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Abstract: Let I be a bounded interval of R and A;(I) denote the first eigenvalue of the nonlocal operator
(~A)« with the Dirichlet boundary. We prove that for any 0 < a < A(I), there holds

2
sup je”“ dx < +o0,
15 1
ueWg" (), I(-Dysul3-alulz<1 |

and the supremum can be attained. The method is based on concentration-compactness principle for
fractional Trudinger-Moser inequality, blow-up analysis for fractional elliptic equation with the critical
exponential growth and harmonic extensions.
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1 Introduction

Let Q be a bounded domain in R"; it is well known that the analogue of optimal Sobolev embedding for
W}™(Q) (the Sobolev space consisting of functions vanishing on the boundary dQ) can be given by the
famous Trudinger-Moser inequality [30,33], which can be stated in the following form:

1

sup I exp(ajul=-1)dx < +co, iff a < a, = nwl, (1.1)
ueWE™Q), Ivult<1 5

where w,_; is the area of unit sphere in R". So far, Trudinger-Moser inequalities have also been generalized
in many other directions such as the Trudinger-Moser inequalities on the unbounded domain, C-R spheres,
compact Riemannian manifolds, Heisenberg group, and Trudinger-Moser inequalities in higher-order
Sobolev spaces. We refer the interested readers to [1,6,7,10,14,17,23,31] and references therein.

In 1985, Lions [19] established the following concentration-compactness principle associated with
inequality (1.1).

Theorem A. For any u, € Wy™(Q) with ||Vuk|l, <1 and ux — uo # 0 in W™(Q), then there exists some p > 1
such that exp (an |uk|ﬁ) is bounded in LP(Q).
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This conclusion gives more precise information and is stronger than Trudinger-Moser inequality (1.1)
when the function sequence uy — ug # 0. Later, the authors of [4] developed a new approach to obtain and
sharpen Theorem A. The result in [4] reads as follows:

Theorem B. For any u, € W3(Q) with ||Vug|l, < 1, and ux — uo # 0 in Wy™(Q), then
sup I exp (cxnp|uk|ﬁ>dx < 00, 1.2)
0
1

-1l Vuo [t
{w} ¢ WE™(Q) with ||Vug||, = 1 such that the supreme of (1.2) is infinite.

if p<pn= . Moreover, p, is sharp in the sense that for p > py, there exists a sequence

Note that the proofs for the concentration-compactness principle in [4,19] depend on the Polya-Szego
inequality in the Euclidean space, which is no longer available in the higher-order case or other settings,
such as Riemannian manifolds or the Heisenberg groups. In a recent work [17], the authors obtained the
concentration-compactness principle on the Heisenberg groups through a rearrangement-free argument by
considering the level sets of the functions under consideration. We remark that this argument is inspired by
the works [22,23] and can avoid using any rearrangement inequality (see also [27]). For other related work
on the concentration-compactness principle associated with Trudinger-Moser-type inequalities, one can
refer to [15,18,37] and references therein.

Inspired by the concentration-compactness principle for Trudinger-Moser inequality, Adimurthi and
Druet [2] obtained an improved Trudinger-Moser inequality involving the L? norm on bounded domains of
R? by the method of blow-up analysis.

Theorem C. For any 0 < a < 4(Q), there holds

sup Ie“””z(“a""”%)dx < +00, (1.3)
ueW3(Q), | Vull <1 Q |

where

|, Ivupdx
AQ) = inf L — (1.4)
ueWh(Q) J w2dx
o
denotes the first eigenvalue of the Laplacian operator with the Dirichlet boundary. Furthermore, if a > A, the
supremum is infinite.

This result was further extended to higher-order case or unbounded domains as well in [5,8,20,25,35,38,38].
We remark that in the work of [5], the authors can extend to (1.3) to the entire Euclidean space and the Heisenberg
group by a simple scaling approach, which can avoid applying the complicated blow-up analysis often used in
the literature to deal with such sharpened inequalities.

Recently, Wang and Ye [34] proved the following Trudinger-Moser inequality involved in the
Hardy term:

2
sup Je“”“ dx < oo,

J' |Vu|2dx-j T
B B (1-|xP)? B

where B denotes the unit ball in R2. In a recent article [21], Lu and Yang gave a rearrangement-free
argument of (1.5) and confirmed that the conjecture for the Hardy-Trudinger-Moser inequality given in
[34] indeed holds for any bounded and convex domain in R? via the Riemann mapping theorem. We state
the result as follows:

(1.5)
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Theorem D. Let Q be a proper and convex bounded domain in R? and u € C§°(Q) be such that

) 1 u?
[VuPdx - = | ———dx <1,
4 J d(x, 0Q)?
Q Q
where d(x, 0Q) = min{|x — x'| : X' € 9Q}. Then, there exists a constant C, which is independent of u such that
Ie4Wzdx <C.

Q

A higher-dimensional version of Theorem D has been recently established by Liang et al. in [24]. Hardy-
Adams-type inequality on hyperbolic balls has also been established in [16] (see also references therein).

In the recent work [32], Tintarev modified the Hardy-type Trudinger-Moser inequality (1.5) and proved

sup Ie‘“’“zdx < 00

(1.6)
L |Vu2dx- J;l V(u2dx<1 0

for some class of V(x) > 0, including the case of (1.5). In particular, when V(x) = @ with 0 < a < A1, then
one has

2
sup e ™ dx < +oo.

(1.7)
L |VuPdx-a L Jul?dx<1 Q

We remark that (1.7) is stronger than (1.3).

In this note, we are concerned with the Trudinger-Moser inequality on the line R. In order to state the
related results, we first introduce the concept of fractional Laplacian and the related fractional Sobolev
space. For any s € (0, 1) and ¢ € S(R") (the Schwarz space), the fractional Laplacian (-A)%¢ is given by:

(-Byp(x) = FH1§ PFpEN),

where ¥ and F! denote the Fourier transform and inverse Fourier transform, respectively. Let us consider
the space:

- 1 . |ul
Ls(Rn) =1qU € LlOC(Rn) . J‘de < +00 .,
R"

fractional operator (—A)’ can be defined on u € Ly(R"™ n S'(R") through
(@, (=B)°u) = ((-D)°p, u).
We also define the fractional Sobolev space WSP(R™) and W5P(Q)(s € (0, +c0) and p € [1, +00)) by
WSP(R™) = {u € LP(R") : (~A)Su € LP([R")},
WSP(Q) = {u € WSP(R™) : u = 0 on R"\Q}.

Iula et al. [26] established the following fractional Trudinger-Moser inequality on some interval of line.

Theorem E. For any I ¢ c R, when a < m, it holds that

, sup J(e"‘“z - l)dx < +00.

2?2 2
we W, luliy, <1 T

This result was further extended to the general fractional Sobolev space W§P(Q) with sp = n by
Martinazzi in [28].
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Based on the aforementioned results, a natural problem arises. Whether the fractional analogue for
Trudinger-Moser inequality of Tintarev type (1.7) on R still holds. In this article, we deal with this problem.
Our main result states the following.

Theorem 1.1. Let I be a bounded interval of R and A(I) be the first eigenvalue of (-A)+ with Dirichlet
boundary. For any 0 < a < A(I), there holds

2
sup e™dx < +oo,

1
weW2 (M, lulp <1
0 s 1,5 1
L

(1.8)

2
1
where [ulf, = || (-&%u || - a flulp.

As the application of Theorem 1.1, one can easily obtain fractional Trudinger-Moser inequality invol-
ving the L? norm. Indeed, denote v = (1 + allulliz)%u; direct computation gives

I-D)ivIZ, - alvis < (1 + a lulR)(1 - a [jul,) < 1.
This together with the fractional Trudinger-Moser inequality (1.8) implies

Corollary 1.2. For any 0 < a < A(I), there holds

sup e’ (+aluldy < +o0.
1
uewg ), H (-AYiu

2
<17
2

Once we establish the fractional Trudinger-Moser inequality (1.8), it remains to ask whether or not there
exist extremals for this inequality. The earlier study of extremals for Trudinger-Moser inequality can date
back to Carleson and Chang’s work in [3]. They used the rearrangement and ODE technique to obtain the
existence of extremals for classical Trudinger-Moser inequality in a unit ball of R". Later, their results were
also extended by Flucher [9] to bounded domain in R? and by Lin [11] to bounded domain in R", respec-
tively. Existence of extremals for Trudinger-Moser inequality on compact manifold has also been estab-
lished by Li in [12,13]. There are also some existence results of extremals for Trudinger-Moser inequality of
Tintarev type (see [36]).

Recently, Mancini and Martinazzi [29] established the existence result for the fractional Trudinger-
Moser inequality on an interval in R by the harmonic extensions and commutator estimates. In this article,
we will also show that fractional Trudinger-Moser inequality (1.8) of Tintarev type also has extremals. This
result reads as:

Theorem 1.3. Under the assumption of Theorem 1.1, (1.8) can be attained by some function
u € W) n CY(D), with [luolR , = 1.
5

Remark 1.4. The proof of Theorem 1.1 will be included in the proof of Theorem 1.3.

It is easily observed that the existence of extremals for fractional Trudinger-Moser inequality of Tintarev
type on a bounded interval is equivalent to that in a symmetrical interval. For simplicity, in this context, we
may assume [ := (-1, 1).

This article is organized as follows. In Section 2, we study the existence of extremals for subcritical
fractional Trudinger-Moser inequality of Tintarev type and give the maximizing sequences for (1.8). In
Section 3, we analyze the asymptotic behavior of the maximizing sequences near and away from blow-
up point when the blow-up phenomenon arises. In Section 4, we derive the Carleson-Chang-type upper
bound for (1.8) through capacity estimates. Finally, in Section 5, we prove the existence of extremals for
fractional Trudinger-Moser inequality of Tintarev type by constructing an appropriate test function
sequence such that the upper bound can be surpassed.
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2 Subcritical fractional Trudinger-Moser inequality of Tintarev
type and the maximizing sequences
In this section, we establish the existence of extremals for subcritical fractional Trudinger-Moser inequality

of Tintarev type and give the maximizing sequences for critical fractional Trudinger-Moser inequality of
Tintarev type (1.8).

Denote
= sup  Je™dx @1
uewg’ (1),||U||2%10‘<1 I
We will show that there exists u, € Wé’z(f ) such that
.= [eroriax. (2.2)

I

For this purpose, we need the following Lions’ type concentration-compactness principle.
1 1
Lemma 2.1. Let u, € Wg’z(I), with ||ugll1,« = 1andu, — uo # 0in Wg’z(I). Then, for any p < ﬁ, it holds
- 1
24

. 2
llrsnjz)lp e™¥:dx < +oo. 2.3)

Proof. By the compactness of the Sobolev embedding theorem, we obtain ||ug|5 — |luo|l} when & — 0. Since
u # 0 and ||u| » = 1, we can easily calculate that
L

2
lim H (—A)%(ug - uo)” =1-ulf <1
-0 2 5’“

On the other hand, a direct computation gives that for any p, there holds
r s
Ie"p“szdx < '[enp(1+6)(u5—u0)2+np(l+%)uédx < Iew(l+6)(us—u0)2.rdx . J‘eﬂp(“%)“g'sdx
I I I I

1

Tiu we can choose 6 close to 0 and r close to 1
"Ml
L

Where6>0,r>1,s>1with%+§=l.Foranyp<

such that the last term in the aforementioned inequality can be controlled by:

r
s
— 2 1
f exp|m (u‘i Uo) > [dx . J‘e"p(uﬁ)“g‘sdx ,
f | cort - uo) !
2
which is finite as a direct consequence of fractional Trudinger-Moser inequality.
Obviously, inequality (2.3) is obtained. O

Lemma 2.2. C, could be achieved by some function u, € Wé’z(l ).

12 o . .
Proof. Let y; € W3'"(I) be a maximizing sequence for C, i.e., [|yjll1, = 1 and

lim | o' dx = Ce.
j—oo
, I
1
Since 0 < a < A(I) and -[1‘ (—A)%u,- dx — aL|u}-|2dx = 1, we obtain that {y;} is bounded in Wg’z(I ). Therefore,

we obtain
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1
. =,2
w—u, in Wg (1),
u — u, in L),
U — U, a.e.in I.

If u, = 0, then lim;_.[(-A)iu;|3 = 1. By fractional Trudinger-Moser inequality, for some p > 1, e g
bounded in LP(I). If u; # 0, in view of Lemma 2.1, we can also deduce that e is bounded in LP(I) for
some p > 1. It follows from Vitali convergence theorem that e™&% — e™-e% in [\(I). This strong conver-
gence combines with the monotonicity of e=€)* about ¢, which implies that

sup je(”‘€>“2dx = Ie(”‘f)ﬂfdx > Ie(”‘e)“gdx,
1
uewg ', Iulf <17 I 1
5

Ue

where i, = el

= 1and [|dll1,« = 1; then, the proof is accomplished. O

1
1

Using Lemma 2.1, we can see that subcritical Trudinger-Moser inequality (2.1) could be achieved by u,.
Obviously, u, satisfies the following Euler-Lagrange equation:

Ao = J-ugze(”*g)”szdx,
I

) H(_A)%us

2
- alueli =1, (2.4)

1 .
—u e = (~A)ru, — au, in I.
&

Furthermore, we also have

Lemma 2.3. It holds

lim C, = su je”“zdx.
e—0 € 1, p (2.5)
weWg (D, Iulf =17
L
Proof. It is obvious that
lim C; < sup e™dx.
-0 1,5
ueWg M, lulf =17
1
1
For any u € Wg’z(I ), with [[ull; o =1, according to Fatou’s lemma, we obtain
fe““zdx < liminf [ e™o¥dx < liminf C,.
-0 -0
I I
This implies that
sup IeWzdx < liminf C,.
1 —
weWg Ml =17 0
5
Consequently, we obtain (2.5). O

Now, we are in position to pick up u. as the maximizing sequences for Trudinger-Moser inequality (1.8).
Assuming u, € C®() n C 0.5(I), which is monotonically decreasing about the origin. Since u, is bounded in

Wé ’2(1 ), Banach-Alaoglu theorem and fractional compact Sobolev embedding theorem directly give that
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15
U, —u in Wg ()
u, — u in L*(I)
U. — u a.e.in I.

Let
¢ = U (0) = max ug.
1

If ¢, is bounded, then e(™9% is also bounded, which implies that e % converges to e in L(I). Hence,
for any v ¢ Wg’z(I) N CY(I) with ||Vl 4 <1, we have

-0

lim | e-emidx = Ie”'“'zdx.
1 1

This combines with Lemma 2.1; we can deduce that u is the desired extremal function.

If ¢, is unbounded, without loss of generality, we claim that the weak limit of u, is equal to zero. In fact,
ifug # 0, by concentration-compactness principle Lemma 2.1, we know that e™: is bounded in LP(I) for any
p < m This together with elliptic estimates gives that u, is bounded in I, which contradicts ¢, — oo.

Lo

1 2
We also further claim |(—A)Zus dx — ¢ in the sense of measure. Otherwise, we can find some rp > O,

B,,(0) c I, and a cut-off function ¢ € C§°(B,,(0)), withO < ¢ <1,and ¢ =1 on Brg(O). We have

2
limsup ‘(—A)%((pug) dx < 1.

-0
B,(0)

By fractional Trudinger-Moser inequality, e™€)@%)’ is bounded in LP(I) for some p > 1. Applying elliptic
estimates, we obtain that u, is uniformly bounded on B%o (0), which is a contradiction.

3 Asymptotic behavior of the maximizing sequences u,

In this section, we will study asymptotic behavior of the maximizing sequences u, near and far away from
the blow-up point.
Set

Ae

o= —— 5 .
(m - £)cle™o)x:

Definel, = {x € R : rx € I}and n,(x) = 2(m — €)c:(Ue(rex) — c¢). If r, — 0, similar to the proof of Theorem 1.3
in [29], we obtain 17,(x) — ny(x) = In—'— and

1+ | x |

1
I Moy = j e (3.1)
R

R

This describes the asymptotic behavior of u. around origin. Now, we start to analyze the asymptotic
behavior of u, away from the blow-up point 0. For this purpose, we need the following lemma.

Lemma 3.1. For any A > 1, there holds

limsup|l(-A)sul |3 <
-0

, B2

|-

where u? = min{ug, %}
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Proof. As mentioned earlier, we have

L+ uel = || (-0

2
= || VL[5
2

and

I(-A)aul? = Iue( ~A)ugdx = I ( £ o= 4 gy )dx

I

Set u/ = mln{ug, } where i, is the harmonic extension of u, to R% =R x (0, +00) given by the
Poisson integral:

yu($)
ux,y) = J‘md& y > 0.

Obviously, i1/ is a general extension of u?* on R?; by Dirichlet energy principle, we have

H (= A)“us

s I |V A2 dxdy.
[RZ

+

Using integration by parts and the harmonicity of ii,, we obtain

I|Vﬂf|2dxdy = IVﬁg“Vﬁgdxdy = —qu(x)@dx = Jug“(—A)%ugdx
y
+ R,

Denote

as € — 0, we have
lim | vA(-A)2u.dx = lim e(" O 4 qu )dx
-0 -0

Rr,
> lim lim (1 - %) uece e dx + lim | awg - vAdx

R—>00€—>0 S -0

—Rrg R
= lim lim|1 - l) “gcg re(m-ene)dx
R—00e—0 A

R
1 (-eul(re)
= lim lim(1 - —) I Use — —dx
R—00e—0 A (m - &)y e”cs

-R

>

A

where we use the fact: u, — 0 in L2() in the last equality.
Since |[ugl1,« = 1, we obtain that

-0
R

lim (vg“‘(—A)%u‘E + uA(- —Ayu,)dx = 11m Iug( Asugdx =1+ 11ma||ug||2 =1.

Combining the aforementioned estimates, we deduce that

1
Iu;*(—A)%ugdx 33
R

Then, we conclude (3.2). O
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Lemma 3.2. We have

lim | e™-oudx = limsupA—g + . (3.3)
-0 -0 Cg :
I
Moreover,
C
lim=£ = 0.
-0 Ag (34)
Proof. We split
Ie("*f)“sz dx = e dx + e dy = L+ L.
Im{ugs%} In{up%}

As the consequence of Lemma 3.1, we have (1 — £)||Vu2|[3 <  as € — 0. This together with fractional
Trudinger-Moser inequality, for some p > 1, we can deduce that

A
u)? )dst

A2
IVail3

jexp((n ~ e)IVulB-p

I

With the help of Vitali convergence theorem, we obtain

. 2
lim = j emiddx = |I]. (3.5)
I

A similar calculation together with Lemma 3.1 leads to

A? u? 2 A?
lim b < lim A, J Y iy = lim A,
e—0 2 e—0 gng /15 e—0 ch (3.6)

c
In{ung}

Let A approach to 1 from the aforementioned equation, we have that

limL < lim A—;,

£—0 -0 CE
together with the estimate of I, yields that lim,g_>()fje(”‘£)“z2 dx < |I] + limgﬁog. To finish the proof of Lemma
3.2, it remains to prove that: ‘

lim | eC-emidx > limsupA—§ + 1.

e-0 -0 Cg
I

Indeed, this is a consequence of the following calculation as € — 0 and L — oo,

lim lim | e™®%dx = lim lim I ey + I em-ouE dx

L—ooe—0 L—oc0e—0
I By, I\By,

> lim lim I em-enidx + | \Bi..|

L—ocoe—0

BL e

. A
= lim lim = + |I].
L—oc0e—0 Ce

Therefore, we conclude that
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. Ag
lim | e dx = limsup—= + |1|,
£e—0 f £—0 Cg

together with lim,_,oC, > |I|, obtain hmgﬂo = 0. Then, we finish the proof of Lemma 3.2.

Lemma 3.3. Set f, = & uge(” W then for any ¢ € C(I),

lim f fopdx = (0).
-0 '

Proof. Divide

I= [{u£ > —}\( Rr,, Rrg)] U (-Rr, Rry))u { %}

Using the change of variables, we have

Rr,
2
lim lim | Yeowdx = lim lim e(f )y en-enderdy

R—00e—0 e R—00e—0
—Rr, -R

R
2
= lim lim 1 IME(”’E)[“E(’S‘)’Cﬁdx

R—oc0e—0 JT — € CSZ
-R
R
1 ..
=—1lim |e%bdx=1,
TTR—o0
-R
then
lim lim I fopdx
R—00e—0
{ue> S N\ )
u? )
< hm 11mA||¢||L00(I) J‘ _ge(ﬂfg)ugdx
R—00e—0 As
{ue> S MR Rr)
Rrg
= lim lim Al f Ye pm-emlqy e(n gy
R—00e—0 /\
I —Rrg
Rr,
2
Ue (n-eyu?
= A |l@lleey| 1 - hm lim | =felmaudx|=0.
00e—0 As
—Rr,
Similarly,
Rr,
lim lim fopdx
R—00e—0
—Rr
R
o UcC,
= lim lim ﬂ(j)(rsx)rge(ﬂ—@u?(rgx)dx
R—00e—0 /\8
-R

R
_ 90 lim | eodx = ¢(0).
T R—co e

By Vitali convergence theorem and Lemma 3.2,

DE GRUYTER
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e—0
Ce
{MSSZ}
. C,
< lim 52 /g, [ ufer e ax
£—-0 Ag

1

1 1
A

A
. C, ,
< Tim & 1l jeA(ﬂ-£><“f>2dx j whHVax| =o,
£—-0 /15
I I

where% + % =1
Finally, we deduce Lfgd)dx — ¢(0)as e — 0. O

Next, we are in position to show that the asymptotic behavior of u, away from origin; we claim that the
following lemmas hold.

Lemma 3.4. As € — 0, we have V; = ¢, — Gy — 0 in L2I\{0}) n L\I), where Go(y) = G(¥)lx=o and
Gy(y) = —%lnlx -yl + A+ g/y) is the Green’s function of (-A)z on I with singularity at x, which satisfies
the following equations:

(3.7)

(~D):Gy(y) — aGe(y) = 6, x €l
G(y) =0, x € R\I.

Proof. By equation (2.5), c.u. satisfies [(—A)% - a](cgug) = f.. Arguing as what we did in Lemma 3.3, we
obtain ||f¢|l;}g) — 1 as € — 0. On the other hand, for any K c cI\{0}, by Lemma 3.1 and fractional Tru-

dinger-Moser inequality, we derive that %e(”*)“s2 € LP(K) for some p > 1.

According to elliptic regularity theorem for fractional equation, we have u, — ug = 0 in L*(K). Then, it
follows from the definition of f; and (3.4) of Lemma 3.2 that f; — 0 in L®(K) as € — 0. Using Green’s
representation formula, we deduce that

(0| = ‘ L G0Ny - Go(y)

< IIGX(Y) = GoWIfedy + [lifellay — UG
I

where the expression of G,(y) can refer to [29].
Given x,

1G¥) — Go)| = ‘ % m2 e - go<y)‘

|x -yl
1
<Ll 4 1800 - g
b1 x -y
<Ll XX ‘ + C@B)lylP
T lyl Iyl
1

<1V e,
7]

where g, (y) € CP for some B < (0, 1). Then, for any ¢ ¢ (0, %) and |x| > o, we can write

lim{,(0)] < lim j IG@) — GoWIf(y)dy + j 1G(y) — GoIL()dy + 0:(1)

| Bsixi I\Bs)x|

<lim (g + 88 |x|ﬂ) ) ey, + (i R C(6>) |u;<y>||m\3m]

e~0| 7T|x|

. [é 1
<lim | = + 6 [x|f + (— + C(6)) “fs(}/)“Ll(I\Bﬁlxl)]'
- o

-0
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Since  can be arbitrarily small, we derive that lim,_,o sup|v:(x)| = 0. Now, we will show that lim,_,o[[vs(y)ll;}qy = O
xeK

In fact, we just need to prove that lims_,o lim,_,o|lv:(¥)llzig,) = O since we have deduced that lim,_,o|v:(x)| = 0 in
LiX(1\{0}). By Green’s representation formula, we have
timlim [ oldx < limlim [ [16:0) - Gl 0)dydx
—0e—0

6—-0e—0
Bs By I

- lim lim fe(y)j 1Gy(y) — GOoldxdy
5—-0e—

Bs Bs

<1im C(8) = 0.0
6—-0

Since i, is the harmonic extension for u., with the help of Lemma 3.4, we can obtain the asymptotic
estimate i, in E{\{(O, 0)}.

Lemma 3.5. i, — G in C)..((R2\{(0, 0)}) n Cl..(R?), where

Gx, y) = —%ln|x2 £y +A+h(xy), h0,0)=0. (3.8)

Proof. Denote ¥, := ¢, — G; obviously, ¥ is the harmonic extension for v,. Hence, for any K cc R2\{(0, 0)}

and 6 < 4st&:(©.0) d, we have
5
sup V:(x,y) < 1 7}%(2{) d¢ + 1 J‘ —yvg(z.f) sd¢:=1h + L.
(x,y)eK (X {) + y n NC8.6) (X - 'f) ty

For I, applying v. — 0 in L'(I) from Lemma 3.4, we obtain

timi < lim 1 j = y";f)(f)l —d < lim AR [ueiag = o.
Bs

For L, since v, — 0 in LX(I\{0}), we derive that

)7 d§ = iljltl) [IVellz=(z\-6.,6)) = O-

. 1.. y
lim|5] < = lim |[ve]lzeogy - I
HO| bl — lim [IVellzonc-5,6)) - E7 7
R

Combining the estimates of I; and L, we accomplish the proof of Lemma 3.5. O

4 Upper-bound estimate for C; when the concentration-
compactness phenomenon arises

In this part, we try to eliminate the concentration-compactness phenomenon of u.. We will carry out the
capacity estimates to derive an upper bound for inequality (1.8).

Lemma 4.1. If c. — oo, there holds

2
sup e™ dx < |I| + 2me™.
15
ueWg .l <17
1

Proof. Given a large enough L > 0 and a small enough 6§ > 0, set



DE GRUYTER

be

inf i,

{18 = 5
BLVgn[R+

Due to ||Vii|l3 - a||lu|]> = 1, we have
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sup i, U= (s Aag)V b,.

3BsNR?2

|VilPdxdy = 1 + & ||uel3 - I + |Vii|*dxdy. (4.1)
(Bs\Br)NR?2 R2\Bs  R2nBy,
The left-hand side is not less than
. _ 2
inf ViiPdxdy = v, Pdxdy = 7— % =b)”
lg2n;, =de Iné - In(Lr,)
a|R2ﬂ035:b€ (Bg\BL,E)ﬂ[RE (BB\BLrg)n[RE
where
= b.-—a Inx¥*+y’  a/né - b.In(Lr,)
* Iné - In(Lr,) 2 Iné - In(Lr,)
is the solution to set of equations
AD, =0 in R2n Bs\By,
&, =a. inR2nBy,
d)g =b. in [Ri N 0Bs
b, . )
W = 0 m aR+ n (BS\BL,E).
From Proposition 2.2 in [29],
~LnL + o) + o(1)
as = ¢ + = .
Ce
By Lemma 3.5 and the denotation of G(x, y), we obtain
—%ln6 + A + 0(8) + o(1)
e = c .
Next, we start to calculate the right hand of equality (4.1); applying n,(x) — 1,(x) = In HIW, we have

lim ¢ 2
-0
[REQBLrg

For the integral _[ .. |Vilg[*dxdy, we can write
R3\Bs

liminf |Vil|?dxdy >
e—0 C,
R2\Bs R2\Bs
_ 1 I
=
¢ | R2\dBs
_ 1 j (
Ce?
| R3\Bs
Iné

=-—+ A+ 0(61nd) +
i

I |Viig|*dxdy = lln£ + O(ln—L)
o 2 L

L I IVGPRdxdy
£

on ay 5
(Rx0)\Bs y=0
Ly 0(1))(_M FA+ O(6))da + alGOORR
6 b4

[24
X IGOOR.
Ce
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Gathering the aforementioned estimates, we conclude that

Iné 2 1 L InL
RY: —— +A+0(1nd) + a |G| + =In= + O —
@e=b) oy o - — o),

ni
Iné - In(Lr,) c?
Taking the estimates of a. and b, into the last equality, we obtain

o(In?6 + In’L)
z
Iné 1 L InL
2 ——+A+0(1Ind) + =In= + O ==
S(lna )X 1- "~ n2 ( L )

c
Z+Iln= +ln(m-¢)+ (- e)?
i o ( )+ ( )¢ 2

n(as — be)?=nc? - 2InL + O(L™) + 21né - 274 + 0(8) + o(1) +

2
—Iné - InL + In<E + In( — &) + (m — e)c2 + (- e)(M -A- lln£)

Ae m 2
N 0o(In?6) + O(In’L) + 0(1)

¢

+ 0(61nd) + O(mTL)

which implies that

lnA—§ < A + In2m + O(6 Inéd) + O(lnTL) + 0:(1).
CS

Then, letting € —» 0 and L — oo, we obtain

limsup lnA—g < 7A + In2nm,
£—0 Cg

together with Lemma 3.2 ends the proof of Lemma 4.1. O

5 Existence of the extremals

In this section, we construct a test function whose energy can exceed the upper bound |I| + 27e™ to show
the existence of extremals for the fractional Trudinger-Moser inequality of Tintarev type (1.8).

1
Lemma 5.1. There exists a sequence of function ¢, € Wg’z(l ) with||¢,|12 , < 1 such that
4

J-e”‘i’ezdx > |I| + 2mme™, (.1)
1
when ¢ is small enough.

Proof. Define

I = {(x, y) €R2: G(x,y) =y, = RIE%%LE G},

and I, = {(x,y) € R? : G(x, y) > y,.}. The accurate formula of G gives

B InLe

Yie = + A + O(Le). (5.2)
i
Let
ln<(1 + %)2 + z—z) +B
(O ) (X’ Y) € IR% n BL€(07 _8)
2rc
Kooy = e, (6, Y) € I\Bye(0, —£)
G(x,
%, (%, y) € RA\L,
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where ¢, B, and L depend only on € and will be determined later. The choice of B is to make sure the
continuity on R2 n dB..(0, —€), so

_InL>+B _ ¥,
2nc c’
In view of (5.2), one can deduce that
B= 27'rc2 + 2lne - 27A + O(Le). (5.3)
a||(;b£||§ =1, where ¢.(x) = ¥(x, 0). Direct calculation
leads to
1 v x? ’
j |V, [2dxdy = _[ Vin (1 + —) + = dxdy
(271c)? £ g2
R2NBLe(0,-¢) R3NBe(0,-)
St I IVIn((1 + y)? + )P dxdy
(2rc)?
RiﬂBL(o,,l)
I of 28]
clm 2 L
VEPdady == [ [9GPdxay
c
[REHILE IR2ﬁIL£
J ﬁéda + = I _96xy) G(x)dx
] oy _
R? nang ([Rx{O})\ILe y=0
= iz _Inle + A+ O(Lelnle) + a ||G(x)||2]
c T
and

2
ln(l + Z—i) + B G2
2dx = I c-—— | dx+ J —dx
f|¢£| 271c c?
I B

—— N\B 5
eVI2-1 \ eVI2-1

2
ln(l + ’g‘—j) + 211c? + 2Ine — 2A + O(Le) G2
_ J e dx + Zdx
27ic c?
B NB 2y
_ J‘ ‘ 211G + O(Le InLe) [ J‘ G—zdx
271c c?
B NB 2y
_ iz[ [ ax + oue lnLe)].
Cc 1
Then, it holds
InL 5
-In2e + 1A + O(LeInLe) + O I = 71C (5.4)
and ¢ — +o0o as € — 0. Combining this with (5.3), we derive that
= 2In2 + O(Le InLe) + o( lrzL) (5.5)

Using the definition of ¢,, together with (5.4) and (5.5), yields that



16 —— LuChenetal DE GRUYTER

2
I e”¢gzdx =& I exp(n(c — M)Z )dX
2nc

B 5 B
e12-1 VI2-1

>¢€ I e™’~B . 1

1+ x2
B3
VLo~

_ zenA+0(lean)+O(¥)ﬂ(1 + O(LY)

=2me™ + O(LeInLe) + O(lnTL)

and

2 2
e ldx > I (1 + mp)dx
NB, 2
1
= [I\B, ;7| + = I nG%dx
I\B

eVI12-1

> |I| — 2eL + iz j nG2dx
c

NB, 2

=1 - 2L + 2,
C

with v, > vi> 0 for Le < % We can see that c? = -Ine + 0(1) by equality (5.4), and when we choose
L =1In%e,

O(Le InLe) + o(ln—L) ~ el = o(ln 1“'5) - o(i),
L Ine

which can conclude that
2 vi 1
Ie"‘l’edx > |I| + 2me™ + 2 + o(—) > |I] + 2me™.
c? c?
1

Dirichlet energy principle gives |[V@,|3 < [[V¥|Z, that is to say,

IBeld | < IVl — allg,l5 = 1.
L

Hence, the proof of Lemma 5.1 is accomplished when ¢ is small enough. O
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