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Abstract: The Kirchhoff equation was proposed in 1883 by Kirchhoff [Vorlesungen über Mechanik, Leipzig,

Teubner, 1883] as an extension of the classical D’Alembert’s wave equation for the vibration of elastic strings.

Almost one century later, Jacques Louis Lions [“On some questions in boundary value problems of mathemat-

ical physics,” in Contemporary Developments in Continuum Mechanics and PDE’s, G. M. de la Penha, and L. A.

Medeiros, Eds., Amsterdam, North-Holland, 1978] returned to the equation and proposed a general Kirchhoff

equation in arbitrary dimension with external force term which was written as
𝜕2u

𝜕t2
+
(
a+ b∫Ω|∇u|2dx

)
Δu =

f (x, u), where Δ = −∑ 𝜕2

𝜕x2
i

is the Laplace-Beltrami Euclidean Laplacian. We investigate in this paper a closely

related stationary version of this equation, in the case of closed manifolds, when u is vector valued and when f

is a pure critical power nonlinearity. We look for the stability of the equations we consider, a question which, in

modern nonlinear elliptic PDE theory, has its roots in the seminal work of Gidas and Spruck.
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1 Introduction

In what follows we let (Mn, g) be a closed Riemannian n-manifold with n ≥ 4, p ∈ ℕ⋆ be a nonzero integer,

f : [0,+∞[→]0,+∞[ be a positive continuous function and A:M →M
p
s (ℝ) be a C

1-map from M into the space

M
p
s (ℝ) of symmetric p × pmatrices with real entries. The Kirchhoff type system of p equations we investigate

in this paper is written as

f

⎛⎜⎜⎝∫M
|∇U|2d𝑣g

⎞⎟⎟⎠
Δgui +

p∑
j=1

Ai ju j = |U|2⋆−2ui (1.1)

for all i = 1, . . . , p, whereΔg = −divg∇ is the Laplace-Beltrami operator, the Aij’s are the components of A, U is

the p-map U = (u1, . . . , up),
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∫
M

|∇U|2d𝑣g =
p∑
j=1 ∫

M

|∇uj|2d𝑣g ,

the pointwise norm |U|:M → ℝ is given by |U| =
√∑ p

j=1u
2
j
, 2⋆ = 2n

n−2 is the critical Sobolev exponent, and we

require that ui ≥ 0 in M for all i = 1, . . . , p. When a p-map U = (u1, . . . , up) is such that ui ≥ 0 in M for all i =
1, . . . , p, we say that U is nonnegative. As a general remark, elliptic regularity theory applies so that any H1-

solution to a system like (1.1) is also a strong solution of class C2 of the system. Solutions in this article are strong

C2-solutions. The Kirchhoff equations we consider here go back to Kirchhoff [1] and Lions [2].

As already mentioned, we address in this paper the question of the strong stability of the equation (also

referred to as bounded stability in Hebey [3]). Our system (1.1) is said to be strongly stable if for any sequence

(A𝛼)𝛼 of C
1-maps A𝛼 :M →M

p
s (ℝ) converging C

1 to A, and any sequence (U𝛼)𝛼 of nonnegative solutions of

f

⎛⎜⎜⎝∫M
|∇U|2d𝑣g

⎞⎟⎟⎠
Δgui +

p∑
j=1

A𝛼
i j
u j = |U|2⋆−2ui (1.2)

for all i = 1, . . . , p, where A𝛼 =
(
A𝛼
i j

)
i, j=1,…, p

, we get that a subsequence of the U𝛼 ’s converge in C
2 to a nonneg-

ative solution U of (1.1).

Definition 1.1. Let (Mn, g) be a closed Riemannian n-manifold with n ≥ 4, let f : [0,+∞[→]0,+∞[ be a positive

continuous function, let p ∈ ℕ⋆ be a nonzero integer and let A:M →M
p
s (ℝ) be a C

1-map from M into the space

M
p
s (ℝ) of symmetric p × p matrices with real entries. The system (1.1) is said to be strongly stable if for any

sequence (A𝛼)𝛼 of C
1-maps A𝛼 :M →M

p
s (ℝ) converging C

1 to A, and any sequence (U𝛼)𝛼 of nonnegative p-maps

satisfying that

f

⎛⎜⎜⎝∫M
|∇U𝛼|2d𝑣g

⎞⎟⎟⎠
Δgu

𝛼
i
+

p∑
j=1

A𝛼
i j
u𝛼
j
= ||U𝛼

||2
⋆−2

u𝛼
i

for all i = 1, . . . , p and all 𝛼, where A𝛼 =
(
A𝛼
i j

)
i, j=1,…, p

and the ui
𝛼
’s are the components of U𝛼 , a subsequence of

the U𝛼 ’s converge in C
2 to a nonnegative solution U of (1.1).

In the subcritical regime, stability of equations like (1.1) has its roots in the work of Gidas and Spruck [4]

and, following the Gidas and Spruck [4] scheme, can be obtained as a very nice combination of strong blow-

up theory and a Liouville theorem stating that subcritical equations like Δu = uq−1 do not have nonnegative

nontrivial solutions in ℝn. We carry the argument for our systems in Section 2.

We prove two theorems in this paper. In the first theorem we assume that there exist a, b, 𝜏 > 0 such that

(H) f (x) ≥ (a+ bx)𝜏 for all x ≥ 0.

In the original Kirchhoff model, f (x) = a+ bx with a, b > 0 and (H) is obviously satisfied with 𝜏 = 1. Our

first theorem is as follows.

Theorem 1.1. Let (Mn, g) be a closed Riemannian n-manifold with n ≥ 4, let f : [0,+∞[→]0,+∞[ be a positive

continuous function, let p ∈ ℕ⋆ be a nonzero integer and let A:M →M
p
s (ℝ) be a C

1-map from M into the space

M
p
s (ℝ) of symmetric p × p matrices with real entries. We assume that f satisfies (H). Then (1.1) is strongly stable

in the two following cases

(1) n ≥ D and a𝜅−1b > (𝜅−1)𝜅−1
𝜅𝜅Sn∕2

,

(2) Sg > 0 in M and A < KSgIdp in the sense of bilinear forms,

where D = 2(1+𝜏)
𝜏

, 𝜏 is given by (H), 𝜅 = n−2
2
𝜏 , we adopt the convention that (𝜅 − 1)𝜅−1 = 1 if 𝜅 = 1, a and b are

given by (H), S is given by (1.3), Sg is the scalar curvature of g, Idp is the identity p × p matrix and K is given by

(1.4) below.
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As a remark, 𝜅 ≥ 1 when n ≥ D, and 𝜅 = 1 if and only if n = D. In that case the condition in the first part of

the theorem reduces to bSn∕2 > 1. Concerning S in the theorem, S is the sharp constant in the Sobolev inequality

for H1 given by

S = n(n− 2)𝜔
2∕n
n

4
, (1.3)

where 𝜔n is the volume of the unit n-sphere. Concerning K in part (2) of the theorem we can choose

K = n− 2

4(n− 1)

(
a+ bSn∕2a𝜅

)𝜏
if n ≥ D,

K = n− 2

4(n− 1)

(
a+

(
bSn∕2𝜅

) 1

1−𝜅

)𝜏

if n < D.

(1.4)

In particular, K depends only on the dimension and the constants a, b, 𝜏 in (H). As a remark, 𝜅 < 1 when n < D.

The second theorem we prove is as follows.

Theorem 1.2. Let (Mn, g) be a closed Riemannian n-manifold of positive scalar curvature and dimension n = 4, 5,

a, b, 𝜏 > 0 be positive real numbers and p ∈ ℕ⋆ be a nonzero integer. We assume that
1−a
b

∉ Sn∕2ℕ⋆, where S is

given by (1.3). Then there exists 𝜀 > 0 such that for any f : [0,+∞[→]0,+∞[ positive and continuous, if

||||
f (x)

(a+ bx)𝜏
− 1

|||| < 𝜀 (1.5)

for all x ≥ 0, then (1.1) with A = n−2
4(n−1)SgIdp, where Idp is the identity p × p matrix, is strongly stable.

In Theorem 1.2, following standard notations, Sn∕2ℕ⋆ is the subset of ]0,+∞[ consisting of the positive real

numbers kSn∕2 for k ≥ 1 integer. We discuss the seminal argument by Gidas and Spruck [4] in Section 2. We

prove the first part of Theorem 1.1 in Section 3. We prove the second part of Theorem 1.1 in Section 4. We prove

Theorem 1.2 in Section 6.

2 The Gidas and Spruck argument

Following the seminal work by Gidas and Spruck [4] we prove the stability of our equations in the subcritical

case. Let (Mn, g) be a closed Riemannian n-manifold with n ≥ 4, f : [0,+∞[→]0,+∞[ be a positive continuous

function satisfying (H), p ∈ ℕ⋆ be a nonzero integer and A:M →M
p
s (ℝ) be a C

1-map from M into the space

M
p
s (ℝ) of symmetric p × p matrices with real entries. Let 2 < q < 2⋆ be a subcritical power. We consider the

system

f

⎛⎜⎜⎝∫M
|∇U|2d𝑣g

⎞⎟⎟⎠
Δgui +

p∑
j=1

Ai ju j = |U|q−2ui (2.1)

for all i = 1, . . . , p, where A = (Ai j)i, j=1,…, p. We let (A𝛼)𝛼 be a sequence of C
1-maps A𝛼 :M →M

p
s (ℝ) converging C

1

to A and (U𝛼)𝛼 be a sequence of nonnegative (nontrivial) solutions of

f

⎛⎜⎜⎝∫M
|∇U|2d𝑣g

⎞⎟⎟⎠
Δgui +

p∑
j=1

A𝛼
i j
u j = |U|q−2ui (2.2)

for all i = 1, . . . , p, where A𝛼 =
(
A𝛼
i j

)
i, j=1,…, p

. We let also K𝛼 = f
(
∫
M
|∇U𝛼|2d𝑣g),

V𝛼 = K
− 1

q−2
𝛼 U𝛼 and Ã𝛼 =

1

K𝛼
A𝛼 (2.3)
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for all 𝛼, where the ui,𝛼 ’s are the components of U𝛼 . Then,

Δg𝑣i,𝛼 +
p∑
j=1

Ã𝛼
i j
𝑣 j,𝛼 = |V𝛼|q−2𝑣i,𝛼 (2.4)

for all i and all 𝛼, where the 𝑣i,𝛼 ’s are the components of V𝛼 and the Ã
𝛼
i j
’s are the components of Ã𝛼 . We want to

prove that a subsequence of the U𝛼 ’s converge in C
2.

First we claim that the V𝛼 ’s are bounded in C
2,𝜃 , 𝜃 ∈]0, 1[. By elliptic theory, since K𝛼 ≥ a𝜏 > 0, so that the

A𝛼
i j
’s are bounded in C1, it suffices to prove that the V𝛼 ’s are bounded in L

∞. We assume by contradiction that

maxM|V𝛼|→+∞ as 𝛼 →+∞, and let 𝜇𝛼 > 0 be given by 𝜇
−2∕(q−2)
𝛼 = maxM|V𝛼|. Then 𝜇𝛼 → 0 as 𝛼 → +∞. We

define Ṽ𝛼 by

Ṽ𝛼(x) = 𝜇

2

q−2
𝛼 V𝛼

(
expx𝛼 (𝜇𝛼x)

)
,

where x ∈ ℝn, x𝛼 is a point where |V𝛼| attains its maximum, and expx𝛼 is the exponential map at x𝛼 . By con-
struction, |Ṽ𝛼(0)| = 1, |Ṽ𝛼| ≤ 1, and we easily get that

Δg̃𝛼
𝑣̃i,𝛼 + 𝜇2

𝛼

p∑
j=1

Â𝛼
i j
𝑣̃ j,𝛼 = |Ṽ𝛼|q−2𝑣̃i,𝛼 (2.5)

for all i = 1, . . . , p, where g̃𝛼(x) =
(
exp⋆

x𝛼
g
)
(𝜇𝛼x), Ṽ𝛼 = (𝑣̃1,𝛼,… , 𝑣̃ p,𝛼), and Â𝛼

i j
(x) = Ã𝛼

i j

(
expx𝛼 (𝜇𝛼x)

)
. There

holds that g̃𝛼 → 𝛿 in C2
loc
(ℝn) as 𝛼 →+∞, where 𝛿 is the Euclideanmetric. Since |Ṽ𝛼| ≤ 1, it follows from elliptic

theory and (2.5) that the Ṽ𝛼 ’s are bounded in C
2,𝜃

loc
(ℝn), and thus that, up to passing to a subsequence, there exists

Ṽ ∈ C2(ℝn) such that Ṽ𝛼 → Ṽ in C2
loc
(ℝn) as 𝛼 → +∞. There holds that |Ṽ(0)| = 1, and by (2.5), Ṽ is a nonnegative

nontrivial solution of

Δ𝑣̃i = |Ṽ|q−2𝑣̃i (2.6)

in ℝn, for all i = 1, . . . , p, where q ∈ (4, 6), and the 𝑣̃i’s are the components of Ṽ . If p = 1, such a solution does

not exist by Gidas and Spruck [4], and when p ≥ 2, we can apply Theorem 2 in Reichel and Zou [5] which also

implies that there are no nonnegative nontrivial solutions of (2.6). This is the contradiction, we were looking for,

and this proves that the V𝛼 ’s are bounded in L
∞, and then in C2,𝜃 , 𝜃 ∈]0, 1[.

In order to end the proof of the stability it suffices to prove that K𝛼 = O(1). We proceed by contradiction and

assume thatK𝛼 →+∞ as𝛼 → +∞. Then, by the continuity of f , ∫
M
|∇U𝛼|2d𝑣g → +∞ as𝛼 → +∞. Up to passing

to a subsequence, V𝛼 → V∞ in C2, and by (2.4) it is necessarily the case that V∞ ≡ 0 since the limit equation does

not have nontrivial nonnegative solutions in closed manifolds as Ã𝛼 → 0 in C1 when K𝛼 →+∞. Since (|V𝛼|)𝛼 is
bounded in L∞, we can apply the Harnack inequality to the sum of the equations in (2.4). Let ΣV𝛼 =

∑ p

j=1𝑣i,𝛼
and Ã𝛼(1,V𝛼) =

∑ p

i, j=1Ã
𝛼
i j
𝑣 j,𝛼 . By (2.4) there holds that

ΔgΣV𝛼 +
Ã𝛼(1,V𝛼)

ΣV𝛼
ΣV𝛼 = |V𝛼|q−2ΣV𝛼

and
||| Ã𝛼 (1,V𝛼 )ΣV𝛼

|||+ |V𝛼|q−2 ≤ C by the above and since (A𝛼) is bounded in L
∞. By the Harnack inequality we then get

that there exists C > 1 such that max ΣV𝛼 ≤ C min ΣV𝛼 , and it easily follows that there exists C > 1 such that

max
M

|V𝛼| ≤ Cmin
M

|V𝛼| (2.7)

for all 𝛼. Summing the equations in (2.4), integrating overM and using that (A𝛼)𝛼 is bounded in C
1 together with

the domination of L1-norms by Lq−1-norms, we also get that

‖V𝛼‖Lq−1 = O

(
K
− 1

q−2
𝛼

)
. (2.8)
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Combining (2.7) and (2.8) it follows that

max
M

|V𝛼| = O

(
K
− 1

q−2
𝛼

)
. (2.9)

Multiplying the equations in (2.4) by 𝑣i,𝛼 , integrating overM, summing over i, we get with (2.9) that

‖∇V𝛼‖2L2 = O

(
K
− q

q−2
𝛼

)
(2.10)

since
1

K𝛼
K
−2∕(q−2)
𝛼 = K

−q∕(q−2)
𝛼 . Then, by (2.3) and (2.10),

∫
M

|∇U𝛼|2d𝑣g = K
2

q−2
𝛼 ∫

M

|∇V𝛼|2d𝑣g ≤ C

K𝛼

so that ∫
M
|∇U𝛼|2d𝑣g → 0 as 𝛼 → +∞. A contradiction. Then K𝛼 = O(1) and this proves the strong stability of

our equations in the subcritical case. As a remark, what has been said in this section works also when n = 3.

3 Part 1 in Theorem 1.1

We consider here the case where n is greater than or equal to the critical formal dimension D, where D is as in

Theorem 1.1. We let (U𝛼)𝛼 be a sequence of nonnegative solutions of (1.2) and set K𝛼 = f
(
∫
M
|∇U𝛼|2d𝑣g). First

we prove that (U𝛼)𝛼 is bounded in H
1 if either n > D of n = D and bSn∕2 > 1, where b is given by (H) and S is as

in (1.3). We use here that for any 𝜀 > 0, there exists C𝜀 > 0 such that

⎛⎜⎜⎝∫M
|U|2⋆d𝑣g

⎞⎟⎟⎠

2∕2⋆

≤
(
1

S
+ 𝜀

)
∫
M

|∇U|2d𝑣g + C𝜀‖U‖2L1 (3.1)

for allU ∈ H1, whereKn is as in (1.3). This asymptotically sharp inequality with L
1-remainder term easily follows

from the sharp inequality in Hebey [6]. As when discussing the Gidas and Spruck argument in the preceding

section, thanks to Hölder’s inequality, we easily get by integrating the equation that

‖U𝛼‖L1 = O(1). (3.2)

We proceed by contradiction and assume that ‖U𝛼‖H1 →+∞ as 𝛼 → +∞. By (3.1) and (3.2), this is equivalent to

assuming that ‖∇U𝛼‖L2 →+∞ as 𝛼 → +∞. Also, by (3.1) and (3.2), we can write that for any 𝜀 > 0, there exists

C𝜀 > 0 such that

‖U𝛼‖2⋆
L2

⋆ ≤
((

1

S
+ 𝜀

)
‖∇U𝛼‖2L2 + C𝜀

)2⋆∕2
. (3.3)

Multiplying (1.2) by ui,𝛼 , summing over i, integrating overM we can also write that

K𝛼‖∇U𝛼‖2L2 + ∫
M

A𝛼(U𝛼,U𝛼)d𝑣g = ‖U𝛼‖2⋆
L2

⋆ . (3.4)

Using the convergence of (A𝛼)𝛼 and (H), we get from (3.2)–(3.4) that for any 𝜀 > 0, there exists C𝜀 > 0 such that

b𝜏‖∇U𝛼‖2(𝜏+1)L2
≤
(
1

S
+ 𝜀

) 2⋆

2
(
‖∇U𝛼‖2L2 + C𝜀

) 2⋆

2 + O
(
‖∇U𝛼‖2L2

)
+ O(1)

for all 𝛼 ≫ 1. This is clearly impossible if 2(𝜏 + 1) > 2⋆, which is equivalent to n > D, or if 2(𝜏 + 1) = 2⋆, which

is equivalent to n = D, and b𝜏S2
⋆∕2 > 1. This proves the above claim that ‖U𝛼‖H1 = O(1) if n > D of n = D and

bSn∕2 > 1.
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Now we prove the stability part in Theorem 1.1 when n ≥ D. By the above the U𝛼 ’s are bounded in H
1 and,

when dealingwith sequences (U𝛼)𝛼 of solutions of (1.2) which are bounded inH
1, andmore generallywith Palais-

Smale sequences associated with (1.2), theH1-theory as developed by Struwe [7] applies. For such sequences, see

Druet, Hebey and Vétois [8] or Thizy [9], there holds that, up to passing to a subsequence,

U𝛼 = U∞ +
k∑
i=1

K
(n−2)∕4
𝛼 i

𝛼
+𝛼 (3.5)

for some k ∈ ℕ, where U∞:M → ℝ p is the weak limit in H1 (or the strong limit in L2) of the U𝛼 ’s,𝛼 → 0 in H1

as 𝛼 → +∞, and the
(
i
𝛼

)
𝛼
’s (when the U𝛼 ’s are nonnegative) are vector bubbles given by

i
𝛼
(x) =

⎛⎜⎜⎝
𝜇i,𝛼

𝜇2
i,𝛼
+ dg (xi,𝛼 ,x)

2

n(n−2)

⎞⎟⎟⎠

n−2
2

Λi (3.6)

for all x ∈ M and all 𝛼, where (xi,𝛼)𝛼 is a converging sequence of points in M, (𝜇i,𝛼)𝛼 is a sequence of positive

real numbers converging to 0 as 𝛼 →+∞, Λi is a unit vector in ℝ p with nonnegative components, namely

Λi ∈ S
p−1
+ , and dg denotes the geodesic distance with respect to g. The vector bubbles (3.6) are built on the

extension of the Caffarelli, Gidas and Spruck [10] result which was proved in Druet, Hebey and Vétois [8]. As an

important remark, the energy of the U𝛼 ’s split accordingly to (3.5). Nowwewant to prove that, up to passing to a

subsequence, the U𝛼 ’s converge in C
2. By standard elliptic theory, it suffices to prove that there holds that k = 0

in the H1-decomposition (3.5) of (U𝛼)𝛼 . By (H), the H
1-decomposition (3.5), and its associated splitting of energy,

K
1∕𝜏
𝛼 ≥ a+ b

∫
M

|∇U∞|2d𝑣g + bkS
n

2 K
n−2
2

𝛼 + o(1),

and, up to passing to a subsequence, letting K∞ be the limit of the K𝛼 ’s (the K𝛼 ’s are bounded by the above), we

get that

K
1∕𝜏
∞ ≥ a+ b

∫
M

|∇U∞|2d𝑣g + bkS
n

2 K
n−2
2

∞ . (3.7)

In particular, we have thatΦ
(
K
1∕𝜏
∞

)
≤ 0, where

Φ(x) = bkS
n

2 x
n−2
2
𝜏 − x + a. (3.8)

If n = D, and thus if
n−2
2
𝜏 = 1, then itmust be the case that bkSn∕2 < 1. In particular, k = 0 if bSn∕2 > 1.We assume

now that n > D and that k ≥ 1. As one can easily check,Φ is minimum at

x0 =
(
bkSn∕2𝜅

)−1∕(𝜅−1)
,

where 𝜅 = n−2
2
𝜏 . Since n > D, we have that 𝜅 > 1. There holds that

Φ(x0) = bkSn∕2
(

1

bkSn∕2𝜅

) 𝜅

𝜅−1 −
(

1

bkSn∕2𝜅

) 1

𝜅−1 + a

=
(

1

bkSn∕2𝜅

) 1

𝜅−1
(
1

𝜅
− 1

)
+ a

=
(

1

bkSn∕2

) 1

𝜅−1
(
1

𝜅

) 𝜅

𝜅−1
(1− 𝜅)+ a.

SinceΦ
(
K
1∕𝜏
∞

)
≤ 0 we also have thatΦ(x0) ≤ 0. Then

(
bkSn∕2

) 1

𝜅−1 a ≤
(
1

𝜅

) 𝜅

𝜅−1
(𝜅 − 1). (3.9)
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and we get that k = 0 if

a𝜅−1b >
(𝜅 − 1)𝜅−1

𝜅𝜅Sn∕2
.

This proves the first part of Theorem 1.1. Here again, what has been said in this section remains valid when

n = 3.

4 Part 2 in Theorem 1.1

We use here advanced pointwise blow-up theory and more precisely one result which goes back to the work by

Druet [11], [12], Druet, Hebey and Robert [13], Li and Zhu [14], Marques [15] and Schoen [16]. For systems we refer

to the work of Druet and Hebey [17], Druet, Hebey and Vétois [8], Hebey [18] and Hebey and Thizy [19], [20]. A

general reference in book form is Hebey [3]. We consider a system like

Δgui +
p∑
j=1

Ai ju j = |U|2⋆−2ui (4.1)

for all i = 1, . . . , p, where A:M →M
p
s (ℝ) is a C

1-map and (M, g) is a closed n-manifold with n ≥ 4, and consider

perturbations of (4.1) given by

Δgui +
p∑
j=1

A𝛼
i j
u j = |U|2⋆−2ui (4.2)

for all i = 1, . . . , p, where (A𝛼)𝛼 is a sequence of C1-maps A𝛼 :M →M
p
s (ℝ) converging C

1 to A. The result we

use here, which can be seen as a high dimensional and multi-valued extension of the 3-dimensional scalar

Theorem 0.3 in Li and Zhu [14], was proved in Druet, Hebey and Vétois [8], see also Hebey and Thizy [20]. It

is as follows:

Theorem 4.1. (Druet-Hebey-Vétois [8]).Weassume that A <
n−2
4(n−1)SgIdp inM in the sense of bilinear forms, where

Sg is the scalar curvature of g. Then, for any 𝜃 ∈ (0, 1), there exists C > 0 such that ‖U𝛼‖C2,𝜃 ≤ C for all sequences

(A𝛼)𝛼 of C
1-maps A𝛼 :M →M

p
s (ℝ) converging C

1 to A and all sequences (U𝛼)𝛼 of nonnegative solutions of (4.2).

Now, we return to our original situation and let (U𝛼)𝛼 be a sequence of nonnegative solutions of (1.2). We

assume that Sg > 0 inM, where Sg is the scalar curvature of g, and prove first that (U𝛼)𝛼 is then bounded inH
1.

We proceed by contradiction and assume that ‖U𝛼‖H1 →+∞ as 𝛼 → +∞. We let K𝛼 = f
(
∫
M
|∇U𝛼|2d𝑣g),

V𝛼 = K
− n−2

4

𝛼 U𝛼 and Ã𝛼 =
1

K𝛼
A𝛼 (4.3)

for all 𝛼, where the ui,𝛼 ’s are the components of U𝛼 . Then,

Δg𝑣i,𝛼 +
p∑
j=1

Ã𝛼
i j
𝑣 j,𝛼 = |V𝛼|2⋆−2𝑣i,𝛼 (4.4)

for all i and all 𝛼, where the 𝑣i,𝛼 ’s are the components of V𝛼 and the Ã
𝛼
i j
’s are the components of Ã𝛼 , and where

V𝛼 and Ã𝛼 are as in (4.3). As in the preceding sections, we easily get by integrating the equation for the U𝛼 ’s that

‖U𝛼‖L1 = O(1). Assuming that (U𝛼)𝛼 is not bounded in H
1 we then get from (H) and inequalities like (3.1) that,

up to passing to a subsequence, K𝛼 →+∞ as 𝛼 → +∞. But then Ã𝛼 → 0 in C1. Since Sg > 0 we get with (4.4)

and Theorem 4.1 that ‖V𝛼‖C2,𝜃 = O(1), 𝜃 ∈]0, 1[. Exactly like in the end of the argument of the subcritical case in
Section 2, using the Harnack inequality, we then get a contradiction. In particular, the U𝛼 ’s are bounded in H

1.
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Now we prove the strong stability. We assume that Sg > 0 in M and the strict inequality on A. According

to what we just proved, if (U𝛼)𝛼 is a sequence of nonnegative solutions of (1.2), then it is bounded in H
1. As in

Section 3, by (H), the H1-decomposition (3.5), and its associated splitting of energy,

K
1∕𝜏
𝛼 ≥ a+ b

∫
M

|∇U∞|2d𝑣g + bkS
n

2 K
n−2
2

𝛼 + o(1),

and, up to passing to a subsequence, letting K∞ be the limit of the K𝛼 ’s, we get that

K
1∕𝜏
∞ ≥ a+ b

∫
M

|∇U∞|2d𝑣g + bkS
n

2 K
n−2
2

∞ . (4.5)

We then get thatΦ
(
K
1∕𝜏
∞

)
≤ 0, where

Φ(x) = bkS
n

2 x
n−2
2
𝜏 − x + a. (4.6)

By standard elliptic theory, in order to get the strong stability of our equation, it suffices to prove that k = 0.

Let x⋆ be the smallest x ≥ 0 such thatΦ(x) ≤ 0. We want to prove that k = 0. We proceed by contradiction and

assume that k ≥ 1. Let Ã∞ be the limit of the Ã𝛼 ’s. There holds that Ã∞ = 1

K∞
A. By Theorem 4.1 there is necessarily

one point P ∈ M such that

Ã∞(P) ≥
n− 2

4(n− 1)
Sg(P)Id p

in the sense of bilinear forms. Then

A(P) ≥
n− 2

4(n− 1)
K∞Sg(P)Id p. (4.7)

In particular, it follows from (4.7) and from the assumption in point (2) of Theorem 1.1 that

x⋆ ≤ K
1∕𝜏
∞ < C1∕𝜏 , (4.8)

where C = 4(n−1)
n−2 K and K > 0 is as in the theorem. If n = D, then 𝜅 = 1, bkSn∕2 < 1 by (4.5), and we clearly get

thatΦ′(a) < 0, whereΦ is as in (4.6). If n > D, then

Φ′(a) = bkSn∕2a𝜅−1𝜅 − 1

≤
(
𝜅 − 1

𝜅

)𝜅−1
− 1

< 0

by (3.9). Obviously, there also holds thatΦ(t) > 0 for t ∈ [0, a]. We clearly have thatΦ is convex inℝ+. Then its

graph stands above all its tangents in ℝ+ and, in particular, there holds that

Φ(x⋆) ≥ Φ(a)+Φ′(a)
(
x⋆ − a

)
.

SinceΦ
(
x⋆

)
= 0 by definition of x⋆, we get that

a+ Φ(a)
−Φ′(a)

≤ x⋆.

We have that 0 < −Φ′(a) < 1, and we then get with (4.8) that

a+ bkSn∕2a𝜅 < C1∕𝜏 . (4.9)

We have that C = 4(n−1)
n−2 K and K > 0 is given by (1.4). Then, by (4.9), we must have that k = 0. This proves the

second part of Theorem 1.1 when n ≥ D.
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Now we assume that n < D. Then 𝜅 < 1 and, by (4.5),Ψ
(
K
𝜅∕𝜏
∞

)
≥ 0, where

Ψ(x) = x
1

𝜅 − bkS
n

2 x − a. (4.10)

The functionΨ in (4.10) is decreasing up to x0 and increasing after x0, where

x0 =
(
𝜅bkSn∕2

) 𝜅

1−𝜅 .

Since Ψ(0) < 0 we then get that x0 ≤ K
𝜅∕𝜏
∞ . By Theorem 4.1, as above, there is necessarily one point P ∈ M

such that Ã∞(P) ≥
n−2
4(n−1)Sg(P)Id p in the sense of bilinear forms and we then get that (4.7) holds true. Then, by

our assumption in point (2) of Theorem 1.1, K∞ < C, where C = 4(n−1)
n−2 K and K is given by (1.4). In particular,

Ψ(C𝜅∕𝜏 ) ≥ 0. By (1.4), C1∕𝜏 = a+
(
bSn∕2𝜅

)1∕(1−𝜅)
and we then get that

Ψ(C𝜅∕𝜏 ) =
(
bSn∕2𝜅

)1∕(1−𝜅) − bkS
n

2 C𝜅∕𝜏

<
(
bSn∕2𝜅

)1∕(1−𝜅) − bkS
n

2

(
bSn∕2𝜅

)𝜅∕(1−𝜅)

=
(
1− k

𝜅

)(
bSn∕2𝜅

)1∕(1−𝜅)
. (4.11)

By (4.11), Ψ(C𝜅∕𝜏 ) < 0 if k ≥ 1. Since Ψ(C𝜅∕𝜏 ) ≥ 0, we must have that k = 0. This proves the second part of

Theorem 1.1 when n < D.

5 The exponential case

In case f is an exponential, condition (H) is satisfiedwith arbitrarily large 𝜏′s. In that case, the following corollary

holds true. As already mentioned, the very first part of Theorem 1.1 holds true when n = 3. As a consequence,

Corollary 5.1 also holds true when n = 3.

Corollary 5.1. Suppose f (x) = 𝛼ex + 𝛽 with 𝛼 ≥ 1 and 𝛽 ≥ 0. Then (1.1) is strongly stable.

Proof . We have that epx ≥ (1+ x)p for all x ≥ 0 and all p ∈ ℕ⋆. Therefore,

f (x) ≥
(
𝛼1∕ p + 𝛼1∕ p

p
x

) p

(5.1)

for all p ∈ ℕ⋆. By (5.1) we then get for each p specific values for a = ap, b = bp, 𝜏 = 𝜏 p, D = Dp and 𝜅 = 𝜅 p.

More specifically, ap = 𝛼1∕p, bp = 𝛼1∕p∕p, 𝜏 p = p, Dp = 2(1+ p)

p
and 𝜅 p = n−2

2
p. For p≫ 1, Dp < 3. Then,

a
𝜅 p−1
p bp >

(𝜅 p − 1)𝜅 p−1

𝜅
𝜅 p

p Sn∕2
(5.2)

for p≫ 1 if
n− 2

2
𝛼

n−2
2 >

1

e
S−n∕2. (5.3)

Of course, S depends on the dimension n through (1.3) and we then get that (5.3) is equivalent to

(n− 2)e

2
𝛼

n−2
2

(
n(n− 2)

4

)n∕2
𝜔n > 1. (5.4)

We have that 𝜔2m = (4𝜋)m(m−1)!
(2m−1)! and 𝜔2m+1 = 2𝜋m+1

m! . It is then easy to check that (5.4) is automatically satisfied

when 𝛼 ≥ 1. In particular n ≥ Dp and (5.2) hold true for p≫ 1. By Theorem 1.1 we then get that (1.1) is strongly

stable without any further assumptions than 𝛼 ≥ 1. This proves the corollary. □
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6 Proof of Theorem 1.2

Again, we use advanced blow-up theory but use here two more results. We return to the notations at the begin-

ning of Section 4. The two results we use are in Druet and Hebey [17]. The first result is as follows. We state it

here in a simplified version with respect to the original result proved in Druet and Hebey [5].

Theorem 6.1. (Druet-Hebey [17]).We assume thatΔg + A is positive and that for any x ∈ M, the symmetric bilin-

ear form A(x)− n−2
4(n−1)Sg(x)Idp does not possess isotropic vectors in ℝ p. Then, for any 𝜃 ∈ (0, 1), and any Λ > 0,

there exists C > 0 such that ‖U𝛼‖C2,𝜃 ≤ C for all sequences (A𝛼)𝛼 of C
1-maps A𝛼 :M →M

p
s (ℝ) converging C

1 to A,

and all sequences (U𝛼)𝛼 of nonnegative solutions of (4.2) such that ‖U𝛼‖H1 ≤ Λ for all 𝛼.

The second result we use is as follows.

Theorem 6.2. (Druet-Hebey [17]). Assume n = 4, 5. If (U𝛼)𝛼 is a bounded sequence in H
1 of nonnegative solutions

of (4.2) which blows up, namely if the U𝛼 ’s are such that ‖U𝛼‖L∞ → +∞ as 𝛼 → +∞, then, up to passing to a

subsequence, U𝛼 → 0 a.e. in M.

Theorem 6.2, as shown in Druet and Hebey [17], stops to hold true when n = 6, and this explains the restric-

tion in dimensions in Theorem 1.2. Now, we return to our original situation and let (U𝛼)𝛼 be a sequence of

nonnegative solutions of (1.2). We assume that Sg > 0 in M, where Sg is the scalar curvature of g. Assuming

that (1.5) holds true with, let’s say, 𝜀 = 1∕2, we get from the first part of the proof of point (2) in Theorem 1.1 that

the U𝛼 ’s are bounded in H
1. Assuming now (1.5) with 𝜀 ∈]0, 1∕2[ we get from the H1-decomposition (3.5), and its

associated splitting of energy, that

(1− 𝜀)1∕𝜏
⎛⎜⎜⎝
a+ b

∫
M

|∇U∞|2d𝑣g + bkS
n

2 K
n−2
2

𝛼 + o(1)

⎞⎟⎟⎠

≤ K
1∕𝜏
𝛼 ≤ (1+ 𝜀)1∕𝜏

⎛⎜⎜⎝
a+ b

∫
M

|∇U∞|2d𝑣g + bkS
n

2 K
n−2
2

𝛼 + o(1)

⎞⎟⎟⎠
(6.1)

We proceed by contradiction and assume that k ≥ 1. Then, theU𝛼 ’s blow up and, since we also assumed that n =
4, 5, we get from Theorem 6.2 that U∞ ≡ 0. Since A = n−2

4(n−1)SgId p it also follows from Theorem 6.1 and equations

like (4.3)–(4.4) that if K∞ is the limit of the K𝛼 ’s, then K∞ = 1. Passing to the limit as 𝛼 → +∞ in (6.1) we then

get that

(1− 𝜀)1∕𝜏
(
a+ bkS

n

2

)
≤ 1 ≤ (1+ 𝜀)1∕𝜏

(
a+ bkS

n

2

)
. (6.2)

By assumption,
1−a
b

∉ Sn∕2ℕ⋆. We distinguish three cases (though the two first could be merged in one single

case). If a ≥ 1 we choose 𝜀 ∈]0, 1∕2[ such that (1− 𝜀)1∕𝜏 (1+ bSn∕2) > 1. Then (6.2) with k ≥ 1 is impossible in this

case. If a < 1 and
1−a
b

< Sn∕2, then 1 < a+ bSn∕2 and there exists 𝜀0 > 0 such that 1+ 𝜀0 < a+ bSn∕2. We choose

𝜀 ∈]0, 1∕2[ such that (1− 𝜀)1∕𝜏 (1+ 𝜀0) > 1. Again, (6.2) with k ≥ 1 is impossible in this case. In the third and last

case to consider, a < 1 and there exists k0 ∈ ℕ⋆ such that

k0S
n∕2 <

1− a

b
< (k0 + 1)Sn∕2. (6.3)

It follows from (6.3) that there exists 𝜀0 > 0 such that

⎧⎪⎨⎪⎩

a+ bk0S
n∕2 < 1− 𝜀0,

1+ 𝜀0 < a+ b(k0 + 1)Sn∕2.
(6.4)
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We choose 𝜀 ∈]0, 1∕2[ such that

(1− 𝜀)1∕𝜏 (1+ 𝜀0) > 1 and (1+ 𝜀)1∕𝜏 (1− 𝜀0) < 1. (6.5)

Then (6.2) with k ≥ 1 is impossible if k ≤ k0 since in that case

(1+ 𝜀)1∕𝜏
(
a+ bkS

n

2

)
≤ (1+ 𝜀)1∕𝜏

(
a+ bk0S

n

2

)
< 1

by (6.4)–(6.5). Also (6.2) with k ≥ 1 is impossible if k ≥ k0 + 1 since in that case

(1− 𝜀)1∕𝜏
(
a+ bkS

n

2

)
≥ (1− 𝜀)1∕𝜏

(
a+ b(k0 + 1)S

n

2

)
> 1

by (6.4)–(6.5). In conclusion, k = 0 and this proves Theorem 1.2.
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