Research Article

Lu Chen, Bohan Wang, and Maochun Zhu*

Improved fractional Trudinger-Moser inequalities on bounded intervals and the existence of their extremals

https://doi.org/10.1515/ans-2022-0067 received August 31, 2022; accepted April 16, 2023

Abstract: Let I be a bounded interval of \mathbb{R} and $\lambda_{\mathbf{l}}(I)$ denote the first eigenvalue of the nonlocal operator $(-\Delta)^{\frac{1}{4}}$ with the Dirichlet boundary. We prove that for any $0 \le \alpha < \lambda_{\mathbf{l}}(I)$, there holds

$$\sup_{u \in W_0^{\frac{1}{2},2}(I), \|(-\Delta)^{\frac{1}{4}}u\|_2^2 - \alpha \|u\|_2^2 \le 1} \int_I e^{\pi u^2} \mathrm{d} x < +\infty,$$

and the supremum can be attained. The method is based on concentration-compactness principle for fractional Trudinger-Moser inequality, blow-up analysis for fractional elliptic equation with the critical exponential growth and harmonic extensions.

Keywords: fractional, extremals, Trudinger-Moser inequalities

MSC 2020: 46E30, 46E35

1 Introduction

Let Ω be a bounded domain in \mathbb{R}^n ; it is well known that the analogue of optimal Sobolev embedding for $W_0^{1,n}(\Omega)$ (the Sobolev space consisting of functions vanishing on the boundary $\partial\Omega$) can be given by the famous Trudinger-Moser inequality [30,33], which can be stated in the following form:

$$\sup_{u \in W_0^{1,n}(\Omega), \|\nabla u\|_n^n \le 1} \int_{\Omega} \exp(\alpha |u|^{\frac{n}{n-1}}) dx < +\infty, \quad \text{iff } \alpha \le \alpha_n = n w_{n-1}^{\frac{1}{n-1}}, \tag{1.1}$$

where ω_{n-1} is the area of unit sphere in \mathbb{R}^n . So far, Trudinger-Moser inequalities have also been generalized in many other directions such as the Trudinger-Moser inequalities on the unbounded domain, C-R spheres, compact Riemannian manifolds, Heisenberg group, and Trudinger-Moser inequalities in higher-order Sobolev spaces. We refer the interested readers to [1,6,7,10,14,17,23,31] and references therein.

In 1985, Lions [19] established the following concentration-compactness principle associated with inequality (1.1).

Theorem A. For any $u_k \in W_0^{1,n}(\Omega)$ with $\|\nabla u_k\|_n \le 1$ and $u_k \to u_0 \ne 0$ in $W_0^{1,n}(\Omega)$, then there exists some p > 1 such that $\exp\left(\alpha_n |u_k|^{\frac{n}{n-1}}\right)$ is bounded in $L^p(\Omega)$.

^{*} Corresponding author: Maochun Zhu, School of Mathematical Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China, e-mail: zhumaochun2006@126.com

Lu Chen, Bohan Wang: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China, e-mail: chenlu5818804@163.com, wangbohanbit2022@163.com

This conclusion gives more precise information and is stronger than Trudinger-Moser inequality (1.1) when the function sequence $u_k \rightarrow u_0 \neq 0$. Later, the authors of [4] developed a new approach to obtain and sharpen Theorem A. The result in [4] reads as follows:

Theorem B. For any $u_k \in W_0^{1,n}(\Omega)$ with $\|\nabla u_k\|_n \leq 1$, and $u_k \rightharpoonup u_0 \neq 0$ in $W_0^{1,n}(\Omega)$, then

$$\sup_{k} \int_{\Omega} \exp\left(\alpha_{n} p |u_{k}|^{\frac{n}{n-1}}\right) dx < \infty, \tag{1.2}$$

if $p < p_n = \frac{1}{(1-\|\nabla u_0\|_n^n)^{\frac{1}{n-1}}}$. Moreover, p_n is sharp in the sense that for $p \ge p_n$, there exists a sequence $\{u_k\} \subset W_0^{1,n}(\Omega)$ with $||\nabla u_k||_n = 1$ such that the supreme of (1.2) is infinite.

Note that the proofs for the concentration-compactness principle in [4,19] depend on the Polya-Szego inequality in the Euclidean space, which is no longer available in the higher-order case or other settings, such as Riemannian manifolds or the Heisenberg groups. In a recent work [17], the authors obtained the concentration-compactness principle on the Heisenberg groups through a rearrangement-free argument by considering the level sets of the functions under consideration. We remark that this argument is inspired by the works [22,23] and can avoid using any rearrangement inequality (see also [27]). For other related work on the concentration-compactness principle associated with Trudinger-Moser-type inequalities, one can refer to [15,18,37] and references therein.

Inspired by the concentration-compactness principle for Trudinger-Moser inequality, Adimurthi and Druet [2] obtained an improved Trudinger-Moser inequality involving the L^2 norm on bounded domains of \mathbb{R}^2 by the method of blow-up analysis.

Theorem C. For any $0 < \alpha < \lambda_1(\Omega)$, there holds

$$\sup_{u \in W_0^{1,2}(\Omega), \|\nabla u\|_2 \le 1} \int_{\Omega} e^{4\pi u^2 (1+\alpha \|u\|_2^2)} dx < +\infty, \tag{1.3}$$

where

$$\lambda_{\mathbf{l}}(\Omega) = \inf_{u \in W_0^{\mathbf{l},2}(\Omega)} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} u^2 dx}$$
(1.4)

denotes the first eigenvalue of the Laplacian operator with the Dirichlet boundary. Furthermore, if $\alpha \geqslant \lambda_1$, the supremum is infinite.

This result was further extended to higher-order case or unbounded domains as well in [5,8,20,25,35,38,38]. We remark that in the work of [5], the authors can extend to (1.3) to the entire Euclidean space and the Heisenberg group by a simple scaling approach, which can avoid applying the complicated blow-up analysis often used in the literature to deal with such sharpened inequalities.

Recently, Wang and Ye [34] proved the following Trudinger-Moser inequality involved in the Hardy term:

$$\sup_{\int_{\mathbb{R}} |\nabla u|^2 dx - \int_{\mathbb{R}} \frac{u^2}{(1 - |x|^2)^2} dx \le 1} \int_{\mathbb{B}} e^{4\pi u^2} dx < \infty, \tag{1.5}$$

where B denotes the unit ball in \mathbb{R}^2 . In a recent article [21], Lu and Yang gave a rearrangement-free argument of (1.5) and confirmed that the conjecture for the Hardy-Trudinger-Moser inequality given in [34] indeed holds for any bounded and convex domain in \mathbb{R}^2 via the Riemann mapping theorem. We state the result as follows:

Theorem D. Let Ω be a proper and convex bounded domain in \mathbb{R}^2 and $u \in C_0^{\infty}(\Omega)$ be such that

$$\int_{\Omega} |\nabla u|^2 dx - \frac{1}{4} \int_{\Omega} \frac{u^2}{d(x, \partial \Omega)^2} dx \le 1,$$

where $d(x, \partial\Omega) = \min\{|x - x'| : x' \in \partial\Omega\}$. Then, there exists a constant C, which is independent of u such that

$$\int_{\Omega} e^{4\pi u^2} \mathrm{d}x \leq C.$$

A higher-dimensional version of Theorem D has been recently established by Liang et al. in [24]. Hardy-Adams-type inequality on hyperbolic balls has also been established in [16] (see also references therein).

In the recent work [32], Tintarev modified the Hardy-type Trudinger-Moser inequality (1.5) and proved

$$\sup_{\int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} V(x)u^2 dx \le 1} \int_{\Omega} e^{4\pi u^2} dx < \infty$$
(1.6)

for some class of V(x) > 0, including the case of (1.5). In particular, when $V(x) = \alpha$ with $0 \le \alpha < \lambda_1$, then one has

$$\sup_{\int_{\Omega} |\nabla u|^2 dx - \alpha} \int_{\Omega} |u|^2 dx \le 1 \int_{\Omega} e^{4\pi u^2} dx < +\infty.$$
(1.7)

We remark that (1.7) is stronger than (1.3).

In this note, we are concerned with the Trudinger-Moser inequality on the line R. In order to state the related results, we first introduce the concept of fractional Laplacian and the related fractional Sobolev space. For any $s \in (0, 1)$ and $\varphi \in \mathcal{S}(\mathbb{R}^n)$ (the Schwarz space), the fractional Laplacian $(-\Delta)^s \varphi$ is given by:

$$(-\Delta)^{s}\varphi(x) = \mathcal{F}^{-1}(|\xi|^{2s}\mathcal{F}\varphi(\xi))(x),$$

where $\mathcal F$ and $\mathcal F^{-1}$ denote the Fourier transform and inverse Fourier transform, respectively. Let us consider the space:

$$L_s(\mathbb{R}^n) = \left\{ u \in L^1_{\mathrm{loc}}(\mathbb{R}^n) : \int_{\mathbb{R}^n} \frac{|u|}{1 + |x|^{n+2s}} \mathrm{d}x < +\infty \right\},\,$$

fractional operator $(-\Delta)^s$ can be defined on $u \in L_s(\mathbb{R}^n) \cap \mathcal{S}'(\mathbb{R}^n)$ through

$$\langle \varphi, (-\Delta)^s u \rangle = \langle (-\Delta)^s \varphi, u \rangle.$$

We also define the fractional Sobolev space $W^{s,p}(\mathbb{R}^n)$ and $W^{s,p}_0(\Omega)(s \in (0,+\infty))$ and $p \in [1,+\infty)$) by

$$W^{s,p}(\mathbb{R}^n) = \left\{ u \in L^p(\mathbb{R}^n) : (-\Delta)^{\frac{s}{2}} u \in L^p(\mathbb{R}^n) \right\},$$

$$W_0^{s,p}(\Omega) = \left\{ u \in W^{s,p}(\mathbb{R}^n) : u = 0 \text{ on } \mathbb{R}^n \backslash \Omega \right\}.$$

Iula et al. [26] established the following fractional Trudinger-Moser inequality on some interval of line.

Theorem E. For any $I \subset \mathbb{R}$, when $\alpha \leq \pi$, it holds that

$$\sup_{u\in W_0^{\frac{1}{2},2}(I),\|u\|_{L^2(I)}^2\leq 1}\int_I (e^{\alpha u^2}-1)\mathrm{d}x<+\infty.$$

This result was further extended to the general fractional Sobolev space $W_0^{s,p}(\Omega)$ with sp=n by Martinazzi in [28].

Based on the aforementioned results, a natural problem arises. Whether the fractional analogue for Trudinger-Moser inequality of Tintarev type (1.7) on \mathbb{R} still holds. In this article, we deal with this problem. Our main result states the following.

Theorem 1.1. Let I be a bounded interval of \mathbb{R} and $\lambda_1(I)$ be the first eigenvalue of $(-\Delta)^{\frac{1}{4}}$ with Dirichlet boundary. For any $0 \le \alpha < \lambda_1(I)$, there holds

$$\sup_{u \in W_0^{\frac{1}{2},2}(I), \|u\|_{\frac{1}{2},\alpha}^2 \le 1} \int_I e^{\pi u^2} dx < +\infty,$$
(1.8)

where $||u||_{\frac{1}{2},\alpha}^2 = \|(-\Delta)^{\frac{1}{4}}u\|_{2}^2 - \alpha ||u||_{2}^2$.

As the application of Theorem 1.1, one can easily obtain fractional Trudinger-Moser inequality involving the L^2 norm. Indeed, denote $v = (1 + \alpha \|u\|_{L^2}^2)^{\frac{1}{2}}u$; direct computation gives

$$\|(-\Delta)^{\frac{1}{4}}v\|_{L^{2}}^{2}-\alpha\|v\|_{L^{2}}^{2}\leq (1+\alpha\|u\|_{L^{2}}^{2})(1-\alpha\|u\|_{L^{2}}^{2})\leq 1.$$

This together with the fractional Trudinger-Moser inequality (1.8) implies

Corollary 1.2. For any $0 \le \alpha < \lambda_1(I)$, there holds

$$\sup_{u \in W_0^{\frac{1}{2},2}(I), \left\| (-\Delta)^{\frac{1}{4}u} \right\|_2^2 \le 1} \int_I e^{\pi u^2 (1+\alpha \|u\|_2^2)} dx < +\infty.$$

Once we establish the fractional Trudinger-Moser inequality (1.8), it remains to ask whether or not there exist extremals for this inequality. The earlier study of extremals for Trudinger-Moser inequality can date back to Carleson and Chang's work in [3]. They used the rearrangement and ODE technique to obtain the existence of extremals for classical Trudinger-Moser inequality in a unit ball of \mathbb{R}^n . Later, their results were also extended by Flucher [9] to bounded domain in \mathbb{R}^2 and by Lin [11] to bounded domain in \mathbb{R}^n , respectively. Existence of extremals for Trudinger-Moser inequality on compact manifold has also been established by Li in [12,13]. There are also some existence results of extremals for Trudinger-Moser inequality of Tintarev type (see [36]).

Recently, Mancini and Martinazzi [29] established the existence result for the fractional Trudinger-Moser inequality on an interval in $\mathbb R$ by the harmonic extensions and commutator estimates. In this article, we will also show that fractional Trudinger-Moser inequality (1.8) of Tintarev type also has extremals. This result reads as:

Theorem 1.3. Under the assumption of Theorem 1.1, (1.8) can be attained by some function $u_0 \in W_0^{\frac{1}{2},2}(I) \cap C^1(\bar{I})$, with $||u_0||_{\frac{1}{2},\alpha}^2 = 1$.

Remark 1.4. The proof of Theorem 1.1 will be included in the proof of Theorem 1.3.

It is easily observed that the existence of extremals for fractional Trudinger-Moser inequality of Tintarev type on a bounded interval is equivalent to that in a symmetrical interval. For simplicity, in this context, we may assume I = (-1, 1).

This article is organized as follows. In Section 2, we study the existence of extremals for subcritical fractional Trudinger-Moser inequality of Tintarev type and give the maximizing sequences for (1.8). In Section 3, we analyze the asymptotic behavior of the maximizing sequences near and away from blow-up point when the blow-up phenomenon arises. In Section 4, we derive the Carleson-Chang-type upper bound for (1.8) through capacity estimates. Finally, in Section 5, we prove the existence of extremals for fractional Trudinger-Moser inequality of Tintarev type by constructing an appropriate test function sequence such that the upper bound can be surpassed.

2 Subcritical fractional Trudinger-Moser inequality of Tintarev type and the maximizing sequences

In this section, we establish the existence of extremals for subcritical fractional Trudinger-Moser inequality of Tintarev type and give the maximizing sequences for critical fractional Trudinger-Moser inequality of Tintarev type (1.8).

Denote

$$C_{\varepsilon} \coloneqq \sup_{u \in W_0^{\frac{1}{2},2}(I), \|u\|_{\frac{1}{2},\alpha}^2 \leqslant 1} \int_I e^{(\pi-\varepsilon)u^2} \mathrm{d}x. \tag{2.1}$$

We will show that there exists $u_{\varepsilon} \in W_0^{\frac{1}{2},2}(I)$ such that

$$C_{\varepsilon} = \int_{L} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} dx. \tag{2.2}$$

For this purpose, we need the following Lions' type concentration-compactness principle.

Lemma 2.1. Let $u_{\varepsilon} \in W_0^{\frac{1}{2},2}(I)$, with $\|u_{\varepsilon}\|_{\frac{1}{2},\alpha} = 1$ and $u_{\varepsilon} \rightharpoonup u_0 \not\equiv 0$ in $W_0^{\frac{1}{2},2}(I)$. Then, for any $p < \frac{1}{1-\|u_0\|_{\frac{1}{2},\alpha}^2}$, it holds

$$\limsup_{\varepsilon \to 0} \int_{I} e^{\pi p u_{\varepsilon}^{2}} dx < +\infty.$$
 (2.3)

Proof. By the compactness of the Sobolev embedding theorem, we obtain $\|u_{\varepsilon}\|_{2}^{2} \to \|u_{0}\|_{2}^{2}$ when $\varepsilon \to 0$. Since $u \not\equiv 0$ and $||u_{\varepsilon}||_{\frac{1}{2},\alpha}^2 = 1$, we can easily calculate that

$$\lim_{\varepsilon \to 0} \left\| (-\Delta)^{\frac{1}{4}} (u_{\varepsilon} - u_0) \right\|_2^2 = 1 - \|u_0\|_{\frac{1}{2}, \alpha}^2 < 1.$$

On the other hand, a direct computation gives that for any p, there holds

$$\int_{I} e^{\pi p u_{\varepsilon}^{2}} dx \leqslant \int_{I} e^{\pi p (1+\delta)(u_{\varepsilon}-u_{0})^{2}+\pi p \left(1+\frac{1}{\delta}\right) u_{0}^{2}} dx \leqslant \left(\int_{I} e^{\pi p (1+\delta)(u_{\varepsilon}-u_{0})^{2}\cdot r} dx\right)^{1/r} \cdot \left(\int_{I} e^{\pi p \left(1+\frac{1}{\delta}\right) u_{0}^{2}\cdot s} dx\right)^{1/s},$$

where $\delta > 0$, r > 1, s > 1 with $\frac{1}{r} + \frac{1}{s} = 1$. For any $p < \frac{1}{1 - \|u_0\|_{\underline{1},a}^2}$, we can choose δ close to 0 and r close to 1 such that the last term in the aforementioned inequality can be controlled by:

$$\left(\int_{I} \exp\left(\pi \frac{(u_{\varepsilon} - u_{0})^{2}}{\left\| (-\Delta)^{\frac{1}{4}} (u_{\varepsilon} - u_{0}) \right\|_{2}^{2}} \right) dx\right)^{1/r} \cdot \left(\int_{I} e^{\pi p \left(1 + \frac{1}{\delta}\right) u_{0}^{2} \cdot s} dx\right)^{1/s},$$

which is finite as a direct consequence of fractional Trudinger-Moser inequality.

Obviously, inequality (2.3) is obtained.

Lemma 2.2. C_{ε} could be achieved by some function $u_0 \in W_0^{\frac{1}{2},2}(I)$.

Proof. Let $u_j \in W_0^{\frac{1}{2},2}(I)$ be a maximizing sequence for C_{ε} , i.e., $||u_j||_{\frac{1}{2},\alpha} = 1$ and

$$\lim_{j\to\infty}\int_I e^{(\pi-\varepsilon)u_j^2}\mathrm{d}x=C_{\varepsilon}.$$

Since $0 \le \alpha < \lambda_1(I)$ and $\int_I \left| (-\Delta)^{\frac{1}{4}} u_j \right|^2 dx - \alpha \int_I |u_j|^2 dx = 1$, we obtain that $\{u_j\}$ is bounded in $W_0^{\frac{1}{2},2}(I)$. Therefore,

6 — Lu Chen et al. DE GRUYTER

$$\begin{cases} u_j \to u_{\varepsilon} & \text{in } W_0^{\frac{1}{2},2}(I), \\ u_j \to u_{\varepsilon} & \text{in } L^2(I), \\ u_j \to u_{\varepsilon} & \text{a.e. in } I. \end{cases}$$

If $u_{\varepsilon} \equiv 0$, then $\lim_{j \to \infty} \|(-\Delta)^{\frac{1}{4}} u_j\|_2^2 = 1$. By fractional Trudinger-Moser inequality, for some p > 1, $e^{(\pi - \varepsilon)u_j^2}$ is bounded in $L^p(I)$. If $u_{\varepsilon} \not\equiv 0$, in view of Lemma 2.1, we can also deduce that $e^{(\pi - \varepsilon)u_j^2}$ is bounded in $L^p(I)$ for some p > 1. It follows from Vitali convergence theorem that $e^{(\pi - \varepsilon)u_j^2} \to e^{(\pi - \varepsilon)u_{\varepsilon}^2}$ in $L^1(I)$. This strong convergence combines with the monotonicity of $e^{(\pi - \varepsilon)t}$ about t, which implies that

$$\sup_{u\in W_0^{\frac{1}{2},2}(I),\|u\|_{\frac{1}{2}}^2}\int_{a}^{(\pi-\varepsilon)u^2}\mathrm{d}x=\int_{I}e^{(\pi-\varepsilon)\tilde{u}_\varepsilon^2}\mathrm{d}x\geq\int_{I}e^{(\pi-\varepsilon)u_\varepsilon^2}\mathrm{d}x,$$

where $\tilde{u}_{\varepsilon}\coloneqq \frac{u_{\varepsilon}}{\|u_{\varepsilon}\|_{\frac{1}{2},\alpha}^2}=1$ and $\|\tilde{u}_{\varepsilon}\|_{\frac{1}{2},\alpha}=1$; then, the proof is accomplished.

Using Lemma 2.1, we can see that subcritical Trudinger-Moser inequality (2.1) could be achieved by u_{ε} . Obviously, u_{ε} satisfies the following Euler-Lagrange equation:

$$\begin{cases} \lambda_{\varepsilon} = \int_{I} u_{\varepsilon}^{2} e^{(\pi-\varepsilon)u_{\varepsilon}^{2}} dx, \\ \left\| (-\Delta)^{\frac{1}{4}} u_{\varepsilon} \right\|_{2}^{2} - \alpha \|u_{\varepsilon}\|_{2}^{2} = 1, \\ \frac{1}{\lambda_{\varepsilon}} u_{\varepsilon} e^{(\pi-\varepsilon)u_{\varepsilon}^{2}} = (-\Delta)^{\frac{1}{2}} u_{\varepsilon} - \alpha u_{\varepsilon} \text{ in } I. \end{cases}$$
(2.4)

Furthermore, we also have

Lemma 2.3. It holds

$$\lim_{\varepsilon \to 0} C_{\varepsilon} = \sup_{u \in W_0^{\frac{1}{2},2}(I), ||u||_{\frac{1}{2},\alpha}^2 = 1} \int_I e^{\pi u^2} dx.$$
(2.5)

Proof. It is obvious that

$$\lim_{\varepsilon\to 0} C_{\varepsilon} \leq \sup_{u\in W_0^{\frac{1}{2},2}(I), ||u||_{\frac{1}{2},\alpha}^2} \int_I e^{\pi u^2} \mathrm{d}x.$$

For any $u \in W_0^{\frac{1}{2},2}(I)$, with $||u||_{\frac{1}{2},\alpha}=1$, according to Fatou's lemma, we obtain

$$\int_{I} e^{\pi u^{2}} dx \leq \liminf_{\varepsilon \to 0} \int_{I} e^{(\pi - \varepsilon)u^{2}} dx \leq \liminf_{\varepsilon \to 0} C_{\varepsilon}.$$

This implies that

$$\sup_{u\in W_0^{\frac{1}{2},2}(I), \|u\|_{\frac{1}{2},\alpha}^2=1} \int_I e^{\pi u^2} \mathrm{d}x \leqslant \liminf_{\varepsilon\to 0} C_{\varepsilon}.$$

Consequently, we obtain (2.5).

Now, we are in position to pick up u_{ε} as the maximizing sequences for Trudinger-Moser inequality (1.8). Assuming $u_{\varepsilon} \in C^{\infty}(I) \cap C^{0,\frac{1}{2}}(\bar{I})$, which is monotonically decreasing about the origin. Since u_{ε} is bounded in $W_0^{\frac{1}{2},2}(I)$, Banach-Alaoglu theorem and fractional compact Sobolev embedding theorem directly give that

$$\begin{cases} u_{\varepsilon} \rightharpoonup u & \text{in } W_0^{\frac{1}{2},2}(I) \\ u_{\varepsilon} \rightarrow u & \text{in } L^2(I) \\ u_{\varepsilon} \rightarrow u & \text{a.e. in } I. \end{cases}$$

Let

$$c_{\varepsilon} = u_{\varepsilon}(0) = \max_{t} u_{\varepsilon}.$$

If c_{ε} is bounded, then $e^{(\pi-\varepsilon)u_{\varepsilon}^2}$ is also bounded, which implies that $e^{(\pi-\varepsilon)u_{\varepsilon}^2}$ converges to $e^{\pi|u|^2}$ in $L^1(I)$. Hence, for any $v \in W_0^{\frac{1}{2},2}(I) \cap C^1(\bar{I})$ with $||v||_{\frac{1}{2},\alpha} \le 1$, we have

$$\lim_{\varepsilon\to 0}\int_I e^{(\pi-\varepsilon)u_\varepsilon^2} dx = \int_I e^{\pi|u|^2} dx.$$

This combines with Lemma 2.1; we can deduce that u is the desired extremal function.

If c_{ε} is unbounded, without loss of generality, we claim that the weak limit of u_{ε} is equal to zero. In fact, if $u_0 \not\equiv 0$, by concentration-compactness principle Lemma 2.1, we know that $e^{\pi u_{\varepsilon}^2}$ is bounded in $L^p(I)$ for any $p<\frac{1}{1-\|u_0\|_{1/a}^2}$. This together with elliptic estimates gives that u_{ε} is bounded in I, which contradicts $c_{\varepsilon}\to\infty$.

We also further claim $\left| (-\Delta)^{\frac{1}{4}} u_{\varepsilon} \right|^{2} dx \rightarrow \delta_{0}$ in the sense of measure. Otherwise, we can find some $r_{0} > 0$, $B_{r_0}(0) \subset I$, and a cut-off function $\varphi \in C_0^{\infty}(B_{r_0}(0))$, with $0 \leq \varphi \leq 1$, and $\varphi = 1$ on $B_{r_0}(0)$. We have

$$\limsup_{\varepsilon \to 0} \int_{B_{ro}(0)} \left| (-\Delta)^{\frac{1}{4}} (\varphi u_{\varepsilon}) \right|^{2} dx < 1.$$

By fractional Trudinger-Moser inequality, $e^{(\pi-\varepsilon)(\varphi u_{\varepsilon})^2}$ is bounded in $L^p(I)$ for some p>1. Applying elliptic estimates, we obtain that u_{ε} is uniformly bounded on $B_{\frac{r_0}{2}}(0)$, which is a contradiction.

Asymptotic behavior of the maximizing sequences u_{ε}

In this section, we will study asymptotic behavior of the maximizing sequences u_{ε} near and far away from the blow-up point.

Set

$$r_{\varepsilon} = \frac{\lambda_{\varepsilon}}{(\pi - \varepsilon)c_{c}^{2}e^{(\pi - \varepsilon)c_{\varepsilon}^{2}}}.$$

Define $I_{\varepsilon} = \{x \in \mathbb{R} : r_{\varepsilon}x \in I\}$ and $\eta_{\varepsilon}(x) := 2(\pi - \varepsilon)c_{\varepsilon}(u_{\varepsilon}(r_{\varepsilon}x) - c_{\varepsilon})$. If $r_{\varepsilon} \to 0$, similar to the proof of Theorem 1.3 in [29], we obtain $\eta_{\varepsilon}(x) \to \eta_0(x) = \ln \frac{1}{1+|x|^2}$ and

$$\int_{\mathbb{R}} e^{\eta_0(x)} dx = \int_{\mathbb{R}} \frac{1}{1 + |x|^2} dx = \pi.$$
 (3.1)

This describes the asymptotic behavior of u_{ε} around origin. Now, we start to analyze the asymptotic behavior of u_{ε} away from the blow-up point 0. For this purpose, we need the following lemma.

Lemma 3.1. For any A > 1, there holds

$$\limsup_{\varepsilon \to 0} \|(-\Delta)^{\frac{1}{4}} u_{\varepsilon}^{A}\|_{2}^{2} \le \frac{1}{A}, \tag{3.2}$$

where $u_{\varepsilon}^{A} = \min \{ u_{\varepsilon}, \frac{c_{\varepsilon}}{A} \}$.

Proof. As mentioned earlier, we have

$$1 + \alpha \|u_{\varepsilon}\|_{2}^{2} = \left\| (-\Delta)^{\frac{1}{4}} u_{\varepsilon} \right\|_{2}^{2} = \|\nabla \tilde{u}_{\varepsilon}\|_{2}^{2}$$

and

$$\|(-\Delta)^{\frac{1}{4}}u_{\varepsilon}\|_{2}^{2} = \int_{I} u_{\varepsilon}(-\Delta)^{\frac{1}{2}}u_{\varepsilon}dx = \int_{I} u_{\varepsilon}\left(\frac{u_{\varepsilon}}{\lambda_{\varepsilon}}e^{(\pi-\varepsilon)u_{\varepsilon}^{2}} + \alpha u_{\varepsilon}\right)dx.$$

Set $\bar{u}_{\varepsilon}^{A} := \min \left\{ \tilde{u}_{\varepsilon}, \frac{c_{\varepsilon}}{A} \right\}$, where \tilde{u}_{ε} is the harmonic extension of u_{ε} to $\mathbb{R}_{+}^{2} = \mathbb{R} \times (0, +\infty)$ given by the Poisson integral:

$$\tilde{u}(x,y) \coloneqq \frac{1}{\pi} \int_{\mathbb{R}} \frac{y u(\xi)}{y^2 + (x - \xi)^2} \mathrm{d}\xi, \quad y > 0.$$

Obviously, $\bar{u}_{\varepsilon}^{A}$ is a general extension of u_{ε}^{A} on \mathbb{R}_{+}^{2} ; by Dirichlet energy principle, we have

$$\left\| (-\Delta)^{\frac{1}{4}} u_{\varepsilon}^{A} \right\|_{2}^{2} \leqslant \int_{\mathbb{R}^{2}} |\nabla \bar{u}_{\varepsilon}^{A}|^{2} dx dy.$$

Using integration by parts and the harmonicity of \tilde{u}_{ε} , we obtain

$$\int\limits_{\mathbb{R}^2} |\nabla \bar{u}_{\varepsilon}^A|^2 \mathrm{d}x \mathrm{d}y = \int\limits_{\mathbb{R}^2} \nabla \bar{u}_{\varepsilon}^A \nabla \tilde{u}_{\varepsilon} \mathrm{d}x \mathrm{d}y = -\int\limits_{\mathbb{R}} u_{\varepsilon}^A(x) \frac{\partial \tilde{u}_{\varepsilon}(x,0)}{\partial y} \mathrm{d}x = \int\limits_{\mathbb{R}} u_{\varepsilon}^A(-\Delta)^{\frac{1}{2}} u_{\varepsilon} \mathrm{d}x.$$

Denote

$$v_{\varepsilon}^{A} := \left(u_{\varepsilon} - \frac{c_{\varepsilon}}{A}\right)^{+} = u_{\varepsilon} - u_{\varepsilon}^{A},$$

as $\varepsilon \to 0$, we have

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}} v_{\varepsilon}^{A} (-\Delta)^{\frac{1}{2}} u_{\varepsilon} dx = \lim_{\varepsilon \to 0} \int_{\mathbb{R}} v_{\varepsilon}^{A} \left(\frac{u_{\varepsilon}}{\lambda_{\varepsilon}} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} + \alpha u_{\varepsilon} \right) dx$$

$$\geqslant \lim_{R \to \infty} \lim_{\varepsilon \to 0} \left(1 - \frac{1}{A} \right) \int_{-Rr_{\varepsilon}}^{Rr_{\varepsilon}} \frac{u_{\varepsilon} c_{\varepsilon}}{\lambda_{\varepsilon}} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}(x)} dx + \lim_{\varepsilon \to 0} \int_{\mathbb{R}} \alpha u_{\varepsilon} \cdot v_{\varepsilon}^{A} dx$$

$$= \lim_{R \to \infty} \lim_{\varepsilon \to 0} \left(1 - \frac{1}{A} \right) \int_{-R}^{R} \frac{u_{\varepsilon} c_{\varepsilon}}{\lambda_{\varepsilon}} r_{\varepsilon} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}(r_{\varepsilon} \cdot)} dx$$

$$= \lim_{R \to \infty} \lim_{\varepsilon \to 0} \left(1 - \frac{1}{A} \right) \int_{-R}^{R} \frac{u_{\varepsilon} c_{\varepsilon}}{(\pi - \varepsilon)c_{\varepsilon}} e^{\pi c_{\varepsilon}^{2}} dx$$

$$= 1 - \frac{1}{A},$$

where we use the fact: $u_{\varepsilon} \to 0$ in $L^2(I)$ in the last equality.

Since $||u_{\varepsilon}||_{\frac{1}{2},\alpha}=1$, we obtain that

$$\lim_{\varepsilon \to 0} \int\limits_{\mathbb{R}} (v_{\varepsilon}^A (-\Delta)^{\frac{1}{2}} u_{\varepsilon} + u_{\varepsilon}^A (-\Delta)^{\frac{1}{2}} u_{\varepsilon}) \mathrm{d}x = \lim_{\varepsilon \to 0} \int\limits_{\mathbb{R}} u_{\varepsilon} (-\Delta)^{\frac{1}{2}} u_{\varepsilon} \mathrm{d}x = 1 + \lim_{\varepsilon \to 0} \alpha \|u_{\varepsilon}\|_{2}^{2} = 1.$$

Combining the aforementioned estimates, we deduce that

$$\int_{\mathbb{R}} u_{\varepsilon}^{A} (-\Delta)^{\frac{1}{2}} u_{\varepsilon} dx \leq \frac{1}{A}.$$

Then, we conclude (3.2).

Lemma 3.2. We have

$$\lim_{\varepsilon \to 0} \int_{I} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} dx = \limsup_{\varepsilon \to 0} \frac{\lambda_{\varepsilon}}{c_{\varepsilon}^{2}} + |I|.$$
(3.3)

Moreover,

$$\lim_{\varepsilon \to 0} \frac{c_{\varepsilon}}{\lambda_{\varepsilon}} = 0. \tag{3.4}$$

Proof. We split

$$\int_{I} e^{(\pi-\varepsilon)u_{\varepsilon}^{2}} dx = \int_{I \cap \left\{u_{\varepsilon} \leq \frac{C_{\varepsilon}}{A}\right\}} e^{(\pi-\varepsilon)u_{\varepsilon}^{2}} dx + \int_{I \cap \left\{u_{\varepsilon} > \frac{C_{\varepsilon}}{A}\right\}} e^{(\pi-\varepsilon)u_{\varepsilon}^{2}} dx =: I_{1} + I_{2}.$$

As the consequence of Lemma 3.1, we have $(\pi - \varepsilon) \|\nabla u_{\varepsilon}^A\|_2^2 < \pi$ as $\varepsilon \to 0$. This together with fractional Trudinger-Moser inequality, for some p > 1, we can deduce that

$$\int_{I} \exp \left((\pi - \varepsilon) \|\nabla u_{\varepsilon}^{A}\|_{2}^{2} \cdot p \frac{(u_{\varepsilon}^{A})^{2}}{\|\nabla u_{\varepsilon}^{A}\|_{2}^{2}} \right) dx \le C.$$

With the help of Vitali convergence theorem, we obtain

$$\lim_{\varepsilon \to 0} I_1 = \int_I e^{\pi u_0^2} dx = |I|.$$
(3.5)

A similar calculation together with Lemma 3.1 leads to

$$\lim_{\varepsilon \to 0} I_2 \leq \lim_{\varepsilon \to 0} \lambda_{\varepsilon} \frac{A^2}{c_{\varepsilon}^2} \int_{I \cap \left\{ u_{\varepsilon} > \frac{c_{\varepsilon}}{A} \right\}} \frac{u_{\varepsilon}^2}{\lambda_{\varepsilon}} e^{(\pi - \varepsilon)u_{\varepsilon}^2} dx = \lim_{\varepsilon \to 0} \lambda_{\varepsilon} \frac{A^2}{c_{\varepsilon}^2}.$$
(3.6)

Let A approach to 1 from the aforementioned equation, we have that

$$\lim_{\varepsilon\to 0}I_2\leqslant \lim_{\varepsilon\to 0}\frac{\lambda_\varepsilon}{c_\varepsilon^2},$$

together with the estimate of I_1 , yields that $\lim_{\varepsilon \to 0} \int_I e^{(\pi-\varepsilon)u_\varepsilon^2} \mathrm{d}x \le |I| + \lim_{\varepsilon \to 0} \frac{\lambda_\varepsilon}{c_\varepsilon^2}$. To finish the proof of Lemma 3.2, it remains to prove that:

$$\lim_{\varepsilon \to 0} \int_{I} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} dx \ge \limsup_{\varepsilon \to 0} \frac{\lambda_{\varepsilon}}{c_{\varepsilon}^{2}} + |I|.$$

Indeed, this is a consequence of the following calculation as $\varepsilon \to 0$ and $L \to \infty$,

$$\lim_{L \to \infty \varepsilon \to 0} \lim_{I} \int_{I} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} dx = \lim_{L \to \infty \varepsilon \to 0} \lim_{E \to \infty} \left(\int_{B_{Lr_{\varepsilon}}} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} dx + \int_{I \setminus B_{Lr_{\varepsilon}}} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} dx \right)$$

$$\geq \lim_{L \to \infty \varepsilon \to 0} \lim_{E \to \infty} \left(\int_{B_{Lr_{\varepsilon}}} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} dx + |I \setminus B_{Lr_{\varepsilon}}| \right)$$

$$= \lim_{L \to \infty \varepsilon \to 0} \lim_{E \to \infty} \frac{\lambda_{\varepsilon}}{C_{\varepsilon}^{2}} + |I|.$$

Therefore, we conclude that

10 — Lu Chen *et al*.

$$\lim_{\varepsilon \to 0} \int_{I} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} dx = \limsup_{\varepsilon \to 0} \frac{\lambda_{\varepsilon}}{c_{\varepsilon}^{2}} + |I|,$$

together with $\lim_{\varepsilon \to 0} C_{\varepsilon} > |I|$, obtain $\lim_{\varepsilon \to 0} \frac{c_{\varepsilon}}{\lambda_{\varepsilon}} = 0$. Then, we finish the proof of Lemma 3.2.

Lemma 3.3. Set $f_{\varepsilon} := \frac{c_{\varepsilon}}{\lambda_{\varepsilon}} u_{\varepsilon} e^{(\pi - \varepsilon)u_{\varepsilon}^2}$, then for any $\phi \in C(\bar{I})$,

$$\lim_{\varepsilon\to 0}\int_I f_\varepsilon \phi dx = \phi(0).$$

Proof. Divide

$$I = \left\lceil \left\{ u_{\varepsilon} > \frac{c_{\varepsilon}}{A} \right\} \middle\backslash (-Rr_{\varepsilon}, Rr_{\varepsilon}) \right\rceil \cup (-Rr_{\varepsilon}, Rr_{\varepsilon}) \cup \left\{ u_{\varepsilon} \leqslant \frac{c_{\varepsilon}}{A} \right\}.$$

Using the change of variables, we have

$$\lim_{R \to \infty \varepsilon \to 0} \lim_{-Rr_{\varepsilon}} \frac{u_{\varepsilon}^{2}}{\lambda_{\varepsilon}} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} dx = \lim_{R \to \infty \varepsilon \to 0} \lim_{-R} \frac{u_{\varepsilon}^{2}(r_{\varepsilon} \cdot)}{\lambda_{\varepsilon}} r_{\varepsilon} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}(r_{\varepsilon} \cdot)} dx$$

$$= \lim_{R \to \infty \varepsilon \to 0} \lim_{\pi \to \infty} \frac{1}{\pi - \varepsilon} \int_{-R}^{R} \frac{u_{\varepsilon}^{2}(r_{\varepsilon} \cdot)}{c_{\varepsilon}^{2}} e^{(\pi - \varepsilon)[u_{\varepsilon}^{2}(r_{\varepsilon} \cdot) - c_{\varepsilon}^{2}]} dx$$

$$= \frac{1}{\pi} \lim_{R \to \infty} \int_{-R}^{R} e^{\eta_{0}} dx = 1,$$

then

$$\begin{split} & \lim_{R \to \infty \varepsilon \to 0} \lim_{\left\{u_{\varepsilon} > \frac{c_{\varepsilon}}{A}\right\} \setminus (-Rr_{\varepsilon}, Rr_{\varepsilon})} \\ & \leqslant \lim_{R \to \infty \varepsilon \to 0} \lim_{A} \|\phi\|_{L^{\infty}(I)} \int_{\left\{u_{\varepsilon} > \frac{c_{\varepsilon}}{A}\right\} \setminus (-Rr_{\varepsilon}, Rr_{\varepsilon})} \frac{u_{\varepsilon}^{2}}{\lambda_{\varepsilon}} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} \mathrm{d}x \\ & = \lim_{R \to \infty \varepsilon \to 0} \lim_{A} \|\phi\|_{L^{\infty}(I)} \left[\int_{I} \frac{u_{\varepsilon}^{2}}{\lambda_{\varepsilon}} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} \mathrm{d}x - \int_{-Rr_{\varepsilon}}^{Rr_{\varepsilon}} \frac{u_{\varepsilon}^{2}}{\lambda_{\varepsilon}} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} \mathrm{d}x\right] \\ & = A \|\phi\|_{L^{\infty}(I)} \left(1 - \lim_{R \to \infty \varepsilon \to 0} \lim_{S \to 0} \int_{-Rr_{\varepsilon}}^{Rr_{\varepsilon}} \frac{u_{\varepsilon}^{2}}{\lambda_{\varepsilon}} e^{(\pi - \varepsilon)u_{\varepsilon}^{2}} \mathrm{d}x\right) = 0. \end{split}$$

Similarly,

$$\lim_{R \to \infty \varepsilon \to 0} \lim_{-Rr_{\varepsilon}} \int_{-Rr_{\varepsilon}}^{Rr_{\varepsilon}} f_{\varepsilon} \phi dx$$

$$= \lim_{R \to \infty \varepsilon \to 0} \lim_{\epsilon \to 0} \int_{-R}^{R} \frac{u_{\varepsilon} c_{\varepsilon}}{\lambda_{\varepsilon}} \phi(r_{\varepsilon} x) r_{\varepsilon} e^{(\pi - \varepsilon) u_{\varepsilon}^{2}(r_{\varepsilon} x)} dx$$

$$= \frac{\phi(0)}{\pi} \lim_{R \to \infty} \int_{-R}^{R} e^{\eta_{0}} dx = \phi(0).$$

By Vitali convergence theorem and Lemma 3.2,

$$\lim_{\varepsilon \to 0} \int_{\left\{u_{\varepsilon} \leqslant \frac{c_{\varepsilon}}{A}\right\}} f_{\varepsilon} \phi dx$$

$$\leq \lim_{\varepsilon \to 0} \frac{c_{\varepsilon}}{\lambda_{\varepsilon}} \|\phi\|_{L^{\infty}(I)} \int_{I} u_{\varepsilon}^{A} e^{(\pi - \varepsilon)(u_{\varepsilon}^{A})^{2}} dx$$

$$\leq \lim_{\varepsilon \to 0} \frac{c_{\varepsilon}}{\lambda_{\varepsilon}} \|\phi\|_{L^{\infty}(I)} \left[\int_{I} e^{A(\pi - \varepsilon)(u_{\varepsilon}^{A})^{2}} dx \right]^{\frac{1}{A}} \left[\int_{I} (u_{\varepsilon}^{A})^{A'} dx \right]^{\frac{1}{A'}} = 0,$$

where $\frac{1}{4} + \frac{1}{4'} = 1$.

Finally, we deduce $\int f_{\varepsilon} \phi dx \to \phi(0)$ as $\varepsilon \to 0$.

Next, we are in position to show that the asymptotic behavior of u_{ε} away from origin; we claim that the following lemmas hold.

Lemma 3.4. As $\varepsilon \to 0$, we have $v_{\varepsilon} := c_{\varepsilon}u_{\varepsilon} - G_0 \to 0$ in $L^{\infty}_{loc}(\bar{I}\setminus\{0\}) \cap L^1(I)$, where $G_0(y) = G_x(y)|_{x=0}$ and $G_X(y) = -\frac{1}{\pi}\ln|x-y| + A + g_X(y)$ is the Green's function of $(-\Delta)^{\frac{1}{2}}$ on I with singularity at x, which satisfies the following equations:

$$\begin{cases} (-\Delta)^{\frac{1}{2}} G_X(y) - \alpha G_X(y) = \delta_X, & x \in I \\ G_X(y) = 0, & x \in \mathbb{R} \setminus I. \end{cases}$$
(3.7)

Proof. By equation (2.5), $c_{\varepsilon}u_{\varepsilon}$ satisfies $\left[(-\Delta)^{\frac{1}{2}} - \alpha\right](c_{\varepsilon}u_{\varepsilon}) = f_{\varepsilon}$. Arguing as what we did in Lemma 3.3, we obtain $||f_{\varepsilon}||_{L^{1}(\mathbb{R})} \to 1$ as $\varepsilon \to 0$. On the other hand, for any $K \subset CI \setminus \{0\}$, by Lemma 3.1 and fractional Trudinger-Moser inequality, we derive that $\frac{u_{\varepsilon}}{\lambda}e^{(\pi-\varepsilon)u_{\varepsilon}^2}\in L^p(K)$ for some p>1.

According to elliptic regularity theorem for fractional equation, we have $u_{\varepsilon} \to u_0 = 0$ in $L^{\infty}(K)$. Then, it follows from the definition of f_{ε} and (3.4) of Lemma 3.2 that $f_{\varepsilon} \to 0$ in $L^{\infty}(K)$ as $\varepsilon \to 0$. Using Green's representation formula, we deduce that

$$|\nu_{\varepsilon}(x)| = \left| \int_{I} G_{x}(y) f_{\varepsilon}(y) dy - G_{0}(y) \right| \leq \int_{I} |G_{x}(y) - G_{0}(y)| f_{\varepsilon}(y) dy + |||f_{\varepsilon}||_{L^{1}(I)} - 1||G_{0}(y)|$$

where the expression of $G_x(y)$ can refer to [29].

Given x,

$$|G_{x}(y) - G_{0}(y)| = \left| \frac{1}{\pi} \ln \frac{|y|}{|x - y|} + g_{x}(y) - g_{0}(y) \right|$$

$$\leq \frac{1}{\pi} \left| \ln \frac{|y|}{|x - y|} \right| + |g_{x}(y) - g_{0}(y)|$$

$$\leq \frac{1}{\pi} \left| \ln \left| \frac{x}{|y|} - \frac{y}{|y|} \right| \right| + C(\delta)|y|^{\beta}$$

$$\leq \frac{1}{\pi} \frac{|y|}{|x|} + C(\delta)|y|^{\beta},$$

where $g_x(y) \in C^{\beta}$ for some $\beta \in (0, 1)$. Then, for any $\varepsilon \in (0, \frac{\sigma}{2})$ and $|x| \ge \sigma$, we can write

$$\begin{aligned} &\lim_{\varepsilon \to 0} |\nu_{\varepsilon}(x)| \leq \lim_{\varepsilon \to 0} \left[\int_{B_{\delta|x|}} |G_{x}(y) - G_{0}(y)| f_{\varepsilon}(y) \mathrm{d}y + \int_{I \setminus B_{\delta|x|}} |G_{x}(y) - G_{0}(y)| f_{\varepsilon}(y) \mathrm{d}y + o_{\varepsilon}(1) \right] \\ &\leq \lim_{\varepsilon \to 0} \left[\left(\frac{\delta}{\pi} + \delta^{\beta} |x|^{\beta} \right) \|f_{\varepsilon}(y)\|_{L^{1}(B_{\delta|x|})} + \left(\frac{1}{\pi|x|} + C(\delta) \right) \|f_{\varepsilon}(y)\|_{L^{1}(I \setminus B_{\delta|x|})} \right] \\ &\leq \lim_{\varepsilon \to 0} \left[\frac{\delta}{\pi} + \delta^{\beta} |x|^{\beta} + \left(\frac{1}{\pi\sigma} + C(\delta) \right) \|f_{\varepsilon}(y)\|_{L^{1}(I \setminus B_{\delta|x|})} \right]. \end{aligned}$$

Since δ can be arbitrarily small, we derive that $\lim_{\varepsilon \to 0} \sup_{x \in K} |\nu_{\varepsilon}(x)| = 0$. Now, we will show that $\lim_{\varepsilon \to 0} \|\nu_{\varepsilon}(y)\|_{L^1(I)} = 0$. In fact, we just need to prove that $\lim_{\varepsilon \to 0} \lim_{\varepsilon \to 0} \|\nu_{\varepsilon}(y)\|_{L^1(B_{\delta})} = 0$ since we have deduced that $\lim_{\varepsilon \to 0} |\nu_{\varepsilon}(y)| = 0$ in $L^{\infty}_{loc}(I \setminus \{0\})$. By Green's representation formula, we have

$$\lim_{\delta \to 0\varepsilon \to 0} \lim_{B_{\delta}} |v_{\varepsilon}(x)| dx \le \lim_{\delta \to 0\varepsilon \to 0} \lim_{B_{\delta}} \int_{I} |G_{X}(y) - G_{0}(y)| f_{\varepsilon}(y) dy dx$$

$$= \lim_{\delta \to 0\varepsilon \to 0} \lim_{B_{\delta}} \int_{B_{\delta}} |G_{X}(y) - G(x)| dx dy$$

$$\le \lim_{\delta \to 0} C(\delta) = 0. \square$$

Since \tilde{u}_{ε} is the harmonic extension for u_{ε} , with the help of Lemma 3.4, we can obtain the asymptotic estimate \tilde{u}_{ε} in $\mathbb{R}^2_+\setminus\{(0,0)\}$.

Lemma 3.5. $c_{\varepsilon}\tilde{u}_{\varepsilon} \to \tilde{G}$ in $C^0_{loc}(\overline{\mathbb{R}}^2_+)\{(0,0)\}) \cap C^1_{loc}(\overline{\mathbb{R}}^2_+)$, where

$$\tilde{G}(x,y) = -\frac{1}{\pi} \ln|x^2 + y^2| + A + h(x,y), \quad h(0,0) = 0.$$
(3.8)

Proof. Denote $\tilde{v}_{\varepsilon} := c_{\varepsilon} \tilde{u}_{\varepsilon} - \tilde{G}$; obviously, \tilde{v}_{ε} is the harmonic extension for v_{ε} . Hence, for any $K \subset \overline{\mathbb{R}}^2 \setminus \{(0,0)\}$ and $\delta < \frac{dist(K,(0,0))}{2} := d$, we have

$$\sup_{(x,y)\in K} \tilde{v}_{\varepsilon}(x,y) \leq \frac{1}{\pi} \int_{-\delta}^{\delta} \frac{yv_{\varepsilon}(\xi)}{(x-\xi)^2 + y^2} d\xi + \frac{1}{\pi} \int_{I\setminus (-\delta,\delta)} \frac{yv_{\varepsilon}(\xi)}{(x-\xi)^2 + y^2} d\xi = I_1 + I_2.$$

For I_1 , applying $v_{\varepsilon} \to 0$ in $L^1(I)$ from Lemma 3.4, we obtain

$$\lim_{\varepsilon\to 0} |I_1| \leq \lim_{\varepsilon\to 0} \frac{1}{\pi} \int_{B_{\delta}} \frac{y|\nu_{\varepsilon}(\xi)|}{|(x-\xi)^2+y^2|} d\xi \leq \lim_{\varepsilon\to 0} \frac{4 \operatorname{diam}(K)}{\pi d^2} \int_{B_{\delta}} |\nu_{\varepsilon}(\xi)| d\xi = 0.$$

For I_2 , since $v_{\varepsilon} \to 0$ in $L_{\text{loc}}^{\infty}(\overline{I} \setminus \{0\})$, we derive that

$$\lim_{\varepsilon \to 0} |I_2| \leqslant \frac{1}{\pi} \lim_{\varepsilon \to 0} \|\nu_\varepsilon\|_{L^\infty(I \setminus (-\delta, \delta))} \int_{\mathbb{R}} \frac{y}{(x - \xi)^2 + y^2} d\xi = \lim_{\varepsilon \to 0} \|\nu_\varepsilon\|_{L^\infty(I \setminus (-\delta, \delta))} = 0.$$

Combining the estimates of I_1 and I_2 , we accomplish the proof of Lemma 3.5.

4 Upper-bound estimate for C_{π} when the concentration-compactness phenomenon arises

In this part, we try to eliminate the concentration-compactness phenomenon of u_{ε} . We will carry out the capacity estimates to derive an upper bound for inequality (1.8).

Lemma 4.1. *If* $c_{\varepsilon} \to \infty$, *there holds*

$$\sup_{u \in W_0^{\frac{1}{2},2}(I), \|u\|_{\frac{1}{2},\alpha}^2 \le 1} \int_I e^{\pi u^2} dx \le |I| + 2\pi e^{\pi A}.$$

Proof. Given a large enough L > 0 and a small enough $\delta > 0$, set

$$a_{arepsilon} \coloneqq \inf_{B_{L_{arepsilon}} \cap \mathbb{R}_{+}^2} \widetilde{u}_{arepsilon}, \quad b_{arepsilon} \coloneqq \sup_{\partial B_{arepsilon} \cap \mathbb{R}_{+}^2} \widetilde{u}_{arepsilon}, \quad v_{arepsilon} \coloneqq (\widetilde{u}_{arepsilon} \wedge a_{arepsilon}) \vee b_{arepsilon}.$$

Due to $\|\nabla \tilde{u}_{\varepsilon}\|_{2}^{2} - \alpha \|u_{\varepsilon}\|_{2}^{2} = 1$, we have

$$\int_{(B_{\delta}\setminus B_{Lr_{\varepsilon}})\cap \mathbb{R}_{+}^{2}} |\nabla \tilde{u}_{\varepsilon}|^{2} dx dy = 1 + \alpha \|u_{\varepsilon}\|_{2}^{2} - \left(\int_{\mathbb{R}_{+}^{2}\setminus B_{\delta}} + \int_{\mathbb{R}_{+}^{2}\cap B_{Lr_{\varepsilon}}} \right) |\nabla \tilde{u}_{\varepsilon}|^{2} dx dy.$$

$$(4.1)$$

The left-hand side is not less than

$$\inf_{\substack{\tilde{u}|_{\mathbb{R}^2_+\cap B_{L_\varepsilon}}=a_\varepsilon\\ \tilde{u}|_{\mathbb{R}^2_+\cap AB_\varepsilon}=b_\varepsilon}}\int_{(B_\delta\setminus B_{L_\varepsilon})\cap\mathbb{R}^2_+}|\nabla \tilde{u}|^2\mathrm{d}x\mathrm{d}y=\int_{(B_\delta\setminus B_{L_\varepsilon})\cap\mathbb{R}^2_+}|\nabla \tilde{\Phi}_\varepsilon|^2\mathrm{d}x\mathrm{d}y=\pi\frac{(a_\varepsilon-b_\varepsilon)^2}{\ln\delta-\ln(Lr_\varepsilon)},$$

where

$$\tilde{\Phi}_{\varepsilon} = \frac{b_{\varepsilon} - a_{\varepsilon}}{\ln \delta - \ln(Lr_{\varepsilon})} \frac{\ln|x^{2} + y^{2}|}{2} + \frac{a_{\varepsilon} \ln \delta - b_{\varepsilon} \ln(Lr_{\varepsilon})}{\ln \delta - \ln(Lr_{\varepsilon})}$$

is the solution to set of equations

$$\begin{cases} \Delta \tilde{\Phi}_{\varepsilon} = 0 & \text{in } \mathbb{R}_{+}^{2} \cap B_{\delta} \backslash B_{Lr_{\varepsilon}} \\ \tilde{\Phi}_{\varepsilon} = a_{\varepsilon} & \text{in } \mathbb{R}_{+}^{2} \cap B_{Lr_{\varepsilon}} \\ \tilde{\Phi}_{\varepsilon} = b_{\varepsilon} & \text{in } \mathbb{R}_{+}^{2} \cap \partial B_{\delta} \\ \frac{\partial \tilde{\Phi}_{\varepsilon}}{\partial y} = 0 & \text{in } \partial \mathbb{R}_{+}^{2} \cap \left(B_{\delta} \backslash B_{Lr_{\varepsilon}} \right). \end{cases}$$

From Proposition 2.2 in [29],

$$a_{\varepsilon} = c_{\varepsilon} + \frac{-\frac{1}{\pi} \ln L + O(L^{-1}) + o(1)}{c_{\varepsilon}}.$$

By Lemma 3.5 and the denotation of $\tilde{G}(x, y)$, we obtain

$$b_{\varepsilon} = \frac{-\frac{1}{\pi}\ln\delta + A + O(\delta) + o(1)}{c_c}.$$

Next, we start to calculate the right hand of equality (4.1); applying $\eta_{\varepsilon}(x) \to \eta_0(x) = \ln \frac{1}{1 + |x|^2}$, we have

$$\lim_{\varepsilon\to 0} c_{\varepsilon}^2 \int_{\mathbb{R}^2_{+}\cap B_{L_{\varepsilon}}} |\nabla \tilde{u}_{\varepsilon}|^2 dx dy = \frac{1}{\pi} \ln \frac{L}{2} + O\left(\frac{\ln L}{L}\right).$$

For the integral $\int_{\mathbb{R}^2_+ \setminus B_\delta} |\nabla \tilde{u}_\varepsilon|^2 dx dy$, we can write

$$\begin{split} & \liminf_{\varepsilon \to 0} \int\limits_{\mathbb{R}^{2}_{+} \setminus B_{\delta}} |\nabla \tilde{u}_{\varepsilon}|^{2} \mathrm{d}x \mathrm{d}y \geqslant \frac{1}{c_{\varepsilon}^{2}} \int\limits_{\mathbb{R}^{2}_{+} \setminus B_{\delta}} |\nabla \tilde{G}|^{2} \mathrm{d}x \mathrm{d}y \\ & = \frac{1}{c_{\varepsilon}^{2}} \left[\int\limits_{\mathbb{R}^{2}_{+} \setminus \partial B_{\delta}} -\frac{\partial \tilde{G}}{\partial n} \tilde{G} \mathrm{d}\sigma + \int\limits_{(\mathbb{R} \times 0) \setminus B_{\delta}} -\frac{\partial \tilde{G}(x,y)}{\partial y} \, \bigg|_{y=0} G(x) \mathrm{d}x \mathrm{d}y \right] \\ & = \frac{1}{c_{\varepsilon}^{2}} \left[\int\limits_{\mathbb{R}^{2}_{+} \setminus \partial B_{\delta}} \left(\frac{1}{\pi \delta} + O(1) \right) \left(-\frac{\ln \delta}{\pi} + A + O(\delta) \right) \mathrm{d}\sigma + \alpha \|G(x)\|_{2}^{2} \right] \\ & = -\frac{\ln \delta}{\pi} + A + O(\delta \ln \delta) + \frac{\alpha}{c_{\varepsilon}^{2}} \|G(x)\|_{2}^{2}. \end{split}$$

Gathering the aforementioned estimates, we conclude that

$$\pi\frac{(\alpha_{\varepsilon}-b_{\varepsilon})^2}{\ln\delta-\ln(Lr_{\varepsilon})} \leq 1+\alpha\|u_{\varepsilon}\|_2^2 - \frac{-\frac{\ln\delta}{\pi}+A+O(\delta\ln\delta)+\alpha\,\|G(x)\|_2^2+\frac{1}{\pi}\ln\frac{L}{2}+O\left(\frac{\ln L}{L}\right)}{c_{\varepsilon}^2}.$$

Taking the estimates of a_{ε} and b_{ε} into the last equality, we obtain

$$\begin{split} \pi(a_{\varepsilon} - b_{\varepsilon})^2 &= \pi c_{\varepsilon}^2 - 2 \ln L + O(L^{-1}) + 2 \ln \delta - 2\pi A + O(\delta) + o(1) + \frac{O(\ln^2 \delta + \ln^2 L)}{c_{\varepsilon}^2} \\ &\leq \left(\ln \frac{\delta}{L} + \ln \frac{c_{\varepsilon}^2}{\lambda_{\varepsilon}} + \ln(\pi - \varepsilon) + (\pi - \varepsilon) c_{\varepsilon}^2 \right) \times \left(1 - \frac{-\frac{\ln \delta}{\pi} + A + O(\delta \ln \delta) + \frac{1}{\pi} \ln \frac{L}{2} + O\left(\frac{\ln L}{L}\right)}{c_{\varepsilon}^2} \right) \\ &= \ln \delta - \ln L + \ln \frac{c_{\varepsilon}^2}{\lambda_{\varepsilon}} + \ln(\pi - \varepsilon) + (\pi - \varepsilon) c_{\varepsilon}^2 + (\pi - \varepsilon) \left(\frac{\ln \delta}{\pi} - A - \frac{1}{\pi} \ln \frac{L}{2} \right) \\ &+ O(\delta \ln \delta) + O\left(\frac{\ln L}{L}\right) + \frac{O(\ln^2 \delta) + O(\ln^2 L) + O(1)}{c_{\varepsilon}^2}, \end{split}$$

which implies that

$$\ln \frac{\lambda_{\varepsilon}}{c_{\varepsilon}^{2}} \leq \pi A + \ln 2\pi + O(\delta \ln \delta) + O\left(\frac{\ln L}{L}\right) + o_{\varepsilon}(1).$$

Then, letting $\varepsilon \to 0$ and $L \to \infty$, we obtain

$$\limsup_{\varepsilon\to 0}\ln\frac{\lambda_{\varepsilon}}{c_{\varepsilon}^{2}}\leqslant \pi A+\ln 2\pi,$$

together with Lemma 3.2 ends the proof of Lemma 4.1.

5 Existence of the extremals

In this section, we construct a test function whose energy can exceed the upper bound $|I| + 2\pi e^{\pi A}$ to show the existence of extremals for the fractional Trudinger-Moser inequality of Tintarev type (1.8).

Lemma 5.1. There exists a sequence of function $\phi_{\varepsilon} \in W_0^{\frac{1}{2},2}(I)$ with $\|\phi_{\varepsilon}\|_{\frac{1}{2},\alpha}^2 \leq 1$ such that

$$\int_{I} e^{\pi \phi_{\varepsilon}^{2}} dx > |I| + 2\pi e^{\pi A}, \tag{5.1}$$

when ε is small enough.

Proof. Define

$$\Gamma_{L\varepsilon} := \left\{ (x,y) \in \mathbb{R}^2_+ : \tilde{G}(x,y) = \gamma_{L\varepsilon} := \min_{\mathbb{R}^2_+ \cap \partial B_{L\varepsilon}} \tilde{G} \right\},\,$$

and $I_{L\varepsilon}:=\{(x,y)\in\mathbb{R}^2_+: \tilde{G}(x,y)>\gamma_{L\varepsilon}\}$. The accurate formula of \tilde{G} gives

$$\gamma_{L\varepsilon} = -\frac{\ln L\varepsilon}{\pi} + A + O(L\varepsilon). \tag{5.2}$$

Let

$$\Psi_{\varepsilon}(x,y) = \begin{cases}
c - \frac{\ln\left(\left(1 + \frac{y}{\varepsilon}\right)^{2} + \frac{x^{2}}{\varepsilon^{2}}\right) + B}{2\pi c}, & (x,y) \in \mathbb{R}_{+}^{2} \cap B_{L\varepsilon}(0, -\varepsilon) \\
\frac{y_{L\varepsilon}}{c}, & (x,y) \in I_{L\varepsilon} \setminus B_{L\varepsilon}(0, -\varepsilon) \\
\frac{\tilde{G}(x,y)}{c}, & (x,y) \in \mathbb{R}_{+}^{2} \setminus I_{L\varepsilon},
\end{cases}$$

where c, B, and L depend only on ε and will be determined later. The choice of B is to make sure the continuity on $\mathbb{R}^2_+ \cap \partial B_{I\varepsilon}(0, -\varepsilon)$, so

$$c-\frac{\ln L^2+B}{2\pi c}=\frac{\gamma_{L\varepsilon}}{c}.$$

In view of (5.2), one can deduce that

$$B = 2\pi c^2 + 2\ln\varepsilon - 2\pi A + O(L\varepsilon). \tag{5.3}$$

Choosing suitable constant c such that $\left\|\nabla \Psi_{\varepsilon}\right\|_{2}^{2} - \alpha \|\phi_{\varepsilon}\|_{2}^{2} = 1$, where $\phi_{\varepsilon}(x) := \Psi_{\varepsilon}(x, 0)$. Direct calculation leads to

$$\int_{\mathbb{R}_{+}^{2}\cap B_{L\varepsilon(0,-\varepsilon)}} |\nabla \Psi_{\varepsilon}|^{2} dx dy = \frac{1}{(2\pi c)^{2}} \int_{\mathbb{R}_{+}^{2}\cap B_{L\varepsilon(0,-\varepsilon)}} \left| \nabla \ln\left(\left(1 + \frac{y}{\varepsilon}\right)^{2} + \frac{x^{2}}{\varepsilon^{2}}\right) \right|^{2} dx dy$$

$$= \frac{1}{(2\pi c)^{2}} \int_{\mathbb{R}_{+}^{2}\cap B_{L(0,-1)}} |\nabla \ln((1 + y)^{2} + x^{2})|^{2} dx dy$$

$$= \frac{1}{c^{2}} \left[\frac{1}{\pi} \ln \frac{L}{2} + O\left(\frac{\ln L}{L}\right) \right],$$

$$\int_{\mathbb{R}_{+}^{2}\cap I_{L\varepsilon}} |\nabla \Psi_{\varepsilon}|^{2} dx dy = \frac{1}{c^{2}} \int_{\mathbb{R}_{+}^{2}\cap I_{L\varepsilon}} |\nabla \tilde{G}|^{2} dx dy$$

$$= \frac{1}{c^{2}} \int_{\mathbb{R}_{+}^{2}\cap \partial I_{L\varepsilon}} \frac{\partial \tilde{G}}{\partial n} \tilde{G} d\sigma + \frac{1}{c^{2}} \int_{(\mathbb{R}\times\{0\})\setminus \bar{I}_{L\varepsilon}} -\frac{\partial \tilde{G}(x,y)}{\partial y} \Big|_{y=0} G(x) dx$$

$$= \frac{1}{c^{2}} \left[-\frac{\ln L\varepsilon}{\pi} + A + O(L\varepsilon \ln L\varepsilon) + \alpha \|G(x)\|_{2}^{2} \right]$$

and

$$\begin{split} \int_{I} |\phi_{\varepsilon}|^{2} \mathrm{d}x &= \int_{B_{\varepsilon \sqrt{L^{2}-1}}} \left| c - \frac{\ln\left(1 + \frac{x^{2}}{\varepsilon^{2}}\right) + B}{2\pi c} \right|^{2} \mathrm{d}x + \int_{I \setminus B_{\varepsilon \sqrt{L^{2}-1}}} \frac{G^{2}}{c^{2}} \mathrm{d}x \\ &= \int_{B_{\varepsilon \sqrt{L^{2}-1}}} \left| c - \frac{\ln\left(1 + \frac{x^{2}}{\varepsilon^{2}}\right) + 2\pi c^{2} + 2\ln\varepsilon - 2\pi A + O(L\varepsilon)}{2\pi c} \right|^{2} \mathrm{d}x + \int_{I \setminus B_{\varepsilon \sqrt{L^{2}-1}}} \frac{G^{2}}{c^{2}} \mathrm{d}x \\ &= \int_{B_{\varepsilon \sqrt{L^{2}-1}}} \left| \frac{2\pi G + O(L\varepsilon \ln L\varepsilon)}{2\pi c} \right|^{2} \mathrm{d}x + \int_{I \setminus B_{\varepsilon \sqrt{L^{2}-1}}} \frac{G^{2}}{c^{2}} \mathrm{d}x \\ &= \frac{1}{C^{2}} \left[\int_{I} G^{2} \mathrm{d}x + O(L\varepsilon \ln L\varepsilon) \right]. \end{split}$$

Then, it holds

$$-\ln 2\varepsilon + \pi A + O(L\varepsilon \ln L\varepsilon) + O\left(\frac{\ln L}{L}\right) = \pi c^2$$
 (5.4)

and $c \to +\infty$ as $\varepsilon \to 0$. Combining this with (5.3), we derive that

$$B = -2\ln 2 + O(L\varepsilon \ln L\varepsilon) + O\left(\frac{\ln L}{L}\right). \tag{5.5}$$

Using the definition of ϕ_{ε} , together with (5.4) and (5.5), yields that

$$\int_{B_{\varepsilon}\sqrt{L^2-1}} e^{\pi\phi_{\varepsilon}^2} dx = \varepsilon \int_{B\sqrt{L^2-1}} \exp\left(\pi(c - \frac{\ln(1+x^2) + B}{2\pi c})^2\right) dx$$

$$> \varepsilon \int_{B\sqrt{L^2-1}} e^{\pi c^2 - B} \cdot \frac{1}{1+x^2} dx$$

$$= 2e^{\pi A + O(L\varepsilon \ln L\varepsilon) + O\left(\frac{\ln L}{L}\right)} \pi(1 + O(L^{-1}))$$

$$= 2\pi e^{\pi A} + O(L\varepsilon \ln L\varepsilon) + O\left(\frac{\ln L}{L}\right)$$

and

$$\begin{split} \int\limits_{I\backslash B_{\varepsilon \sqrt{L^2-1}}} e^{\pi\phi_{\varepsilon}^2} \mathrm{d}x & \geq \int\limits_{I\backslash B_{\varepsilon \sqrt{L^2-1}}} (1+\pi\phi_{\varepsilon}^2) \mathrm{d}x \\ & = |I\backslash B_{\varepsilon \sqrt{L^2-1}}| + \frac{1}{c^2} \int\limits_{I\backslash B_{\varepsilon \sqrt{L^2-1}}} \pi G^2 \mathrm{d}x \\ & > |I| - 2\varepsilon L + \frac{1}{c^2} \int\limits_{I\backslash B_{\varepsilon \sqrt{L^2-1}}} \pi G^2 \mathrm{d}x \\ & = :|I| - 2\varepsilon L + \frac{\nu_{L\varepsilon}}{c^2}, \end{split}$$

with $v_{L\varepsilon} > v_{\frac{1}{2}} > 0$ for $L\varepsilon < \frac{1}{2}$. We can see that $\pi c^2 = -\ln \varepsilon + O(1)$ by equality (5.4), and when we choose $L = \ln^2 \varepsilon$,

$$O(L\varepsilon \ln L\varepsilon) + O\left(\frac{\ln L}{L}\right) - 2\varepsilon L = O\left(\frac{\ln \ln \varepsilon}{\ln^2 \varepsilon}\right) = o\left(\frac{1}{c^2}\right),$$

which can conclude that

$$\int_{I} e^{\pi \phi_{\varepsilon}^{2}} dx > |I| + 2\pi e^{\pi A} + \frac{v_{\frac{1}{2}}}{c^{2}} + o\left(\frac{1}{c^{2}}\right) > |I| + 2\pi e^{\pi A}.$$

Dirichlet energy principle gives $\|\nabla \tilde{\phi}_s\|_2^2 \leq \|\nabla \Psi_s\|_2^2$, that is to say,

$$\|\phi_{\varepsilon}\|_{\frac{1}{2},\alpha}^2 \leq \|\nabla \Psi_{\varepsilon}\|_2^2 - \alpha \|\phi_{\varepsilon}\|_2^2 = 1.$$

Hence, the proof of Lemma 5.1 is accomplished when ε is small enough.

Funding information: Lu Chen was partly supported by the National Natural Science Foundation of China (No. 12271027) and a grant from Beijing Institute of Technology (No. 2022CX01002). Maochun Zhu was supported by Natural Science Foundation of China (No. 12071185).

Conflict of interest: The authors state that there is no conflict of interest.

References

- [1] D. R. Adams, A sharp inequality of J. Moser for higher-order derivatives, Ann. Math. 128 (1988), 385-398.
- [2] Adimurthi and O. Druet, *Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality*, Comm. Partial Differential Equations **29** (2004), 295–322.
- [3] L. Carleson and A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. 110 (1986), 113–127.

- R. Černý, A. Cianchi, and S. Hencl, Concentration-compactness principles for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. 192 (2013), 225-243.
- L. Chen, G. Lu, and M. Zhu, Sharpened Trudinger-Moser inequalities on the Euclidean space and Heisenberg group, J. Geom. Anal. 31 (2021), no. 12, 12155-12181.
- [6] W. Cohn and G. Lu, Best constants for Moser-Trudinger inequalities on the Heisenberg group, Indiana Univ. Math. J. 50 (2001), 1567-1591.
- [7] W. Cohn and G. Lu, Sharp constants for Moser-Trudinger inequalities on spheres in complex space \mathbb{C}^n , Comm. Pure Appl. Math. 57 (2004), 1458-1493.
- [8] J. M. do Ó and M. de Souza, A sharp inequality of Trudinger-Moser-type and extremal functions in $H^{1,n}(\mathbb{R}^n)$, J. Differ. Equ. 258 (2015), 4062-4101.
- [9] M. Flucher, Extremal functions for Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv. 67 (1992), 471-497.
- [10] L. Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv. 68 (1993),
- [11] K. Lin, Extremal functions for Mosers inequality, Trans. Amer. Math. Soc. 348 (1996), 2663–2671.
- [12] Y. Li, Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equations 14 (2001), 163-192.
- [13] Y. Li, Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A 48 (2005), 618-648.
- [14] Y. Li and B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in \mathbb{R}^n , Indiana Univ. Math. J. 57 (2008), 451-480.
- [15] D. Li and M. Zhu, Concentration-compactness principle associated with Adams' inequality in Lorentz-Sobolev space, Adv. Nonlinear Stud. 22 (2022), no. 1, 711-724.
- [16] J. Li, G. Lu, and Q. Yang, Fourier analysis and optimal Hardy-Adams inequalities on hyperbolic spaces of any even dimension, Adv. Math. 333 (2018), 350-385.
- [17] J. Li, G. Lu, and M. Zhu, Concentration-compactness principle for Trudinger-Moser inequalities on Heisenberg groups and existence of ground state solutions, Calc. Var. 57 (2018), no. 3, 1-26.
- [18] J. Li, G. Lu, and M. Zhu, Concentration-compactness principle for Trudinger-Moser's inequalities on Riemannian manifolds and Heisenberg groups: a completely symmetrization-free argument, Adv. Nonlinear Stud. 21 (2021), no. 4, 917-937.
- [19] P. L. Lions, The concentration-compactness principle in the calculus of variation. The limit case. II, Rev. Mat. Iberoam. 1 (1985), 145-201.
- [20] G. Lu and Y. Yang, Adams' inequalities for bi-Laplacian and extremal functions in dimension four, Adv. Math. 220 (2009), no. 4, 1135-1170.
- [21] G. Lu and Q. Yang, A sharp Trudinger-Moser inequality on any bounded and convex planar domain, Calc. Var. Partial Differential Equations. 55 (2016), no. 153, 1-16.
- [22] N. Lam and G. Lu, Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications, Adv. Math. 231 (2012), 3259-3287.
- [23] N. Lam and G. Lu, A new approach to sharp Moser-Trudinger and Adams type inequalities: a rearrangement-free argument, J. Differ. Equ. 255 (2013), no. 3, 298-325.
- [24] X. Liang, G. Lu, X. Wang, and Q. Yang, Sharp Hardy-Trudinger-Moser inequalities in any N-dimensional hyperbolic spaces. Nonlinear Analysis 199 (2020), 112031.
- [25] G. Lu and M. Zhu, A sharp Trudinger-Moser-type inequality involving L^n norm in the entire space \mathbb{R}^n , J. Differ. Equ. 267 (2019), 3046-3082.
- [26] S. Iula, A. Maalaoui, and L. Martinazzi, A fractional Moser-Trudinger type inequality in one dimension and its critical points, Differ. Integr. Equ. 29 (2016), 455-492.
- [27] X. Ma, X. Wang, and Q. Yang, Hardy-Adams inequalities on $H^2 \times R^{n-2}$, Adv. Nonlinear Stud. 21 (2021), no. 2, 327–345.
- [28] L. Martinazzi, Fractional Adams-Moser-Trudinger type inequalities, Nonlinear Anal. 127 (2015), 263-278.
- [29] G. Mancini and L. Martinazzi, Extremals for fractional Moser-Trudinger inequalities in dimension 1 via harmonic extensions and commutator estimates, Adv. Nonlinear Stud. 20 (2019), 599-632.
- [30] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970), 1077-1092.
- [31] B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in R², J. Funct. Anal. 219 (2005), 340-367.
- [32] C. Tintarev, Trudinger-Moser inequality with remainder terms, J. Funct. Anal. 266 (2014), 55-66.
- [33] N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
- [34] G. Wang and D. Ye, A Hardy-Moser-Trudinger inequality, Adv. Math. 230 (2012), no. 1, 294-320.
- [35] Y. Yang, A sharp form of Moser-Trudinger inequality in high dimension, J. Funct. Anal. 239 (2006), 100-126.
- [36] Y. Yang, Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two, J. Differ. Equ. 258 (2015), 3161-3193.
- [37] C. Zhang and L. Chen, Concentration-compactness principle of singular Trudinger-Moser inequalities in Rn and n-Laplace equations, Adv. Nonlinear Stud. 18 (2018), no. 3, 567-585.
- [38] J. Zhu, Improved Moser-Trudinger inequality involving Lp norm in n dimensions, Adv. Nonlinear Stud. 14 (2014), 273–293.