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1 Introduction

There is at present a very extensive theory for second-order linear elliptic differential operators without
lower order terms. Such an operator L may be written as follows:
N d d
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k=1a=1b=1

where U is a function defined on a subset of R?. Two important generalizations are higher order operators
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and operators with lower order terms
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where a and § denote multiindices.
Operators of higher order (2) with variable coefficients Ao’(':’/; have been investigated in many recent
papers, including [32,33,65,70,71,79,82,83], and the first author’s papers with Hofmann and Mayboroda
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[17,18,20-26]. (The theory of higher order operators with constant coefficients is older and more developed;
we refer the interested reader to the references in the aforementioned papers or to the survey paper [27] for
more details.) Harmonic analysis of second-order operators with general lower order terms (3) has been
done in a number of recent papers, including [15,16,30,33,35-38,61,64,69,74,75].

In this article, we will combine the two approaches and investigate operators L of order 2m > 2 with
certain lower order terms

N
Q=% Y DAL, ()

k=1a<|a|<mb<|Bl<m

Specifically, three of the foundational results of the theory of elliptic operators of the form (1), which have
all received considerable study in the cases of operators of the forms (2) and (3), are Caccioppoli’s
inequality, Meyers’s reverse Holder inequality for gradients, and the fundamental solution. In this article
we investigate these three topics in the case of operators of the form (4) under certain assumptions on the
coefficients.

For operators (1) or (2) without lower order terms, it is usual to require that all coefficients be bounded.
Applying Holder’s inequality yields the bound

(LW, @) =

M=

Y ja“go,.A;;’gaﬁuk < Al o IV v ety IV o ety
[Rd

1lal=

|Bl=m
for any 1 < p < co. Thus, under these assumptions, L is a bounded linear operator from the Sobolev
space W™P(R?) (with norm || ¥ s gay = V"% |l ng4) to the dual space W™ (R%) = W™ RD) for any
1 < p < oo. This is a useful property we would like to preserve.

Observe that elements of W™”(R?) are, strictly speaking, equivalence classes of functions with the same
mth order gradient. Their lower order derivatives may differ by polynomials. In investigating operators with
lower order terms (3) and (4), the spaces W™P(R?) are not satisfactory; we will need the lower order
derivatives of functions in the domain of L to be well defined.

The Gagliardo-Nirenberg-Sobolev inequality gives a natural normalization condition on wh? (RY) if
p < d. Specifically, if p < d, then every element (equivalence class of functions) in W"P(R?) contains a
representative that lies in a Lebesgue space L? (R?) for a certain p* with p < p* < co. This representative is
unique as a L? function (i.e., up to sets of measure zero).

In [50], the authors introduced the function space Y»?(Q) with norm

lullyr2q) = lullz gy + IVullzg)-

The Gagliardo-Nirenberg-Sobolev inequality gives a natural isomorphism between Y»2(R%) and the space
Wl’z([R 4), This space (and its natural generalization Y based on L?" and L? norms) has been further used in
other papers, including [56] and in the papers [30,36,69,75] concerning second-order operators of the form
(3) with lower order terms.

We wish to consider higher smoothness spaces. An induction argument shows that, if u ¢ W™?(R9),
then there is a representative of u such that 0%u lies in a Lebesgue space for all @ withm — d/p < |a| < m.
This representative is unique (as a locally integrable function) up to adding polynomials of degree at most
m — d/p. (Specifically, 9%u € LPmao(R9), where DPm,d,a is given by formula (23).)

We define the Y™?(R4) norm by

lullymegey =Y 10%Uloma.amy-
m-d /p<|alsm

Y™P(R?) is thus a space of equivalence classes of functions up to adding polynomials of degree at most
m — d/p. The Gagliardo-Nirenberg-Sobolev inequality gives a natural isomorphism between Y"™P(R%) and
the space W™P(R%).
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Remark 5. If [a| < m — d/p, then the Gagliardo-Nirenberg-Sobolev inequality fails: if u € W™”(R9), then
0%u need not satisfy global decay estimates, and so there may not be any normalization that lies in any
Lebesgue space. It is for this reason that the spaces Y"™?(R4), unlike the traditional inhomogeneous Holder
spaces W™P(R?), impose norm estimates on only some, but not all, of the derivatives of order at most m.

N
We will consider operators that satisfy, for all suitable test functions i) and 5’, the Garding inequality
(or ellipticity or coercivity condition)
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and the bound
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for a range of p near 2.

(In Section 4, following [4], we will consider operators satisfying a slightly weaker form (34) of the
Garding inequality (6).)

Note that if d=2 and p > 2, then m-d/p>m -1 and so lullympgay = lulliymrga. In this case, the
Gagliardo-Nirenberg-Sobolev inequality provides no normalization, and so bound (7), for p = 2, can only
be expected to hold if a = b = m. Thus, in dimension 2, the results of the present article do not represent a
generalization of previous results such as [20]. We will include the case d = 2 in our results, but only for the
sake of completeness and ease of reference.

There are many possible conditions that can be imposed on the coefficients AL{:;; that yield bound (7).
Following (or modifying) [16,30,36,38,61,74,75], we will focus our attention on operators of the form (4) in
which the constants a and b and the coefficients A’ ap satisfy

d d
- =, - =, A » <A,
a>m 5 b>m > u£r|1aa|1§ | aﬁ”Lz BRY )

b<|Blsm

where
d

208=—————— € (1,00] forall a<|a] <m, b<]|a <m.
= g jag g € ) j J

Remark 9. Recall from Remark 5 that if u € Y™P(RY) and |a| < m — d/p, then 3°u may not lie in any
Lebesgue space. The conditions a, b > m — d/2 ensure that, if p = 2, then all of the summands on the
left-hand side of bound (7) are products of three functions in Lebesgue spaces. In fact, this is true of all p in
a certain open range containing 2; see Lemma 56.

The number 2,3 has been chosen such that bound (7) follows from Hélder’s inequality, as may be
readily verified using the definition (23) of pm,4,«. Observe that the conditions a, b > m — d /2 again ensure
that, for all a, B of interest, we have that 2, € (1, co].

Note that if 2m = 2 and d > 3, the conditiona, b > m - % holds fora = b = 0, and so we may ignore this

condition.
We will also consider coefficients satisfying Bochner norm estimates
max||A || <A b>m—g
a<lal<m a,f ooLZa ﬁ([Rd) ’ a, > ’ (10)

b<|Bl<m
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where

~ d-1

2= ———.
“ m = o] - IB]

Again, for second-order operators (2m = 2), ifd > 4, then we may take a = b = 0. For example, this includes
the case where coefficients are constant in a specified direction, that is, where A?4(x, t) = aJ5(x) for all
x € R t ¢ R, and some function a;:" € Liavﬂ([Rd‘l). This is the case studied in [30]. Operators of the form
(1) and (3) that satisfy Ai’g(x, t) = a,};:ﬁ(x) (for |a| = |B| = m) have been studied in the higher order case in
[17,18,22-26], and in the second-order case in many papers, including but not limited to [2,3,5,6,8,10—
13,28,48,49,52-54,57,59,60,63,72,73]. Nontrivial coefficients constant in a specified direction cannot lie in
LP(R9) for any p < oo, but can easily lie in Bochner spaces.

Like the condition (8), the condition (10) implies bound (7) for a range of p including 2; see Lemma 56.

We note that the conditions (8) and (10) differ from those of [33,81], in which the authors investigate the

system (3) or (4) for coefficients AL{':’; € L°(RY) for all a and B. (Our conditions imply A,f:’é € L°(R%) only
for [a] = |B] = m.)

1.1 The Caccioppoli inequality and Meyers’s reverse Holder inequality

The Caccioppoli inequality (established in the early twentieth century) is valid for all operators L of the form
(1), where the coefficients A;:’,; are bounded and satisfy the Garding inequality (6) and is often written as
follows:

C .
I vEP < & j WP whenever L% = 0 in B(Xo, 2r).
r
B(Xo,r) B(Xo,2r)

It can be generalized to the case Lu’ # 0 by adding an appropriate term on the right-hand side; a very
general form is

—0H C 7R U
j VuP <3 _[ W1+ CILUW N2 g, o1

B(Xo,r) B(Xo,2r)
where Wﬁl’Z(B(XO, 2r)) is the dual space to WS’Z(B(XO, 2r)), the closure in Wl’z(B(Xo, 2r)) of the set of smooth

functions compactly supported in B(X,, 2r). By the Poincaré or Gagliardo-Nirenberg-Sobolev inequality,
WS’Z(B(XO, 2r)) is (with equivalence of norms) the closure of the same set in Y“2(B(X,, 2r)).

Remark 11. It is common to formulate the Caccioppoli inequality (and Meyers’s reverse Holder inequality
below) for solutions to Ly’ = 7 - divF (i.e., (Lﬂ’)j =fj - zjzlaaFa,,-). This is equivalent to our formulation in
Ed .
terms of operator norms of Lu’ if appropriate norms on f and F are used.
Specifically, if Lt = - divF, then (LW, @)| = |(F, V)| for all test functions ¢ € Wy *(B(Xo, 2r)), and

so by Holder’s inequality, "Lﬂ)”W"’Z(B(xO, < ||IF| 12(B(x,,2r))- BY the Gagliardo-Nirenberg-Sobolev inequality, if

2r))
d>3andp =2d/(d - 2), then @ lxee, ) < CIVP 2, ary for all @ € Wy (B(Xo, 2r)), and so if LT = f

N —
then |Lu 2B 2y < Clf v Bxo,2r)-

Conversely, if LU’ € Wﬁl’z(B(Xo, 2r)), then by the Hahn-Banach theorem, there is some F € I2(B(X,, 2r))
with [Fll2pex, ) = ILW 25y, o)y SUCh that L = divE.

Remark 12. In the case of equations (N = 1) with real-valued coefficients, a Caccioppoli inequality can also
be established for subsolutions; that is, instead of a norm ||Lu|| appearing on the right-hand side, it is



DE GRUYTER Gradient estimates and the fundamental solution =— 5

required that Lu > 0 in B(Xo, 2r). See, for example, [69, Section 3]. This approach is not available in the case
of systems or complex coefficients and has received little study in the case of higher order equations.

The Caccioppoli inequality has been generalized to operators of the form (2) (higher order equations
without lower order terms) in [31] and with some refinements in [4,20]. It has been extended to operators of
the form (3) (second-order operators with lower order terms) in [36] (see also [30]). In the case of higher
order operators with lower order terms of the form (2), a parabolic Caccioppoli inequality was established in
[33] under the assumption that all coefficients (including the lower order coefficients) are bounded; this is
different from the assumptions of this article.

In [66], Meyers established a reverse Holder estimate. Specifically, he established that for equations
(N = 1) with bounded and elliptic coefficients, for all p and g sufficiently close to 2 (and, in particular, for
some p > 2 and g < 2), we have the estimate

1/p 1/q

djp—d
_[ |VulP | < Crd/p-dlq j [Vl + CILull g ix,. -
B(Xo,1) B(Xo,r)

The exponent g on the right-hand side can be lowered if desired; see [42, Section 9, Lemma 2] in the case of
harmonic functions, and [20, Lemma 33] for more general functions. Meyers’s results have been generalized
to second-order systems (even nonlinear systems) without lower order terms (see [45, Chapter V]), and to
higher order equations without lower order terms (see [4,20,31]).

Caccioppoli’s inequality is still valid for systems of the form (4), that is, higher order equations with
lower order terms. The argument is largely that of [20,31] and is presented in Section 4.

The obvious generalization of Meyers’s reverse Holder inequality is not valid in the case of operators
(even second-order operators) with lower order terms. That is, for any given positive integers m and d and
nonnegative integers a € (m — d/2, m], b € (m — d/2, m), there exists an operator L of the form

Lu= ) (-1)0%A4p0Pu)

aglalsm
b<|Blcm

with coefficients satisfying the conditions (6) and (8), and a function u : Qo — R with Lu = 0 in Qo, such
that for any p > 2 and any natural number k, there is a ball B(Xy, r,) with B(X, 2r,) ¢ Qo and with

1/p 1/2
| | s [

B(Xi,ri) B(Xk,2ri)

and, indeed, the stronger bound
1/p 1/2
m
I Vru | 2k Y rdemdimed I ViuR| . (13)

i=b+1

B(Xi, i) B(X,2rk)

See Section 6.2.

Weaker generalizations have been investigated in [30] and the argument of Section 6 takes many ideas
therefrom. The following theorem is the first main result of this article. It will be proven in Sections 4 (the
case p = q = u = 2) and 6 (the general case) and represents a simultaneous statement of the Caccioppoli
and Meyers inequalities for systems of form (4).

Theorem 14. Let m > 1 and d > 2 be integers. Let L be an operator of form (4) for some coefficients A that
satisfy the ellipticity condition (6) and one of bounds (8) or (10).

Then there is a 6 > 0 depending on m and d and the constants A and A\ in bounds (6) and (8) or (10) with
the following significance.
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Let pe[2,2+68),ue(2-6,2+6), and let 0 < q < co. Let j and @ be integers with 0 <j < m and
0 < @ < min(j, b). If p = 2, we impose the additional requirement that either q > 2 or @ > 1 (and thus, j > 1).

Let Q c R? be a cube with sides parallel to the coordinate axes. Let U € Y™H(OQ) be such that
ILW Iy gy < cO-

Then Viu € LP(Q), and there exist positive constants x and C depending on p, q, m,d, A, and A such that

_ 1t
|Q|(m—i)/d

C|Q|t/p-Yq-(m-w)/d
@ -1

; — —
Vullrrqy < L lly-mraq) + IV®U lIr96q\ @)

-1
foralll <0 <2.

Here, 6Q is the cube concentric to Q with volume |6Q| = 64Q|. Note that the condition u € Y™*(6Q)
is stronger than the condition VoU € L1(6Q\Q), that is, that the right-hand side of the given
bound be finite. The assumption V"u € L¥0Q) implies that Lu is a bounded linear functional on

m - - ' - . . — . .
W, " (0Q) ={ : v™p ¢ I* (R, = 0 inR9\0Q}; we require Lu to be a bounded linear functional on

" (6Q) (or, more precisely, on the space Wy (6Q) n Wy (6Q) equipped with the W™ -norm).
IfFLu € W ™P(0Q) for some p < 2 but sufficiently close to 2, a weaker result is still available; see Theorem 66.

1.2 The fundamental solution

L L
The fundamental solution E)X,]« for the operator L is, formally, the solution to LEXJ = 5XE}, where 6x denotes
the Dirac mass at X. The fundamental solution has proven to be a very useful tool in the theory of
differential equations without lower order terms (i.e., of forms (1) and (2)). By definition, integrating against

the fundamental solution allows one to solve the Poisson problem Lu" = 7 in R4, The fundamental solution
is also used in the theory of layer potentials, an essential tool in the theory of boundary value problems; for
example, layer potentials based on the fundamental solution for certain variable coefficient operators of
form (1) were used in [1-3,10-12,19,28,48,51,52,60,68,72,73] and of form (2) in [17,18,23,26].

L
Formally, the fundamental solution can be written as EXJ = L*l((SXE}), where SXE,-’ is the element of a

dual space given by (6XE}, 5)) = @X). In the case of constant coefficient operators, one can directly solve

—L
the equation Ey ; = L‘l(éxa) using the Fourier transform. For some well-behaved variable coefficients, L

is an invertible map from some function space into a space containing SXE}, and so, this approach is still
valid. In case (1) of second-order operators without lower order terms, see [62] (N = 1 and real symmetric
coefficients), [58] (N =1, real nonsymmetric coefficients, and d = 2) or [39,43] (N > 1 and continuous
coefficients).

This is the approach taken in both [20] and the present article for general higher order operators of
the form (2) or (4). By assumptions (6) and (7) and the Lax-Milgram lemma, L is invertible Y™2(R%) —
Y-™2(R9), If 2m > d, then by Morrey’s inequality, all representatives of elements of Y™2(R9) are Holder
continuous. Recall that elements of Y™2(R4) are equivalence classes of functions up to adding polynomials
of degree at most m — d /2. If a suitable (although somewhat artificial) normalization condition is applied,
then 5XE}-) is a well-defined and bounded linear functional on Y™2(R49), that is, an element of Y"™2(R%). We

—L —L
therefore may construct Ey; as Ex ; = L‘l(éxa) if 2m > d. If 2m < d, then the aforementioned argument

yields a fundamental solution for the operator L = (-A)L(-A) of order 4M + 2m if M is large enough; the
fundamental solution for L may be then derived from that for L.

This approach, with some attention to the details and use of the Caccioppoli and Meyers inequalities,
yields the following theorem. This theorem is the second main result of the present article.
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Theorem 15. Let L be an operator of order 2m of the form (4) that satisfies the ellipticity condition (6) and one
of bounds (8) or (10).

Then there exists a number 6 > O and an array of functions Efk for pairs of integers j, k in [1, N] and
defined on R4 x R4 with the following properties. This array of functions is unique up to adding functions P i
defined on R? x RY that satisfy 905P; (Y, X) = 0 whenever m —d/2 < |{| <m, m - d/2 < |§| <m, and
(<1, 16D # (m — d /2, m - d/2).

Suppose that a and B are two multiindices with m-d/2<|al<m, m-d/2<|Bl <m, and
(lal, IBl) # (m = d /2, m — d/2).

Suppose further that Q and T are two cubes inR4 with|Q| = |T| andT ¢ 8Q\4Q. Then the partial derivative

%aeE]%k(Y, X) exists as a L*(Q x T) function and satisfies the bounds

| [ sty xopaxay < cigpem-2e-amre, e
QT
If2-6<p<2+6,andifp<2or|f|>m-d/2, then
2/pg
[| [1safErcr omay | ax < cigpria-eie-2m, a7
r\aq
where L = L _ ™Al
b P d
Furthermore, we have the symmetry property
AGIER(Y, X) = OLEL (X, V). (18)

Finally, suppose that 2 - 6§ < q<2+ 6 and that m —d/q < |é§] <m. Let F ¢ L% (RY) be compactly

%:1—1+m_—|"(|. Let 1< €< N. For each B with m>|B| >m —d/q and each

supported, where @ . i

1<k<N,let

Up)(X) = J MBAEL (X, Y)F(Y)dY. (19)

IRd

The integral converges absolutely for almost every X € R4\ suppF for all such B and &; if |B| < m or |{] < m
then the integral converges absolutely for almost every X € R4,
Then there is a function ' € Y™4(R%) with dfu’ = ﬁ;;for all such  almost everywhere (if || + |&] < 2m) or
almost everywhere in R4\ suppF (otherwise) and such that
N
[oor- ¥ 5 [opason
R k,j=10<lalsm *,
b<|Blsm

forall g e Y™ (RY).

Many assumptions on the coefficients other than (8) and (10) are reasonable. We construct the fundamental
solution in Section 7. In that section, we will not explicitly use the assumptions (8) and (10); instead we will use
their consequences, the Caccioppoli and Meyers inequalities, for the operator L = AMLAM, The results in Section
7, and in particular Theorem 122, will allow the interested reader to construct the fundamental solution for other
classes of coefficients once a suitable higher order Caccioppoli inequality has been established.

1.2.1 Other approaches

The approach of this article and of [20] uses higher order operators, and in particular the higher order
Caccioppoli and Meyers inequalities, to construct the fundamental solution, and as such has only been
available since the development of a strong theory of higher order operators. The fundamental solution for
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second-order operators has been of interest for a long time, and other approaches to its construction have
been used.

If d > 2, then 8xe; is not an element of Y-22(R4). Specifically, elements of Y*2(R¢) are elements of
Lebesgue spaces (or of BMO), and so their value at a single point is not well defined. In some special cases
(discussed earlier), L is invertible from Y3?(B) to Y-P(B) for open balls B and p large enough to apply
Morrey’s inequality, and so the fundamental solution can be constructed using the approach discussed
earlier and some attention to the behavior outside of B. However, this approach is not available in other
cases.

In some cases, solutions to Lu’ = 0 may be locally Hélder continuous even if general Y2 functions are
not. In this case, the fundamental solution may be constructed as a limit of L™'T,, where T, — 6XE} as
p — 0* and each T, is in Y"22(R9). Careful application of the Caccioppoli inequality, the local Holder
continuity, and other arguments yields that LT, converges to a fundamental solution.

This approach was used to construct the fundamental solution for operators of the form (1) [47,50] and
(3) [36,69,75] in dimension d > 3 under the assumption that solutions are locally Holder continuous.
Green’s functions in domains (rather than in all of R4) were constructed using this method in the afore-
mentioned papers, and also in [61].

A different approach involving kernels for the heat semigroup e was used in [9] to construct the
fundamental solution in dimension 2; as observed in [40] their approach is valid for systems of the form (1)
with N > 1 and with complex nonsymmetric coefficients. The articles [34,40] establish results analogous to
those of [9] for the Green’s function of a domain rather than all of R2.

Considerably more work must be expended to apply the semigroup approach in dimension d > 3; heat
semigroups were used in [64] to construct the fundamental solution for the magnetic Schrodinger operator,
and a different form of semigroup was used in [72] to construct the fundamental solution assuming only
local boundedness, not local Holder continuity.

This approach does require the De Giorgi-Nash property of elliptic operators, or a condition, such as
real coefficients, that implies this property. However, this approach often yields stronger estimates than
those of the present paper, and indeed stronger estimates than those true of the fundamental solution for
the Laplace operator. See, for example, [37,64,76].

1.3 Outline

The outline of this article is as follows. In Section 2, we will define our terminology. We will give some
results concerning function spaces (in particular, Sobolev spaces) in Section 3.

We will prove the Caccioppoli inequality in Section 4. We will prove our generalization of Meyers’s
reverse Holder inequality in Section 6.1 and construct the counterexample of the inequality (13) in Sec-
tion 6.2.

We will construct the fundamental solution in Section 7.

Some results concerning invertibility of the operator L between certain function spaces will be used in
both Sections 6 and 7; we present these results in Section 5.

2 Definitions

2.1 Basic notation

We consider divergence-form elliptic systems of N partial differential equations of order 2m in d-dimen-
sional Euclidean space R4, d > 2.
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When Q c R4 is a set of finite measure, we let ](Qf = ﬁj’f , Where |Q| denotes the Lebesgue measure
of Q.

As mentioned in Theorem 14, if Q is a cube in R or R4 and 8 > 0 is a positive real number, we let 6Q
denote the concentric cube with |6Q| = 69Q| (so the side length of 6Q is 8 times the side length of Q).

We employ the use of multiindices in (No)4. We will define

d
V=2 and yl=y-pl-y
i=1
for any multiindex y = (y, ...,);)- When § is another multiindex in (No)?, we say that § < y if §; < y; for each
1 < i < d. Furthermore, we say 6 < y if 6; < y; for at least one such i.
We will use the Leibniz Rule for multiindices, that is, that for all suitably differentiable functions u and
v and a multiindex a, we have that

al
o*(uv) = Yy ————0'ud*'v.
yz yia - y)!

2.2 Function spaces

Let Q ¢ R? be a domain. We denote by LP(Q) and L*(Q) the standard Lebesgue spaces with respect to
Lebesgue measure, with norms given by

1/p

lulr = j|u|ﬂ

0
if1 < p < 0o, and
lullze@) = esssupqlul.

If 1 < p < 00, we let p’ be the extended real number that satisfies 1/p + 1/p’ = 1.
Ift e R, let[Q] = {x e R&1: (x,t) € Q}. We define the Bochner norm LILF(Q) by

a/lp \/4

(o]

oz = j jlu(x, OPdx| dt (20)
ay

—00 l

with a suitable modification in the case p = co or g = co.
We define the inhomogeneous Sobolev norm as follows:

k
— —
1 lyry = Y IVIU ey
j=0

where derivatives are required to exist in the weak sense. We then define the homogeneous Sobolev norm as

1 gy = VK lip( - (1)

Observe that by the Poincaré inequality, if @ ¢ W*?(Q) and Q is bounded, then Viu € LP(Q) forall0 < j < k;
however, the Poincaré inequality does not yield finiteness of IIViuIILn(Q) in the case where Q is unbounded.

The Sobolev spaces are then the spaces of equivalence classes of locally integrable functions that have
weak derivatives whose Sobolev norm is finite, with the equivalence relation u~Vif ||7 - 7|| = 0. Observe
that elements of inhomogeneous Sobolev spaces, like elements of Lebesgue spaces, are defined up to sets of
measure zero, while elements of homogeneous Sobolev spaces (in connected domains) are defined up to
sets of measure zero and also up to adding polynomials of degree at most k — 1.



10 —— Ariel E. Barton and Michael . Duffy Jr. DE GRUYTER

Recall that for 1 < p < d, the Sobolev conjugate of p is defined to be

d
pe
See, for example, [41, Section 5.6]. Notice that
111 @
p p d

We will now generalize equation (22). Let k be an integer so that m — % < k < m. We then define p;; 4 x SO

that
1 1 m-k

DPm,d k B p d )

When considering elliptic operators of order 2m in dimension d, and the numbers m and d are clear
from context, we will let px = pm,qa,r. If @ is a multiindex, we will let py = Pm.d,a = Dm,d,ja- NOtice that when
|a] = m we have that 2, = 2, when|a| = m — 1then 2, = 2* and so on. This definition for 2, will help keep the
notation throughout this article relatively clean and help us to avoid backward summation.

If Q ¢ R?is a domain, m > 1is an integer, and 1 < p < oo, we define the Y™P(Q) norm as follows:

lulymry = D 19%Ullrmaa)- (24)
m-d /p<|alsm
We then define Y™P(Q) analogously to W™P(Q). Observe that elements of Y™?(Q) are defined up to adding
polynomials of degree at most m — d /p. We let

YIP(Q) = {@ € Y™P(RY) : @ =0 outside Q}.

Then Y["P(Q) is the space of functions in Y™P(Q), which are zero near the boundary in an appropriate sense.
Note that YJ"P(R9) = Y™P(R?). Conversely, if R4\ Q has nonempty interior, then elements of Y;"?(Q) have a
natural normalization condition (i.e., nonzero polynomials are not representatives of elements of YJ"?(Q)).

We will generally write bounded linear functionals on Y§*?(Q) (i.e., bounded linear operators from
Y3"P(Q) to €) as (T, -)q; if Q= R4, we will omit the Q subscript. We define the antidual space

Y P(Q) = (Y§P(Q)', for 1/p + 1/p' = 1, by
(T, -)q isabounded linear functional on Y*P(Q) if and only if T € Y ™P'(Q). (25)

- —
Note that if a € C then {(aT, ®)q = a(T, ®)q.

2.3 Elliptic operators

Let m be a positive integer. Let A = (Ao’;:’é) be an array of measurable real or complex coefficients defined on
R? indexed by integers j and k such that 1 <j < N and 1 < k < N and multiindices a and § with |a| < m
and |B] < m.

We define the differential operator L with coefficients A as follows. If i is a Sobolev function, we let
(Lﬂ), ) be the linear functional that satisfies

N
DN EXV VI A 6
Jik=1lal<m|B|<m

for all appropriate test functions 6’

Remark 27. If A, o/, and ¢ are sufficiently smooth and decay sufficiently rapidly at infinity, we may
integrate by parts to see that
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N N
WTF =Y [03 3 3 omoralfonu.
R4 k=1|a|<m|B|<m
Thus, in this case, we may write

L) = Z Y Y (~nda(a)iobuy)

k=1|a|<m|B|<m

as a classically defined linear differential operator; this coincides with formula (26) if (-,-)q denotes the
usual (complex) inner product in LA(R%; CV).

We define
a = a; = min{|a] : AO{”;(X) # 0 for some j, k, 8, X}, (28)

b = b, = min{|f] : Ai:’l;(X) + 0 for some j, k, a, X}. (29)

Definition 30. We let IT; be the largest interval with

m-b 1 d-m+a
HLQ p: d <;<T

and such that if p € II;, then there is a A(p) € [0, co) such that bound (7) is valid, that is,

N

Y Y AR | < AP lymris 1P lymorgess (31)
a | j,k=1as|alsm
b<|Blsm

forall @ € Y™P'(R9), ) € Y™P(RY).

We consider singleton sets to be intervals, so {2} = [2, 2] is a possible value of II;. We will usually
assume that 2 € II;; in particular, this implies thata, b > m - d /2.

Remark 32. If p € II;, then (LW, @) < A(P)I@ llymr' g | ¥ lymrge and the integral in the definition of
(LE), 5)) converges absolutely for such % and W; thus, if ¥ € Y™P(RY) then the given integral is a linear
functional on Y§"? '(R%), and so LU’ € Y"™P(R%). Our conventions for Y7 yield that L is a bounded linear
operator (and not a conjugate linear operator) from Y™P(R9) to Y"™P(R4).

Remark 33. The conditiond /(d + a — m) < p < d/(m — b) ensures that the derivatives a’@), aﬁJ appearing
in bound (31) satisfy |a| > m — d/p' and |8| > m — d/p. By the definition (24) of Y™P(R9), this means that

3%g € LP(RY), al@’ € LP(RY). Derivatives of Y™P(R?) or Y™ (R<) functions of lower order are defined only up
to adding constants or polynomials, which would preclude validity of bound (31). It might be possible to
consider the casea < m — d/2 orb < m — d /2 by considering more delicate cancellation conditions or Hilbert
spaces other than Y™2(R9), but such constructions are beyond the scope of this article.

As noted in Section 1, if m = 1and d > 3, then the conditiona,b > m — d /2 isvacuous,asm - d/2 < 0O,
and so there are no multiindices a € (No)4 with |a| < m — d /2. Conversely, ifd = 2, then A # 0 only in the
case when |a| = || = m, and so the present article does not represent a generalization of previous results
such as [4,20,31,36].

We will consider coefficients that satisfy the Garding inequality (6). In [4], Auscher and Qafsaoui
consider higher order elliptic systems in divergence form in which ellipticity is in the sense of the following
weaker Garding inequality:
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N

Re )’ | oAb, > NTTG IR, ) - BB, (34)
j,k=1|al<m|B|<m RY

where A > 0 and § > O are real numbers, for all a, which are smooth and compactly supported in R%. The

standard Garding inequality (6) is thus the weak inequality (34) with § = 0. In Section 4, we will prove

results in the generality of bound (34) instead of (6).

Throughout, we will let C denote a positive constant whose value may change from line to line, but that
depends only on the dimension d, the order 2m of our differential operators, the size N of our system of
equations, the constant A in bound (6) (or (34)), and the constant A(2) in bound (7). A constant depending
on a number p ¢ II; may also depend on A(p).

A standard argument involving the Lax-Milgram lemma (see Lemma 58) shows that if L satisfies the

condition (6) and 2 € II;, then L is not only bounded but invertible Y™2(R%) — Y-™2(R4),
Definition 35. If L : Y™2(R9) — Y-™2(R4) is bounded and invertible, then we define

Y; = {p : L isbounded and compatibly invertible Y™P(R9) — Y™P(R4)}, (36)

By compatibly invertible, we mean that L : Y™P(R9) — Y"™P(RY) is invertible with bounded inverse and
thatif T € Y"™P(R%) n Y"™24R4Y), then L!T € Y™P(RY) n Y™4RY). (Thus, L!T has the same value whether
we regard L as an operator on Y™2(R%) or Y™P(R%).)

Compatibility is not automatically true; see [13] for an example of operators that are invertible, but not
compatibly invertible, in some sense.

We will conclude this section by reminding the reader that our main focus is on coefficients that satisfy
bound (8), that is,

; . d d
||A;:;§||LG,ﬁ([ka) <A ifmz=la>m- 5 and m> |B| >m - >

Aj;:’é =0 otherwise,

or bound (10), that is,

i . d-1 d-1
IIAJ:EIIL?LEQ,ﬁ(Rd) <A ifmz|al >m- and m > |B| > m - —
Abp=0 otherwise.

where

d x d-1

2pp= ————, 2qp=—-——.
P om =1 1B P 2m ol - 1B

Elementary computations involving Holder’s inequality (Lemma 56) shows that both conditions (8) and
(10) imply that IT; contains an interval around 2 whose radius depends only on the dimension d.

3 The Gagliardo-Nirenberg-Sobolev and Poincaré inequalities and
their consequences
In this section, we will collect some results regarding Sobolev functions that will be useful throughout the

article. These results are mainly consequences of the Gagliardo-Nirenberg-Sobolev inequality and induc-
tion arguments.
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We will begin with Section 3.1, in which we will consider the global function spaces W™”(R%) and
Y™P(R4). In Section 3.2 we will study Y™?(Q) for a cube Q.

We will often wish to consider the behavior of functions in thin annuli. Thus, in Section 3.3, we will
establish results in (possibly thin) annuli rather than cubes. We will sometimes need different forms of
estimates and so will also investigate the Poincaré inequality in thin annuli.

Finally, in Section 3.4, we will investigate the behavior of Sobolev functions when multiplied by cutoff
functions; since our standard cutoff functions have gradients supported in an annulus, this will build on the
results of Section 3.3.

3.1 Global Sobolev spaces
In this section, we will establish some basic properties of the spaces W™?(R%) and Y™P(R%).
The global Gagliardo-Nirenberg-Sobolev inequality
”u"LP*([Rd) < Cp,dllvu"LP(IRd)

is true for functions u in the inhomogeneous Sobolev space W'P(R9) = LP(RY) n Wh? (RY) (see, for example,
[41, Section 5.6.1]), and also for functions u ¢ wh? (R9) satisfying weaker decay estimates at infinity (see
[67]). We would like to establish an analog to the global Gagliardo-Nirenberg-Sobolev inequality for
arbitrary elements of WY (RY). Recalling that elements of W'P(RY) are equivalence classes of locally L
functions up to additive constants, we find the following theorem suitable.

Theorem 37. Let1 < p < d,d € N. Thenthereis a Cp 4 > 0 depending only on p and d such that, ifu € LL.(R9)
and Vu € LP(R9), then there is a unique constant c such that u — ¢ € L? (R%) and

lu - C“Lp*([Rd) < ClVullprgd).

Proof. Uniqueness of ¢ is clear. Let Q < R? be the unit cube and let j € N. Applying [46, Theorem 7.26] and
scaling arguments, we see that if ¢ is any constant, then

I — cllp gy < Cp.a27/%u — cllpraigy + Cp,all Vullraig)-

Choosing ¢ = (fz,-Qu), we have that by the Poincaré inequality,

lu - [ f“)"yﬂ*(ziQ) < C"Vu"LP(ZiQ)-
2Q

[
(g

< Cp, a2 74/P | Vullpping) -

We may then compute that

(-2

— 2d/p

17 (2Q)

< 2Jd/r + 2Jdlp

¥ Q) 20

Summing, we see that if ¢ < k, £, k € N, then

4912

< Cp,dZ_M/p*||Vu||LI’(sz),




14 — Ariel E. Barton and Michael J. Duffy Jr. DE GRUYTER

(4

Taking the limit as £ — co completes the proof. O

and so ¢ = lim,-ﬁ(x{ ][u] exists. We then see that
2Q

< Cp,d”vu”Lp(sz).

= ¢l g < U/ ¢ — ( ][u) +

20 @'

We now generalize to higher order.

Corollary 38. Suppose that m > 1, d > 2 are integers and that 1 < p < co. Then there exists a constant c
depending only on d, m, and p with the following significance. Suppose U is a representative of an element of

W™P(R?). Then there is a polynomial P of order at most m — 1, unique up to adding polynomials of order at
most m — d /p, such that

lu - P”y’"’P([Rd) < C””"W’”"’(Rd)-
In particular, |lu — Plymrge is finite.
Proof. Recall the definition (23) of p,; 4. Because (Pm,d.k+1)* = Pm.ak, if m — d/p < k < m, the bound
IV (u - Pl pmargey < Ck||Vk+1u||me,d,k+1(Rd)
for some Cj follows from Theorem 37. By induction, and because ppn 4.m = P,
IVk(u - P)lpmarwey < CllV™ullpge).

Applying the definitions (21) and (24) of W™P(R9) and Y™P(R?) completes the proof. O
We will now establish a bound on the Bochner norm of elements of Y™P(R%).

Corollary39. Letm e N, p € [1,d - 1). Let k € Ny satisfym — (d — 1)/p < k < m. Let u be a representative of
an element of W™P(R?) and let P be the polynomial in Corollary 38. Then

V*(u - P)lpprpma-rigay < CIVTUllpgd.
In particular, if u € Y™P(R9), then this bound is valid with P = 0.
Proof. By Corollary 38, we have that
VE(u - P)||L[pL)f'm,d,k([Rd) < 00.

In particular, for almost every t € R, we have that
"Vku("t) - VkP( "t)”LI-’m,d,k([Rd’l) < 0.

By definition,
o 1/px - i/p
9l = | [ [ 1omucn opaxde| = | {190 .de|
—co R*! —co

and because this quantity is finite, we must have that
IV™u( ',t)”LP([Rd*I) < 00
for almost every t € R.

Fix some t such that both of the aforementioned norms are finite. Let |y| = k. Applying Corollary 38 in
R4-! with d replaced by d - 1 yields a polynomial p¢, defined on R4! such that
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13U( -,8) = Peylppa-taggas < CIVERUC - D)l pa-rigga-sy < CIV™UC ) pa-rgga-y-
But
0"u( -,t) = P( )l pmargaty < IVKUC +,t) = VEPC -, pmargé-ty < 00
R R )

and because both p;, and d'P( -,t) are polynomials on R4, finiteness of these two norms yields that
Pry(x) = OP(x, t) for all x € R4,
Thus,

10"u( -,t) = OP( -, Ollpparygaty = [10"U( -,t) = Peyllppa-trgaty < CIVTUC -, O)llppa-tyga-t)

for almost every t € R. Summing over all multiindices y with |y| = k and integrating in ¢, we have that by the
definition (20) of LPLY,

o 1/p
195 = Pl pypma-rie = j 17K = PYCOI g A
-0
0 1/p
m . p
S LT QT
—00
= C”vmu”LP([Rd).
This completes the proof. O

3.2 Sobolev functions in cubes
In this section, we will establish analogs to Corollaries 38 and 39 in cubes.

Remark 40. In this section and throughout this article we have chosen to work in cubes rather than in balls.
This simplifies certain covering arguments (we never need to use the Vitali covering lemma when working
with cubes), but the primary motivation is ease of use with Bochner norms. Recall that the LILP(Q) norm
involves integration over the sets [Q]'. If QO ¢ R? is a ball, then [Q]' depends on ¢ in a complicated way;
however, if Q is a cube with sides parallel to the coordinate axes, then [Q]’ takes on only two values, one of
which is the empty set.

Lemma 41. Let m,d e N, d >2, p € [1,0), and let j, k € Ny satisfy 0 <j<k and m - d/p < k < m. Let
Pk = Pm.a.x- Then there is a constant C depending only on p, d, and m such that if Q c R? is a cube and
u € WmP(Q), then
m—k+j
IViull gy < C Z |Q|ET+k=m) /A 7iy || pq.
ij

Proof. Suppose first that |Q| = 1. By the Gagliardo-Nirenberg-Sobolev inequality in bounded domains (see,
for example, [46, Theorem 7.26]) and the definition (23) of pi, we have that

1
||W||ka(Q) < C”W”WLPkﬂ(Q) = CZ”VIW”LPIM(Q)
i=0

for any function w € WhPk1(Q). Taking w = Viu, we see that
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j+1
IVullLngg) < €Y IViulleq)
i=j
Iterating this argument with w = Viu and recalling that p = p,, yields the |Q| = 1 case of the lemma. A
change of variables establishes the case for general Q. O

We may also control Bochner norms; this is very useful in the case that the coefficients satisfy the
condition (10).

Lemma 42. Letm,d e N,d > 2, p € [1, 00), and let j, k € Ng satisfyO <j< kandm - (d - 1)/p < k < m. Let
Dk = Pm.a-1.x- There is a constant C depending only on p, d, and m such that if Q ¢ R¢ is a cube with sides
parallel to the coordinate axes and u € W™?(Q), then
m-k+j
IViullpr gy < € ). 1QIETH+m/d Vi g,
i=j

Proof. Let Q = A x [to, to + R], where A c R4 !is a cube, ¢, € R, and R = |Q ['/4. Recall that

to+R p/Bc \/P
Wiulyyipg = | [ | [17uex, orax | ae
to \A

By applying Lemma 41 in dimension d - 1, we see that

1/Pk

m—k+j
.[IV"u(x, OPkdx | < C ) RT*MViu( D))
A =
Integrating in ¢ completes the proof. O

3.3 Sobolev functions in annuli

We will now establish analogs to Lemmas 41 and 42 in cubical annuli, that is, in domains of the form 6Q\ Q
for some cube Q c R? and some number 6 > 1.

Lemma 43. Let m,d e N, d > 2, p € [1,00), and let j, k e Ng satisfy 0 <j<k and m - d/p < k< m. Let
Dk = Pmak- Let1 <0 <2,

Figure 1: The rectangles in the proof of Lemma 43.
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Then there is a constant C depending only on p, d, and m such that if Q ¢ R? is a cube with sides parallel
to the coordinate axes and u € W™P(6Q\ Q), then
) m-k+j C
j
IViullreg\0) < C ). (@ - DIy

i=j

IViullr@q\ o) -

If in addition k > m — (d — 1)/p, then
m—zk:+j c
"VjunLtpok(gQ\Q) <C [V u"L"(@Q\Q)
= ((9 l)loll/d)m k+j—-i

Proof. Observe that there exists an integer n > 2 w1th =< Q < —1 < 2. Without the loss of generality, we

assume that Q is open. Let I, ..., I; be the d open mtervals that satlsfy Q = Iix---x Iy. If I = (ax, by), and
r = by — a; = |Q|'/4, define the d(n + 2) intervals I j by

r, ak), Iy = (bk, by + 6- 1r), Lj= (ak +1== 1r, ag + ir) if1<j<n.
n n

Lo = (ak -

LetG = {Lj, x L, x ---x1Igj, : j €{0,1, ...,n + 1}, and let H c Gbe givenby H = {hj x Lj, x ---xIyj, : ji€
{1, ...,n}}. The rectangles in the set G are shown in Figure 1. Up to a set of measure zero,

Q= UR Q= UR

ReG ReH

Furthermore, the rectangles in G are pairwise disjoint. If R € G, then the shortest side of R is at leastr /n and
the longest side is at most (6 — 1)r /2 < 2r/n. A change of variables argument shows that Lemmas 41 and 42
are valid in R with uniformly bounded constants.

Supposem — (d - 1)/p < k < m. If Q € RY, recall that [Q] = {x € R¥': (x, t) € Q}. Then

o pipc \V/P
IV/ullpr oo\ ) = I '[ |Viu(x, t)[Pedx dt
o0 \ [60\ QI

p/Bc /P

_ T > [ 1vucomax|

0 RGG\H [R]t

Because p /Py < 1, we have that

p/Bc \MP

1/p
Widppona <| Y || [ wuee opax| e =[ y "Vu“Lw@) .
ReG\H “ | Ry ReG\H

By Lemma 42 in rectangles,

. m—k+j C p\l/p
”v]u”LtpL,?"(GQ\Q) = Z Z (6 - Drym- k+j— 1”v u”Lp(R) :

ReG\H

By the triangle inequality in the sequence space ¢,

ReG\H

) m-k+j I ) 1/p
IVilipipoo0 < L ((6 - Drym ki > (IVulrw)?
i=j

m—k+j c

Y ———————|Viulrg\0)-
= ((9 1) )m k+j-i

A similar (and simpler) argument establishes the bound on ||Viu"LPk(gQ\Q). O



18 = Ariel E. Barton and Michael J. Duffy Jr. DE GRUYTER

Lemma 43 generalizes the Gagliardo-Nirenberg-Sobolev inequality to thin annuli. We remark on the
presence of the term 6 — 1 in the denominator of the right-hand side. In a thin annulus, this term is
potentially very small, and so Lemma 43 yields a poor bound.

The following lemma allows us to bound a function u in an annulus by its gradient, without powers of
(6 - 1). We observe that the following lemma is a special case of the Poincaré inequality and not of the
Gagliardo-Nirenberg-Sobolev inequality; that is, we do not gain higher integrability (a higher power of u) on
the left-hand side. We will use both Lemmas 43 and 44 in different contexts.

Lemma 44. Letd > 2 be aninteger and let1 < p < oo. There is a constant C = Cg , depending only ond and p
such that if Q c R4 is a cube, 1 < 8 < 2, and u € WP(6Q\ Q), then

I u- ](up

< CqplQIP/@ f [VulP.
90\Q 6Q\Q

6Q\Q

Proof. We restrict to the case|Q| = 1 and where the midpoint of Q is the origin (i.e., the case Q = (-1/2, 1/2)%);
rescaling and translating yields the general case.

Let p(X) = 2max{|Xi, ...,|X4]}. Thus, if X € RY, then p(X) is the unique real number with X € 3(p(X) Q).
Observe that p is a Lipschitz function with |[Vp| = 2 almost everywhere and with p(X) < 2|X| < \/Ep(X).
Define

d_ d _ pd\/d
r(t) = 0 1t’7’+2 0 .
pLa| 241

Observe thatr(1) = 1, 7(2) = 0, r is increasing, r(t) / t is decreasing, and r(t)4-! r'(t) = %td‘l. In particular,

ifl<t<2thenO<r'(t)<6?-1.
Let Y(X) = Xr(p(X))/p(X). Then @ is a bilipschitz change of variables ¢ : 2Q\Q — 6Q\Q.
If f € [1(2Q\ Q), then
| r

20\Q

2

1

EI j FXOdo(X)dt
1 9(tQ)

where o denotes d — 1-dimensional Hausdorff measure (i.e., surface measure on the boundary of the cube
tQ). In particular, letting f = g - 1 and making the change of variables X = tY in the inner integral, we have
that

I goth= %jtd-lj g o Y(tY)do(Y)dt.
oQ

20\Q 1

IfY € 0Q, then p(tY) =t and so Y(tY) = r(t) Y. Thus,

2

J gt %J f g(r(t) V)do(Y) t-1dt,

20\Q 10Q

Applying our aforementioned formula for r'(t),

2
_ 29-1 d-1,1
'[ go= 2071 J Iog(f(t)X)dO(X)r(t) r'(t)dt.

20\Q 10

Using the chain rule of single variable calculus and reversing our aforementioned arguments,
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J goth= z(ed )I j g(rX)do(X)rd-1dr = 2(0 _ 1)I f g(X)do(X)dr— i f g.

20\Q 19Q 1 3(rQ) 6Q\Q
We will apply this argument to g = u and to g = |u|”. In particular,

__ 1 _ o e1-1 s — .
J u=Tava I”‘ad—l)wa\m I“ b= fucy
0Q\Q 20\Q

6Q\Q 20\Q

We also need to integrate the gradient. Let J,, be the Jacobian matrix for the change of variables ¥, so
that V(u o ) = JpVu) o 3. If X € 2Q\Q, then

W |_| o)) 5y r'e))PE) - r(pX))
pt) 7 p(X)?

Xy |
r(p(X)>(5 X;akp<X>) , K00 62 -1 _px)*!
X) pX) p(X) 294 -1r(pX))d-t|

Ip(X )‘

Note that |Xjo0(X)| < 2|Xj| < p(X ) for all j and k. Furthermore, if 9;0(X) exists and is not equal to 0, then it has
the same sign as Xj, so 0 < X’E’(’J( < 1. Finally,1 < p(X) < 2andsol1=r(1)/1 = r(p(X))/p(X) = r(2)/2 = 0/2.
Thus, we have that

. d _ 1 Hd-1
L) 6%- 1277 <09 < 2
Xy 24 1 941
and so Jy is a bounded matrix. Thus,
1/p 1/p 1/p
[ waewe| = [ oo <cf [ ey
2Q\Q 20\Q 20\Q
Now,
04 -1 o
= fup=Za | e fuep <o IV o PP
eo\Q  \Q ZQ\Q 2000 20\0
< cdp — [ 1owewp = cap [ vup.
2Q\Q 6Q\Q
Thus, the Poincaré inequality holds in an annulus with constant independent of 8. O

3.4 Sobolev norms and cutoff functions
A particular application of Lemmas 43 and 44 is the following result concerning smooth cutoff functions.

Lemma 45. Let m,d € N,d > 2, and let 1 < p < co. There is a constant C depending on m, d and p with the
following significance.

LetQ c Rebeacubeandlet1 < 0 < 2. Let y € C°(R9) be a test function supported in 0Q and identically
equal to 1in Q, with 0 < x < 1. Define X = maxy<;i<a(6 — 1)!|Q [[/4|Vil=q).

If u e W™P(6Q) (equivalently, if u € Y™P(6Q)), and if we extend uy by zero outside of 6Q, then
uy € Y™P(R?) and
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m-1
CX
luxllymegay < llullymreq) + Z

gV Wllrr@o\ 0)-
£ (6 - DIQIMY)

Proof. We begin by using the definition of the Y™?-norm and the Leibniz rule.

P 1/pk

K K
lllymegey = . IVK@OIagey < Y. I (z G V<] |V ul)
a

m-d/p<ksm m-d/p<k<sm R j=0

Observe that Cy x = 1. By definition of X and isolating the j = k terms,

1/pk ) 1/pk

k-1 D
lulymgee < j|v'<u|f’k ic Y j[wa—l)f'<|Q|<f’<>/d|w‘u|)
6Q\Q

m- d/p<k<m m-d/p<k<m j=0

1/pk

< lullymrogy + ). ZW I [Vin|P

m-d [p<k<m j=0

By Lemma 43,

m-1
cX
luxlymege < lullymrog) +

@ nigray e
i=0

This completes the proof. O

4 The Caccioppoli inequality

The Caccioppoli inequality was established first by Caccioppoli in the early twentieth century and is a
foundational result used throughout the theory of second-order divergence form equations. It has been
generalized to the case of second-order operators with lower order terms in [36], and of higher order
equations (without lower order terms) first in [31], and later with some refinements in [4,20].

We now generalize these results to the case of higher order equations with lower order terms. We will
follow [4] and derive a Caccioppoli inequality for equations that satisfy the weak Garding inequality (34)
(and not necessarily the stronger Garding inequality (6)). We will follow [31] and establish the Caccioppoli
inequality for solutions % to inhomogeneous equations Lu’ = T for a (possibly nonzero) element T of Y-"™P,

We begin with the following lemma. This lemma was proven first in [31] for operators of order 2m
without lower order terms.

Lemma 46. Let L be an operator of order 2m of the form (26) associated to coefficients A that satisfy the weak
Garding inequality (34) and either bound (8) or bound (10).

Let Q ¢ R4 be an open cube with sides parallel to the coordinate axes, and let1 < 0 < 2. Let U e wm™2(6Q).
Let T € Y"™2(6Q). Suppose that LW =T in 6Q in the sense that formula (26) is true for all test functions
@ € W(6Q). Then we have that

—> £ C k3712 712 2
IV’" <)y VKR + ¢8| WP + CITIR,
60\ Q 6Q

& 0((9 1)|Q|l/d)2m 2k

where C is a constant depending on the dimension d, the order 2m of L, the number A in bound (34), and the
number A in bound (8) or (10). Here, | T|| = || T|ly-m2gq) is the operator norm, that is, the smallest number such that

G, T)| < 19 lymaoq I I for all € YI2(6Q).
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Proof. Let p = ((8 — 1)/2)|Q["/4 be the distance from Q to R\ 8Q. Let ¢ be a smooth, real valued test function
with 0 < ¢ < 1, supported in 6Q and identically equal to 1 on Q. We require also that |V¥p| < Cip™* for any
integer k > 0.

Define $ = (p""’ﬂ). Notice that by Lemma 45, J € YI2(0Q). Furthermore, by formula (26),
N I,
= j —
>y y ’[aa((pAmUj)Aé:IéaﬂUk = (T, ¢"™U )gq. (47)
j,k=1|al<m|B|<m 00

We first consider the left-hand side of formula (47). By the Leibniz rule, and separating out they = a
terms, we see the following.

j aa(¢4mu])Al kaﬁuk jaa(¢2mu )Al k Zmaﬂuk + j 7 Jy* y(¢2m)ay(¢2mu})A] ka/}uk

6Q 6Q QV<* y'(a v

Now as in [20], we write

— &g (@mar(p) = Y 9D, 3T
);X (a - p)! j (;X ¢ O (48)

for some functions @, ¢, which are supported in 6Q\Q and satisfy |®, (| < Cp!¢I-1%|. Thus, we have

j ("M )A’ kdBuy = I (> )A’ kp2maPuy. + I Y Dy u,A’ * p2mPyy.
{<a
60

It is desirable to have our final term in terms of 3%(¢?™u;) rather than ¢2"dfuy, so after one more application
of the Leibniz rule, and writing as in formula (48), we have for some functions ¥ ;, which are supported in
6Q\ Q and satisfy [ ¢| < Cp!sI-IAl

jaaap‘*maj)A sy = Iaa«pzmu DAL §omdPuy + j . D (WA §F(9?uy)
(<a
6Q

'[ Z (Da (aiu,A Z (p’"‘I’ﬂ,gafuk.
g 5<® 5 <B

Similar measures as taken earlier also give us

Iaa(<p2mai)Ag;’,;aﬂ(<pzmuk) - Iaa«pz'"u JAFES g Wy oy + ja”‘(<p2’"u DA K pmafu.
i

Thus, by combining the previous two equations and reintroducing summation, we see that

N
> 22 fa“(<p2’"ﬂj)Ac{;’,§a’3(<p2’"uk)

jk=1lal<m|Bl<m

z Z z J-aa((pl;mu})A aﬁuk_ Z z z Iz®a(a(u} 1kaﬁ(q)2muk)

Jik= 1|a|<m|B|<m jok= 1|a|<m|B|gm90(<a
F YT [ Seuns £ T e >y y J H@TDAL T 0"
Jik=1]al<m|Bl<m g, {<a Jrk=1lal<m|B|<m g

We write this as I = II + III + IV + V. Observe that by formula (47),
I = (T, p"“"U )gq. (49)

By the condition (34), we have that
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AV (@™ )2, o < Re T+ ™1l |2

1X(6Q) LX(6Q)"

Suppose that the condition (10) is true. By Holder’s inequality and properties of @, (,
CA
D D Y e Etcl KA PR Y| CAC T P oy

m—(d-1)/2<|alsm {<a
m-(d-1)/2<|B|sm

Recall that (pz’”ﬁ € YI2(0Q) and so may be extended by zero to a Y™?([R%)-function. By Corollary 39, we
have that

— — — —
182 W)l 2255, = 1@l 2 240y < CIV @Dl = CIV™ (92" Wl ag)-

Summing, we see that

IIH| < z Z Itxl m”a U||L2L2a(QQ\Q)||<P u "W Q)"

m- d/2<|a|<m(<a

By Lemma 43,

. me(a D o
1 220000 0 < prarrr el UL
=g P
So
m-1 C N
< ¥ e @\ 197U 2 gg-
i=0

By applying Young’s inequality, we see that
m-1
C A
I < Y g VW Baggy g * 5 197 kllim 20y
i=o P

A similar argument with the roles of a, { and f3, ¢ reversed yields the same bound on V, while an even
simpler argument yields the bound

m-1 C
V] < Zp VU

i=0

L*(60\ Q)"

The argument in the case that condition (8) is true is similar.
We thus have that

2m7) |2 2my;
M@ U ma g, < RE T+ 89U I3 g

<|I| + [UI| + |IV] + [V| + 8llo?™u|2

12(6Q)
1 VIR,
(6Q\Q) ) Al om=n
<|| +C Z = + 019 I g + SO R g -
Subtracting the final term and applying formula (49) yields that
/‘ 2 — 7 4 m- lllv u "LZ(HQ\Q) 3
217 2 g, < (T @ "W )gql + C,%W + 01 g 0

By definition of || T|,
(T, "W Yeq| < ITIl I*" U llym2(6q)-

By Lemma 45 with y = @™,
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m-1

™2 fym. 20) < ™2 [lym. 29q) + Z
i=0

2m5;

(6Q\Q)*

By using the Leibniz rule and arguing as earlier, we see that

m-1

— —
lo*™ llymagey < 19?0 lymagq) + C Y.
i=0

By Corollary 38, ||(p2’"7||ymv2(eQ) < CII(pZ'"ﬂ)IIWm,z By Young’s inequality and formula (50), we have

Q)
A 5 m-1||Viy ||Lz(0Q\Q)
2m37 |12 2 i 2m 2 2m37
||<P ul? e < < CITIF + 4||<P u ||Wm,z(90) + Cg(“)ipzm > + Ollp?™u ||L2(GQ)
Subtracting the second term on the right-hand side and observing that "VmH)”LZ(Q) < ||<P2'"7||Wm.2(90) com-

pletes the proof.

We wish to improve the Caccioppoli inequality by removing the intermediate derivatives (i.e., VK for
1 < k < m - 1). The following theorem was proven in [20, Theorem 18] in the case of balls rather than cubes;
the proof in [20] carries through with the obvious modifications.

Theorem 51. Let Q c R? be a cube with sides parallel to the coordinate axes. Let 1 < 8 < 2. Suppose that
U € Wm2(0Q) is a function that satisfies the inequality

m-1
C —
2 0 k3712
Ilvmu I < Z ((u — 9)|Q/d)2m-2k I IVEu|® + F, (52)
k=0 §Q\9Q
whenever 0 < 9 < u < 8, for some F > 0.
Then U satisfies the stronger inequality
I|Vmﬂ’|2 < @D 1)TQI1/‘1)2’" J |WP + CF
Q 6Q\Q
for some constant C depending only on m, the dimension d, and the constant C.
Furthermore, if 0 < j < m, then U satisfies

- 2 (2m—2j)/d
I V< - 1)IQI”")2’I i+ il F

Now if we combine Lemma 46 and Theorem 51, we obtain the desired Caccioppoli inequality in which
we bound |V’ 2 without the intermediate gradient terms, as stated in the following corollary.

Corollary 53. Let L be an operator of order 2m of the form (26) associated to coefficients A that satisfy the
weak Gdrding inequality (34) and either bound (8) or bound (10).

Let Q ¢ RY be an open cube with sides parallel to the coordinate axes, and let1 < 6 < 2. Let U’ € Y™(6Q).
Let T € Y"™2(0Q). Suppose that Lu =T in 6Q in the sense that formula (26) is true for all test func-
tions @ € WJ»X(0Q).

Then we have that

me (—(9 ST I T cajm 2+ CITIR,

and for all j with1 < j < m - 1, we have that
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1 i—
e | VT < G I e C5I heF -, (54)
Q

where C is a constant depending on the dimension d, the order 2m of L, the number A in bound (34), and the
number A in bound (8) or (10). Here, | T| = || T|ly-m2gq) is the operator norm, that is, the smallest number such

— — — m2
that |, T)| < 1Y llyn2eq) I Tll for all € Y5>*(6Q).

Remark 55.If m — d/2 < j < mand 6 = 0, then we can replace the termj || in bound (54) byj uP
at a cost of some additional negative powers of (6 — 1). See Section 6.

5 Invertibility of L

In this section, we will investigate boundedness and invertibility of the operator L : Y™?(R9) — Y-™P(R9),
The argument for invertibility parallels that used in [30, Lemma 3.4] in the second-order case.

We remark that invertibility requires the Garding inequality (6), and not only the weaker Garding
inequality (34) of Section 4 and [4]; thus, for the remainder of this article, we will always assume the
strong Garding inequality (6).

We will begin with boundedness of L for a range of p.

Lemma 56. Let L be an operator of the form (26) associated to coefficients A that satisfy either bound (8) or
bound (10). Let I1; be as in Definition 30.
If A satisfies bound (8), then

(2d, 2d )QHL and ( d ’ d ):HL-
d+1 d-1 d+a-m m-5b

If A satisfies bound (10), then

( 2d 2d ) ( d-1 d-1 )
, Cc I1;.
d+1 d-1 d-1+a-m m-5b
If p € 11, then the constants A(p) in bound (7) depend only on p, d, m, and the constant A in bound (8)
or (10).

Proof. If L satisfies the condition (8), thenm > a>m - d/2andm > b > m — d /2. Observe thatm, d and a,
b are integers, and so m>a>m-d/2+1/2, m>b>m —-d /2 + 1/2. A straightforward computation

yields that
(Zd Zd)c( d d )
d+1d-1) \d+a-m m-b)

Similarly, if L satisfies the condition (10), thenm >a>m - (d - 1)/2+1/2andm>b>m - (d - 1)/2 + 1/2.

Thus,
(Zd Zd) (Z(d—l) 2(d—1)) ( d-1 d—l)c( d d )
d+1 d-1 d ~d-2) \d-1+a-m"m-b) \d+a-m’ m-b)

Suppose that L satisfies the condition (8). If p € (

)thena>m d/p',b>m-d/p, and

d+u m’ m-b

soifa < |a| < mandb < |B| < m, then p, and p; exist and are finite. By formulas (23) and (8),

1 1 1
+

Dp (D 20,8

=1
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Thus by Holder’s inequality, for such p, a, and S,

jww EOP, | < 0% ety 1P me VA ety

which by the condition (8) and the definition (24) of Y™P(R9) satisfies

j 10,4750, | < NG lymo e I lymgesy-

[Rd

Summing over a, f3, j, and k and using Definition 30 completes the proof

d-1
d1+ummb

Now suppose that L satisfies the condition (10). If p € ( ) thena>m-(d-1)/p,

b>m-(d-1)/p,andsoifa < |a] <mandb < |8 < m, then p/, and Dp exist and are finite. Again

1 1 1
+ =

Pp (Pa 2ap

Observe that

J|aa<p]A“<aﬂ¢k| < I I 105,440k, dxdt.

Applying Hélder’s inequality first in R4~! and then in R yields that

j|a“¢oJA' KPP, ) < MO, 1, e 1Py -

Applying Corollary 39 and summing completes the proof. O

We now establish invertibility of L for p = 2. The main tool in the proof is the complex valued Lax-
Milgram lemma, which we now state.

Theorem 57. [14, Theorem 2.1] Let H; and H, be two Hilbert spaces, and let B be a bounded sesquilinear form
on H; x H, that is coercive in the sense that
|B(u, w)|

B(w, v)
BOWI S i, sup B dg
wem\{o}  [WlH, weib\ o} Wi,

for everyu € Hy, and v € H,, for some fixed A > Q. Then for every linear functional T defined on H,, there is a
unique uy € H; such that B(v, ur) = T(v). Furthermore |urllg, < %”T"Hz’-

Lemma 58. Let L be an operator of the form (26) of order 2m, which satisfies the ellipticity condition (6) and such
that 2 € TI;, where I1; is as in Definition 30. Then L is invertible with bounded inverse Y™2(R%) — Y-™2(R49),

Proof. Let B(ﬂ), 7) be the form given by
—> —> N ==
@n=3¥ 3 ZJ WA i (59)
j.k=1lal<m|Blsm
[R

Notice that by formula (6), B is a coercive sesquilinear operator on Y™2(R9) x Y™2(R9) in the sense of
Theorem 57, while by Definition 30, B is bounded on Y™2(R9) x Y™2(R9) with the bound
IBQZ, V)| < AN llymagey [V lymeresy - (60)

Let T be an element of Y"™2(R9). Recall that we write bounded linear functionals on Y™2(R9) as (T, -).
Let ur € Y™2(R?) be the unique element of Y"™2(R%) given by the Lax-Milgram lemma, so
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N
% Z Z I QAL ur) = (T, @) (61)

for all ¢ € Y™2(R9). Observe that by formula (26), Lur = T. By the boundedness property of the Lax-
M11gram lemma, | uT||Ym 2RY < ||T||Y m2rd, and by the uniqueness property 1n the Lax-Milgram lemma,
U = Uy is the only element of Y’” 2(R%) with Lu = T. Thus, the operator T — ur is well defined, bounded,
linear, and an inverse to L. (|

We conclude this section by establishing invertibility of L for a range of p. In this case, the main tool is
Sneiberg’s lemma. We refer the readers to [7,29,80] for the definition of interpolation couples and complex
interpolation.

Lemma 62. (Sneiberg’s lemma [7, Theorem A.1]) Let X = (Xo, X1) and Z = (Zo, Z;) be interpolation couples
and let[-,-]o denote the standard complex interpolation functor. LetT € L(X, Z); that is, T is a linear operator
from Xo + X to Zy + Z; such that T(X;) < Z; and T : X; — Z; is bounded for j = 0, 1. Suppose that for some
0* € (0,1) and some x > 0, the lower bound ||Txl|z, 21, = llXlix,,x, holds for all x € [Xo, Xilo. Then the
following are true.

(i) Given 0<e<1 /4 the lower bound |Tx|z,z1, = €klixlix,,x], holds for all x € [Xo, Xily, provided that

|0 9| < 3K+6M

(i) IfT : [Xo, Xile* — [Zo, Z1]o* is invertible, then the same is true for T : [Xo, Xilg — [Zo, Z1]g if O is as in (i).
The inverse mappings agree on [Zy, Zilg N [Zo, Z1]9*, and their norms are bounded by i

, where M = max;_o || Tllx—z-

Lemma 63. Let L : Y™2(RY) — Y™2(R%) be bounded and invertible, and suppose that L extends by density to
a bounded operator L : Y™P(R?) — Y-™P(R?) for all p in an open neighborhood of 2.

Let Y; be as in Definition 35, that is, the set of all p such that L : Y™P(RY) — Y"™P(R9) is bounded and
compatibly invertible.

Then Y; is an interval, and there is a 6 > O such thatif2 - 6 <p <2+ 6 then p € Y.

In particular, these conditions are satisfied if L is an operator of the form (26) that satisfies the ellipticity
condition (6) and such that I1; as given by Definition 30 contains an open neighborhood of 2. In this case, 6
depends only on I} and the standard parameters.

Proof. By assumption or by Lemma 58, L : Y™2(R9) — Y™2(R) is invertible. Thus, 2 € ;.

By [80, Section 5.2.5], W™P(R9) forms a complex interpolation scale. The map that sends an element of
W™P(RY) to its unique representative in Y"™P(R4) is invertible and thus is a retract; by [55, Lemma 7.11], we
have that Y™P(R9) forms a complex interpolation scale. Next, we have from [29, Theorem 4.5.1] that the
antidual space Y"™?(R9) also forms a complex interpolation scale.

A straightforward interpolation argument shows that if L is bounded and compatibly invertible
Ym™P(R4) — Y-™P(R?), then L is bounded and compatibly invertible Y™4(R9) — Y-™4(R9) whenever q is
between p and 2, and so Y; is an interval.

Finally, by Sneiberg’s lemma, L is invertible Y"™4(R%) — Y-™4(R%) whenever2 — 6 < q < 2 + 8, where §
is as dictated by (i) from Sneiberg’s lemma. This completes the proof. O

6 LP bounds on solutions and their gradients

In [66], Meyers established a reverse Holder estimate; in the notation of the present article, he established
thatif L = —-V- AV is a second-order divergence form operator without lower order terms, and if Q is a cube,
then for all p and q sufficiently close to 2 (and, in particular, for some p > 2 and g < 2), we have the estimate



DE GRUYTER Gradient estimates and the fundamental solution =— 27

IVullrgy < ClQ [MP714)|Vullpaq) + ClLully-1rq)

for all suitable functions u. The exponent g on the right-hand side can be lowered if desired; see [42, Section
9, Lemma 2] in the case of harmonic functions, and [20, Lemma 33] for more general functions. Meyers’s
results can be generalized to second-order systems (even nonlinear systems) without lower order terms (see
[45, Chapter V]), or to higher order equations without lower order terms (see [4,20,31]).

Theorem 14 represents a generalization to the case of operators with lower order terms. It follows
immediately from the next theorem and Lemma 63. We remark that the m = 1 case of this theorem was
essentially established in [30, Section 3.1] and that the higher order case uses many of the same arguments.

Theorem 64. Let m > 1 and d > 2 be integers. Let L be an operator of order 2m of the form (26) associated to
coefficients A that satisfy the Gdrding inequality (6) and either bound (8) or bound (10).

Let I1; and Y, be as in Definitions 30 and 35. Let p, p € Yy n Il with p > 2 and let 0 < q < 0. Let j and @
be integers with0 < j < m and O < @ < min(j, b). If p = 2, we impose the additional requirement that either
g=z2orw=>1.

Let Q ¢ R be a cube with sides parallel to the coordinate axes. Let1 < 0 < 2. Suppose that U € Y™H(6Q)
and that Lu’ € Y"™P(0Q) (in the sense that if J € Yg”p'(GQ) n Yg"”"(GQ) then (LW, $)ng < C||J lym'gq))-

Then Viu' € LP(Q), and there exist positive constants x and C depending on p, q, and the standard
parameters such that

_ 1
|Q |(m—j)/d

C|Q |M/p-1g-(m-m)/d
6 -1~

— - —
VU |rqy < LU [ly-mpq) + IV®u l|z9¢60\ @) -

C
6 -Dr

Here, b is as in Definition 30, that is, b = min{|g] : AJ:E(X) # 0 for some a, j, k, and X}.

Remark 65. If j > m - d/p, we may of course immediately apply the Gagliardo-Nirenberg-Sobolev

inequality (Lemma 41) to bound ||Vf7||Lp,-(Q); if j < m — d/p, then improved estimates on VJ?, such as local
Hélder continuity, may be derived from further Sobolev space results such as Morrey’s inequality.

In the case of operators without lower order terms (in which case b = m), we may take j = @ = m;
Theorem 64 then yields the same bounds as the classical inequality of Meyers (and the generalizations of
[4,20,31]).

We will also establish an estimate for functions ¥ with L’ € Y"™P(6Q) for p < 2 sufficiently close to 2.

Theorem 66. Let m > 1 and d > 2 be integers. Let L be an operator of order 2m of the form (26) associated to
coefficients A that satisfy the Gdarding inequality (6) and either bound (8) or bound (10).

Let 1T} and Y; be as in Definitions 30 and 35. Let p, u € Y, n I} and let 0 < q < co. Let j be an integer
with0 <j<m.

Let Q ¢ R be a cube with sides parallel to the coordinate axes. Let1 < 0 < 2. Suppose that U € Y™H(6Q)
and that Lu’ € Y"™P(0Q).

Then Viu € LP(Q), and there exist positive constants k and C depending on p, q, and the standard
parameters such that

L
|Q [(m-Dd

C|Q [/r-1q i 1

i
©-1F Qo o

; —
Viullzrqy < LU [ly-mraq) +

C
6 - 1" i=min(j,b)
Given operators with lower order terms, Theorem 64 cannot be strengthened, as shown in the following
example.

Theorem 67. Let d>3, m>1, ae(m-d/2,m], and b € (m — d/2, m) be nonnegative integers, and
let € > 0.
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Let Qy c R? be the cube of volume 1 centered at the origin. Let Ea,ﬁ be real nonnegative constant
coefficients such that

(=A™ = (-D)m Z Ay, Ayp=01if la| <mor Bl <m.
lal=|Bl-=m

Then there exists a linear operator L of the form (26) with N =1 associated to smooth coefficients
Agp = Agp and a C* function u such that

IAap — Aapli= < € for all|a| < m and |B| < m.
e The numbers a and b chosen above also satisfy conditions (28)—(29) given in Definition 30.
e Lu = 0 in Qq in the classical sense (and thus also as an element of Y"™P(Qy) for any p € IIp).

e IfC >0and2 < p < co then there is a cube Q < Qq with

m
”vmﬂ’”Ll,(Q) > 'C‘ Z 1Q |1/p71/27(m—i)/d”Via’"LZ(ZQ).
i=b+1

Constant coefficient operators without lower order terms such as (-A)™ clearly satisfy bounds (8) and
(10) for some A > 0. Extending A, g by zero, we see that by taking € small enough, and we may ensure that L
satisfies bound (8) with constant A arbitrarily close to that of (—A)™.

By an elementary (and very well known) argument using the Fourier transform, the operator (-A)™
satisfies bound (6) for some A > 0. By Corollary 38, and again by taking € small enough, the operator L
satisfies bound (6) with constant A arbitrarily close to that of (-A)™.

We will prove Theorems 64 and 66 in Section 6.1 and prove Theorem 67 in Section 6.2.

6.1 Proof of Theorems 64 and 66

We begin with the following variant of Lemmas 41, 42, and 43 in the case where the exponents on each side
are different.

Lemma 68. Letm,d e N,d > 2, p € [1,00), and let j, k € Ng satisfyO <j<k-1landm - d/p < k < m. Let
Pk = Pmak- Let1 < 0 < 2. Let y satisfy 0 < 1/u < min(1, 1/p + 1/d).

Then there is a constant C depending only on p, d, and m such that if Q ¢ R? is a cube with sides parallel
to the coordinate axes and u € W™P?(6Q), then

m
IViull regq) < ZC|Q|1/p’l/”’(m’k*j’i)/d||Viu||L"(9Q)’
i)
- .
) ClQII/p—l/}l*(m*kH*l)/d
IVullLexoq\ @) < Z (6 — 1ymkH-i

i=j

IViullroq\ 0)-

If in addition k > m — (d — 1) /p, then

m
"Vju”Ltl’Lfk(gQ) < ZC|Q|1/p71/ui(m7k+lii)/d||Viu||L“(GQ),
i=j
m i
. C|Q|/p-Vu-(m-k+j-D)jd
”V]u“Ltpok(GQ\Q) < z (6 = 1ynke-inl ”Vlu"L“(BQ\Q)'
i=j

Proof. By Holder'’s inequality, it suffices to establish the listed bounds for the endpoint value 1/ = min(1, 1/p + 1/d).
We will establish the last of the listed bounds; the arguments for the three preceding bounds are similar (in the first two
cases with Lemmas 41 or 42 in place of Lemma 43).

By Lemma 43, and because k — j > 1, we have that
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m-1

IViullPoq\ @) < Z @
i=j

1)|Q|1/d)m k+j— 1"V u"LP(eQ\Q)

Recall that we have taken y to satisfy 1/p = min(1, 1/p + 1/d). Because d > 2, we have that
1 1 1 1
= — - — < —

My M d

0<

(in particular, p,,_, exists), and so by Hoélder’s inequality,

m-1 C

||Vju||ka(0Q\Q) < Z - |Q|1/p 1/]1+1/d||V1
d k
2 @~ nigmayr

Ulln-100\ 0)-

Another application of Lemma 43 yields

m-1 I
j
IVullroo\0) < g (6 - 1)|Q[V/d)ym—k+j-i+1

|Q[MP-Yr+ 14| Viy | gor o)

as desired. O

Now, recall from Lemma 45 that ifu € Y™#(0Q) thenuy € Y™H(0Q) for all y € C5°(6Q). By Definition 30,
if u € II; then L(uy) € Y"™¥(R9). We now show that under some circumstances, L(uy) is also in Y"™P(R%).

Lemma 69. Let m > 1 and d > 2 be integers. Let L be an operator of the form (26) for some coefficients A that
satisfy either bound (8) or bound (10).

If A satisfies bound (8), let p, p € ( —%). If A satisfies bound (10), let p, u € (—2——, 2=1) By

d-1+a-m’ m-b

d+ummb

Lemma 56, these ranges include (ﬁ’ ﬂ)' In either case, we additionally require that 1/u < 1/p + 1/d.

Let Q c R4 be a cube with sides parallel to the coordinate axes. Let1 < 6 < 2. Let U € Y™H(OQ) be such
that LT € Y-"™P(6Q) (in the sense that if § € YJ"?'(6Q) N YI*¥'(6Q) then [(LW, P Yool < CIp lymor'gy)-

Let y € C2°(RY) be a test function with O < y < 1such that x = 1inQ and x = 0 outside 6Q. We extend uy
by 0 outside of 6Q.

Then L(W'y) extends to a bounded operator on Y™ (R9).

Furthermore, if0 < @ < b, then there is a polynomial P of degree less than  and positive constants C and
K depending on the standard parameters such that

CXA|Q[/P-1/k i 1

i
@-17 &gl ke

= C
I = Pllmaty < =L e moog) +

where X = max;;<q(6 — 1)|Q[/4 || Viyll ().

We follow the convention that the zero function is a polynomial of negative degree; thus, if @ = 0, then

d-1
d+a —, m—b) or (d e b) there is a y in the same range with u < p and

P=0. For any p € (
with 1/u < 1/p + 1/d.

Proof of Lemma 69. Let P be the polynomlal of degree less than @ w1thf ay(ﬂ) - F) = Oforallly| < .
Because @ < b and by definition of b, LP = 0. The function )(P is smooth and compactly supported and so
L(xP) € Y"™P(R9). Thus, we need only show that LW - P W) € Y"™P(RY) and establish an appropriate
bound on its norm. For notational convenience, we will take 17 =0.

Recall that Y"™P(R) is the antidual space to Y™ (R%). So to show that L(yuw) € Y"™P(R), we need only
bound (L(yw), @) for all @ in Y™P'(R?). By density, we may assume that @ € Y™ (R%), and so by Lemma
45, (L(ﬂ))(), @) represents an absolutely convergent integral.



30 =—— Ariel E. Barton and Michael ). Duffy Jr. DE GRUYTER

Let ¢ be (a representative of) an element of Y™P'(R%) n Y™ (R9). By the weak definition (26) of L,

[ N )
0. )= [ X 3 Y apaiiaoom.

5o Jrk=tlalsmigl<m

Let J 0 - R where R is the polynomial of degree less than a w1th_[ ay((p R ) =0forall|y| < a. Then
L'R =o0. Therefore,

e —— — — - N SAToAd
(LT, §) = L@, @ - R) = L@, P) = Y P | TR0,
j.k=1lalsm

IBl<m g,
We remark on the symmetry of our situation: J € Y™P'(0Q), U € Y™H(OQ), LQ&)VIF =0 if |y| < a, and
j U =0 if|8] < @.
6Q\Q

By the Leibniz rule,

- N )
w0, P)= Y FPROAL 5
k=

N
: E z z j T y)'aalij)kayukaﬁ Yy

my<pB 60\Q
< k
- A Soae-tuA ik oy,
L 2 I Bita oy O KAk
Recall from Lemma 45 that )21,7 € YI'P'(6Q) n Y o (BQ). By the weak definition (26) of L, we have that

N e
Y ¥ 3 [F@0AL . = TR

j,k=1|al<m|B|<m 00
By definition of Y"™?,

— -
LY, X Yeal < ILL lly-mrca0) IR v o) -
By Lemmas 45 and 41,

< CX 1
>

—
1 ,
@ i g V'Y 760 -

_ —
X lyme o) <

i=0

By the Poincaré inequality, and because Vilj = Vig for alli > a,

CX < 1
"Xl/) "Yo P'9Q) S ©- l)m Z |Q|(m D7d (\% (] ||Lp 6Q)"

Recall that p > .Ifi>a, thenl/p’ — (m -i)/d > 0, and so by formula (23), (p'); is well defined and

finite. Thus, by Holder s inequality,

N
X lgrriog) < — ¢ lym oq)-

C
@-npm
Thus,

KL(WY), 9] <

C — —
@-1" L [ly-mraq)ll@ ||y’"-1"(9Q)

S o I

j.k=1lal<m|Bl<my<p 6Q\Q

N
YT Y j e 6)|aslpaa YA K0Py |

j,k:1|a|sm|B|gm6<a
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We will now bound the integrals over 6Q\ Q.
Suppose that the coefficients A satisfy condition (10). Let a and  be such that Ai”é is not identically

equal to zero. By assumption on u and p, this means that Hg, Dps (P> and (ny)a exist and are finite. By

Holder’s inequality in R4~! and then in R,

Nl A bk _ . - j kg« _
j TBALEIuAPTY | < 10U, 1, g 010 X0 AL 200 o 197Ky g
0Q\Q

and
.-y A )oK 5 - Sy oo Bk .
J 301h0% AL p0Pux | < 119 Wil pq\ 10Xl (GQ\Q)||Aa,ﬁ||Lza,p(GQ\Q>||aﬁuk||L[poﬂwQ\Q)-
6Q\Q

Because |a| > a we have that a"‘$ = 6“5). By Lemma 42 with j = k = |a|, the definitions (24) and (23) of
Y™ and p,, and Holder’s inequality,

N
||aa¢j||L[P'L§f)a(BQ\Q) < C||§0 ||Y”"p'(BQ)'

By Lemma 43 with j = k = |B|,

m
C .
I0Pukll, o, 75 < - — | V'ugllveq\ ) -
LIL"(6Q\ Q) i%il (9 _ 1)m—z|Q|(m—1)/d k

By Lemma 68 with j = |y| < k = |B],
UG ClQ |1/p—1/u—(m—llil+|yl—i)/d

b = (0 - pmlBilyzin IVl
i=ly
and by Lemma 44,
& C|Q [Mp-Vp-tm=IBl+lyl-D/d ;
10l py 7890 ) < _ (6 — 1ymIBi- IV'ullzx60\ @) -
=0

Observe that 1/p’ < 1/’ + 1/d; thus, by Lemma 68 and the Poincaré inequality with j = |§| < k = |a|, and
with p, u, u replaced by ¥/, p’, i, we have that

||ayl/)||L;"L§‘7)“(GQ) < iC|Q|1/p—1/uf(m—|a|+\6|—i)/d||Vi¢”Lp,(QQ)_
i=a
Because V’ﬁ = Vig for alli > a, and by Holder’s inequality, we have that
1%,y 674y < 3 CIOP P DAY 5, < CIQPP IV
i=a
Combining all of the aforementioned estimates and the definitions of X and A, we see that

C
(LG, )1 =l o0 1@ s ooy + 1€y o

i CXA|Q |1/p71/uf(mfi)/d
(e _ 1)m+1

VW o0\ ) -
i=w

This completes the proof in the case where A satisfies condition (10).
If instead A satisfies condition (8), a similar argument with Lemma 41 in place of Lemma 42 establishes
the same bound. O
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From Lemma 69, we have a bound on L(Ux). We may now prove the following result; this is Theorem 66

in the case g = u.

Lemma 70. Let m, d, L, p, i, Q, 6, and @ be as in Lemma 69. Let U e Y™H(0Q) be such that LU ¢ Y "P(0Q).

Suppose in addition that p, u € Y; n II;, where I} and Y, are as in Definitions 30 and 35.
Then there is a constant C depending only on p and L such that, for all j with @ < j < m, we have that

—
V' 60\ @) -

1 i—> C — CA|Q|1/1J*1/,M < 1
S v/ = m,
|Q|(m*i)/d IVu ”LP(Q) < 6 - 1m L lly (6Q) T 6 - 1)¥ Z |Q|(m—i)/d

i=w

If2 -6 <p <2+ 6, where § is the number in Lemma 63, then C may be taken depending only on p and the
standard parameters.

Proof. Let y € C°(6Q) be as in Lemma 69; we may require that the parameter X be bounded depending only
on m and d. We extend (¥ — F))( by zero, where P is the polynomial in Lemma 69. By Lemma 69,
L((u - F)X) € Y"™P(6Q). By Lemma 45, W - F)X € Y™H(0Q), and so by Definition 30 and because

) € TI;, we have that L((u — P)y) € Y"™P(8Q) n Y-™#(0Q).

By the definition of Y;, L is invertible Y™P(R9) — Y-™P(R%), Y™HRT) — Y"™H(R4), and Y™2(R%) —
Ym2(R4),

Furthermore, if T € Y"™P(R%) n Y"™4RY), then L'T € Y™P(RY) n Y™24(R?). Observe that we may
approximate elements of Y"P(R%) n Y"™¥([R9) by elements of Y"™P(R9) n Y"™H[R%) n Y"™2(R9); thus,
by density, if T € Y"P(R9) n Y"™¥([R9), then L'T ¢ Y™P(RY) n Y™H(RY) (even if T ¢ Y "™2(RY)).

Thus, because (y(¥ — F)) € Y™H(RY), we have that
XG4 - P) = 'L (X - P))).

Since L(y(u - ?)) € YmP(RY) n Y™H(R?), we have that y(u — F) € Y™P(RY). By boundedness of
L1 Yymp(RY) — Y"™P(RD), we have that

— —
X = P)llymegay < C(p, DILK(W — P))lly-moge).
By Lemma 69,

. C - < CA|Q'/p-VK
U — P)|lympgpdy < ————||LU |ly-m + —_—
I Myt < o= W -0y Zw TR CELE

IViugllxeo\ @) -
If j > m — d/p, then p; exists and by Holder’s inequality

Q=4I pgq) < IV o)
Because j > @, Vu = Vi(y(W - F))) in Q and so

1QIU-™/ VY gy < IVX(W ~ P )Iteey < IX(W — P)llymroq)-

Ifw<j<m-d/p, recall that X(7 - F) is supported in 6P; by the Poincaré inequality, we again
have that

QU™ |pq) < |QII-™I VI (W ~ P))rreg) < CIV' (W — P llerqy < Clix(W — P)llymraq)-
In either case,
. . — —
[QIU-™/4 Vi (W ~ P))llrq) < Clx(W = P )llymogge,

and the proof is complete. O

We may combine Lemma 70 with the Caccioppoli inequality (Lemma 53) to prove Theorem 64 in the
case q = 2.
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Lemma 71. Let m, d, L, p, u, Q, 0, u, , and j be as in Lemma 70, that is, that they are as in Lemma 69 with p,
peynllandw<j<m.

Suppose in addition that p > 2.

Then there is a positive constant k depending only on the standard parameters and a positive constant C
depending on p and L such that, if O < j < m, then

1 N I R C|Q|1/p—1/2—(m—w)/d
Vu'rroy < Lu'|ly-mp +
|| lzr Q) @_1F L [ly-mroq) @1

If2<p <2+ 6, where § is the number in Lemma 63, then C may be taken depending only on p and the
standard parameters.

-
IV U llz2 60\ @) -

|Q|(m—i)/d

Proof. Let 0y =1,0;=0,and 85 - 6, =0, - 0; = 6, — By = (B — 1) /3. Choose u = 2. Lemma 70 yields that

C CA|QM/p-1m & 1
@-1m 0 - 1)« Z IQl(m i)/d IViu "L (620\61Q)*

Let P be a polynomlal of degree less than @ <_)m1n( j, b) such that Jcoo\ Qay(u P) =0 for all |y| < m.
Observe that Lu’ = L(¥ - P )and VIu' = Vi(' - P). Applying Corollary 53 to u’ — P and a covering argu-
ment yields that

(m —aa IV Ulre0) < ————ILU ly-mre,0) +

1Ql

1 — C IQll/p 1/2
——— VU |prg) € ———— LU ly gy + —
|Q|(m-i)/d ©@-nm @ -1y

C|Q|1/p 1/2-m/d
(9 _ 1)x+m

1LY [ly- m2(00\ Q)

—

-
= P20\ 0)-

Because p > 2, by Holder’s inequality |Q['/?~Y2| LU ly-m2gq) < CILU ly-m»q). By Lemma 44, we may replace
v - P 200\ ) bY 1Q7/ 4voY |2 260\ @)- Redefining k completes the proof. O

Remark 72. If p = 2, Lemma 71 still represents an improvement over the Caccioppoli inequality (Corollary
53) in that, if m — d /2 < j < m, then we can bound ||V/u||;2q, by II7IILZ(eQ\Q) and not ||7||L2<gQ).

Remark 73. If p = 2 and @ > 1, then by Lemmas 71 and 43,

1 — CllLﬂ)”Y’mvP(gQ) C|Q|l/p—1/2—(m—lﬂ+1)/d PN
T e I S T
CILY ly-mr@q) ~ ClQUP-V2-tm-2id
IV®U l|z960\ @)
(9 _ 1)K (9 _ 1)K+1

for g satisfying 1/u = 1/2 + 1/d; notice that this g satisfies g < 2.

We have now established that Theorem 66 is valid if g = u, and that Theorem 64 is valid if g = 2 or if
@ > 1 and q takes a specific value less than 2. In particular, these theorems are valid for at least one g < p.
By Hélder’s inequality, these theorems are valid for all g > p. The following lemma will complete the proof
by establishing validity for all positive but smaller g.

Lemma 74. Letd > 2 and O < @ < n < m be integers. Let Q c R? be a cube and let1 < 0 < 2.

For each i with @ < i < m, let p;, u; satisfy 0 < p; < co and u; € LPi(0Q); if in addition < i < n, let g;
satisfy 0 < q; < p;.

Suppose that, whenever 1 < 9 < { < 0, we have the bound

< F
2 Ilmia) < o - g)x 2”“ laga\ s0) (75)

=
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for some nonnegative constants cy, k, and F independent of { and §.
Then for every set of numbers g; with 0 < g; < @, there are some constants C and K, depending only on the
gis, g:s, pis, Co, and x, such that

m C n
D lullznigy < W(F + ) "ui”L”i(GQ\Q))- (76)

j=m i=w

Proof. If ¢, = 0, then applying bound (75) with 1 = 9 and 6 = { immediately yields bound (76) with ¥ = k
(and in fact without the sum on the right-hand side). Thus, throughout we may assume ¢, > 0. We are also
done if g; = g; for all i; we will consider the case where g; < g; for at least onei. In the present article, we will
only need the case where g; = q, g; = q for some q, g independent of i, but for completeness, we present the
general case.

Letl =99 < 91 < 95<... forsomed, € [1, 6) to be chosen momentarily, and let Q, = 9,Q. Let Ay = Q¢11\ Q.-
Ifw<i<n,let

- 1qi-1/pi _ qlpi - @)
1~ PN .
1/q; - 1/pi  q(pi — q7)

If 0 < g; < G; < p;, we have that O < 1 < 1. Thus,
1/Gi

n n
z ”ui”Lfii(Az) = z J‘|ui|ﬁ4i|ui|(1—‘fi)qi
i=o i=w

We compute that

!
ii:p’—_/q\’ € (1, 00), (Li)(l—‘l'i)@':pi-
Tq Di— G Tqi

So we may apply Holder’s inequality to see that

n n
Z ||ui||L@i(A¢) < Z lluill} q,(Az)"u |L”1(A )
= i=w

By Young’s inequality,

1-5)/% (Se L= 9"
Zuulnmw Z . lutillzaica,) + 2(1 ) ujllLria,)-
(9e+1 l9e) Co

i=m

If g; = g; and so 7 = 1, this bound is still true. By bound (75),

F Co
+ il
O G - g &

m
Z lujllzziq,) < 9

j=w ( e+

F n C 1/7 n
0
<t Y | Ny + Y (1 - Dllilzrcay-
(i1 = 9 Z,,., l((9e+1 - w) o Z,,., A

Recall that 9, = 1. We now let 95,1 = 9, + (0 — 1)(1 — )0 for some constant o € (0, 1) to be chosen momen-
tarily. Notice that lim,_,,,9; = 6. Recall that A, € Q... Then

Z F i ticd!
lujllzziqy) < .t . ——|uillLaa,)
(0 - D*(1 - o)o** = (6 - D¥/T(1 - o)/t

] w

+ Z(l - WluillLriqy, -

i=w

Lett =min7. If T = 1, theng; = g; for all i, and there is nothing to prove; otherwise, 7 € (0, 1). Recall that
w<n<m Iterating, we see that if K > 0 is an integer, then
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F L Ticd!™

m K
2 Il < zzo(l ) T)Z((e - oren * G- DT - o “ui"Lqi(AZ))
j=o =

1=

m
+ Z A - DX Yyjlirig,, -

j=w

Recall that Qy = Q and Q, ¢ 6Q, A, c 6Q\Q for all £ > 0. By changing the order of summation, we see that

m K ¢ n 1/5 K 4
F 1-7 TiCo 1-7

Y Il < E=S D) ulisooro X (e )

= 0-1-or 5 (0 - D71~ o) by

K
o i=w

m
+ (1= DK1Y ugllriag) -
j=m
Choose o € (0, 1) such that1 — 7 < ¢*/7; since 1 € (0, 1), this implies1 — T < ¢*. Taking the limit as K — co,
we have that the geometric series converge and the final term approaches zero, and so

& F u 1
lullzriq) < C—= + C ) ————lluillz%p0\ 0
2 RN

as desired. O

6.2 A counterexample

In this section, we will prove Theorem 67.

Leta, b, and € be as in the theorem statement. Without loss of generality we may require O < € < 1. Fixa
multiindex ¢ with |{] = b.

Define w(X) = (1 + |X|2)?. We may easily compute that V"w e LP(R9) for any p > d/(2d + m) (in
particular, for all p > 2).

Let {Qx}32; be a sequence of pairwise-disjoint cubes contained in Q, (wWhose volumes necessarily tend to
zero). Let ¢ be a smooth cutoff function with ¢ supported in Qy and with ¢ =1 in %Qo, and let
0 (X) = (X - Xi)/ &), where X; is the midpoint of Qi and ¢ = |Qc['/¢ is the side length of Qx. Then ¢,
is a smooth cutoff function supported in Q; and identically 1 in %Qk.

Let {ni}%2; be a sequence of positive numbers such that ni€; — co and ng€; > 1 for all k. Notice that
¢ < 1sony > 1 for all k. Define

UG = X5 + 2 Y 9,00 WX - %)
0 k=1 Mic

for a positive constant Co to be chosen momentarily. We may easily compute that if X € %Qk and y is a
multiindex, then

Pux) = XE + S
Co 2™

(W)X — Xi)). (77)

Furthermore, if X € Q and O < |y| < 2m, then

["u(X) - I'XY| < =-C(y, @, A" < E-C(y, @, d).
Co Co

We choose Cy > 2C((, ¢, d); this ensures that

8% - 1] = [9u - 36x7] < 3 < 24!

and so |ou(X)| = % for all X.
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Recall that 4, p is a set of real nonnegative constants that satisfies

(=A™ = (-D)m z Z A‘a,ﬁamﬁ.

lal=m|B|=m

(Many possible families of such constants exist.) Similarly, for any a < m, there exist families of constants

Bg,y such that
(=)™ = (- Z Z Ea’yam—y'

lal=alyl-2m-a
Choose some such family.
Define the coefficients Aqp = 4,75 as follows.

o If|al = |B] = m, let Agp = Agp.
e Iflal =aand B =, let

5 Yu
Y’

Aa,( — (_1)1+m—a z

lyl=2m-a

* Otherwise, let Ay g = 0.

Because [(] = b < m, Agp is well defined.

If L is as given by formula (26), then formulas (28) and (29) are clearly valid. If C, is large enough, then
|Aap(X) — Aqp(X)| < € for all X, a, and B.

Furthermore, because u is smooth, we may compute that

YY) (-1)%%(AagdPu) = 0.
a<|al<mb<|Bl<m

This is the classical definition of Lu = 0. An integration by parts argument yields that (¢, Lu) = 0 for any
test function ¢ such that the integral in formula (26) is well defined; in particular, Lu = 0 in Y"™P(Q,) for
any p € II;.

It remains only to establish a lower bound on I%kamm.

If p>2andb + 1< j< m, then by definition of u and a change of variables,

1/p 1/p
fiviup | = £ F VW) (X - X))IPdX
1 Conlzmﬂ 1
ij ¢ EQk
1/p
-S| weorax
Onk %ankQ
1/p
d/p .
S - J IViw(X)PdX
Con™ 7 (b )2 /P

ieknkQ

Thus, recalling that ni €, > 1, we have that

1p 1

f Ivmulp
%Qk

24/pg

> Cl
~ Conf"(&xmy)d/P

Vrw(X)[PdX > —,
1-[ | ol ()P
1g

2

where ¢ > 0 is independent of k.
Furthermore, if X € Qk\%Qk then
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Ce

ViuX)| € ———7-———.
Conlfmf](nkgk)zdﬂ

Thus,

1/2

1/2 2
v | <——|24 f vup + #
&7 G g Con{™ 7 (nycy) 24+

1
ZQk

1/2
< A ! '[lvjw|2 + #
ConZ™ e 7| (tm)? (ne8y)4d+y
[Rd

Again using the fact that n; ¢, > 1 and the fact that Viw € I2(R9) for any j > 0, we have that
m 1/2
> o fvur| <G
=e+1 G o e (Ging)

If p > 2, then because ni ¢, — oo, there is some k large enough that

EmC2 d/2S m a d/
" (i) g () /P

as desired. This completes the proof of Theorem 67.

7 The fundamental solution

In this section, we will construct the fundamental solution. We will begin in Section 7.1 with local estimates
on functions in Y™?(R9) for m large enough. By using these estimates, in Section 7.2, we will construct a
preliminary version of the fundamental solution in the case 2m > d. We will investigate the properties of
this fundamental solution in Sections 7.2-7.5. We will slightly modify our definition in Section 7.4. In
Section 7.6, we will construct the fundamental solution in the case 2m < d, and will address uniqueness
in Section 7.7.

7.1 Preliminaries for operators of high order

Recall from the definition (24) of Y™4(R9) that if u € Y™4(R%), then the derivatives 0'u of u are defined
as locally integrable functions if |y| > m — d/q and are defined only up to adding polynomials if
lyl < m — d/q. We will now wish to fix a family of normalizations of functions in Y™4(R9) and investigate
their properties.

Ifd/m < g < 0o, let Sy q,4 be the number of multiindicies y € (No)¢ so that|y| < m — d/q. Observe that
Sm,d,q is nonnegative, nondecreasing in g and that if g < co then s, 4.4 < Sm,4,4. Choose distinct points H;,
H,..., Hs, ,,in B(0,1)\B(0,1/2) (s01/2 < |Hj| < 1forall 1 < i < Sy,q,4). If the points H; are chosen appro-
priately (see [44] for a survey on polynomial interpolation in several variables), then for any g with
d/m < q < oo and any numbers g; there is a unique polynomial

P(X)= ) p,X” suchthat P(H) = a; forall 1<i < Spq,q.
lylsm-d/q

(We emphasize that if g < d then we cannot specify the values of P(H;) for Sy, 4,4 < i < Sm,4,4.) Also there is
some constant h < co depending only on H; such that
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sup |pyl<h sup |ai.

lylsm-d/q 1<i<Smd,q

We now show that this gives a normalization in Y™4(R9). We will need some additional properties of
this normalization.

Lemma 78. Let m, d e N with d > 2, let r > 0, and let Zy € R4. Let max(1,d/m) < U<qg<oo. Let U
Satisfy ”U"Ym’P(IRd) < Q.
Then there is a unique function Uy, , 4 that is continuous and satisfies

Uzor,g(Zo + tH) = 0, U = dUy,, 4 almost everywhere

for alll <1i < sy 4,4 and all multiindices § withm - d /q < |{| < m. In particular, if q = u, thenU and Uz, 4
are representatives of the same element of Y™H(R%).
Furthermore, if X,Y e R, R=r+|X - Zy|, | X - Y| < %R, and |y| < m - d/u, then we have the bounds

R(J)

q—l
10Uz, 1,(X)] < CuRmfd/yfly‘(7) 1Ulymxge),

R wq—l X_ Y £
|aYUzo,r,q<X)—aVUzo,r,q(YNsCpR’"'d/“"y‘(y) IIUllywaRd)(' R ')’

where C, and € > 0 depend ond, m, and p, and wy is the smallest (necessarily positive) integer withm — d /q < w,.

Proof. Fix X € RY. Let Q be a cube centered at Z, of side length 4R. Observe that ||U|lymxq) < || Ullymuggdy < 00.
By definition of Y™*(R%), we have that VU is locally integrable in R? (and thus, in particular is integrable in Q)

forany0 < i < m.LetV = U + P, where P is a polynomial of degree at mostm — d /u so that IQ 0’V =0 forally

with |y| <m - d/u (ie., all y with [y| < wy). Observe that |U — Vllymuga = 0, so [|[Vllymxqy = [Ullymxq) < oo.

If d /u is not an integer, let 0 = u. Otherwise, let 6 satisfy d /6 = d/u + 1/2. In either case, d /6 is not an
integer and 6 < u. Sincem > d/u + |y|, if d/p is an integer, thenm > d/p + |yl + 1and som > d /0 + |y|.
Because u > 1 we have thatd > d/u, so similarlyd > d /60 and so 0 > 1.

Let k be the unique integer such thatm — d/0 <k <m - d/0 + 1. Thus,|y| <m -d /6 <k <m + 1and
soly| +1 < k < m. By Lemma 41,

m-k+1
IVVilogy < Cu Y, RTEMVY V0,
i=1

and by Holder’s inequality and because k > 1 + |y|,
m
IV Vo) < Gy RI-IWIkemed /6=l giy|u
i=1

By formula (23),

By Morrey’s inequality (see [41, Section 5.6.2]), we may redefine the weak derivative 0V of VV on a set of
measure zero in a unique way so that it is continuous (thus defined pointwise everywhere) and, if X ¢ %Q
and |X - Y| < R/2, then

[V (X) - IV (V)| < CUX = Y=V V|| 01
Lete=1-d/6,=1-d/0 + m - k. Observe that O < € < 1. Then

X - YF

[oYV(X) - ayV(Y)l < C‘“W

m
ZRilinllL"(Q)- (79)
i1
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Averaging ['V(X)| < [0*V(X) — 'V (Y)| + |d"V(Y)| over Y € B(X, R/2), we have that
— G &
V)| < WE)R’IIV'VIIL”(@- (80)

We will consider the cases X = X and X = Z, + rH;.
We may write

1/u 1/u

m wy-1 m
Y RVIV|pq = ) R '[|va|# + YR I|viV|u
i=0 i=0 0 0

i=wy
Recall that V satisfies IQViV =0forall0 <i < wy, — 1. We may apply the Poincaré inequality in the first sum,
so that

1/p 1/u

R Iwivw < C,RY I|V“’uV|V
Q Q

Thus,
1/p
m m
Y RiIViVlpq < G Y R Iwivw
i=0 i=wy Q
By Holder’s inequality, we have that
1/y;
m m
S RVl < G, 3 Rird/u-din _[|viV|ﬂf

i=0 i=wy 0

By formula (23), we have thati + d /u - d/u; = m. Thus, by the definition (24) of the norm on Y™*(Q), we
have that

m
Y Ri|ViVlikq) < GR™|Ullyms(q)- (81)
i=0

Let P, be the (unique) polynomial of degree at most m — d/q with Pi(Z, + rH;) = V(Z, + rH;) for each
1<j<Smagq andletUyz,, 4 = V - P.. ThenUy,, 4 is the unique continuous function with Uy, 4(Zo + rH;) = 0

foralll < j < p and with 9%Uy,, 4 = 9V = 3°U almost everywhere for all|{| > m - d/q. Thus, the specified
function Uy, is constructed; we need only establish the desired bounds on Uz 4.

We now take X = Zo + rH; for some j. By formulas (80) and (81),
m
\Pi(Zo + rH)| = [V(Zo + rH)| < G Y R-/H|VIV]|puq) < GR™4/H|[Ullymicq).
i=0

Let P(Z) = P,((Z — Zy)/r) so that P,(H;) = P(Zy + rH;) and Py(Z) = zlylga}q—lpyzy for some p,, where
Ipy| < hsupj|P(Zo + rH)| < CR™ /| Ullymnq). We then have that Pi(Z) = Zlylgmq_lpyr*‘)"(Z - Zy)’. We may
then compute thatif Z € Qand 0 <i < w, - 1, then

IVIPU(Z)| < CR™ 4/H|[Ullymaq) (R /1)

Combining these pointwise bounds on P; with bound (81) yields that

m
Y RIVIUz, 1 gl < GR™Ullymrgy(R /1)1, (82)
i=0

Combining this bound with bounds (79) and (80) with X = X completes the proof. O
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Remark 83. We observe that if U € Y™H(R9), then 0"U € L*(R%) is defined up to sets of measure zero
whenever |y| > m — d/u, while 0"Uy, , 4 is continuous and satisfies the bounds given by Lemma 78 when-
everg>pandly| <m-d/p.

Supposely| = m — d /. Ifk = |y| + 1, then by formula (23) p, = d and so Vo'U € L4(R?). By [41, Section
5.8.1], we have that 0'U lies in the space BMO of bounded mean oscillation with |0"Ullgyo < CyllUllymuga). By
the John-Nirenberg inequality (see, for example, [78]), we have that if 1 < p < co and Q is any cube then

1/p
(ﬂayu - ]faVU|P) < CpullUllymrggey-
Q Q

Let Zy, r, and Uy, , 4 be as in Lemma 78. Observe that U = of Uz,,r,q for all|{] > |y|, and so d%U differs from
Uz, r,q by a constant. Thus,

1/p

(ﬁayUzo,,,q - ]faYUZO,,,qV’) < Cp ullUllymrgey.-
Q Q

By bound (82) and Hélder’s inequality, if Q is a cube centered at Z, of side length 4R > 4r, then

f0"Uzr.q
Q

< |QIYHI0Y Uz, r gl < GR™ (R /)4 Y| Ullymuqg,

and so
1/p

j 10Uz ral? | < CopRUP(R /1) | Ullymaras.
Q

7.2 The fundamental solution for operators of high order

We now define a preliminary version of our fundamental solution for operators of high order. If d is odd, we
will use this definition throughout; if d is even, then we will modify the definition somewhat in Section 7.4.
We will consider operators of lower order in Section 7.6.

Definition 84. Let m and d be integers with 2m > d > 2. Let L be a bounded and invertible linear operator
L : Y™(R9Y) — Y ™4(R9) for some q with1 < g < ocoand1-m/d < 1/q < m/d. Let Z, € R4, letr > 0, and
let1<j<N.

Let Tx,j,z,,r,q be given by

N
(Tx.j,zor,q0 ) = (@) z0,r,4/(X),

where 1/q + 1/q' = 1. By Lemma 78, this is a well-defined bounded linear functional on Y™?(R%); that
iS, TX,j,Zo,r,q € Yﬁm’q([Rd).

—L
We define the fundamental solution Ey ; 7 , , by
—L 1
Exjzorg = (L' Tx)z0r.a)zoma-

Remark 85. If L is bounded and invertible L : Y™2(R9) — Y"™2(R%), and if L is defined and bounded
Y™4(RY) — Y"™4(RY) for all g in an open neighborhood of 2, then by Lemma 63, g satisfies the conditions
of Definition 84 for all g in a (possibly smaller) neighborhood of 2.

Remark 86. Since Y"™4(R9) is by definition the dual space to Y™7(R%), by standard function theoretic
arguments L : Y™I(RY) — Y"™4(R%) is bounded and invertible if and only if its adjoint operator
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L : Y™ RY - Y™9(RY) is bounded and invertible. Furthermore, (L)) = (L*)"!. Also observe that
max(0,1 - m/d) < 1/q < min(1, m/d) if and only if max(0,1 - m/d) < 1/q' < min(1, m/d). Thus, L and
q satisfy the conditions of Definition 84 if and only if L* and ¢’ satisfy those conditions.

L r
That is, FX,j,ZO,r,q exists (for all X, j, Zy, r) if and only if Fy’k,zo’r’qr exists (for allY, k, Zy, and r).

In the remainder of this subsection, we will establish some basic properties of the fundamental solu-
tion; we will establish further properties in Sections 7.3-7.5. We will begin with a symmetry property for the
operators L and L*; we will use this property to establish certain symmetries of the fundamental solution.

Theorem 87. Let L and q satisfy the conditions of Definition 84. Let Z, € R4, letr > 0, and let j, k be integers
in[1, N].
For all X, Y € R4, we have that

(Ex a0 = (B OO, &)
For every S € Y™ (R%) and every X € R, we have that
(S, Exjzora) = (@) S)z0mq ). (89)
Finally, if we let
—L = .
't zr,dX: V) = (v i 20,0 )i 0 = (Exjzoma (1,
then Efy 7., 4 is continuous on R% x R4

o
Proof. That Fy’k, Zor,q €Xists is Remark 86.
IfX,YeR?and1<j<N,1< k<N, then by Definition 84 and Remark 86,

—L —L 1
(EX,j,ZO,r,q)k(Y) =Ty ,k.zorq Exjzora) = T.kzora’s L Tx j Zorq)

T A L
=(Txj.zo,r.qs L Ty k, 20,197 = Tx,j.Zorqs Ev k201,07 = (EY,k,Zo,r,q’)j(X)-

L
In particular, observe that by Lemma 78, f)y’ k.Zo,r,gX) i locally uniformly continuous in both X and Y, and
$0 Ef4 7,4 is continuous on R? x R,

Similarly, we have that if S € Y"™7(R%), then

—r
(S, Exjzorg) = (S L' Txjzorq) = (Txjzomg (L)) = (L) 'S))z5,r,9/X).

This establishes formula (89). O

—L
We will conclude this section with a preliminary bound on the derivatives of the function Ey ; 7 . ..

Theorem 90. Let L and q satisfy the conditions of Definition 84. Let 1 < p < 2q. Suppose that L also satisfies
the conditions of Definition 84 with q replaced by p, and that the inverses are compatible in the sense of
Definition 35, that is, if T € Y"™P(R%) n Y"™4(R9) then L'T ¢ Y™P(R?) n Y™4(RY),
Suppose that B is a multiindex with 0 < |B| < m. Let Q c R? be a cube. Then we have the bound
1/p
L K
J|aﬁEX,i,Zo,r,q | < CRzm’d*d/p’lﬁl(B) (91)
r

Q
where R = max(r, |X — Zy|, dist(Zy, Q) + diamQ), and where C and x are positive constants depending on q,
p, the norms of L' : Y"™4(R%) — Y™4(R%) and L' : Y"™P(RY) — Y™P(RY), and the standard parameters.
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Recall from Definition 35 that Y; is the set of all g such that L! is compatible between Y™2(R9) and
Y™4(R9). By density, if p, g € Y;, then L! is compatible between Y™?(R9) and Y™4(R¢9), as required by the
lemma.

Proof of Theorem 90. By Lemma 78, if Tx j 7, r,4 is as in Definition 84, then

wy-1
_d/a'( R
1Tx j, zo,r,qlly-maggey < CQR™ 4/ ( ) )

and so by invertibility of L,

—L m-d/q( R wg-1
IE % j, 7o,r,qlymawe) < CR - . (92)

By Lemma 78, if |8] < m — d/q and |Y - Zy| < R, then
—L R X
|a€EXJ,Zo,r,q(Y)| < CRZm—d-lﬁ\(?) )

Integration yields bound (91) in this case (for all p € [1, co]).
By Remark 83, if || = m — d/q and |Q| = 4R with Q centered at Zo, then
1/p

L , I’s
Ilaﬁfx,j,zo,r,q(Y)lde < CRd/’”’"’d/q(g) .
a

Because |f| =m - d/q=m - d + d/q', bound (91) is valid in this case (for all p € [1, c0)).
We are left with the case |f| >m -d/q.lffg=pandm-d/g<|Bl,orifg<pand m-d/q < |B| <
m - d/q + d/p, then by formula (23) we have that p < gg < co. By bound (92) and Hélder’s inequality,

1/p
K
f|aﬁf;.z v al? < CR2m7d+d/p—Iﬁ\(5) .
sJs20,1,9 r
Q
Finally, suppose thatg < p and thatm — d /q + d/p < |B| < m.Ifq < p, thenq’ > p’, and so by Lemma 78

wy-1
_d/p R
I1Tx.j,zo,r,qlly-mr@ry < CR™ /P (7) .

By compatible invertibility of L : Y™P(R9) — Y™P(R9), we have that

N R wg'—-1
I j 2o rgll-moey < CR’”*d*d/P(7) . 93)

If|B| >m - d/q + d/p and p < 2q, then |B| > m - d/p and so this provides a Lebesgue space bound on
B
OPEy ; 7,r.4- By Holder’s inequality,

1/p
K
J.laﬁf);,j,zo,r,qlp < CRZm—d+d/p—|ﬁ\(§) ,
Q
which is bound (91).
In any case, bound (91) holds. O

7.3 Mixed derivatives of the fundamental solution

L
Recall that fx,;, zo,r,(Y) is @ function of both X and Y. We may control derivatives in Y using Theorem 90,

Iz
and derivatives in X using formula (88) and Theorem 90 applied to E)Y, k.Zo,r.q'» We will also wish to control
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mixed derivatives, that is, derivatives in both X and Y. This subsection will consist of the following theorem
and its proof.

Theorem 94. Let L be an operator of the form (26) with2 € Y; N I, andletq € Y; N Iy withl - m/d < 1/q < m/d,
where I1; and Y are as in Definitions 30 and 35. Then L and q satisfy the conditions of Definition 84 and Theorem 90 for
allp e Yy, nII; n (1, 2q] with1 - m/d < 1/p < m/d.

Let p e Yy n1II; n (1,2q] with1 — m/d < 1/p < m/d. Suppose that the Caccioppoli-Meyers inequality

1/p 1/2
m
lave| [iowe| < capee| [ip |+ clom e (95)
j=0 0 20
holds whenever Q c R is a cube with sides parallel to the coordinate axes and whenever U is a representative
of an element of Y™P(2Q), with C independent of U and Q. Suppose in addition this statement is valid with p

replaced by 2.
Suppose that a is a multiindex with 0 < |a| < m.

L
Then for every compact set K ¢ R, the function ag}f},j, Zorrq 1S N Y™P(K) for almost every X € RAK. If

L
la] < min(m — d/p’, m — d/2), then agfx,,-,zo,,,q e Y™P(K) for almost every X € R4, Furthermore, we have the
bound
"aaEL. ”2 dX < CRZm—dJer/p—Z\aI R "
X" X,),Zo,1,qlly™P(Q) = min(r, 1Q |1/d) ’ (96)

r

whenever T and Q are cubes with |I'| =|Q|, T c 8Q, and either T c 8Q\4Q or |a| <m — d/p’. Here,
R = max(r, |Q['/4, dist(Z,, Q)) and k is a positive constant depending on the standard parameters.
In particular, if the Caccioppoli inequality (95) is valid for p = 2, then for all multiindices B with

L
0 < |Bl < m, the mixed partial derivative a&a@f’xyj,zo,,,q(m exists as a locally I? function defined on
R? x RAN\{(X, X) : X € R4}, Furthermore, if Q, T c R? are two cubes with |Q| = |T| and T c 8Q\4Q, then

R

—>L
J‘ J |a§(a€EXJ’ZO’,’q(Y)|2deX < C(W
ra

K
) R4m=2lal-2|B]_ (97)

L
Ifla] < m - d/2, then a%a@FX,i,ZO,,,q(Y) exists as a locally L? function on all of R x R4, Furthermore, if
Q < R%is a cube, then

R

K
2 | R4m-2lal-21pl
min(|Q["4, r)) 8)

—L
I f 10%08E ;.70 o()PAYAX < c(
QQ

where R = max(r, |Q|*/4, dist(Z,, Q)), and x is a positive constant depending on the standard parameters. If
the Caccioppoli inequality is valid for L*, that is, if bound (95) is valid with p = 2 and L replaced by L*, then
bound (98) is valid whenever |f| < m —d /2 evenifm — d /2 < |a| < m.

The remainder of this subsection will be devoted to the proof of Theorem 94. We remark that if L is an
operator of the form (26) associated to coefficients A that satisfy the Garding inequality (6) and either bound
(8) or (10), then by Theorem 64, the condition (95) is valid for p € Y n II; with p > 2. Thus, the aforemen-
tioned theorem gives bound (96) only for p > 2.

Let a be a multiindex with |a| < m. Let1<j < N.

Let n be a nonnegative real-valued smooth cutoff function supported in B(0, 1) and integrating to 1 and

define n,(X’) = ;ﬂn(éX’) for € > 0. Define
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— a ! =L /
us,a,X(Y) = 0 rle(X -X )EX'yj,Zo,ryq(Y)dX : (99)
B(X,¢)

By the weak definition of derivative and the symmetry relation (88),
—L
(0, x (YD = 0% (3%Ey k20, )i ) (100)
We now investigate H’g’a, X-

Lemma 101. With the aforementioned construction and under the conditions of Theorem 90, if Q c R4 is a
cube, then E’S,a,x € W™P(2Q), and if || < m, then

—L
DB o x(Y) = Iaang(x XFE 501 (V)AX'. (102)

Proof. Let Y, c R9and let p > 0. If 0 < |B| < mand ¢ € C(B(Yy, 2p)), then
L
[36 W = [5Gy [ 00X - XDEr s, (V0N GY.

L L
By Theorem 90, EX,J’ZO,,,(Z and aﬁf)xfyj,zo,,,q are locally square integrable and thus locally integrable. By
Fubini’s theorem and the definition of weak derivative,

L
[99 - e = [ 00,06 - X0 [OFG (1) By, oYY X'
L
- <—1)'ﬂ'ja“ng<x - X’)j$(Y)-aﬁfxgj,zo,,,q(wdmx'
L
= DP ) [30,0X - XD, (V)AX'AY.

This is true for all test functions 5), and so we have that formula (102) is valid. By the triangle inequality in
LP?, we have that

a / B_)L !
Ia N(X = X")OPEx: ; 7,,r,4dX

L
s fla“ng(x — XDIIFEx ; 7, 1 qlraydX'.
LP(2Q)

L
By Theorem 90, we have that the quantities ||aﬁFX,,,-, Zor.qlLPq) are bounded. Because 9%, is bounded and
compactly supported, albeit with a bound depending on « and &, we have that ofu, o x € LP(2Q), as
desired. O

We will need a bound on ||6575,a, xllz2q)» specifically a bound that is independent of €. We seek to apply

the Caccioppoli (and Meyers) inequalities; we will need to compute Lﬂ;,a, X

Lemma 103. With the aforementioned construction, if L is of the form (26) and q € II; withl - m/d < 1/q < m/d
andwith L : Y™9(R?) — Y-™9(R4) invertible, and if Q c R is a cube, then for all € € (O, %lQ [*/4) and all p with
1>1/p >max(0,1-m/d),if X € 9Q and either X ¢ 3Q or|a| < m — d/p’, then

din'— RY
WL, e xlly-oag) < CR™17 '“'(7) , (104)

where R = max(r, |Q [V/4, dist(Z,, Q)) and C and k are constants depending on the standard parameters.

L
Proof. Let 8 € C§°(2Q). By bound (92) and the definition of II;, (LE)X, C_D)) denotes an absolutely

convergent integral whenever 8 € Ym’q/([Rd), and furthermore, the integrand has uniform L' norm. Thus,
we may apply Fubini’s theorem to the integral

2JsZosT5q?
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. U=
Ia Nu(X — XY (LE . 7000 B)AX
and compute that
— o , S S ,
(Lus,a,Xy @)= |0 I’Ie(X -X )<LEX’J,ZOJZCI’ ®)dx’.

By formula (89),

ﬁ *_) =L #)—1 *_) !
(LEx j 20,10 @) = (L'®, Ex1 7,19 = ()DL @) 7,7,4(X) = (@) 77,4 X).
Thus,
N —
(Lg%, D) = 1, (9D z4,r,q') X).

Recall that (®})z, ;4 = ®; + P for some polynomial P of degree at most m — d/q’ satisfying P(Z, + rH;) =

-®j(Zy + rH;). As in the proof of Lemma 78, if P(X) = Z|y|gm—d/q’py (@)y, then

lpyl < hsup| > pyHiy| = hsup|P(Z, + rH;)| = hsup|®{(Zo + rH;)|.
I Jylsm-d/q’ i i

— - - o -
Because @ € C§°(2Q), we have that @ = 0 outside of B(Zp, (1 + 2Jd)R). Thus, @ = Dz crg = Pzocrp
because |H;| > 1/2 for all i. Thus,

-
Ipy| < hsup| Dz, cr,p(Zo + rHy)l
1

and by Lemma 78, since p’ > d/m,
_ g
Iyl < CR™ 4P| @]y ay.
Thus,

— _ , RY —
(LTaax» B = |1,°@P)X) + 1, @°D)(X)| < [, @°DY(X)] + CR"4/? '“'(7) T

IfX¢3Qand 0 <e< %lQll/d = dist(2Q, R%\3Q), then n,*(3*®;)(X) = 0. If |a| < m — d/p’, then again by
Lemma 78 applied to @; = (®})z, crp', if 0 < € < R, then

- _araf RYC =
(Lte,qx, B)| < CR™ /P '“‘(7) IDlymrga)-
This completes the proof. O

We have established that H::,a,X € W™P(2Q) and have a bound on LH;,,X,X. We will now bound the

. . Ed
derivatives of u; 4x.

Lemma 105. Let L, q, and p satisfy the conditions of Theorem 90. Suppose in addition that the conclusion

(104) of Lemma 103 is valid (under the given conditions on e, X, and a). Let Q ¢ R9 be a cube. Suppose further

that the Caccioppoli-Meyers estimate (95) is valid in Q for all ¥ € Y™P(2Q). Let T c 8Q be a cube
with |I'| = |Q|.

Then for all € € (0, %|Q|1/d), if either T' ¢ 8Q\4Q or|a| < m — d/p’, then

— RY*

| e

r

where R = max(r, |Q ['/4, dist(Zy, Q)) and C and k are constants depending on the standard parameters.
In particular, if p = 2, then for all B with |B| < m, we have that
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K
[ [0 anvypavax < C|o|*2'ﬁ‘/dR‘""*d*2'“‘(5) .

r
raQ

Proof. Applying bounds (104) and (95) and Lemma 41 to U = ﬂ;,a, x yields
1/2
K
ITlyma < QP24 [P | s R 2]
r
20

By formula (100), the I? boundedness of convolution, and bound (91), if € is small enough, T ¢ 8Q and
Y € 2Q, then

1<k<N

L K
[ eaxrpax < sup [0y .z, (OPX < C(E) Rim-d-2lal,
r
T r

Combining the aforementioned bounds completes the proof. O

We now prove Theorem 94. The assumptions of Theorem 94 include the assumptions of Theorem 90
and Lemmas 103 and 105 with p = 2; we will use only the conclusions of Lemma 105 and the definitions (99)

and (100) of ﬂ;,a,x.
The Lebesgue space LT x Q) is weakly sequentially compact. Thus, because {E;,a,x}0<s<;‘0|1/d is a

bounded set in L*(T x Q), if 0 < |B| < m, there is a function E;,ﬁ,]’ with

E X R x
(X, Y)PdYdX < CR4m-2lel-2pl T~
.[,[l a i )] ( o |1/d))
raQ m Q

and a sequence of positive numbers &; with &; — 0 and such that, for all 9 € I2(T' x Q), we have that

”a’(x, Y) Eop (X, V)AYdX = lim J f P X, Y)-0F 0, o x(V)AYAX.
T2 1—00 T 0
Integrating by parts and applying formula (100), we see that if 5’ is smooth and compactly supported then

[ [ 0% 1) Eopsx, von¥ax
r Q

0P [ [, (8, V)(orax() VX
ra

‘ —
0fim [ [, Y, (B iz i COAYAX.
r Q

By using properties of convolutions, we see that

[ [ 0% 1) Eopsx, von¥ax
r Q

= (-)Pellim '”qeyxag@a/&pk(x, V) (Ey o zong )y COAYAX,
r Q

where #x denotes convolution in the X variable only. By the dominated convergence theorem,

- s —r
J I(pk(X, Y) (B p (X, Y)udYdX = (—1)IBI+IaII j 05380, X, Y) (Ey 1200 )i (X)AY X,
rQ raQ
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and so (E;,ﬁ,j(x » Yk = %ag(f; K Zor,g i X) = ga@(f}f,j, Zork(Y) in the weak sense. Furthermore, we may
derive bounds on E,;(X, Y) from our bounds on E)gi,a,x. Thus, by Lemma 105, we have bound (97) and
bound (98) in the case |a| < m — d /2.

Suppose || < m — d /2 and the Caccioppoli inequality ((95) with p = 2) holds for L*. By Remark 86, we

L L
may thus apply the aforementioned results to E . By bound (98) for E , if|B] < m - d /2, then

R

.
3%38E, (X)Pdxdy < ¢f ——=~
J-J‘l YYXx Y,k,ZO,r,q( )l (min(IQIl/d,r)

K
) R4m-=2lal-2|B|
QQ

Applying formula (88) yields bound (98) in the case || < m — d /2.
The space L2(T; LP5(Q)) is a Bochner space and so is a reflexive Banach space with dual L*(T; L(pﬁ)'(Q)).
By Lemma 105, we have that if ¢’ ¢ IXT, Q), then

— a ﬁ—ﬂ“
f Jgo(X, Y)-0%08E  j.20.rq(Y)AYdX
r Q

i—»oo

tim | [ [, V)0 ax(Mdvax
r Q

2 \?

j j@’(x, VEay|  dx CRG(L),

min(r, |Q['/4)
rio

IN

where @ = m — d /2 + d/p - |a|. The space L*(T x Q) is dense in L?(T; L(p/’)'(Q)). Thus, this bound is valid for
all ¢ € I2(T; L%)'(Q)), and so

—L
O4OVE x j,20,r,q(Y) € Lz(r; Lpﬂ(Q))

and satisfies bound (96).

7.4 Extraneous parameters

The fundamental solution E)%,j, Zor,q(Y) of Definition 84 depends on the parameters Z, r, and g in a some-

what artificial way: they are used only to normalize Tx,j z,r,q and Ex 7, ,,. We would like (to the extent
possible) to remove the dependencies on Zy, r, and g. The following lemma will allow us to remove (or at
least reduce) these dependencies.

Lemma 106. Let qy, q; € (1, 00). Let L satisfy the conditions of Definition 84 for both q = q; and q = q,. Suppose
that L is compatible in the sense that if S € Y™ 9(R%) n Y-™%(RY), then LIS € Y™@(R4Y) n Y™ %2(RY),
Suppose that « and 8 are multiindices such that

max(m - d/q,m - d/q;) < |a| <m, max(m -d/q,m-d/q) <|p| <m.
Let 1_3] <N, n>0, >0, Z eRY, and Z, € RY. Suppose that, for i< {1,2}, the mixed derivative
a‘,ﬁaﬁE x,j,2yr,q(Y) exists almost everywhere and is locally integrable on R4 x RA\{(X, X) : X ¢ R4},

Then we have that
—L —L
SVEx ) 2na(Y) = 05HE ) 2.1, 0,(V) (107)

for almost every (X, Y) € R4 x R4,

As noted after Theorem 90, if Y; is as in Definition 35 and ¢, ¢, € Y;, then L, gq;, and g, satisfy the
conditions of the lemma.
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Under the conditions of Theorem 94, existence and local integrability of the mixed partial derivative is
valid. Furthermore, under these conditions, we may combine formulas (107) and (97) to see that if « and S
are multiindices withm — d/q’ < |a| < mandm - d/q < |B| < m, then by choosing Z, and r appropriately,
we have that if p = |Xy — Yo|/8, then

L
1040FE y ;.20,r,(Y)PAY dX < Cpfm-21el-21p, (108)

B(Xo,p) B(Yo.p)

Proof of Lemma 106. Fix some such j, a, and f.
Let n and ¢ be smooth functions with disjoint compact support. Let T be given by

(T, ) = j D(Y)E(Y)AY = (~1)8 I DY )(Y)AY.
R R4

Because || > m - d/g;, we have that if D e Y™%i(R%) then 0A® is well defined as a L@Ws(R%)-function (i.e.,
up to sets of measure zero, not up to polynomials), and so T € Y ™9 (R%) with no normalization necessary.
By formula (89),

—
(((L*)_lT)j)Z,-,r;,q’(X) =(T, EX,iyZi,Ti:qi>'

By duality, if T € Y™ %(R%) n Y ™%(RY), then (L*)'T = (LT € Y™4(RY) n Y™9(R4). That is, the inverses
are identical whether we consider L* : Y™%(R%) — Y ™% (R%) or L* : Y™%(RY) — Y ™%(R9), Furthermore,
la| > m — d/q' and so d%((L*)'T); is a well-defined locally integrable function that does not depend on Z;, ;,
or g;. Thus,

—L L
[[or0000m0r) (B o (r2)et¥ex = [05000) (T, By, 5,00
- [0 @ T Eax

—L

= '”aafp(X)aﬁrl(Y) (EX,i,Zz,rz,qz(Y))dedX.
By applying the definition of weak derivative, we see that

% B_)L a B—)L

II¢(X) n(y) (aXaYEX,j,Zl,rl,ql(Y))kdeX = ”‘P(X)’T(Y)(axayEx,;,zz,,z,qz(Y))kdeX

for any smooth functions with disjoint compact support. By the Lebesgue differentiation theorem, formula
(107) is valid for almost every (X, Y) € R x R4, ]

L
We now consider the dependency of Ex,j’ Zor,q ON ¢ in more detail. Define
Eq ={(a, B) : @, B are multiindices, m - d/q' < |a| <m, and m - d/q < |B| < m}.
L
gy is illustrated in Figure 2. By Lemma 106, if (a, B) € &4, then a;}aéﬁ’x,ﬁ Zor,q(Y) is independent of Z, and r.
Thus, we may largely ignore the dependency on Z, and r.

However, the range E, of acceptable derivatives does depend on g. We would like to discuss this
dependency in more detail.

7.4.1 0dd dimensions

L L
In odd dimensions, we will let our fundamental solution be E)X,j(Y) = EXJ’ z,,r,2(Y). In light of the Garding
inequality (6) and the Lax-Milgram lemma, and their consequence Lemma 58, g = 2 is the most natural
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value. A straightforward computation yields that if the dimension d is odd, then E; = Z, whenever

2d

d+1 = =4q= d 1’
Note that for general rough coefficients, it may be that g € Y; and so g satisfies the conditions of

Definition 84 only for g very close to 2 (and in particular may not satisfy these conditions for any g outside

of [
d+1’
derivatives independent of Zy, r

that is, for all g sufficiently close to 2.

—L
f -7 ); thus, we cannot in general expect to improve upon Ex ;  , »(Y) in terms of the number of

7.4.2 Even dimensions

The situation in even dimensions is more complicated. In this case, if dz—fz <qg< dz—i and q # 2, then

L L
Eq 2 By; that is, FX,}-,ZO,,,q(Y) has strictly more derivatives independent of Z,, r than FX,]-’ZO’,,Z(Y). See

. eo2d 2d - - .

Figure 3. However, if +5<4a< 2<s< - and m > d /2, then E; and E; are not equal; indeed we have
. . — ~— ~ ~— . . _)L _)L .

both of the two noninclusions E,¢Es and Es¢E,. Thus, neither of the functions Ey ; 7 ,,and Ex; 7 . is

—L
entirely satisfactory; we thus wish to define a new fundamental solution Ey;, ,(Y) with the correct
derivatives for all multiindices in either E; or &,.

Theorem 109. Let d > 2 be an even integer and let m € N. Let L be such that there exists an open neighbor-
hood Y; of 2 such that if q, q1, ¢ € Y., then L and q satisfy the conditions of Definition 84, bound (97) is valid,
and formula (107) is true whenever (a B) € Eq, N Eq,.

Then there exists a function E, X ](Y) such that ifg € Y, n ( (orqg e Y. n (1, c0) ifd = 2), then

d+2’ d- 2)
8 E 70 o(¥) = 5LER (¥ for all (a, B) € E,. (110)
Furthermore, (a, B) € E, for some such q if and only if

m-d/2<|aj<m, m-d/2<|fl<m, 2m-d<|a| +|Bl. (111)

Proof. If g, § € (-4, 2), then E, = Ejand soif g, § € Y, then

d+ 2’
—L —L
a%%m@wwwﬂ%%m@ﬁw>

for all (a, B) € Z,. The same is true if g, § € (2
the condition (110) is valid for a single g € (

) N Y;. Thus, it suffices to ﬁnd a function E x,; such that
d+ 2: e 2) n YL
Fix g, s € Y; such that m <g<2<s< E' By assumption, some such g and s exist. An elementary

g d 2
2) N Y; and a single g € (2

computation shows that (a, ) € £, U Es if and only if Condition (111) is true. Furthermore, we can compute
that

[1]
=)

)

[11
w»

Il

{(a, ) : m-d/2<|aj<m,m-d[2 < |B] <m},
{@,p):m-dj2<al <m, |l =m-d/2},
{(a,B) : lal=m-d/2,m-d/2 < |B] <m}.

I [I]

/ /

[r] [r] [1]
II I

Thus, it suffices to find a function EX,j such that
Vx(0%9y X,)( )) = Vx(9%95. X,],Zo,r,q( )R
;Y( XYy X,]( )) ;Y( XYYy X,],Zo,r,s( ))

whenever |a| = |f| =m - d/2.
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We observe that if|a] = || = m — d /2, then (a + e, B+ ?) € E4 N Es for any unit coordinate vectors e
and E}, and so by Lemma 106,
a B_)L a ﬁ_>L
VxVr(0%0vE x j 7,.r.q(Y)) = VxVy(0%0yE x j 7, » s(¥)).

The lemma is thus reduced to a variant of the classical result that a curlfree vector field is the gradient of a
function.
For each W € R9 and each ¢ with |{| = m — d /2, define

7 gt ¢ gr
Gj¢,y(W) = 0yEw j 7,r,s(Y) — awEW,j ZorqCY)-

By Remark 86, formula (88), and bound (92) apphed to E , for each Y € R¢, G, (yisa locally integrable
function. Furthermore, if m — d /2 = |B| then vwvy(a/’ Gjc, y(W)) =0 and so there isa constant G,g j,¢,y (more
accurately, a function of Y, {, and j, but not of W) such that vyaﬁ Gj¢c,y(W) = G,;,, ¢,y for almost
every W ¢ R4,

Now, fix some cube Q, ¢ R%, and define

—L —L 1 ¢ —
Exj(Y) = Exjzna¥)+ Y — X G oy(W)dW.
[§l=m-d/2%" Qo

Let |a| = |B| = m — d /2. Then Vx0%X¢ = O whenever |{| = m — d/2, and so

Vx(3% O, (Y)) =V, (a“aﬁE’L~ 09))
x\OxUyLEx,j = VX\UxYyvEX,j,Zo,1,q '

We furthermore compute that

AUBE s (V) = Vy(@%LEx s . (V)) - Vydb £ G o y(W)AW
Vy(Q%OVE x (V) = WO%OVE xj, zr,q(Y)) — W0y § Gj o, y(W)AW.

Qo
6] 6]
m m
—d ., d (m 4 im d)
(m qu q 2 2
m—d
m—d
m|af m o
6] 5]

el
|
|
3
|
R

m |af m|af

Figure 2: =, denotes the set of lattice points in the gray rectangle (including the top and right edges, but not the bottom or left
edges). In odd dimensions (upper left), =, = 5, if g is sufficiently close to 2. In even dimensions, =, (upper right) is a proper
subset of =, for all g sufficiently close to 2 but either less than 2 (bottom left) or greater than 2 (bottom right).
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Recall that vyaéﬁ,,;,y(W) is independent of W. Thus, if Q c R4 is a cube, then

— —
_[ f1%406 G, o (W)WY = I fIVy 0L G, oy (W)ldWAY
Q@ o R

for any cube R c R9; choosing R appropriately, we have that by bound (97),

j fI%0LG, ¢ y(W)IAWAY < co.
Q®

Thus, by Fubini’s theorem

N —
Vyag :l: G]',a,Y(W)dW = :l:VyaeG],a,Y(W)dW
Q %

for almost every Y € R4, and so for almost every X € RY we have that

Vy(%0PE (V) = WyoR0bE s, . (V) + {9y08G, o y(W)AW
y(OxOyEy,j = VyOVEx j 20,rd(Y) + V¥4 G o y(W)
Qo

= WSl E g (Y) + VOl G y(X
YUxOy X,],Zo,r,q( + VyOyGj ey )

= VySEE 1 70, (V)
XYY"~ X,j,Zo,1,8

as desired.

7.5 Derivatives of (L*)™
Recall from formula (89) that, if T € Y™4(R9), then
1 R
(L)) zorqgX) = (T, Ex j 701,00
By the Hahn-Banach theorem, if T € Y™™7(R9), then there exist functions fg with

N
Z | Fell ey < 00
m-d/q<|§|sm

and where

— — =
(T, @)= ) QP (Y) F(Y)dy.
m-d/q'<|§|<m RY

18l

m—d m 1ol

Figure 3: The points (|al, |8]) that satisfy Condition (111).

51
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Thus,

1 'f_)L -
(@) T ze,r,qX) = Z OVE x j,20,1,4(Y)- Fz(Y)dY. (112)
m-d/g<lélsm q

We would like a similar integral formula for the derivatives of (L*)™IT.

Theorem 113. Let L and q satisfy the conditions of Definition 84. Assume that bound (96) in Theorem 94 is
valid for p = q.

LetT =T

Fe€ Y ™9 (R%) be a linear functional defined by

(Tp @) = [ G0 Fay
[Rd

for some ¢ and F such thatm - d /q < |&] < m and F e LY9)'(RY) is compactly supported.
Ifla| >m - d/q, and if|a| < m or €| < m, then

1 g
aa((L*)_ T?,;)i(X) = IaXaYEX,i,Zo,r,q(Y)' F(Y)dy (114)
[Rd

and the integral converges absolutely for almost every X € R4, If |a| = |&| = m, this formula is true for almost
every X ¢ suppF.

Proof. By bound (92) and Hélder’s inequality,

XEr ()| [F|dy
19V Ex.j, zo,r,q(Y) | |dY < oo.

[Rd

Let Qo ¢ R4 be a cube. We begin with the case where Qg and suppF are disjoint. If || < m, and if suppF is
compact, then a covering argument combined with bound (96) yields

a §—>L -
| [ 19895 2 aDI IF (V1Y X < . (115)
Qo [Rd
By Fubini’s theorem, if ¢ € C5°(Qop), then
o) [ HE 0 F O o T
[ 300 [[Ex 10040 FNIAYAX = (-1 [ 900) [ 350§E 2,1 F (V)Y AX
Qo [Rd Qo [Rd

and so

N {—>L7 - “,—>L— -
0 [ 3fEx 214(V) FONAY = [0408Ex,14(1) F (V)Y
R? R?

as L(Qo) functions. Combining this result with formula (112) yields that
1 T
(L) T k,6) zo,r,q/(X) = IaXaYEX,j,ZO,r,q(Y)' F(Y)dY (116)
[Rd
for almost every X ¢ suppf). Ifla) >m - d/q', then
O (L) My ke) = 0L M k) Zo,r g

and so formula (114) is valid for almost every X ¢ supp?.
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Remark 117. If |a| < min(m - d /2, m — d/q'), then bound (96) yields bound (115) even if Q, and suppF are
not disjoint, and so in this case, formula (116) is valid for almost every X € R4,

We are left with the case where X € suppF and |a| + |£] < 2m. We will show that bound (115) is still
valid; the argument given earlier then yields formula (116) and thus formula (114).

Since F has compact support, we may assume that Qg is large enough that suppF < Qo. Let G, be a grid
of 274 pairwise-disjoint dyadic open subcubes of Q, of measure 2-%¢|Q,| whose union (up to a set of measure
zero) is Qo. If X € Qo, let Q4(X) be the cube that satisfies X € Qu(X) € G,. If Q € G,,1, let P(Q) be the dyadic
parent of the cube Q, that is, the unique cube with Q ¢ P(Q) € G,. Then by the monotone convergence
theorem,

—L -
j j|as§a§Ex,,-,zo,,,q(Y)| IF (V)|dxdY
Qo Qo
& « £—>L —
- [ j 10405 Ex 1.7, o(V)| [F (V)|dXdY

Q0 %70 4Qu(V)\ 4Qu1(Y)

x « €—>L -
-y ¥ j 10505 E . 20r.o(V)] F (V)|AXAY.
=0Q€Gany 4p(Q)\40

By bound (96) and Fubini’s theorem, we may interchange the order of integration. Applying Hoélder’s
inequality first in Q and then in sequence spaces,

f I|a“afE’L. )| [F (V)|dXdY
XYY*X,j,Zo,1,q

Qo Qo
14 1/(g)'
o —L 1
- Y > | |[esafEnate | ax| [ire
a=0Q¢<Ga1 4p()\ 40\ Q Q
/g \%\/%
© —L
< Yy f I|6§6§EXJ’ZO,,,,I(Y)|‘1£dY dx

a=0| 2G| 4p@\40\ @

1/(ge)’

| ¥ [

QeGgi1 Q

The final term is ||Fll;@eq,) = IFl w0 g4 < co, so we need only bound the previous term.
If a > O is an integer and Q € G,,1, then by bound (96), and applying Lemma 106 to change Z, and r as
desired, we have that

2/qg¢
L
f J|a§‘(a§y,f)x,j’zo,,,q(X)|’16dY dX < C|Qm/d-1+2/q-2lal/d
4P(Q)\4Q\ Q
By Hélder’s inequality,
1/q¢ 2/qe 1/2
a {—>L « §—>L 12
|0%0YE x j,z,r,a(Y)I%dY dX < [0X0VE x j, 7,,r,g(Y)|%dY dx | cq|
4P(Q)\4Q\ Q 4P(Q)\4Q\ Q
< C|Q|m/d+1/q—\a|/d.

Thus, recalling that there are 24@+D cubes Q in G, each satisfying |Q| = 2-@+D4|Qy|,
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—L —
j j|a§a§Ex,;,zo,r,q<Y)| IF (V)|dxdY
Qo Qo

00 l/qg
< C”F"L(qg)’([Rd)Z( Z (|Q|m/d+l/qlalld)q;)

a=0\ QeGgy1

[o9)
= C”F"L(q{),([Rd)|Q0|m/d+1/q—|al/d z 2ad/qgp-a(m+d/q-|al),
a=0

Recall from formula (23) that d /g: = d/q — m + |¢]. Thus, the final sum reduces to

(o]
Z 2-a@m-|¢|-lal)
a=0

which converges provided |a| < m or €| < m. This completes the proof. O

7.6 The fundamental solution for operators of arbitrary order

In this section, we show how to use the fundamental solution for operators of high order to construct the
fundamental solution for operators of arbitrary order.

We begin by defining a suitable higher order operator associated to each lower order operator and
investigate its properties.

Lemma 118. Let L : Y™4(R%) — Y ™2(R9) be a bounded linear operator. Let M be a nonnegative integer.
Define
L=MNLAM, @ =m+2M. (119)
Here, NMLAM is the operator given by
(MMM, §) = (LMY, AMG) for all §, 3 € YTARY,

Then:

(@) If 1< q < oo and L is bounded or invertible Y™4(R%) — Y-™4(R9), then L is bounded or invertible
Y™a(RY) — Y-™4(RD), If L is invertible and in addition M is large enough (depending on d, m, and q),
then L and q satisfy the conditions of Definition 84.

(b) If L is bounded and invertible Y™2(R9) — Y"™4R%), then Y; = Y, where Y; is as in Definition 35.

(c) IfL is of the form (26), then so is L, and

m-afr=m-a, mM-bf=m-=0b, If2Il,

where a; and by, are as in formulas (28) and (29) and I1; is as in Definition 30.
(d) IfT € Y™4(RY), define T € Y"™4(R%) by

(T, W) = (T, M) for all P € Y™9(RI).
If L is invertible Y™4(R4) — Y-™4(R9), then

AMEI'TY = [1T. (120)

Proof. We need only consider the case M > 0. The polylaplacian is obviously bounded AM : Y™P(R4) —
Y™P(R4) for any 1< p < oo (in particular, for both p=gq and p =q'), and so if L is bounded
ymaR4) — Y-™4(R?), then L is bounded Y™4(R%) — Y-™4(RY).



DE GRUYTER Gradient estimates and the fundamental solution =— 55

It is well known (see, e.g., [80, Section 5.2.3]) that the Laplacian is a bounded and invertible operator
WP(RY) — W*>P(R%) for any 1 < p < co and any —co < s < co. Recall that there is a natural isomorphism
between Y™P(R?) and W™P(R?).

Thus, L : Y™4(R4) — Y"™4(R4) is bounded if and only if L : Y™4(R%) — Y-™4(R9) is bounded, and
L: Y™4(RY) — Y"™4(RY) is invertible if and only if L : Y™4(R%) — Y-™4(R4) is invertible.

If in addition M > (d /2)max(1/q,1/q') - m/2, then1 - fii /d < 1/q < i1 /d, and so L and q satisfy the
conditions of Definition 84.

Furthermore, A is compatible, and so (L) = AML'AM is compatible if and only if L™ is compatible.
Thus, Y = Y;.

There are real nonnegative constants k; such that AM = Zl - k% If U and 5’ lie in suitable function
spaces, and L is of the form (26), we have that

N — 0
T.3) = W) = [ ¥ T T ¥ 0 kexeA [P Fu.
Jrk=1lal<m|B|<m|§|=M|{|=M

We may rearrange our order of summation to see that L is an operator of the form (26) of order 2/ with
coefficients

—jk ik
Ao= D X KAL) o

€=M [{I=M (121)
2%<w 20<v
Furthermore,
N — N _
> Vo Bypd®u =y Y Y %My APESPAM,
jk=1|v|<im|m|<im Jk=1lal<m|B|<m

—

If @ € Y™ (R and U € Y™4(RY), then AMg € Y™ (R?) and AMU € Y™4(R9). Thus, if ¢ € II;, then the
right-hand side represents a L}(R9) function, and so g € II;.

Finally, recall that AM is invertible Y™4(R%) — Y™4(R%). Thus, if @ e Y™4(RY), and L : Y™9(RY) —
Ym4(RY) and L : Y™I(RY) — Y™4(RY) are bounded and invertible, then

(LMY IT), @) = (LAME)T), MAMDY = (L((L)'T), AMD) = (T, AMD) = (T, (MKMP) = (T, )

and so AY(L)'T = (L)"'T. This completes the proof. O

Thus, natural conditions on L guarantee that I has a fundamental solution.
L L
We now use E to construct E for operators of arbitrary order. Theorem 122 (with Efk(Y, X) =

L
(EX,k)i(Y) and L and L* interchanged as needed) comprises most of Theorem 15; the remaining property
cited in Theorem 15 (the uniqueness of the fundamental solution) will be addressed in Section 7.7.

Theorem 122. Let L be an operator of order 2m of the form (26) that satisfies the ellipticity condition (6) such
that 2 € II;, where 11, is the interval of Definition 30. Let M be the smallest nonnegative integer with
m + 2M > d /2. Let L be given by formula (119).

Suppose in addition that the Caccioppoli-Meyers inequality for L holds, that is, that there is an interval S¢
with2 € St € [2, 4] n II; such that if p € St, ifQ ¢ R% is a cube with sides parallel to the coordinate axes, and
if W is a representative of an element of Y™P(2Q), then we have the estimate

m

; —> _ 7 =
Y1QP/ VI gy < CIQIMPY2W 200y + CIQI AW lly-mpygy - (123)
Jj=0

If L satisfies either bound (8) or bound (10), then this condition is true with Sy = Il N Yy N [2, 4] 2 {2}, with Y,
given by formula (36).
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Then there exists some array of functions f;ij(Y) with the following properties.

Suppose that a and f are two multiindices withm — d /2 < |a| <m,m - d /2 < |B| < m, and (|al, |B]) #
(m-d/2,m —d/2). If I, does not contain a neighborhood of 2, then we impose the stronger condition
m-d/2<|ajsm,m-d/2<|B| <m.

Suppose further that Q andT are two cubes inR? with|Q| = |T| andT ¢ 8Q\4Q. Then the partial derivative

L
g(a/;E’X,,-(Y) exists as a locally L*(Q x T') function and satisfies the bounds

—>L
[ [1050fEx P < cigem-et-2pe, 124)
QT
2/pp
L
|| [1059fEx ropmay | ax < ciqprie-vae-2m (125)

r\a

forallpe Yy nSgwithm-d/p' <la,m-d/p < |B
Furthermore, we have the symmetry property

—L VRN
SOP(E (V) = 0508 (Ey (D)), (126)

for almost every X, Y € R4 x R4,
Finally, let Y; be as in Definition 35. Suppose that q € Y; N ((-00,2) U S) and m — d/q < |¢| < m. Let

T=Tp,e Y ™9 (R9) be a linear functional defined by

(Te @) =[G Fay
[Rd

for some compactly supported F e L9 (R?). Whenever |¢] > m - d/q', we have that

() 'T7 &) = fagaﬁ}f, (Y)- F(V)dy (127)
Rd

and the integral converges absolutely for almost every X ¢ suppF. If in addition |{| < m or |§] < m then
formula (127) is valid for almost every X € R4,

Proof. If L satisfies either bound (8) or bound (10), then by Lemma 118 and formula (121), so does L. By
Lemma 118, Yz = Y;. By Lemma 63, Y; contains a neighborhood of 2, and so Y; N [2, co) contains values
greater than 2. The inequality (123) is valid for all p € IIf N Y; N [2, co) by Theorem 64.

By assumption and Lemma 58,2 ¢ Y n [y and 1 — 7 /d < 1/2 < m /d. Also observe that L satisfies the
conditions of Definition 84 and Theorem 94 for all g € Y, nII; with 1 -m/d<1/q<m/d and all
peSinYrnIlz n(1,2q]with1 - /d < 1/p < i /d (in particular, for ¢ = p = 2). Consequently, L satis-
fies the conditions of Lemma 106 for all g;, ¢, € Yy N Iy with1/q1,1/q, € 1 - m/d, m/qd).

IfII; contains an open neighborhood of 2, then by Lemma 63, Y; also contains an open neighborhood of
2. Thus, the conditions of Theorem 109 are valid whenever d is even.

L I
If d is odd, or if II; does not contain a neighborhood of 2, let EX’J» = Ex,j,o,l,z be as in Definition 84.
L
If d is even, and if I1; contains a neighborhood of 2, we let FXJ- be as in Theorem 109.

L
In either case, by Theorem 94, 6§a§E}X’j(Y) exists for almost every (X, Y) € R? x R? and every &, { with
€], 1¢] € [0, 7). We define

—L —)Z
EX,j(Y)= Z Z xmxva%’”af,"EXJ(Y).

l@|=M|v|=M
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Bounds (124) and (125) follow from Theorem 94 and Lemmas 106 and 118. The symmetry property (126)

L
follows from the symmetry property (88) for E)X,,-.
We are left with formula (127). This property follows from Theorem 113 if 2m > d and so M = 0. If

2m<d, letm-d/q < || < m and F satisfy the conditions given in the theorem statement. Let T = T¢ &

and let T be as in formula (120). Observe that

(T, ) = (T, My = ¥ x, [ 0529 (1) Fryay,

=M
vl R?

and so T is a (linear combination of) operators as in Theorem 113. By formula (114) and linearity, we have
that if [{| > m - d/q, then

ATy Ty =Y xvjac a‘f”VEX,(Y) F(Y)dY

M
|v|= R?

for almost every X or almost every X ¢ supp?. In particular, if m - d/q' < |{| < m and |@| = M, then
m-d/q<|{+2w| <, and so

FWMIYTRH= Y Y Kok, Ia2w+4a<’+2VEX ). F(dy

|@|=M|v|=M

_ Jag}a;‘,EXJ(Y)- Fy)dy
[Rd

Observe that (T*J) = (D). By formula (120) with L replaced by L*, formula (127) is valid. O

Remark 128. Theorem 122 involves conditions on L = AYLAM for the smallest M such that f; i, Zo,r,2 EXStS.
The fundamental solution also exists for larger values of M. However, there is no loss of generality in
Theorem 122 in taking the smallest available M; that is, we claim that if the Caccioppoli-Meyers inequality
(123) is valid for L = AMLAM andifL : Y™P(Q) — Y-™P(Q) is bounded for all open sets Q, then it is valid for
L = AVLAY for any integer N with 0 < N < M.

We now prove the claim. Suppose that p > 2 and the Caccioppoli or Meyers inequality

1/p 1/2
m+2M

3 gy jwwv’ < ClQpir-1/2 j WE| + ClQIm 20/ d | AMLAYRT | g

j=0 Q 20

is valid for all W € Y™+*2M:(2Q) for some cube Q. Let 0 < N < M.

It is well known (see [77, Chapter VI, Section 3]) that there is a bounded, linear extension operator E
such that for all k € Ny and all1 < p < co we have that ||E U llykrgdy < Ci pII U llykrg)- Recall that AY-V s an
isomorphism from Wk+2M-2N.p(Rd) to WkP(R9),

Choose some ¥ € Wm+2N:p(2Q). Let V' = AM-NXEW). Then vV € Wm+2M:p(R4) and also satisfies

IV 209y < VM2Vl 2gey < CIEW ey < CHW N2y

Let w =7V + P where P is a polynomial of degree at most 2M — 2N — 1 such that I oW =0 for all
lyl < 2M - 2N — 1. We have that AM-Nw = AM-NV’ = EY’ = y in 2Q. We compute

1/p 1/p 1/p

m+2N m+2N m+2M
Z Qpi/e j V| Z |Qpi j VAN | <Y QUM j|vkw|p
k=2M-2N 0

By the Meyers inequality for AYLAM,
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1/p 1/2
m+2N
Y lqp/d flv"mp < C|QJVp-1/2-CM-2)/d j WP|  + ClQIom+2D/d | AMLAMW |ly-m-.p 50

j=0 0 20

By the Poincaré inequality and because AMw = ANU/,

- 1/p 1/2
m+
; i—> —
Y lqp/d jlwulp < C|QJVp-1/2 IIVZM’Z”WIZ + ClQIm 2N A ANLANY [[y-m-aw.pygy
j=0 0 20

Finally, by using the estimate | V2M-2V WIILZ(zg) = ||V2M‘2N7||Lz(20) <C ||7||L2(20), we see that the Caccioppoli-
Meyers estimate for AVLAY is also valid.

7.7 Uniqueness
We have constructed a fundamental solution; we now show that it is unique.

Theorem 129. Let L : Y™4(R%) — Y™4(R%) be bounded and invertible. Suppose that ?X,,- and ﬂ,,- are such
L
that bound (124) and formula (127) are valid with E replaced by either q} or ?
Then a;a@@’x,,-(Y) = ';gagf}(,,-(Y) for almost every (X, Y) € R4 x R4 and all &, B as in Theorem 122.

Proof. By bound (124), we have that ag‘{aly’?x,,- and a‘;(a/ﬁ;}, ; are locally integrable away from Y = X for almost
every X € R4, By formula (127),

328, (Y)- F(Y)AY = | 0%08T, (Y)- F(Y)dY
%0y ¥x i (Y)- F (Y) %97 Ix j(Y)- F (Y)
R4 R4

for all sufficiently nice test functions F . The result follows from the Lebesgue differentiation theorem. [
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