⎝

⎞

⎠
( )( )

( )( )

−

∇

=

−

= ″ + −

−

+ ′ + + +

+ ″ +

≜
=

n ψ
ψ

n ψ
ψ

n
ψψ ψ

ψ

ϕ p SS S
S

φ ρ S S S SS S

φ ρ S S SS
T

Δ Σ

Σ log 1 2 Σ

4 Σ
Σ ,

l
ll l

l
ll l

j jl j jll ll l

j j jl l

i i

2

2

2

2

2

2
2 2 2

2 2

1
4

(3.59)

where

( ) ⎛
⎝

( ) ( ) ⎞
⎠

∣ ∣= ″ +

−

+ ′ + ″ ∇T n ϕ p
S

φ ρ φ ρ S Slog 1 2 4 ,1 2
2 2 2 2 (3.60)

⎛
⎝

( ) ⎞
⎠

( ) ⎛

⎝
⎛
⎝

( ) ⎞
⎠

( ) ⎞

⎠
=

−

+ ′ + ″ =

−

+ ′ + ″T p
S

φ ρ S S φ ρ S S S S p
S

φ ρ S δ φ ρ SS S S1 2 Δ 8 Σ Σ 1 2 8 ,jl j l jl jl jl j l jl2
2 2 2 2 (3.61)

( )= ′T φ ρ S S2 Σ ,jl j jll3
2 (3.62)

and

( ) ( ) ( )= ′ + ″T φ ρ S φ ρ S S2 Σ 4 Σ Σ .j α jα j ij i ij4
2

,
2 2 2 (3.63)

Now, we claim that

≥ − −

n ψ
ψ

δ S c S cΔ Σ Σij ij ij ij0
2 2 (3.64)

at the point =ξ ξ4.
We first obtain some estimates of T1. Noting that ∈φ ϕ C, 4, it follows from Lemmas 3.1 and 3.2 that

∣ ∣ ≤T c,1 (3.65)

and therefore,

≥ −T c1 (3.66)

at the point =ξ ξ4.
Moreover, it follows from Lemma 3.1 and Hölder inequality that

⎛

⎝
⎛
⎝

( ) ⎞
⎠

( ) ⎞

⎠
∣ ∣

−

+ ′ + ″ ≤ ≤

p
S

φ ρ S δ φ ρ SS S S c S c SΣ 1 2 8 Σ Σ ,jα jα j α jα jα jα ij ij
2 2 2 (3.67)

Anisotropic Lp Minkowski problem for log-concave measure  11



which means that

≥ −T c SΣ .ij ij2
2 (3.68)

It follows from Ricci identity that

= +S S S S R S SΣ Σ Σ .ij j jii ij j iij ij ij i j (3.69)

Therefore, we have

∣ ( ) ∣ ∣ ∣ ∣ ∣′ ≤ +φ ρ S S c S S c R S S2 Σ Σ Σ .ij j jii ij j iij ij ij i j
2 (3.70)

It follows from Lemma 3.2 that

∣ ∣ ∣ ∣≤ ∇ ≤c R S S c S cΣ .ij ij i j
2 (3.71)

It follows from (3.9) that

( ) ( ) ⎛
⎝

⎞
⎠

= = + −S S S S S u S Q S SΣ Σ Δ Σ Δ Σ 1
2

.ij j iij j j j j j j j j ijl l
j

(3.72)

From (3.47), we have

( ) =S uΣ Δ 0j j j (3.73)

at the point =ξ ξ4. Direct calculus shows that

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

− = − +S Q S S S Q S S S Q SΣ 1
2

Σ 1
2

Σ 1
2

.j j ijl l
j

j j ijlj l j j j ijl lj (3.74)

It follows from Lemma 3.2 and Hölder inequality that

⎛
⎝

⎞
⎠

− ≤S Q S S cΣ 1
2j j ijlj l j (3.75)

and

∣ ∣≤ ≤S Q S c S cn SΣ 1
2

Σ Σ .lj j ijl lj lj lj lj lj
2 (3.76)

Therefore,

⎛
⎝

⎞
⎠

− ≤ +S Q S S c cn SΣ 1
2

Σ .j j ijl l
j

lj lj
2 (3.77)

Putting (3.77) and (3.73) into (3.72), we have

∣ ∣ ( ) ⎛
⎝

⎞
⎠

= + − ≤ +S S S u S Q S S c cn SΣ Σ Δ Σ 1
2

Σ .ij j iij j j j j j ijl l
j

lj lj
2 (3.78)

It follows from (3.78), (3.69), and (3.70) that

( )= ′ ≥ − −T φ ρ S S c cn S2 Σ Σ .ij j jii lj lj3
2 2 (3.79)

Since ∈φ C2 is convex, we see that ( )″ ≥φ ρ 02 , and therefore,

( ) ( )″ ≥φ ρ S S4 Σ Σ 0.j ij i ij
2 2 (3.80)

Combining (3.80) and (3.63), we obtain

( )≥ ′ ≥T φ ρ S δ S2 Σ Σ ,j α jα ij ij4
2

,
2

0
2 (3.81)

where ( )= ′ >
>

δ φ tmin 0t0 0 .
Equations (3.66), (3.68), (3.79), and (3.81) yield

12  Zhengmao Chen



≥ ≥ − −
=

ψ
ψ

T δ S c S cΔ Σ Σ Σi i ij ij ij ij1
4

3
2 2 (3.82)

at the point =ξ ξ4. This is the desired inequality (3.57).
By (3.56) and (3.57), we see

− − ≤δ S c S c nΣ Σij ij ij ij3
2 2 (3.83)

at the point =ξ ξ4. From (3.83), we can see that

≤S cΣ .ij ij
2 (3.84)

By the Hölder inequality, we have

∣ ∣= ≤ ≤ ≤S S n S n S cΔ Σ Σ Σ .i ii i ii ij ij
2 2 (3.85)

Noting that

= − +u S Q S S1
2ii ii iij j (3.86)

we can conclude from equations (3.85) and (3.86) and Lemmas 3.1 and 3.2 that

≤u cΔ (3.87)

at the point =ξ ξ4. This completes the proof of Lemma 3.3. □

Now, we are in a position to prove Theorem 3.0.

Final proof of Theorem 3.0. It follows from (1.12) that equation (3.44) becomes

�( ) =u 0,ij (3.88)

provided � �( ) ( )= −u u ψij ij . We let �
�

=

∂

∂

ij uij
. It follows from Lemmas 3.1–3.3 that there exist positive

constants λ and Λ, independent of S, such that

≤ < ∞

Λ
λ

1 , (3.89)

and

�< ≤ ≤λζ ζ ζ Λζ0 ,ij i j
2 2 (3.90)

for any �( )= … ∈ζ ζ ζ ζ, , , n
n

1 2 . That is, (3.88)
(i) is elliptic uniformly.

Moreover, it is easy to see that � ( )= det n
1
is concave with respect to ( )

×
uij n n, and therefore,

(ii) � is concave with respect to ( )
×

uij n n.

Then, it follows from Theorem 17.14 of Gilbarg and Trudinger [18] that there exist ( )∈τ 0, 11 and positive
constant c such that

�( )‖ ‖ ≤u c,C τ2, 1 (3.91)

(see [18], pp. 457–461). Therefore, there exist ( )∈τ 0, 1 and positive constant c such that

�( )‖ ‖ ≤S c.C τ2, (3.92)

This is the desired conclusion of Theorem 3.0.
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4 Existence and uniqueness

This section devotes the proof of Theorem 1.1.

4.1 Part one: Uniqueness

This subsection devotes the proof of the uniqueness part of Theorem 1.1.
We let the set of the positive continuous function on � be �( )

+
C . For any �∈ζ , we let

( ) ( ) ( ) ( )
= − + =

− −F S S Q S δ S J S e Sdet 1
2

, ,ij ijl l ij
φ ρ p12 (4.1)

( ) ( ) ( )=M S F S J S , (4.2)

and

[ ]( ) ( )= +

=

M S ζ
ε

M S εζd
d

.
ε 0

(4.3)

Lemma 4.1. For any fixed ≥n 1 and > +p n 1. Suppose that � �( )∈ ∩
+

S C is a solution to (4.1). For any
�∈ζ , we let [ ]( )M S ζ be the operator defined in (4.3) and

⎜ ⎟ ⎜ ⎟ ⎜ ⎟[ ]( ) ⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
= + +M S ζ a ζ

S
b ζ

S
C ζ

S
.ij

ij
i

i
(4.4)

Suppose that the conditions (A.1)–(A.3) hold. Then, ( )
×

aij n n is positive bi is bounded, and <C 0.

Proof. Taking logarithm on both sides of (4.2), we obtain

[ ]( )

( )
( )( ) ( )=

−

− ′ + ∇ ⋅∇ +

M S ζ
M S

p
S

ζ φ ρ Sζ S ζ P B ζ1 2 ,ij
2 (4.5)

where ( )
×

Pij n n is the inverse of the matrix
( )

− +

×

S Q S Sδij ijl l ij
n n

1
2 and

( ) = − +B ζ ζ Q ζ ζδ1
2

.ij ijl l ij (4.6)

We let =ζ Sv. Direct calculation shows that

= +ζ Sv S vi i i (4.7)

and

( )= + + +ζ Sv S v S v S v.ij ij i j j i ij (4.8)

Therefore, we obtain

( ∣ ∣ )+ ∇ ⋅∇ = + ∇ + ∇ ⋅∇ = + ∇ ⋅∇Sζ S ζ S S v S S v ρ v S S v,2 2 2 (4.9)

which implies that

( )( ) ( ( ) ) ( )
−

− ′ + ∇ ⋅∇ = − − ′ − ′ ∇ ⋅∇

p
S

ζ φ ρ Sζ S ζ p φ ρ ρ v φ ρ S S v1 2 1 2 2 .2 2 2 2 (4.10)

It follows from (4.6) and (4.10) that

( ) ( ) ⎛
⎝

⎞
⎠

= + + + − + −B ζ Sv S v S v S Q S Sδ v Q Sv1
2

1
2

,ij i j j i ij ijl l ij ijl l (4.11)

and thus,
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( ) = + + −P B ζ SP v P S v nv S P Q v2 1
2

Σij ij ij ij i j l ij ijl l (4.12)

due to the symmetry of ( )
×

Pij n n. Putting (4.10) and (4.12) into (4.5), we have

�[ ]( ) [ ]( ) ( ) ( ( ) ( ) ( ) ( ) )

( ( ) ) ( )

= = + − − ′

+ + − − ′ ≜ + +

S v M S v SM S P v M S P S SM S P Q φ ρ M S SS v

n p φ ρ ρ M S v a v b v Nv

2 1
2

2

1 2 ,

ij ij ij j tl tli i i

ij ij i i

2

2 2
(4.13)

where

( )=a SM S P ,ij ij (4.14)

( ) ( ) ( ) ( )= − − ′b M S P S SM S P Q φ ρ M S SS2 1
2

2 ,i ij j tl tli i
2 (4.15)

and

( ( ) ) ( )= + − − ′N n p φ ρ ρ M S1 2 .2 2 (4.16)

Since ( ) >S M S¯, ¯ 0, ( )
×

P̄ij n n is positive, we see that ( )
×

aij n n is positive. It follows from Lemma 3.2 that bi is
bounded.

It follows from condtion (A.3) that

( ) ( )′ > ′ >φ ρ φ ρ ρ0, 02 2 2 (4.17)

for any �∈ξ . Noting that ( )M S is positive, we have

( ) ( )− ′ <φ ρ ρ M S2 0.2 2 (4.18)

If > +p n 1, we obtain <C 0. This completes the proof of Lemma 4.1. □

Lemma 4.2. For any fixed ≥n 1 and > +p n 1. Suppose that � �( )∈ ∩
+

S C is a solution to (1.12). For any
�∈ζ , we let [ ]( )M S ζ be the operator defined in (4.3) and

[ ]( ) =M S ζ 0. (4.19)

Suppose that the conditions (A.1)–(A.3) hold, then

≡ζ 0. (4.20)

Proof. For any �∈ζ such that

[ ]( ) =M S ζ 0, (4.21)

it follows from Lemma 4.1 and strong maximum principle of elliptic equations of second order that

≡ζ 0, (4.22)

see [18]. This is the desired conclusion of Lemma 4.2. □

Proposition 4.3. For any fixed ≥n 1 and > +p n 1, we let � �( )∈ ∩
+

S S C,1 2 be two solutions of (1.12).
Suppose that the conditions (A.1)–(A.3) hold. Then,

=S S .1 2 (4.23)

Proof. Without loss of generality, we may assume that there exists

≥t 1 (4.24)

such that

( ) ( ) ( ) ( )≥ =tS ξ S ξ tS ξ S ξ, ,1 2 1 0 2 0 (4.25)
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for any �∈ξ and some �∈ξ0 . Since ≥t 1 and φ is increasing, we obtain

( ) (( ) )
≤e e .φ ρ φ tρ2 2 (4.26)

For any solution S to (1.12), it is easy to see that

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) (( ) )
= = = ≤

− + − − + − −F tS t F S t S e ϕ ξ t tS e ϕ ξ t tS e ϕ ξ .n n p φ ρ n p p φ ρ n p p φ tρ1 1 1 1 12 2 2 (4.27)

Therefore,

( ) ( ) ( ) ( )≤ ≤

+ −F tS J tS t ϕ ξ ϕ ξn p
1 1

1 (4.28)

due to the assumption that > +p n 1 and ≥t 1.
Therefore,

( ) ( ) ( ) ( ) ( )= ≤ =M tS F tS J tS ϕ ξ M S ,1 1 1 2 (4.29)

which means that

⎜ ⎟ ⎜ ⎟

( ) ( ) (( ) ( ) )

( )⎛

⎝

⎞

⎠
( )⎛

⎝

⎞

⎠
( )

∫≥ − = + −

≜

−

+

−

+

−

M tS M S
ε

M εtS ε S ε

a ξ tS S
S

b ξ tS S
S

C ξ tS S
S

0 d
d

1 d

ij
ij

i
i

1 2

0

1

1 2

1 2

2

1 2

2

1 2

2

(4.30)

for any �∈ξ . It follows from Lemma 4.1 that ( )
×

aij n n and −C are positive. Then, by strong maximum
principle of elliptic equations of second order, we have

( ) ( )

( )

−

≤

tS ξ S ξ
S ξ

01 2

2
(4.31)

for any �∈ξ , see [18]. This, together with (4.25) , implies that

( ) ( )=tS ξ S ξ ,1 2 (4.32)

and therefore,

( ) ( ) ( )= ≥ρ ξ tρ ξ ρ ξ2 1 1 (4.33)

for any �∈ξ . Therefore,

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( )

( )

=

=

=

≤

= =

−

+ − −

+ −
−

+ − + −

F tS t F S
t S e ϕ ξ

t tS e ϕ ξ

t S e ϕ ξ
t F S t F tS ,

n

n p φ ρ

n p p φ ρ

n p p φ ρ

n p n p

1 1

1
1

1
1

1

1
2

1

1
2

1
1

1
2

1
2

2
2

(4.34)

which means that

≤t 1 (4.35)

since > +p n 1 and the positivity of F . It follows from (4.24) and (4.34) that
=t 1. (4.36)

By the arbitrariness of S1 and S2, we obtain the desired equation (4.23) and this completes the proof of
Proposition 4.3. □

4.2 Part two: Existence

This subsection devotes the proof of the existence part of Theorem 1.1.
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Motivated by [19,21,23] and so on, we consider the following auxiliary problem with a parameter
[ ]∈t 0, 1 ,

�( ( ) ( )) ( ) ( )( ) ( )
− + = + − ≜ ∀ ∈

− − −S e S ξ Q S δ S ξ tϕ ξ t e f ξdet 1
2

1 , ,p φ ρ
ij ijl l ij

φ
t

1 12 (4.37)

where ∣ ∣= ∇ +ρ S S2 2 2 and �( )< ∈ϕ C0 2 .
We let the set of the positive continuous function on � be �( )

+
C and

� �
⎧

⎨
⎩

( ) ⎛
⎝

⎞
⎠

⎫

⎬
⎭

= ∈ − +

×

S C S Q S δ S: 1
2

is positive definiteτ
ij ijl l ij

n n

2,

� � �{ [ ] ( ) }= ∈ ∈ ∩ ( )
+

t S C0, 1 : , 4.37  is solvable . (4.38)

Since �( )∈f Ct
2 satisfying

�
� �

⎧

⎨
⎩

( )
⎫

⎬
⎭

( )
⎧

⎨
⎩

( )
⎫

⎬
⎭

( ) ( )
< ≤ ≤ < ∞ ∀ ∈

−

∈

−

∈

e ϕ ξ f ξ e ϕ ξ ξ0 min , min max , maxφ
ξ

t
φ

ξ
1 1

for any [ ]∈t 0, 1 , adopting some similar arguments in Section 3, we obtain

Lemma 4.4. For any fixed ≥n 1, > +p n 1, and [ ]∈t 0, 1 , we let � �( )∈ ∩
+

S Ct be a solution of (4.37).
Suppose that the conditions (A.1)–(A.3) hold. Then, there exists a constant c, independent of t, such that

�∣ ∣ ( )< ≤ ≤

−c S c0 ,t C
1 τ2,

for any [ ]∈t 0, 1 and some ( )∈τ 0, 1 .

As a corollary of Lemma 4.4, we have

Corollary 4.5. For any fixed ≥n 1, > +p n 1, and [ ]∈t 0, 1 , we let � is the set defined in (4.38). Suppose that
the conditions (A.1)–(A.3) hold. Then, � is closed.

Proof. It suffices to show that for any sequence �{ } ⊆
=

∞tj j 1 satisfying

→t t ,j 0

as → ∞j for some [ ]∈t 0, 10 , we need to prove �∈t0 .
We let Sj be a solution of problem (4.37) at =t tj. It follows from the conclusion of Lemma 4.4 that there

exists a positive constant c, independent of j, such that

�( )‖ ‖ ≤S c.j C τ2,

It follows from Ascoli-Arzela theorem that up to a subsequence, there exists a �( )∈S C τ
0

2,

�( )‖ − ‖ →S S 0j C0 τ2,

as → ∞j . It is easy to see that

( ) ( )
→ →

− − − −S S e e,j
p p φ ρ φ ρ1

0
1 j

2
0
2 (4.39)

uniformly on � as → ∞j , where ∣ ∣= + ∇ρ S Sj j j
2 2 2 for any { }∈ …j 0, . Letting → ∞j , we can see that ( )t S,0 0

is a solution to the following problem:

�⎛
⎝

( ) ( )⎞
⎠

( ) ( )( ) ( )
− + = + − ∀ ∈

− − −S e S ξ Q S δ S ξ tϕ ξ t e ξdet 1
2

1 .p φ ρ
ij ijl l ij

φ1 12 (4.40)

Equation (4.40) implies that �∈t0 . This is the desired conclusion of Corollary 4.5. □
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Lemma 4.6. For any fixed ≥n 1, > +p n 1, and [ ]∈t 0, 1 ,we let � is the set defined in (4.38). Suppose that the
conditions (A.1)–(A.3) hold. Then, � is open.

Proof. Suppose that there exists a �∈t̄ , it suffices to prove �∈t for any ( ) [ ]∈ ∩t B t̄ 0, 1δ . To achieve this
goal, joint with implicit function theorem, we need to analyze the kernel of linearized equation associated
with (4.37). We assume that S̄ is a solution to (4.37) at =t t̄ . For any �∈ζ , we let

( ) ( ) ( ) ( )( ) ( )
= − + = + −

− − −M S e S S Q S δ S f tϕ ξ t edet 1
2

, 1 ,φ ρ p
ij ijl l ij t

φ1 12 (4.41)

�( ) ( ) [ ]( ) ( )= − = +

=

t S M S f M S ζ
ε

M S εζ, ¯ ¯ , ¯ d
d

¯ ,t
ε 0

(4.42)

and

� �[ ]( ) ( ) ( )= + = +

= =

S ζ
ε

S εζ
ε

M S εζ¯ d
d

¯ d
d

¯ .
ε ε0 0

(4.43)

By (4.37), we have

( ) =M S f¯ .t (4.44)

Taking logarithm on both sides of (4.44), since ft is independent of S̄, we obtain

[ ]( )

( )
( )( ) ( )

′

=

−

− ′ + ∇ ⋅∇ +

M S ζ
M S

p
S

ζ φ ρ Sζ S ζ P B ζ
¯

¯
1

¯ 2 ¯ ¯ ¯ ,ij
2 (4.45)

where ( )
×

P̄ij n n is the inverse of the matrix
( )

− +

×

S Q S Sδ¯ ¯ij ijl l ij
n n

1
2 and

( ) = − +B ζ ζ Q ζ ζδ1
2

.ij ijl l ij (4.46)

We let =ζ Sv¯ . Direct calculation shows that

= +ζ Sv S v¯ ¯
i i i (4.47)

and

( )= + + +ζ Sv S v S v S v¯ ¯ ¯ ¯ .ij ij i j j i ij (4.48)

Therefore, we obtain

( ∣ ∣ )+ ∇ ⋅∇ = + ∇ + ∇ ⋅∇ = + ∇ ⋅∇Sζ S ζ S S v S S v ρ v S S v¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ,2 2 2 (4.49)

which implies that

( )( ) ( ( ) ) ( )
−

− ′ + ∇ ⋅∇ = − − ′ − ′ ∇ ⋅∇

p
S

ζ φ ρ Sζ S ζ p φ ρ ρ v φ ρ S S v1
¯ 2 ¯ ¯ ¯ 1 2 ¯ ¯ 2 ¯ ¯ ¯ .2 2 2 2 (4.50)

It follows from (4.48) and (4.46) that

( ) ( ) ⎛
⎝

⎞
⎠

= + + + − + −B ζ Sv S v S v S Q S Sδ v S Q v¯ ¯ ¯ ¯ 1
2

¯ ¯ 1
2

Σ ,ij i j j i ij ijl l ij l ijl l (4.51)

and thus,

( ) = + + −P B ζ SP v P S v nv S P Q v¯ ¯ ¯ 2 ¯ ¯ 1
2

¯Σij ij ij ij i j l ij ijl l (4.52)

due to the symmetry of ( )
×

P̄ij n n. Putting (4.50) and (4.52) into (4.45), we have

�[ ]( ) [ ]( ) ( ) ( )( ( ) )

( ( ) )

= = + − − ′ ∇

+ + − − ′ ≜ + +

S v M S v SM S P v M S P S SP Q φ ρ SS v

n p φ ρ ρ M v a v b vv Nv

¯ ¯ ¯ ¯ ¯ ¯ 2 ¯ ¯ 1
2

¯ 2 ¯ ¯ ¯

1 2 ¯ ¯ ,

ij ij ij j tl tli i

t ij ij i i l

2

2 2
(4.53)
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where

( ) ( )⎛
⎝

( ) ⎞
⎠

= = − − ′a SM S P b M S P S SP Q φ ρ SS¯ ¯ ¯ , ¯ 2 ¯ ¯ 1
2

¯ 2 ¯ ¯ ¯ij ij i ij j tl tli i
2 (4.54)

and

( ( ) ) ( )= + − − ′N n p φ ρ ρ M S1 2 ¯ ¯ ¯ .2 2 (4.55)

Since ( ) >S M S¯, ¯ 0, ( )
×

P̄ij n n is positive, we see that ( )
×

aij n n is positive. It follows from Lemma 4.4 that bi and
( )SM S P Q¯ ¯ ij ijl are bounded. It follows from condition (A.3) that

( )′ >φ ρ̄ 0, (4.56)

and therefore,

( )′ >φ ρ ρ¯ ¯ 02 (4.57)

for any �∈ξ . Noting that ( )M S̄ is positive, we have

( ) ( )− ′ <φ ρ ρ M S2 ¯ ¯ 0.2 2 (4.58)

If > +p n 1, we obtain <N 0. By strong maximum principle for elliptic equations of second order, we see
that

≡v 0 (4.59)

(see [18], pp. 35) and thus,

≡ζ 0 (4.60)

since >S̄ 0. Then, by the standard Implicit Function Theorem, for any ( ) [ ]∈ ∩t B t̄ 0, 1δ , there exists a
�( )∈S C τ2, , such that �( ) =t S, 0. This means that �∈t and completes the proof of Lemma 4.6. □

Final proof of Theorem 1.1. The proof of uniqueness part follows from Proposition 4.3. It suffices to prove
the existence part. It is easy to see that ≡S 1 is a solution of (4.37) at =t 0. This means that � is not-empty.
This, together with Corollary 4.5 and Lemma 4.6, implies that � [ ]= 0, 1 . Taking =t 1, we obtain the proof of
existence part to Theorem 1.1.
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