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1 Introduction

There is at present a very extensive theory for second-order linear elliptic differential operators without
lower order terms. Such an operator L may be written as follows:

L u A u ,j
k

N

a

d

b

d

a a b
j k

b k
1 1 1

,
,( ) ( )∑∑∑→

= − ∂ ∂
= = =

(1)

where u→ is a function defined on a subset of d� . Two important generalizations are higher order operators
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and operators with lower order terms
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where α and β denote multiindices.

Operators of higher order (2) with variable coefficients Aα β
j k
,
, have been investigated in many recent

papers, including [32,33,65,70,71,79,82,83], and the first author’s papers with Hofmann and Mayboroda
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[17,18,20–26]. (The theory of higher order operators with constant coefficients is older and more developed;
we refer the interested reader to the references in the aforementioned papers or to the survey paper [27] for
more details.) Harmonic analysis of second-order operators with general lower order terms (3) has been
done in a number of recent papers, including [15,16,30,33,35–38,61,64,69,74,75].

In this article, we will combine the two approaches and investigate operators L of order m2 2≥ with
certain lower order terms
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Specifically, three of the foundational results of the theory of elliptic operators of the form (1), which have
all received considerable study in the cases of operators of the forms (2) and (3), are Caccioppoli’s
inequality, Meyers’s reverse Hölder inequality for gradients, and the fundamental solution. In this article
we investigate these three topics in the case of operators of the form (4) under certain assumptions on the
coefficients.

For operators (1) or (2) without lower order terms, it is usual to require that all coefficients be bounded.
Applying Hölder’s inequality yields the bound
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for any p1 ≤ ≤ ∞. Thus, under these assumptions, L is a bounded linear operator from the Sobolev
space Ẇ m p d,

�( ) (with norm u uW
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p1 ≤ ≤ ∞. This is a useful property we would like to preserve.

Observe that elements ofẆ m p d,
�( ) are, strictly speaking, equivalence classes of functions with the same

mth order gradient. Their lower order derivatives may differ by polynomials. In investigating operators with

lower order terms (3) and (4), the spaces Ẇ m p d,
�( ) are not satisfactory; we will need the lower order

derivatives of functions in the domain of L to be well defined.

The Gagliardo-Nirenberg-Sobolev inequality gives a natural normalization condition on Ẇ p d1,
�( ) if

p d< . Specifically, if p d< , then every element (equivalence class of functions) in Ẇ p d1,
�( ) contains a

representative that lies in a Lebesgue space L p d�( )
∗

for a certain p∗ with p p< < ∞∗ . This representative is

unique as a L p∗ function (i.e., up to sets of measure zero).
In [50], the authors introduced the function space Y Ω1,2( ) with norm

u u u .Y L LΩ Ω Ω1,2 2 2( ) ( ) ( )‖ ‖ = ‖ ‖ + ‖∇ ‖∗

The Gagliardo-Nirenberg-Sobolev inequality gives a natural isomorphism between Y d1,2 �( ) and the space
Ẇ d1,2

�( ). This space (and its natural generalizationY p1, based on L p∗ and L p norms) has been further used in
other papers, including [56] and in the papers [30,36,69,75] concerning second-order operators of the form
(3) with lower order terms.

We wish to consider higher smoothness spaces. An induction argument shows that, if u Ẇ m p d,
�( )∈ ,

then there is a representative of u such that uα∂ lies in a Lebesgue space for all α with m d p α m∣ ∣− / < ≤ .
This representative is unique (as a locally integrable function) up to adding polynomials of degree at most
m d p− / . (Specifically, u Lα p dm d α, , �( )∂ ∈ , where pm d α, , is given by formula (23).)

We define the Y m p d, �( ) norm by
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Y m p d, �( ) is thus a space of equivalence classes of functions up to adding polynomials of degree at most
m d p− / . The Gagliardo-Nirenberg-Sobolev inequality gives a natural isomorphism between Y m p d, �( ) and

the space Ẇ m p d,
�( ).
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Remark 5. If α m d p∣ ∣ ≤ − / , then the Gagliardo-Nirenberg-Sobolev inequality fails: if u Ẇ m p d,
�( )∈ , then

uα∂ need not satisfy global decay estimates, and so there may not be any normalization that lies in any
Lebesgue space. It is for this reason that the spacesY m p d, �( ), unlike the traditional inhomogeneous Holder
spaces W m p d, �( ), impose norm estimates on only some, but not all, of the derivatives of order at most m.

We will consider operators that satisfy, for all suitable test functions ψ
→

and φ→, the Gårding inequality
(or ellipticity or coercivity condition)

φ A φ λ φRe
j k

N

α m
β m

α
j α β

j k β
k Y

, 1
,
, 2

d

m d,2
a

b
�

�
∣ ∣

∣ ∣

( )
∫∑ ∑ ∂ ∂ ≥ ‖

→
‖

= ≤ ≤

≤ ≤

(6)

and the bound
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for a range of p near 2.
(In Section 4, following [4], we will consider operators satisfying a slightly weaker form (34) of the

Gårding inequality (6).)
Note that if d 2= and p 2≥ , then m d p m 1− / ≥ − and so u uY Ẇm p d m p d, ,

� �( ) ( )‖ ‖ = ‖ ‖ . In this case, the
Gagliardo-Nirenberg-Sobolev inequality provides no normalization, and so bound (7), for p 2= , can only
be expected to hold if ma b= = . Thus, in dimension 2, the results of the present article do not represent a
generalization of previous results such as [20]. We will include the case d 2= in our results, but only for the
sake of completeness and ease of reference.

There are many possible conditions that can be imposed on the coefficients Aα β
j k
,
, that yield bound (7).

Following (or modifying) [16,30,36,38,61,74,75], we will focus our attention on operators of the form (4) in
which the constants a and b and the coefficients Aα β
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Remark 9. Recall from Remark 5 that if u Y m p d, �( )∈ and α m d p∣ ∣ ≤ − / , then uα∂ may not lie in any
Lebesgue space. The conditions a, m d 2b > − / ensure that, if p 2= , then all of the summands on the
left-hand side of bound (7) are products of three functions in Lebesgue spaces. In fact, this is true of all p in
a certain open range containing 2; see Lemma 56.

The number 2α β, has been chosen such that bound (7) follows from Hölder’s inequality, as may be
readily verified using the definition (23) of pm d α, , . Observe that the conditions a, m d 2b > − / again ensure
that, for all α, β of interest, we have that 2 1,α β, ( ]∈ ∞ .

Note that if m2 2= and d 3≥ , the condition a, m d
2b > − holds for 0a b= = , and so we may ignore this

condition.
We will also consider coefficients satisfying Bochner norm estimates
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Again, for second-order operators ( m2 2= ), if d 4≥ , then we may take 0a b= = . For example, this includes
the case where coefficients are constant in a specified direction, that is, where A x t a x,α β
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,
,( ) ( )= (for α β m∣ ∣ ∣ ∣= = ) have been studied in the higher order case in

[17,18,22–26], and in the second-order case in many papers, including but not limited to [2,3,5,6,8,10–
13,28,48,49,52–54,57,59,60,63,72,73]. Nontrivial coefficients constant in a specified direction cannot lie in
L p d�( ) for any p < ∞, but can easily lie in Bochner spaces.

Like the condition (8), the condition (10) implies bound (7) for a range of p including 2; see Lemma 56.
We note that the conditions (8) and (10) differ from those of [33,81], in which the authors investigate the

system (3) or (4) for coefficients A Lα β
j k d
,
, �( )∈ ∞ for all α and β. (Our conditions imply A Lα β
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,
, �( )∈ ∞ only

for α β m∣ ∣ ∣ ∣= = .)

1.1 The Caccioppoli inequality and Meyers’s reverse Hölder inequality

The Caccioppoli inequality (established in the early twentieth century) is valid for all operators L of the form

(1), where the coefficients Aa b
j k
,
, are bounded and satisfy the Gårding inequality (6) and is often written as

follows:
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Remark 12. In the case of equations (N 1= ) with real-valued coefficients, a Caccioppoli inequality can also
be established for subsolutions; that is, instead of a norm Lu‖ ‖ appearing on the right-hand side, it is
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required that Lu 0≥ in B X r, 20( ). See, for example, [69, Section 3]. This approach is not available in the case
of systems or complex coefficients and has received little study in the case of higher order equations.

The Caccioppoli inequality has been generalized to operators of the form (2) (higher order equations
without lower order terms) in [31] and with some refinements in [4,20]. It has been extended to operators of
the form (3) (second-order operators with lower order terms) in [36] (see also [30]). In the case of higher
order operators with lower order terms of the form (2), a parabolic Caccioppoli inequality was established in
[33] under the assumption that all coefficients (including the lower order coefficients) are bounded; this is
different from the assumptions of this article.

In [66], Meyers established a reverse Hölder estimate. Specifically, he established that for equations
(N 1= ) with bounded and elliptic coefficients, for all p and q sufficiently close to 2 (and, in particular, for
some p 2> and q 2≤ ), we have the estimate
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The exponent q on the right-hand side can be lowered if desired; see [42, Section 9, Lemma 2] in the case of
harmonic functions, and [20, Lemma 33] for more general functions. Meyers’s results have been generalized
to second-order systems (even nonlinear systems) without lower order terms (see [45, Chapter V]), and to
higher order equations without lower order terms (see [4,20,31]).

Caccioppoli’s inequality is still valid for systems of the form (4), that is, higher order equations with
lower order terms. The argument is largely that of [20,31] and is presented in Section 4.

The obvious generalization of Meyers’s reverse Hölder inequality is not valid in the case of operators
(even second-order operators) with lower order terms. That is, for any given positive integers m and d and
nonnegative integers m d m2,a ( ]∈ − / , m d m2,b ( )∈ − / , there exists an operator L of the form
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See Section 6.2.
Weaker generalizations have been investigated in [30] and the argument of Section 6 takes many ideas

therefrom. The following theorem is the first main result of this article. It will be proven in Sections 4 (the
case p q μ 2= = = ) and 6 (the general case) and represents a simultaneous statement of the Caccioppoli
and Meyers inequalities for systems of form (4).

Theorem 14. Let m 1≥ and d 2≥ be integers. Let L be an operator of form (4) for some coefficients A that
satisfy the ellipticity condition (6) and one of bounds (8) or (10).

Then there is a δ 0> depending on m and d and the constants λ and Λ in bounds (6) and (8) or (10) with
the following significance.
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Let p δ2, 2[ )∈ + , μ δ δ2 , 2( )∈ − + , and let q0 < ≤ ∞. Let j and ϖ be integers with j m0 ≤ ≤ and
ϖ j0 min , b( )≤ ≤ . If p 2= , we impose the additional requirement that either q 2≥ or ϖ 1≥ (and thus, j 1≥ ).
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∈ ⧹ , that is, that the right-hand side of the given
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− for some p 2< but sufficiently close to 2, aweaker result is still available; see Theorem 66.

1.2 The fundamental solution

The fundamental solution E X j
L
,
→

for the operator L is, formally, the solution to LE δ eX j
L

X j,
→
=
→, where δX denotes

the Dirac mass at X . The fundamental solution has proven to be a very useful tool in the theory of
differential equations without lower order terms (i.e., of forms (1) and (2)). By definition, integrating against
the fundamental solution allows one to solve the Poisson problem L u f→

=
→

in d� . The fundamental solution
is also used in the theory of layer potentials, an essential tool in the theory of boundary value problems; for
example, layer potentials based on the fundamental solution for certain variable coefficient operators of
form (1) were used in [1–3,10–12,19,28,48,51,52,60,68,72,73] and of form (2) in [17,18,23,26].

Formally, the fundamental solution can be written as E L δ eX j
L
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1( )

→
=

→− , where δ eX j
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dual space given by δ e φ φ X,X j j( )⟨
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the equation E L δ eX j
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→− using the Fourier transform. For some well-behaved variable coefficients, L
is an invertible map from some function space into a space containing δ eX j

→, and so, this approach is still
valid. In case (1) of second-order operators without lower order terms, see [62] (N 1= and real symmetric
coefficients), [58] (N 1= , real nonsymmetric coefficients, and d 2= ) or [39,43] (N 1≥ and continuous
coefficients).

This is the approach taken in both [20] and the present article for general higher order operators of
the form (2) or (4). By assumptions (6) and (7) and the Lax-Milgram lemma, L is invertible Y m d,2 �( ) →

Y m d,2 �( )− . If m d2 > , then by Morrey’s inequality, all representatives of elements of Y m d,2 �( ) are Hölder
continuous. Recall that elements ofY m d,2 �( ) are equivalence classes of functions up to adding polynomials
of degree at most m d 2− / . If a suitable (although somewhat artificial) normalization condition is applied,

then δ eX j
→ is a well-defined and bounded linear functional on Y m d,2 �( ), that is, an element ofY m d,2 �( )− . We

therefore may construct E X j
L
,
→

as E L δ eX j
L

X j,
1( )

→
=

→− if m d2 > . If m d2 ≤ , then the aforementioned argument

yields a fundamental solution for the operator L LΔ ΔM M( ) ( )͠ = − − of order M m4 2+ if M is large enough; the

fundamental solution for L may be then derived from that for L͠ .
This approach, with some attention to the details and use of the Caccioppoli and Meyers inequalities,

yields the following theorem. This theorem is the second main result of the present article.
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Theorem 15. Let L be an operator of order m2 of the form (4) that satisfies the ellipticity condition (6) and one
of bounds (8) or (10).

Then there exists a number δ 0> and an array of functions Ej k
L
, for pairs of integers j, k in N1,[ ] and

defined on d d� �× with the following properties. This array of functions is unique up to adding functions Pj k,

defined on d d� �× that satisfy P Y X, 0X
ζ

Y
ξ

j k, ( )∂ ∂ = whenever m d ζ m2 ∣ ∣− / ≤ ≤ , m d ξ m2 ∣ ∣− / ≤ ≤ , and
ζ ξ m d m d, 2, 2(∣ ∣ ∣ ∣) ( )≠ − / − / .

Suppose that α and β are two multiindices with m d α m2 ∣ ∣− / ≤ ≤ , m d β m2 ∣ ∣− / ≤ ≤ , and
α β m d m d, 2, 2(∣ ∣ ∣ ∣) ( )≠ − / − / .

Suppose further thatQ and Γ are two cubes in d� with Q Γ∣ ∣ ∣ ∣= and Q QΓ 8 4⊂ ⧹ . Then the partial derivative

E Y X,X
α

Y
β

j k
L
, ( )∂ ∂ exists as a L Q Γ2( )× function and satisfies the bounds

E Y X X Y C Q, d d .
Q

X
α

Y
β

j k
L m α β d

Γ

,
2 4 2 2∣ ( )∣ ∣ ∣( )∫∫ ∂ ∂ ≤ − ∣ ∣− ∣ ∣ /

(16)

If δ p δ2 2− < < + , and if p 2< or β m d 2∣ ∣ > − / , then

E Y X Y X C Q, d d ,
Q

X
α

Y
β

j k
L p

p

m d p α

Γ

,

2

2 1 2 2β

β
⎛

⎝

⎜
⎜

∣ ( )∣
⎞

⎠

⎟
⎟

∣ ∣∫ ∫ ∂ ∂ ≤

/

/ − + / − ∣ ∣ (17)

where p p
m β

d
1 1
β

∣ ∣
= −

− .
Furthermore, we have the symmetry property

E Y X E X Y, , .X
α

Y
β

j k
L

X
α

Y
β

k j
L

, ,( ) ( )∂ ∂ = ∂ ∂
∗ (18)

Finally, suppose that δ q δ2 2− < < + and that m d q ξ m∣ ∣− / < ≤ . Let F L q dξ �( )( )∈ ′ be compactly

supported, where 1q q
m ξ

d
1 1
ξ( )

∣ ∣
= − +
′

− . Let N1 ≤ ℓ ≤ . For each β with m β m d q∣ ∣≥ > − / ′ and each

k N1 ≤ ≤ , let

u X E X Y F Y Y, d .β k X
β

Y
ξ

k
L
,

d
�

( ) ( ) ( ) ( )∫= ∂ ∂ ℓ (19)

The integral converges absolutely for almost every X Fsuppd�∈ ⧹ for all such β and ξ ; if β m∣ ∣ < or ξ m∣ ∣ <

then the integral converges absolutely for almost every X d�∈ .

Then there is a function u Y m q d, �( )
→
∈ with u uβ

β∂
→
=
→ for all such β almost everywhere (if β ξ m2∣ ∣ ∣ ∣+ < ) or

almost everywhere in Fsuppd� ⧹ (otherwise) and such that

φ F φ A uξ

k j

N

α m
β m

α
j α β

j k β
k

, 1
,
,

d da

b
� �

∣ ∣

∣ ∣

∫ ∫∑ ∑∂ = ∂ ∂ℓ
= ≤ ≤

≤ ≤

for all φ Y m q d, �( )
→
∈ ′ .

Many assumptions on the coefficients other than (8) and (10) are reasonable. We construct the fundamental
solution in Section 7. In that section, we will not explicitly use the assumptions (8) and (10); instead we will use

their consequences, the Caccioppoli and Meyers inequalities, for the operator L LΔ ΔM M͠ = . The results in Section
7, and in particular Theorem 122, will allow the interested reader to construct the fundamental solution for other
classes of coefficients once a suitable higher order Caccioppoli inequality has been established.

1.2.1 Other approaches

The approach of this article and of [20] uses higher order operators, and in particular the higher order
Caccioppoli and Meyers inequalities, to construct the fundamental solution, and as such has only been
available since the development of a strong theory of higher order operators. The fundamental solution for
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second-order operators has been of interest for a long time, and other approaches to its construction have
been used.

If d 2≥ , then δ eX j
→ is not an element of Y d1,2 �( )− . Specifically, elements of Y d1,2 �( ) are elements of

Lebesgue spaces (or of BMO), and so their value at a single point is not well defined. In some special cases

(discussed earlier), L is invertible from Y Bp
0
1, ( ) to Y Bp1, ( )− for open balls B and p large enough to apply

Morrey’s inequality, and so the fundamental solution can be constructed using the approach discussed
earlier and some attention to the behavior outside of B. However, this approach is not available in other
cases.

In some cases, solutions to L u 0→
= may be locally Hölder continuous even if generalY 1,2 functions are

not. In this case, the fundamental solution may be constructed as a limit of L Tρ
1− , where T δ eρ X j→

→ as

ρ 0→ + and each Tρ is in Y d1,2 �( )− . Careful application of the Caccioppoli inequality, the local Hölder

continuity, and other arguments yields that L Tρ
1− converges to a fundamental solution.

This approach was used to construct the fundamental solution for operators of the form (1) [47,50] and
(3) [36,69,75] in dimension d 3≥ under the assumption that solutions are locally Hölder continuous.
Green’s functions in domains (rather than in all of d� ) were constructed using this method in the afore-
mentioned papers, and also in [61].

A different approach involving kernels for the heat semigroup e tL− was used in [9] to construct the
fundamental solution in dimension 2; as observed in [40] their approach is valid for systems of the form (1)
with N 1≥ and with complex nonsymmetric coefficients. The articles [34,40] establish results analogous to
those of [9] for the Green’s function of a domain rather than all of 2� .

Considerably more work must be expended to apply the semigroup approach in dimension d 3≥ ; heat
semigroups were used in [64] to construct the fundamental solution for the magnetic Schrödinger operator,
and a different form of semigroup was used in [72] to construct the fundamental solution assuming only
local boundedness, not local Hölder continuity.

This approach does require the De Giorgi-Nash property of elliptic operators, or a condition, such as
real coefficients, that implies this property. However, this approach often yields stronger estimates than
those of the present paper, and indeed stronger estimates than those true of the fundamental solution for
the Laplace operator. See, for example, [37,64,76].

1.3 Outline

The outline of this article is as follows. In Section 2, we will define our terminology. We will give some
results concerning function spaces (in particular, Sobolev spaces) in Section 3.

We will prove the Caccioppoli inequality in Section 4. We will prove our generalization of Meyers’s
reverse Hölder inequality in Section 6.1 and construct the counterexample of the inequality (13) in Sec-
tion 6.2.

We will construct the fundamental solution in Section 7.
Some results concerning invertibility of the operator L between certain function spaces will be used in

both Sections 6 and 7; we present these results in Section 5.

2 Definitions

2.1 Basic notation

We consider divergence-form elliptic systems of N partial differential equations of order m2 in d-dimen-
sional Euclidean space d� , d 2≥ .
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When Ω d�⊂ is a set of finite measure, we let f fΩ
1
Ω∣ ∣
∫⨏ = , where Ω∣ ∣ denotes the Lebesgue measure

of Ω.
As mentioned in Theorem 14, if Q is a cube in d� or d 1� − and θ 0> is a positive real number, we let θQ

denote the concentric cube with θQ θ Qd∣ ∣ ∣ ∣= (so the side length of θQ is θ times the side length of Q).
We employ the use of multiindices in d

0�( ) . We will define

γ γ γ γ γ γand
i

d

i d
1

1 2∣ ∣ ∑= ! = ! ⋅ !⋯ !
=

for any multiindex γ γ γ, , d1( )= … . When δ is another multiindex in d
0�( ) , we say that δ γ≤ if δ γi i≤ for each

i d1 ≤ ≤ . Furthermore, we say δ γ< if δ γi i< for at least one such i.
We will use the Leibniz Rule for multiindices, that is, that for all suitably differentiable functions u and

v and a multiindex α, we have that

uv α
γ α γ

u v.α

γ α

γ α γ( )
( )
∑∂ =

!

! − !
∂ ∂

≤

−

2.2 Function spaces

Let Ω d�⊆ be a domain. We denote by L Ωp( ) and L Ω( )∞ the standard Lebesgue spaces with respect to
Lebesgue measure, with norms given by

u uL
p

p

Ω

Ω

1

p
⎛

⎝

⎜⎜
∣ ∣

⎞

⎠

⎟⎟
( ) ∫‖ ‖ =

/

if p1 ≤ < ∞, and

u uess sup .L Ω Ω∣ ∣( )‖ ‖ =∞

If p1 ≤ ≤ ∞, we let p′ be the extended real number that satisfies p p1 1 1/ + / ′ = .
If t �∈ , let x x tΩ : , Ωt d 1�[ ] { ( ) }= ∈ ∈− . We define the Bochner norm L L Ωt

q
x
p( ) by

u u x t x t, d dL L
p

q p q

Ω

Ω

1

t
q

x
p

t

⎛

⎝

⎜

⎜

⎛

⎝

⎜
⎜

∣ ( )∣
⎞

⎠

⎟
⎟

⎞

⎠

⎟

⎟
( )

[ ]

∫ ∫‖ ‖ =

−∞

∞
/ /

(20)

with a suitable modification in the case p = ∞ or q = ∞.
We define the inhomogeneous Sobolev norm as follows:

u u ,W
j

k
j

LΩ
0

Ωk p p, ( ) ( )∑‖
→
‖ = ‖∇

→
‖

=

where derivatives are required to exist in the weak sense. We then define the homogeneous Sobolev norm as

u u .W
k

L˙ Ω Ωk p p,
( ) ( )‖

→
‖ = ‖∇

→
‖ (21)

Observe that by the Poincaré inequality, if u Ẇ Ωk p,
( )

→
∈ andΩ is bounded, then u L Ωj p( )∇ ∈ for all j k0 ≤ < ;

however, the Poincaré inequality does not yield finiteness of uj L Ωp( )‖∇ ‖ in the case where Ω is unbounded.
The Sobolev spaces are then the spaces of equivalence classes of locally integrable functions that have

weak derivatives whose Sobolev norm is finite, with the equivalence relation u v~→ → if u v 0‖
→
−
→
‖ = . Observe

that elements of inhomogeneous Sobolev spaces, like elements of Lebesgue spaces, are defined up to sets of
measure zero, while elements of homogeneous Sobolev spaces (in connected domains) are defined up to
sets of measure zero and also up to adding polynomials of degree at most k 1− .
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Recall that for p d1 ≤ < , the Sobolev conjugate of p is defined to be

p dp
d p

.=
−

∗

See, for example, [41, Section 5.6]. Notice that

p p d
1 1 1 .= −
∗

(22)

We will now generalize equation (22). Let k be an integer so that m k md
p− < ≤ . We then define pm d k, , so

that

p p
m k

d
1 1 .

m d k, ,
= −

− (23)

When considering elliptic operators of order m2 in dimension d, and the numbers m and d are clear
from context, we will let p pk m d k, ,= . If α is a multiindex, we will let p p pα m d α m d α, , , ,= = ∣ ∣. Notice that when
α m∣ ∣ = we have that 2 2α = , when α m 1∣ ∣ = − then 2 2α =

∗ and so on. This definition for 2α will help keep the
notation throughout this article relatively clean and help us to avoid backward summation.

If Ω d�⊆ is a domain, m 1≥ is an integer, and p1 ≤ ≤ ∞, we define the Y Ωm p, ( ) norm as follows:

u u .Y
m d p α m

α
LΩ Ωm p pm d α, , ,( )

∣ ∣

( )∑‖ ‖ ≔ ‖∂ ‖
− / < ≤

(24)

We then defineY Ωm p, ( ) analogously to Ẇ Ωm p,
( ). Observe that elements ofY Ωm p, ( ) are defined up to adding

polynomials of degree at most m d p− / . We let

Y φ Y φΩ : 0 outside Ω .m p m p d
0

, , �( ) { ( ) }=
→
∈

→
=

ThenY Ωm p
0

, ( ) is the space of functions inY Ωm p, ( ), which are zero near the boundary in an appropriate sense.
Note thatY Ym p d m p d

0
, ,� �( ) ( )= . Conversely, if Ωd� ⧹ has nonempty interior, then elements ofY Ωm p

0
, ( ) have a

natural normalization condition (i.e., nonzero polynomials are not representatives of elements ofY Ωm p
0

, ( )).
We will generally write bounded linear functionals on Y Ωm p

0
, ( ) (i.e., bounded linear operators from

Y Ωm p
0

, ( ) to �) as T, Ω⟨ ⋅⟩ ; if Ω d�= , we will omit the Ω subscript. We define the antidual space

Y YΩ Ωm p m p,
0

,( ) ( ( ))= ′− ′ , for p p1 1 1/ + / ′ = , by

T Y T Y, is a bounded linear functional on Ω if and only if Ω .m p m p
Ω 0

, ,( ) ( )⟨ ⋅⟩ ∈ − ′ (25)

Note that if α �∈ then αT α T, Φ , ΦΩ Ω⟨
→
⟩ = ⟨

→
⟩ .

2.3 Elliptic operators

Let m be a positive integer. Let A Aα β
j k
,
,( )= be an array of measurable real or complex coefficients defined on

d� indexed by integers j and k such that j N1 ≤ ≤ and k N1 ≤ ≤ and multiindices α and β with α m∣ ∣ ≤

and β m∣ ∣ ≤ .

We define the differential operator L with coefficients A as follows. If u→ is a Sobolev function, we let

L u , Ω⟨
→
⋅⟩ be the linear functional that satisfies

φ A u L u φ,
j k

N

α m β m

α
j α β

j k β
k

, 1 Ω

,
,

Ω
∣ ∣ ∣ ∣

∫∑ ∑ ∑ ∂ ∂ = ⟨
→ →
⟩

= ≤ ≤

(26)

for all appropriate test functions φ→.

Remark 27. If A, u→, and φ→ are sufficiently smooth and decay sufficiently rapidly at infinity, we may
integrate by parts to see that
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L u φ φ A u, 1 .
j

N

j
k

N

α m β m

α α
α β
j k β

k
1 1

,
,

d
�

( ) ( )
∣ ∣ ∣ ∣

∫∑ ∑ ∑ ∑⟨
→ →
⟩ = − ∂ ∂
= = ≤ ≤

∣ ∣

Thus, in this case, we may write

L u A u1j
k

N

α m β m

α α
α β
j k β

k
1

,
,( ) ( ) ( )

∣ ∣ ∣ ∣

∑ ∑ ∑→
= − ∂ ∂
= ≤ ≤

∣ ∣

as a classically defined linear differential operator; this coincides with formula (26) if , Ω⟨⋅ ⋅⟩ denotes the
usual (complex) inner product in L ;d N2 � �( ).

We define

α A X j k β Xmin : 0 for some , , , ,L α β
j k
,
,a a {∣ ∣ ( ) }= = ≠ (28)

β A X j k α Xmin : 0 for some , , , .L α β
j k
,
,b b {∣ ∣ ( ) }= = ≠ (29)

Definition 30. We let ΠL be the largest interval with

p m
d p

d m
d

Π : 1
L

b a⎧

⎨
⎩

⎫

⎬
⎭

⊆
−
< <

− +

and such that if p ΠL∈ , then there is a pΛ 0,( ) [ )∈ ∞ such that bound (7) is valid, that is,

φ A ψ p φ ψΛ
j k

N

α m
β m

α
j α β

j k β
k Y Y

, 1
,
,

d

m p d m p d, ,

a

b
�

� �( )
∣ ∣

∣ ∣

( ) ( )∫ ∑ ∑ ∂ ∂ ≤ ‖
→
‖ ‖

→
‖

= ≤ ≤

≤ ≤

′ (31)

for all φ Y m p d, �( )
→
∈ ′ , ψ Y m p d, �( )

→
∈ .

We consider singleton sets to be intervals, so 2 2, 2{ } [ ]= is a possible value of ΠL. We will usually
assume that 2 ΠL∈ ; in particular, this implies that a, m d 2b > − / .

Remark 32. If p ΠL∈ , then L u φ p φ u, Λ Y Ym p d m p d, ,� �∣ ∣ ( ) ( ) ( )⟨
→ →
⟩ ≤ ‖

→
‖ ‖

→
‖′ and the integral in the definition of

L u φ,⟨ → →⟩ converges absolutely for such u→ and φ→; thus, if u Y m p d, �( )
→
∈ then the given integral is a linear

functional on Y m p d
0

, �( )′ , and so L u Y m p d, �( )
→
∈ − . Our conventions for Y m p,− yield that L is a bounded linear

operator (and not a conjugate linear operator) from Y m p d, �( ) to Y m p d, �( )− .

Remark 33. The condition d d m p d ma b( ) ( )/ + − < < / − ensures that the derivatives φα∂
→, ψβ∂
→

appearing
in bound (31) satisfy α m d p∣ ∣ > − / ′ and β m d p∣ ∣ > − / . By the definition (24) of Y m p d, �( ), this means that

φ Lα p dα �( )∂
→
∈
′ , ψ Lβ p dβ �( )∂

→
∈ . Derivatives ofY m p d, �( ) orY m p d, �( )′ functions of lower order are defined only up

to adding constants or polynomials, which would preclude validity of bound (31). It might be possible to
consider the case m d 2a ≤ − / or m d 2b ≤ − / by considering more delicate cancellation conditions or Hilbert
spaces other than Y m d,2 �( ), but such constructions are beyond the scope of this article.

As noted in Section 1, if m 1= and d 3≥ , then the conditiona, m d 2b > − / is vacuous, as m d 2 0− / < ,
and so there are no multiindices α d

0�( )∈ with α m d 2∣ ∣ ≤ − / . Conversely, if d 2= , then A 0αβ ≠ only in the
case when α β m∣ ∣ ∣ ∣= = , and so the present article does not represent a generalization of previous results
such as [4,20,31,36].

We will consider coefficients that satisfy the Gårding inequality (6). In [4], Auscher and Qafsaoui
consider higher order elliptic systems in divergence form in which ellipticity is in the sense of the following
weaker Gårding inequality:
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φ A φ λ φ δ φRe ,
j k

N

α m β m

α
j α β

j k β
k

m
L L

, 1
,
, 2 2

d

d d2 2

�

� �
∣ ∣ ∣ ∣

( ) ( )
∫∑ ∑ ∑ ∂ ∂ ≥ ‖∇

→
‖ − ‖

→
‖

= ≤ ≤

(34)

where λ 0> and δ 0≥ are real numbers, for all φ→, which are smooth and compactly supported in d� . The
standard Gårding inequality (6) is thus the weak inequality (34) with δ 0= . In Section 4, we will prove
results in the generality of bound (34) instead of (6).

Throughout, we will letC denote a positive constant whose value may change from line to line, but that
depends only on the dimension d, the order m2 of our differential operators, the size N of our system of
equations, the constant λ in bound (6) (or (34)), and the constant Λ 2( ) in bound (7). A constant depending
on a number p ΠL∈ may also depend on pΛ( ).

A standard argument involving the Lax-Milgram lemma (see Lemma 58) shows that if L satisfies the
condition (6) and 2 ΠL∈ , then L is not only bounded but invertible Y Ym d m d,2 ,2� �( ) ( )→ − .

Definition 35. If L Y Y: m d m d,2 ,2� �( ) ( )→ − is bounded and invertible, then we define

p L Y Yϒ : is bounded and compatibly invertible .L
m p d m p d, ,� �{ ( ) ( )}= → − (36)

By compatibly invertible, we mean that L Y Y: m p d m p d, ,� �( ) ( )→ − is invertible with bounded inverse and
that if T Y Ym p d m d, ,2� �( ) ( )∈ ∩− − , then L T Y Ym p d m d1 , ,2� �( ) ( )∈ ∩− . (Thus, L T1− has the same value whether
we regard L as an operator on Y m d,2 �( ) or Y m p d, �( ).)

Compatibility is not automatically true; see [13] for an example of operators that are invertible, but not
compatibly invertible, in some sense.

We will conclude this section by reminding the reader that our main focus is on coefficients that satisfy
bound (8), that is,

A m α m d m β m d

A

Λ if
2

and
2

,

0 otherwise,

α β
j k

L

α β
j k

,
,

,
,

α β d2 , �
⎧

⎨

⎩
⎪

∣ ∣ ∣ ∣( )‖ ‖ ≤ ≥ > − ≥ > −

=

or bound (10), that is,

A m α m d m β m d

A

Λ if 1
2

and 1
2

,

0 otherwise .

α β
j k

L L

α β
j k

,
,

,
,

t x
α β d2 ,

�
⎧

⎨

⎩
⎪

∣ ∣ ∣ ∣
( )

‖ ‖ ≤ ≥ > −
−

≥ > −
−

=

∞
∼

where

d
m α β

d
m α β

2
2

, 2 1
2

.α β α β, ,
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

=
− −

=
−

− −

∼

Elementary computations involving Hölder’s inequality (Lemma 56) shows that both conditions (8) and
(10) imply that ΠL contains an interval around 2 whose radius depends only on the dimension d.

3 The Gagliardo-Nirenberg-Sobolev and Poincaré inequalities and
their consequences

In this section, we will collect some results regarding Sobolev functions that will be useful throughout the
article. These results are mainly consequences of the Gagliardo-Nirenberg-Sobolev inequality and induc-
tion arguments.
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We will begin with Section 3.1, in which we will consider the global function spaces Ẇ m p d,
�( ) and

Y m p d, �( ). In Section 3.2 we will study Y Qm p, ( ) for a cube Q.
We will often wish to consider the behavior of functions in thin annuli. Thus, in Section 3.3, we will

establish results in (possibly thin) annuli rather than cubes. We will sometimes need different forms of
estimates and so will also investigate the Poincaré inequality in thin annuli.

Finally, in Section 3.4, we will investigate the behavior of Sobolev functions when multiplied by cutoff
functions; since our standard cutoff functions have gradients supported in an annulus, this will build on the
results of Section 3.3.

3.1 Global Sobolev spaces

In this section, we will establish some basic properties of the spaces Ẇ m p d,
�( ) and Y m p d, �( ).

The global Gagliardo-Nirenberg-Sobolev inequality

u C uL p d L,p d p d
� �( ) ( )‖ ‖ ≤ ‖∇ ‖∗

is true for functions u in the inhomogeneous Sobolev spaceW L Ẇp d p d p d1, 1,
� � �( ) ( ) ( )= ∩ (see, for example,

[41, Section 5.6.1]), and also for functions u Ẇ p d1,
�( )∈ satisfying weaker decay estimates at infinity (see

[67]). We would like to establish an analog to the global Gagliardo-Nirenberg-Sobolev inequality for
arbitrary elements of Ẇ p d1,

�( ). Recalling that elements of Ẇ p d1,
�( ) are equivalence classes of locally L1

functions up to additive constants, we find the following theorem suitable.

Theorem 37. Let p d1 ≤ < , d �∈ . Then there is aC 0p d, > depending only on p and d such that, if u L d
loc
1 �( )∈

and u L p d�( )∇ ∈ , then there is a unique constant c such that u c L p d�( )− ∈
∗

and

u c C u .L Lp d p d
� �( ) ( )‖ − ‖ ≤ ‖∇ ‖∗

Proof. Uniqueness of c is clear. Let Q d�⊆ be the unit cube and let j �∈ . Applying [46, Theorem 7.26] and
scaling arguments, we see that if c is any constant, then

u c C u c C u2 .L Q p d
j d

L Q p d L Q2 , 2 , 2p j p j p j
( ) ( ) ( )‖ − ‖ ≤ ‖ − ‖ + ‖∇ ‖− /∗

Choosing c uQ2 j( )= ⨏ , we have that by the Poincaré inequality,

u u C u .
Q

L Q L Q
2

2 2
j

p j p j
⎛

⎝
⎜

⎞

⎠
⎟ ( ) ( )‖ − ⨏ ‖ ≤ ‖∇ ‖∗

We may then compute that

u u u u

u u u u

C u

2

2 2

2 .

Q Q

jd p

Q Q L Q

jd p

Q L Q

jd p

Q L Q

p d
jd p

L Q

2 2 2 2 2

2 2 2 2

, 2

j j j j p j

j p j j p j

p j

1 1

1

1

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

( )

( ) ( )

( )

⨏ − ⨏ = ⨏ − ⨏

≤ − ⨏ + − ⨏

≤ ‖∇ ‖

− /

− / − /

− /

+

∗

+ ∗

∗

∗

∗

+ ∗

∗
+

Summing, we see that if kℓ < , ℓ, k �∈ , then

u u C u2 ,
Q Q

p d
d p

L Q
2 2

, 2
k

p k
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( )⨏ − ⨏ ≤ ‖∇ ‖−ℓ /

ℓ

∗
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and so c ulimj
Q2j

⎛

⎝
⎜

⎞

⎠
⎟= ⨏→∞ exists. We then see that

u c c u u u C u2 .L Q
d p

Q Q L Q

p d L Q2
2 2 2

, 2p

p

p k
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟( )

( )

( )‖ − ‖ ≤ − ⨏ + − ⨏ ≤ ‖∇ ‖ℓ /∗ ℓ

∗

ℓ ℓ ∗ ℓ

Taking the limit as ℓ → ∞ completes the proof. □

We now generalize to higher order.

Corollary 38. Suppose that m 1≥ , d 2≥ are integers and that p1 ≤ < ∞. Then there exists a constant c

depending only on d, m, and p with the following significance. Suppose u→ is a representative of an element of

Ẇ m p d,
�( ). Then there is a polynomial P

→
of order at most m 1− , unique up to adding polynomials of order at

most m d p− / , such that

u P c u .Y Ẇm p d m p d, ,
� �( ) ( )‖ − ‖ ≤ ‖ ‖

In particular, u P Y m p d, �( )‖ − ‖ is finite.

Proof. Recall the definition (23) of pm d k, , . Because p pm d k m d k, , 1 , ,( ) =+
∗ , if m d p k m− / < < , the bound

u P C uk
L k

k
L

1pm d k d pm d k d, , , , 1� �( ) ( ) ( )‖∇ − ‖ ≤ ‖∇ ‖+ +

for some Ck follows from Theorem 37. By induction, and because p pm d m, , = ,

u P C u .k
L k

m
Lpm d k d p d, , � �( ) ( ) ( )‖∇ − ‖ ≤ ‖∇ ‖

Applying the definitions (21) and (24) of Ẇ m p d,
�( ) and Y m p d, �( ) completes the proof. □

We will now establish a bound on the Bochner norm of elements of Y m p d, �( ).

Corollary 39. Let m �∈ , p d1, 1[ )∈ − . Let k 0�∈ satisfy m d p k m1( )− − / < < . Let u be a representative of

an element of Ẇ m p d,
�( ) and let P be the polynomial in Corollary 38. Then

u P C u .k
L L

m
Lt

p
x
pm d k d p d, 1, � �( ) ( ) ( )‖∇ − ‖ ≤ ‖∇ ‖−

In particular, if u Y m p d, �( )∈ , then this bound is valid with P 0= .

Proof. By Corollary 38, we have that

u P .k
L Lt

p
x
pm d k d, , �( ) ( )‖∇ − ‖ < ∞

In particular, for almost every t �∈ , we have that

u t P t, , .k k
L pm d k d, , 1�( ) ( ) ( )‖∇ ⋅ − ∇ ⋅ ‖ < ∞−

By definition,

u u x t x t u t t, d d , d ,m
L

m p

p

m
L
p

p1 1

p d

d

k

p d

1

1�

�

�

⎛

⎝

⎜
⎜

∣ ( )∣
⎞

⎠

⎟
⎟

⎛

⎝

⎜⎜
( )

⎞

⎠

⎟⎟
( ) ( )
∫ ∫ ∫‖∇ ‖ = ∇ = ‖∇ ⋅ ‖

−∞

∞ /

−∞

∞ /

−

−

and because this quantity is finite, we must have that

u t,m
Lp d 1�( ) ( )‖∇ ⋅ ‖ < ∞−

for almost every t �∈ .
Fix some t such that both of the aforementioned norms are finite. Let γ k∣ ∣ = . Applying Corollary 38 in

d 1� − with d replaced by d 1− yields a polynomial pt γ, defined on d 1� − such that
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u t p C u t C u t, , , .γ
t γ L x

m k γ
L

m
L, p d γ d p d k d p d γ d, 1, 1 , 1, 1 , 1, 1� � �( ) ( ) ( )( ) ( ) ( )‖∂ ⋅ − ‖ ≤ ‖∇ ∂ ⋅ ‖ ≤ ‖∇ ⋅ ‖−

− − − − − −

But

u t P t u t P t, , , ,γ γ
L

k k
Lpm d k d pm d k d, , 1 , , 1� �( ) ( ) ( ) ( )( ) ( )‖∂ ⋅ − ∂ ⋅ ‖ ≤ ‖∇ ⋅ − ∇ ⋅ ‖ < ∞− −

and because both pt γ, and P t,γ ( )∂ ⋅ are polynomials on d� , finiteness of these two norms yields that
p x P x t,t γ

γ
, ( ) ( )= ∂ for all x d 1�∈ − .
Thus,

u t P t u t p C u t, , , ,γ γ
L

γ
t γ L

m
L,p d γ d p d γ d p d γ d, 1, 1 , 1, 1 , 1, 1� � �( ) ( ) ( ) ( )( ) ( ) ( )‖∂ ⋅ − ∂ ⋅ ‖ = ‖∂ ⋅ − ‖ ≤ ‖∇ ⋅ ‖− − − − − −

for almost every t �∈ . Summing over all multiindices γ with γ k∣ ∣ = and integrating in t, we have that by the
definition (20) of L Lt

p
x
q,

u P u P t t

C u t t

C u

, d

, d

.

k
L L

k
L
p

p

m
L
p

p

m
L

1

1

t
p

x
pm d k d pm d k d

p d

p d

, 1, , 1, 1

1

� �

�

�

( )
⎛

⎝

⎜⎜
( )( )

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
( )

⎞

⎠

⎟⎟

( ) ( )

( )

( )

∫

∫

‖∇ − ‖ = ‖∇ − ⋅ ‖

≤ ‖∇ ⋅ ‖

= ‖∇ ‖

−∞

∞ /

−∞

∞ /

−
− −

−

This completes the proof. □

3.2 Sobolev functions in cubes

In this section, we will establish analogs to Corollaries 38 and 39 in cubes.

Remark 40. In this section and throughout this article we have chosen to work in cubes rather than in balls.
This simplifies certain covering arguments (we never need to use the Vitali covering lemma when working
with cubes), but the primary motivation is ease of use with Bochner norms. Recall that the L L Ωt

q
x
p( ) norm

involves integration over the sets Ω t[ ] . If Ω d�⊂ is a ball, then Ω t[ ] depends on t in a complicated way;
however, if Ω is a cube with sides parallel to the coordinate axes, then Ω t[ ] takes on only two values, one of
which is the empty set.

Lemma 41. Let m, d �∈ , d 2≥ , p 1,[ )∈ ∞ , and let j, k 0�∈ satisfy j k0 ≤ ≤ and m d p k m− / < ≤ . Let
p pk m d k, ,= . Then there is a constant C depending only on p, d, and m such that if Q d�⊂ is a cube and
u W Qm p, ( )∈ , then

u C Q u .j
L Q

i j

m k j
i j k m d i

L Qpk p∣ ∣( )
( )

( )∑‖∇ ‖ ≤ ‖∇ ‖
=

− +
− + − /

Proof. Suppose first that Q 1∣ ∣ = . By the Gagliardo-Nirenberg-Sobolev inequality in bounded domains (see,
for example, [46, Theorem 7.26]) and the definition (23) of pk, we have that

w C w C wL Q W Q
i

i
L Q

0

1
pk pk pk1, 1 1( ) ( ) ( )∑‖ ‖ ≤ ‖ ‖ = ‖∇ ‖

=

+ +

for any function w W Qp1, k 1( )∈ + . Taking w uj= ∇ , we see that
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u C uj
L Q

i j

j
i

L Q

1
pk pk 1( ) ( )∑‖∇ ‖ ≤ ‖∇ ‖

=

+

+

Iterating this argument with w ui= ∇ and recalling that p pm= yields the Q 1∣ ∣ = case of the lemma. A
change of variables establishes the case for general Q. □

We may also control Bochner norms; this is very useful in the case that the coefficients satisfy the
condition (10).

Lemma 42. Letm, d �∈ , d 2≥ , p 1,[ )∈ ∞ , and let j, k 0�∈ satisfy j k0 ≤ ≤ andm d p k m1( )− − / < ≤ . Let
p pk m d k, 1,͠ = − . There is a constant C depending only on p, d, and m such that if Q d�⊂ is a cube with sides
parallel to the coordinate axes and u W Qm p, ( )∈ , then

u C Q u .j
L L Q

i j

m k j
i j k m d i

L Qt
p

k
pk p∣ ∣( )

( )
( )͠ ∑‖∇ ‖ ≤ ‖∇ ‖

=

− +
− + − /

Proof. Let Q t t RΔ ,0 0[ ]= × + , where Δ d 1�⊂ − is a cube, t0 �∈ , and R Q d1∣ ∣= / . Recall that

u u x t x t, d d .j
L L Q

t

t R

j p

p p p

Δ

1

t
p

k
pk k

k

0

0⎛

⎝

⎜
⎜

⎛

⎝

⎜⎜
∣ ( )∣

⎞

⎠

⎟⎟

⎞

⎠

⎟
⎟

( )
͠

͠

͠ ∫ ∫‖∇ ‖ = ∇

+ / /

By applying Lemma 41 in dimension d 1− , we see that

u x t x C R u t, d , .j p

p

i j

m k j
i j k m i

L

Δ

1

Δk

k

p
⎛

⎝

⎜⎜
∣ ( )∣

⎞

⎠

⎟⎟
( ) ( )

͠

͠

∫ ∑∇ ≤ ‖∇ ⋅ ‖

/

=

− +
− + −

Integrating in t completes the proof. □

3.3 Sobolev functions in annuli

We will now establish analogs to Lemmas 41 and 42 in cubical annuli, that is, in domains of the form θQ Q⧹
for some cube Q d�⊂ and some number θ 1> .

Lemma 43. Let m, d �∈ , d 2≥ , p 1,[ )∈ ∞ , and let j, k 0�∈ satisfy j k0 ≤ ≤ and m d p k m− / < ≤ . Let
p pk m d k, ,= . Let θ1 2< ≤ .

Figure 1: The rectangles in the proof of Lemma 43.
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Then there is a constant C depending only on p, d, and m such that if Q d�⊂ is a cube with sides parallel
to the coordinate axes and u W θQ Qm p, ( )∈ ⧹ , then

u C C
θ Q

u
1

.j
L θQ Q

i j

m k j

d m k j i
i

L θQ Q1
pk p

(( )∣ ∣ )
( ) ( )∑‖∇ ‖ ≤

−
‖∇ ‖⧹

=

− +

/ − + − ⧹

If in addition k m d p1( )> − − / , then

u C C
θ Q

u
1

.j
L L θQ Q

i j

m k j

d m k j i
i

L θQ Q1t
p

x
pk p

(( )∣ ∣ )
( ) ( )͠ ∑‖∇ ‖ ≤

−
‖∇ ‖⧹

=

− +

/ − + − ⧹

Proof. Observe that there exists an integer n 2≥ with n
θ

n n
1 1

2
1

1
2

≤ < ≤
−

−
. Without the loss of generality, we

assume that Q is open. Let I I, , d1 … be the d open intervals that satisfy Q I Id1= ×⋯× . If I a b,k k k( )= , and
r b a Qk k

d1∣ ∣= − = / , define the d n 2( )+ intervals Ik j, by

I a θ r a I b b θ r I a j
n

r a j
n

r j n1
2

, , , 1
2

, 1 , if 1 .k k k k n k k k j k k,0 , 1 ,⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
⎛
⎝

⎞
⎠

= −
−

= +
−

= +
−

+ ≤ ≤+

LetG I I I j n: 0, 1, , 1j j d j k1, 2, , d1 2 { }{ }= × × ⋯× ∈ … + , and let H G⊂ be given by H I I I j:j j d j k1, 2, , d1 2{= × × ⋯× ∈

n1, ,{ }}… . The rectangles in the set G are shown in Figure 1. Up to a set of measure zero,

θQ R Q R, .
R G R H
= ⋃ = ⋃
∈ ∈

Furthermore, the rectangles inG are pairwise disjoint. If R G∈ , then the shortest side of R is at least r n/ and
the longest side is at most θ r r n1 2 2( )− / < / . A change of variables argument shows that Lemmas 41 and 42
are valid in R with uniformly bounded constants.

Suppose m d p k m1( )− − / < < . If Ω d�⊆ , recall that x x tΩ : , Ωt d 1�[ ] { ( ) }= ∈ ∈− . Then

u u x t x t

u x t x t

, d d

, d d .

j
L L θQ Q

θQ Q

j p

p p p

R G H R

j p

p p p

1

1

t
p

x
pk

t

k

k

t

k

k

⎛

⎝

⎜

⎜

⎛

⎝

⎜
⎜

∣ ( )∣
⎞

⎠

⎟
⎟

⎞

⎠

⎟

⎟

⎛

⎝

⎜

⎜

⎛

⎝

⎜
⎜

∣ ( )∣
⎞

⎠

⎟
⎟

⎞

⎠

⎟

⎟

( )

[ ]

[ ]

͠

͠

͠

͠

͠ ∫ ∫

∫ ∫∑

‖∇ ‖ = ∇

= ∇

⧹

−∞

∞

⧹

/ /

−∞

∞

∈ ⧹

/ /

Because p p 1k͠/ ≤ , we have that

u u x t x t u, d d .j
L L θQ Q

R G H R

j p

p p p

R G H

j
L L R
p

p
1

1

t
p

x
pk

t

k

k

t
p

x
pk

⎛

⎝

⎜

⎜

⎛

⎝

⎜
⎜

∣ ( )∣
⎞

⎠

⎟
⎟

⎞

⎠

⎟

⎟

⎛

⎝
⎜

⎞

⎠
⎟( )

[ ]

( )

͠

͠

͠ ͠∫ ∫∑ ∑‖∇ ‖ ≤ ∇ = ‖∇ ‖⧹

∈ ⧹
−∞

∞
/ /

∈ ⧹

/

By Lemma 42 in rectangles,

u C
θ r

u
1

.j
L L θQ Q

R G H i j

m k j

m k j i
i

L R

p p1

t
p

x
pk p

⎛

⎝
⎜

⎛

⎝
⎜ (( ) )

⎞

⎠
⎟

⎞

⎠
⎟( ) ( )͠ ∑ ∑‖∇ ‖ ≤

−
‖∇ ‖⧹

∈ ⧹ =

− +

− + −

/

By the triangle inequality in the sequence space pℓ ,

u C
θ r

u

C
θ r

u

1

1
.

j
L L θQ Q

i j

m k j

m k j i
R G H

i
L R

p
p

i j

m k j

m k j i
i

L θQ Q

1

t
p

x
pk p

p

(( ) )

⎛

⎝
⎜

( )
⎞

⎠
⎟

(( ) )

( ) ( )

( )

͠ ∑ ∑

∑

‖∇ ‖ ≤
−

‖∇ ‖

=
−

‖∇ ‖

⧹

=

− +

− + −
∈ ⧹

/

=

− +

− + − ⧹

A similar (and simpler) argument establishes the bound on uj L θQ Qpk( )‖∇ ‖ ⧹ . □
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Lemma 43 generalizes the Gagliardo-Nirenberg-Sobolev inequality to thin annuli. We remark on the
presence of the term θ 1− in the denominator of the right-hand side. In a thin annulus, this term is
potentially very small, and so Lemma 43 yields a poor bound.

The following lemma allows us to bound a function u in an annulus by its gradient, without powers of
θ 1( )− . We observe that the following lemma is a special case of the Poincaré inequality and not of the
Gagliardo-Nirenberg-Sobolev inequality; that is, we do not gain higher integrability (a higher power of u) on
the left-hand side. We will use both Lemmas 43 and 44 in different contexts.

Lemma 44. Let d 2≥ be an integer and let p1 ≤ < ∞. There is a constantC Cd p,= depending only on d and p
such that if Q d�⊂ is a cube, θ1 2< ≤ , and u W θQ Qp1, ( )∈ ⧹ , then

u u C Q u .
θQ Q θQ Q

p

d p
p d

θQ Q

p
, ∣ ∣ ∣ ∣∫ ∫− ⨏ ≤ ∇

⧹
⧹

/

⧹

Proof. We restrict to the case Q 1∣ ∣ = and where the midpoint ofQ is the origin (i.e., the caseQ 1 2, 1 2 d( )= − / / );
rescaling and translating yields the general case.

Let ρ X X X2 max , , d1( ) {∣ ∣ ∣ ∣}= … . Thus, if X d�∈ , then ρ X( ) is the unique real number with X ρ X Q( ( ) )∈ ∂ .

Observe that ρ is a Lipschitz function with ρ 2∣ ∣∇ = almost everywhere and with ρ X X d ρ X2( ) ∣ ∣ ( )≤ ≤ .
Define

r t θ t θ1
2 1

2
2 1

.
d

d
d

d d

d

d1
⎜ ⎟( ) ⎛

⎝

⎞

⎠
=
−

−
+
−

−

/

Observe that r 1 1( ) = , r θ2( ) = , r is increasing, r t t( )/ is decreasing, and r t r t td θ d1 1
2 1

1d

d( ) ( )′ =− −

−
− . In particular,

if t1 2≤ ≤ then r t θ0 1d( )< ′ ≤ − .
Let ψ X Xr ρ X ρ X( ) ( ( )) ( )= / . Then ψ is a bilipschitz change of variables ψ Q Q θQ Q: 2 ⧹ → ⧹ .
If f L Q Q21( )∈ ⧹ , then

f f X σ X t1
2

d d
Q Q tQ2 1

2

( ) ( )

( )

∫ ∫ ∫=

⧹ ∂

where σ denotes d 1− -dimensional Hausdorff measure (i.e., surface measure on the boundary of the cube
tQ). In particular, letting f g ψ= ∘ and making the change of variables X tY= in the inner integral, we have
that

g ψ t g ψ tY σ Y t1
2

d d .
Q Q

d

Q2 1

2

1 ( ) ( )∫ ∫ ∫∘ = ∘

⧹

−

∂

If Y Q∈ ∂ , then ρ tY t( ) = and so ψ tY r t Y( ) ( )= . Thus,

g ψ g r t Y σ Y t t1
2

d d .
Q Q Q

d

2 1

2

1( ( ) ) ( )∫ ∫∫∘ =

⧹ ∂

−

Applying our aforementioned formula for r t( )′ ,

g ψ
θ

g r t X σ X r t r t t2 1
2 1

d d .
Q Q

d

d
Q

d

2 1

2

1
( )

( ( ) ) ( ) ( ) ( )∫ ∫∫∘ =
−

−
′

⧹ ∂

−

Using the chain rule of single variable calculus and reversing our aforementioned arguments,

18  Ariel E. Barton and Michael J. Duffy Jr.



g ψ
θ

g rX σ X r r
θ

g X σ X r
θ

g2 1
2 1

d d 2 1
2 1

d d 2 1
1

.
Q Q

d

d

θ

Q

d
d

d

θ

rQ

d

d
θQ Q2 1

1

1
( )

( ) ( )
( )

( ) ( )

( )

∫ ∫∫ ∫ ∫ ∫∘ =
−

−
=
−

−
=
−

−
⧹ ∂

−

∂ ⧹

We will apply this argument to g u= and to g u p∣ ∣= . In particular,

u
θQ Q

u θ
θQ Q

u ψ u ψ1 1
2 1

.
θQ Q θQ Q

d

d
Q Q Q Q2 2∣ ∣ ( )∣ ∣

∫ ∫⨏ =
⧹

=
−

− ⧹
∘ = ⨏ ∘

⧹
⧹ ⧹

⧹

We also need to integrate the gradient. Let Jψ be the Jacobian matrix for the change of variables ψ, so
that u ψ J u ψψ( ) ( )∇ ∘ = ∇ ∘ . If X Q Q2∈ ⧹ , then

ψ
X

r ρ X
ρ X

δ X r ρ X ρ X r ρ X
ρ X

ρ X

r ρ X
ρ X

δ
X ρ X

ρ X
X ρ X

ρ X
θ ρ X

r ρ X
1

2 1
.

j

k
jk j k

jk
j k j k d

d

d

d

2

1

1⎜ ⎟

( ( ))

( )

( ( )) ( ) ( ( ))

( )
( )

( ( ))

( )
⎛

⎝

( )

( )
⎞

⎠

( )

( )

( )

( ( ))

∂

∂
= +

′ −
∂

= −
∂

+
∂ −

−

−

−

Note that X ρ X X ρ X2j k j∣ ( )∣ ∣ ∣ ( )∂ ≤ ≤ for all j and k. Furthermore, if ρ Xk ( )∂ exists and is not equal to 0, then it has
the same sign as Xk, so 0 1X ρ X

ρ X
j j ( )

( )
≤ ≤
∂

. Finally, ρ X1 2( )≤ ≤ and so r r ρ X ρ X r θ1 1 1 2 2 2( ) ( ( )) ( ) ( )= / ≥ / ≥ / = / .
Thus, we have that

ψ
X

θ
θ

θ1 1
2 1

2 2 ,j

k

d

d

d

d
d d

1

1

∂

∂
≤ +

−

−
≤ ≤

−
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and so Jψ is a bounded matrix. Thus,
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Now,
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1
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θQ Q θQ Q
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Q Q Q Q
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Q Q
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d p
d
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∇ ∘

≤
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⧹

⧹
⧹

⧹
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Thus, the Poincaré inequality holds in an annulus with constant independent of θ. □

3.4 Sobolev norms and cutoff functions

A particular application of Lemmas 43 and 44 is the following result concerning smooth cutoff functions.

Lemma 45. Let m, d �∈ , d 2≥ , and let p1 ≤ < ∞. There is a constant C depending on m, d and p with the
following significance.

Let Q d�⊂ be a cube and let θ1 2< ≤ . Let χ Cc
d�( )∈ ∞ be a test function supported in θQ and identically

equal to 1 in Q, with χ0 1≤ ≤ . Define X θ Q χmax 1i d
i i d i

L Q1 ( ) ∣ ∣ ( )= − ‖∇ ‖≤ ≤
/ ∞ .

If u W θQm p, ( )∈ (equivalently, if u Y θQm p, ( )∈ ), and if we extend uχ by zero outside of θQ, then

uχ Y m p d, �( )∈ and
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uχ u CX
θ Q
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m p d m p p, ,

�
(( )∣ ∣ )

( ) ( ) ( )∑‖ ‖ ≤ ‖ ‖ +
−

‖∇ ‖
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/ − ⧹

Proof. We begin by using the definition of the Y m p, -norm and the Leibniz rule.

uχ uχ C χ u .Y
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− / < ≤ − / < ≤ =

−

/

Observe that C 1k k, = . By definition of X and isolating the j k= terms,

uχ u C X θ Q u

u CX
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u
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1
.

Y
m d p k m θQ
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Y θQ
m d p k m j

k

d k j
θQ Q

j p

p

1

0

1
1

0

1

1

1

m p d k

k
k

k

m p k

k

,

,

�

⎛

⎝

⎜
⎜

∣ ∣
⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎛

⎝
⎜

( ) ∣ ∣ ∣ ∣
⎞

⎠
⎟

⎞

⎠

⎟
⎟

(( )∣ ∣ )

⎛

⎝

⎜
⎜

∣ ∣
⎞

⎠

⎟
⎟

( )
( )

( )

∫ ∫

∫

∑ ∑ ∑

∑ ∑

‖ ‖ ≤ ∇ + − ∇

≤ ‖ ‖ +
−

∇

− / < ≤

/

− / < ≤
⧹
=

−
− − /

/

− / < ≤ =

−

/ −

⧹

/

By Lemma 43,

uχ u CX
θ Q

u
1

.Y Y θQ
i

m

d m i
i

L θQ Q
0

1

1
m p d m p p, ,

�
(( )∣ ∣ )

( ) ( ) ( )∑‖ ‖ ≤ ‖ ‖ +
−

‖∇ ‖
=

−

/ − ⧹

This completes the proof. □

4 The Caccioppoli inequality

The Caccioppoli inequality was established first by Caccioppoli in the early twentieth century and is a
foundational result used throughout the theory of second-order divergence form equations. It has been
generalized to the case of second-order operators with lower order terms in [36], and of higher order
equations (without lower order terms) first in [31], and later with some refinements in [4,20].

We now generalize these results to the case of higher order equations with lower order terms. We will
follow [4] and derive a Caccioppoli inequality for equations that satisfy the weak Gårding inequality (34)
(and not necessarily the stronger Gårding inequality (6)). We will follow [31] and establish the Caccioppoli

inequality for solutions u→ to inhomogeneous equations L u T→
= for a (possibly nonzero) elementT ofY m p,− .

We begin with the following lemma. This lemma was proven first in [31] for operators of order m2
without lower order terms.

Lemma 46. Let L be an operator of order m2 of the form (26) associated to coefficients A that satisfy the weak
Gårding inequality (34) and either bound (8) or bound (10).

LetQ d�⊂ be an open cube with sides parallel to the coordinate axes, and let θ1 2< ≤ . Let u W θQm,2( )
→
∈ .

Let T Y θQm,2( )∈ − . Suppose that L u T→
= in θQ in the sense that formula (26) is true for all test functions

φ W θQm
0

,2( )
→
∈ . Then we have that

u C
θ Q

u Cδ u C T
1

,
Q

m

k

m

d m k
θQ Q

k

θQ

2

0

1

1 2 2
2 2 2∣ ∣

(( )∣ ∣ )
∣ ∣ ∣ ∣∫ ∫ ∫∑∇

→
≤

−
∇
→
+

→
+ ‖ ‖

=

−

/ −

⧹

where C is a constant depending on the dimension d, the order m2 of L, the number λ in bound (34), and the
number Λ in bound (8) or (10). Here, T T Y θQm,2( )‖ ‖ = ‖ ‖ − is the operator norm, that is, the smallest number such that

ψ T ψ T, Y θQm,2∣ ∣ ( )⟨
→
⟩ ≤ ‖
→
‖ ‖ ‖ for all ψ Y θQm

0
,2( )

→
∈ .

20  Ariel E. Barton and Michael J. Duffy Jr.



Proof. Let ρ θ Q1 2 d1(( ) )∣ ∣= − / / be the distance fromQ to θQd� ⧹ . Letφ be a smooth, real valued test function
with φ0 1≤ ≤ , supported in θQ and identically equal to 1 on Q. We require also that φ C ρk

k
k∣ ∣∇ ≤ − for any

integer k 0≥ .

Define ψ φ um4→
=
→. Notice that by Lemma 45, ψ Y θQm

0
,2( )

→
∈ . Furthermore, by formula (26),

φ u A u T φ u, .
j k

N

α m β m θQ

α m
j α β

j k β
k

m
θQ

, 1

4
,
, 4( )

∣ ∣ ∣ ∣

∫∑ ∑ ∑ ∂ ∂ = ⟨
→
⟩

= ≤ ≤

(47)

We first consider the left-hand side of formula (47). By the Leibniz rule, and separating out the γ α=
terms, we see the following.

φ u A u φ u A φ u α
γ α γ

φ φ u A u .
θQ

α m
j α β

j k β
k

θQ

α m
j α β

j k m β
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, 2 2 2
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!

! − !
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<

−

Now as in [20], we write

α
γ α γ

φ φ u φ uΦ
γ α

α γ m γ m
j

ζ α

m
α ζ

ζ
j

2 2 2
,

( )
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(48)

for some functions Φα ζ, , which are supported in θQ Q⧹ and satisfy CρΦα ζ
ζ α

,∣ ∣ ≤ ∣ ∣−∣ ∣. Thus, we have

φ u A u φ u A φ u u A φ uΦ .
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<

It is desirable to have our final term in terms of φ uβ m
k

2( )∂ rather than φ um β
k

2 ∂ , so after one more application
of the Leibniz rule, and writing as in formula (48), we have for some functions Ψβ ξ, , which are supported in
θQ Q⧹ and satisfy CρΨβ ξ

ξ β
,∣ ∣ ≤ ∣ ∣−∣ ∣

φ u A u φ u A φ u u A φ u
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Similar measures as taken earlier also give us
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Thus, by combining the previous two equations and reintroducing summation, we see that
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We write this as I = II + III + IV + V. Observe that by formula (47),

T φ uII , .m
θQ

4= ⟨
→
⟩ (49)

By the condition (34), we have that
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λ φ u δ φ uRe I .m m
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m
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Suppose that the condition (10) is true. By Hölder’s inequality and properties of Φα ζ, ,
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Recall that φ u Y θQm m2
0

,2( )
→
∈ and so may be extended by zero to a Y m d,2 �( )-function. By Corollary 39, we

have that
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Summing, we see that
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By Lemma 43,
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By applying Young’s inequality, we see that
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A similar argument with the roles of α, ζ and β, ξ reversed yields the same bound on V, while an even
simpler argument yields the bound
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The argument in the case that condition (8) is true is similar.
We thus have that
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Subtracting the final term and applying formula (49) yields that
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By definition of T‖ ‖,

T φ u T φ u, .m
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m
Y θQ
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‖

By Lemma 45 with χ φ m2= ,
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By using the Leibniz rule and arguing as earlier, we see that

φ u φ u C C
ρ

u .m
Y

m
Y θQ

i

m

m i
i

L θQ Q
4 2

0

1
m d m,2 ,2 2

�( ) ( ) ( )∑‖
→
‖ ≤ ‖

→
‖ + ‖∇

→
‖

=

−

− ⧹

By Corollary 38, φ u C φ um
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m
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2 2
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→
‖ . By Young’s inequality and formula (50), we have
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Subtracting the second term on the right-hand side and observing that u φ um
L Q

m
W θQ

2
˙ m2 ,2( ) ( )

‖∇
→
‖ ≤ ‖

→
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pletes the proof. □

We wish to improve the Caccioppoli inequality by removing the intermediate derivatives (i.e., uk∇
→ for

k m1 1≤ ≤ − ). The following theorem was proven in [20, Theorem 18] in the case of balls rather than cubes;
the proof in [20] carries through with the obvious modifications.

Theorem 51. Let Q d�⊂ be a cube with sides parallel to the coordinate axes. Let θ1 2< ≤ . Suppose that

u W θQm,2( )
→
∈ is a function that satisfies the inequality
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(52)

whenever ϑ μ θ0 < < < , for some F 0> .

Then u→ satisfies the stronger inequality
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for some constant C depending only on m, the dimension d, and the constant C0.

Furthermore, if j m0 ≤ ≤ , then u→ satisfies
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Now if we combine Lemma 46 and Theorem 51, we obtain the desired Caccioppoli inequality in which

we bound um 2∣ ∣∇
→ without the intermediate gradient terms, as stated in the following corollary.

Corollary 53. Let L be an operator of order m2 of the form (26) associated to coefficients A that satisfy the
weak Gårding inequality (34) and either bound (8) or bound (10).

LetQ d�⊂ be an open cube with sides parallel to the coordinate axes, and let θ1 2< ≤ . Let u Y θQm,2( )
→
∈ .

Let T Y θQm,2( )∈ − . Suppose that L u T→
= in θQ in the sense that formula (26) is true for all test func-

tions φ W θQm
0

,2( )
→
∈ .

Then we have that
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and for all j with j m1 1≤ ≤ − , we have that
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where C is a constant depending on the dimension d, the order m2 of L, the number λ in bound (34), and the
number Λ in bound (8) or (10). Here, T T Y θQm,2( )‖ ‖ = ‖ ‖ − is the operator norm, that is, the smallest number such

that ψ T ψ T, Y θQm,2∣ ∣ ( )⟨
→
⟩ ≤ ‖
→
‖ ‖ ‖ for all ψ Y θQm

0
,2( )

→
∈ .

Remark 55. If m d j m2− / < < and δ 0= , then we can replace the term u
θQ

2∣ ∣∫ → in bound (54) by u
θQ Q

2∣ ∣∫ →
⧹

at a cost of some additional negative powers of θ 1( )− . See Section 6.

5 Invertibility of L

In this section, we will investigate boundedness and invertibility of the operator L Y Y: m p d m p d, ,� �( ) ( )→ − .
The argument for invertibility parallels that used in [30, Lemma 3.4] in the second-order case.

We remark that invertibility requires the Gårding inequality (6), and not only the weaker Gårding
inequality (34) of Section 4 and [4]; thus, for the remainder of this article, we will always assume the
strong Gårding inequality (6).

We will begin with boundedness of L for a range of p.

Lemma 56. Let L be an operator of the form (26) associated to coefficients A that satisfy either bound (8) or
bound (10). Let ΠL be as in Definition 30.

If A satisfies bound (8), then

d
d
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d
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If A satisfies bound (10), then
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⊆
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If p ΠL∈ , then the constants pΛ( ) in bound (7) depend only on p, d, m, and the constant Λ in bound (8)
or (10).

Proof. If L satisfies the condition (8), thenm m d 2a≥ > − / andm m d 2b≥ > − / . Observe thatm, d anda,
b are integers, and so m m d 2 1 2a≥ ≥ − / + / , m m d 2 1 2b≥ ≥ − / + / . A straightforward computation
yields that

d
d

d
d

d
d m

d
m

2
1

, 2
1

, .
a b

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠+ −
⊆
+ − −

Similarly, if L satisfies the condition (10), thenm m d 1 2 1 2a ( )≥ ≥ − − / + / andm m d 1 2 1 2b ( )≥ ≥ − − / + / .
Thus,

d
d

d
d

d
d

d
d

d
d m

d
m

d
d m

d
m

2
1

, 2
1

2 1 , 2 1
2

1
1

, 1 , .
a b a b

⎛

⎝

⎞

⎠

⎛

⎝

( ) ( ) ⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠+ −
⊆

− −

−
⊆

−

− + −

−

−
⊆
+ − −

Suppose that L satisfies the condition (8). If p ,d
d m

d
ma b

( )∈
+ − −

, then m d pa > − / ′, m d pb > − / , and

so if α ma ∣ ∣≤ ≤ and β mb ∣ ∣≤ ≤ , then pα′ and pβ exist and are finite. By formulas (23) and (8),

p p
1 1 1

2
1.

β α α β,( )
+
′
+ =
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Thus by Hölder’s inequality, for such p, α, and β,

φ A ψ φ ψ A ,α
j α β

j k β
k

α
j L

β
k L α β

j k
L,

,
,
,

d

p α d pβ d α β d2 ,

�

� � �∣ ∣ ( ) ( ) ( )( )∫ ∂ ∂ ≤ ‖∂ ‖ ‖∂ ‖ ‖ ‖′

which by the condition (8) and the definition (24) of Y m p d, �( ) satisfies

φ A ψ φ ψΛ .α
j α β

j k β
k Y Y,

,

d

m p d m p d, ,

�

� �( ) ( )∫∣ ∣∂ ∂ ≤ ‖
→
‖ ‖

→
‖′

Summing over α, β, j, and k and using Definition 30 completes the proof.

Now suppose that L satisfies the condition (10). If p ,d
d m

d
m

1
1

1
a b( )∈
−

− + −

−

−
, then m d p1a ( )> − − / ′,

m d p1b ( )> − − / , and so if α ma ∣ ∣≤ ≤ and β mb ∣ ∣≤ ≤ , then p α′ and pβ͠ exist and are finite. Again

p p
1 1 1

2
1.

β α α β,( )͠
+
′
+ =∼

Observe that

φ A ψ φ A ψ x td d .α
j α β

j k β
k

α
j α β

j k β
k,

,
,
,

d d 1
� �

∣ ∣ ∣ ∣∫ ∫ ∫∂ ∂ ≤ ∂ ∂

−∞

∞

−

Applying Hölder’s inequality first in d 1� − and then in � yields that

φ A ψ φ ψΛ .α
j α β

j k β
k

α
j L L

β
k L L,

,

d
t
p

x
p α d

t
p

x
pβ d

�

� �
∣ ∣

( ) ( )
( ) ͠∫ ∂ ∂ ≤ ‖∂ ‖ ‖∂ ‖′ ′

Applying Corollary 39 and summing completes the proof. □

We now establish invertibility of L for p 2= . The main tool in the proof is the complex valued Lax-
Milgram lemma, which we now state.

Theorem 57. [14, Theorem 2.1] Let H1 and H2 be two Hilbert spaces, and let B be a bounded sesquilinear form
on H H1 2× that is coercive in the sense that

B w v
w

λ v B u w
w

λ usup , , sup ,
w H H

H
w H H

H
0 01 1

2
2 2

1
∣ ( )∣ ∣ ( )∣

{ } { }‖ ‖
≥ ‖ ‖

‖ ‖
≥ ‖ ‖

∈ ⧹ ∈ ⧹

for every u H1∈ , and v H2∈ , for some fixed λ 0> . Then for every linear functional T defined on H2, there is a

unique u HT 1∈ such that B v u T v, T( ) ( )= . Furthermore u TT H λ H
1

1 2‖ ‖ ≤ ‖ ‖ ′.

Lemma 58. Let L be an operator of the form (26) of order m2 , which satisfies the ellipticity condition (6) and such
that 2 ΠL∈ , where ΠL is as in Definition 30. Then L is invertible with bounded inverse Y Ym d m d,2 ,2� �( ) ( )→ − .

Proof. Let B u v,( )
→ → be the form given by

B u v u A v, .
j k

N

α m β m

α
j α β

j k β
k

, 1
,
,

d
�

( )
∣ ∣ ∣ ∣

∫∑ ∑ ∑→ →
= ∂ ∂
= ≤ ≤

(59)

Notice that by formula (6), B is a coercive sesquilinear operator on Y Ym d m d,2 ,2� �( ) ( )× in the sense of
Theorem 57, while by Definition 30, B is bounded on Y Ym d m d,2 ,2� �( ) ( )× with the bound

B u v u v, Λ 2 .Y Ym d m d,2 ,2� �∣ ( )∣ ( ) ( ) ( )
→ →

≤ ‖
→
‖ ‖

→
‖ (60)

LetT be an element ofY m d,2 �( )− . Recall that we write bounded linear functionals onY m d,2 �( ) as T,⟨ ⋅⟩.
Let u YT

m d,2 �( )
→
∈ be the unique element of Y m d,2 �( ) given by the Lax-Milgram lemma, so
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φ A u T φ,
j k

N

α m β m

α
j α β

j k β
T k

, 1
,
,

d
�

( )
∣ ∣ ∣ ∣

∫∑ ∑ ∑ ∂ ∂ = ⟨ ⟩
= ≤ ≤

(61)

for all φ Y m d,2 �( )∈ . Observe that by formula (26), L u TT
→
= . By the boundedness property of the Lax-

Milgram lemma, u TT Y λ Y
1

m d m d,2 ,2� �( ) ( )‖
→
‖ ≤ ‖ ‖ − , and by the uniqueness property in the Lax-Milgram lemma,

u uT
→
=
→ is the only element of Y m d,2 �( ) with L u T→

= . Thus, the operator T uT↦
→ is well defined, bounded,

linear, and an inverse to L. □

We conclude this section by establishing invertibility of L for a range of p. In this case, the main tool is
Šneǐberg’s lemma. We refer the readers to [7,29,80] for the definition of interpolation couples and complex
interpolation.

Lemma 62. (Šneǐberg’s lemma [7, Theorem A.1]) Let X X X,0 1( )= and Z Z Z,0 1( )= be interpolation couples
and let , θ[ ]⋅ ⋅ denote the standard complex interpolation functor. LetT X Z,( )∈ � ; that is,T is a linear operator
from X X0 1+ to Z Z0 1+ such that T X Zj j( ) ⊆ and T X Z: j j→ is bounded for j 0= , 1. Suppose that for some
θ 0, 1( )∈∗ and some κ 0> , the lower bound Tx κ xZ Z X X, ,θ θ0 1 0 1[ ] [ ]‖ ‖ ≥ ‖ ‖∗ ∗ holds for all x X X, θ0 1[ ]∈ ∗. Then the
following are true.
(i) Given ε0 1 4< < / , the lower bound Tx εκ xZ Z X X, ,θ θ0 1 0 1[ ] [ ]‖ ‖ ≥ ‖ ‖ holds for all x X X, θ0 1[ ]∈ , provided that

θ θ κ ε θ θ
κ M

1 4 min , 1
3 6∣ ∣

( ) { }
− ≤∗

− −

+

∗ ∗

, where M Tmaxj X Z0,1 j j= ‖ ‖= → .

(ii) IfT X X Z Z: , ,θ θ0 1 0 1[ ] [ ]⟶∗ ∗ is invertible, then the same is true forT X X Z Z: , ,θ θ0 1 0 1[ ] [ ]⟶ if θ is as in i( ).

The inverse mappings agree on Z Z Z Z, ,θ θ0 1 0 1[ ] [ ]∩ ∗, and their norms are bounded by
εκ
1 .

Lemma 63. Let L Y Y: m d m d,2 ,2� �( ) ( )→ − be bounded and invertible, and suppose that L extends by density to
a bounded operator L Y Y: m p d m p d, ,� �( ) ( )→ − for all p in an open neighborhood of 2.

Let ϒL be as in Definition 35, that is, the set of all p such that L Y Y: m p d m p d, ,� �( ) ( )→ − is bounded and
compatibly invertible.

Then ϒL is an interval, and there is a δ 0> such that if δ p δ2 2− < < + then p ϒL∈ .
In particular, these conditions are satisfied if L is an operator of the form (26) that satisfies the ellipticity

condition (6) and such that ΠL as given by Definition 30 contains an open neighborhood of 2. In this case, δ
depends only on ΠL and the standard parameters.

Proof. By assumption or by Lemma 58, L Y Y: m d m d,2 ,2� �( ) ( )→ − is invertible. Thus, 2 ϒL∈ .

By [80, Section 5.2.5], Ẇ m p d,
�( ) forms a complex interpolation scale. The map that sends an element of

Ẇ m p d,
�( ) to its unique representative inY m p d, �( ) is invertible and thus is a retract; by [55, Lemma 7.11], we

have that Y m p d, �( ) forms a complex interpolation scale. Next, we have from [29, Theorem 4.5.1] that the
antidual space Y m p d, �( )− also forms a complex interpolation scale.

A straightforward interpolation argument shows that if L is bounded and compatibly invertible
Y Ym p d m p d, ,� �( ) ( )→ − , then L is bounded and compatibly invertible Y Ym q d m q d, ,� �( ) ( )→ − whenever q is
between p and 2, and so ϒL is an interval.

Finally, by Šneǐberg’s lemma, L is invertibleY Ym q d m q d, ,� �( ) ( )→ − whenever δ q δ2 2− < < + , where δ
is as dictated by (i) from Šneǐberg’s lemma. This completes the proof. □

6 Lp bounds on solutions and their gradients

In [66], Meyers established a reverse Hölder estimate; in the notation of the present article, he established
that if L A= −∇⋅ ∇ is a second-order divergence form operator without lower order terms, and ifQ is a cube,
then for all p and q sufficiently close to 2 (and, in particular, for some p 2> and q 2< ), we have the estimate
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u C Q u C LuL Q
p q

L Q Y Q
1 1

2 2p q p1,∣ ∣( ) ( ) ( )‖∇ ‖ ≤ ‖∇ ‖ + ‖ ‖/ − / −

for all suitable functions u. The exponent q on the right-hand side can be lowered if desired; see [42, Section
9, Lemma 2] in the case of harmonic functions, and [20, Lemma 33] for more general functions. Meyers’s
results can be generalized to second-order systems (even nonlinear systems)without lower order terms (see
[45, Chapter V]), or to higher order equations without lower order terms (see [4,20,31]).

Theorem 14 represents a generalization to the case of operators with lower order terms. It follows
immediately from the next theorem and Lemma 63. We remark that the m 1= case of this theorem was
essentially established in [30, Section 3.1] and that the higher order case uses many of the same arguments.

Theorem 64. Let m 1≥ and d 2≥ be integers. Let L be an operator of order m2 of the form (26) associated to
coefficients A that satisfy the Gårding inequality (6) and either bound (8) or bound (10).

Let ΠL and ϒL be as in Definitions 30 and 35. Let p, μ ϒ ΠL L∈ ∩ with p 2≥ and let q0 < ≤ ∞. Let j and ϖ
be integers with j m0 ≤ ≤ and ϖ j0 min , b( )≤ ≤ . If p 2= , we impose the additional requirement that either
q 2≥ or ϖ 1≥ .

LetQ d�⊂ be a cube with sides parallel to the coordinate axes. Let θ1 2< ≤ . Suppose that u Y θQm μ, ( )
→
∈

and that L u Y θQm p, ( )
→
∈ − (in the sense that if ψ Y θQ Y θQm p m μ

0
,

0
,( ) ( )

→
∈ ∩′ ′ then L u ψ C ψ, θQ Y θQm p,∣ ∣ ( )⟨

→ →
⟩ ≤ ‖

→
‖ ′ ).

Then u L Qj p( )∇
→
∈ , and there exist positive constants κ and C depending on p, q, and the standard

parameters such that

Q
u C

θ
L u C Q

θ
u1

1 1
.m j d

j
L Q κ Y θQ

p q m ϖ d

κ
ϖ

L θQ Q
1 1

p m p q,

∣ ∣ ( )

∣ ∣

( )( ) ( ) ( )

( )

( )‖∇
→
‖ ≤

−
‖
→
‖ +

−
‖∇
→
‖

− /

/ − / − − /

⧹−

Here, b is as in Definition 30, that is, β A X α j k Xmin : 0 for some , , , andα β
j k
,
,b {∣ ∣ ( ) }= ≠ .

Remark 65. If j m d p> − / , we may of course immediately apply the Gagliardo-Nirenberg-Sobolev
inequality (Lemma 41) to bound uj

L Qpj( )‖∇
→
‖ ; if j m d p< − / , then improved estimates on uj∇

→, such as local
Hölder continuity, may be derived from further Sobolev space results such as Morrey’s inequality.

In the case of operators without lower order terms (in which case mb = ), we may take j ϖ m= = ;
Theorem 64 then yields the same bounds as the classical inequality of Meyers (and the generalizations of
[4,20,31]).

We will also establish an estimate for functions u→ with L u Y θQm p, ( )
→
∈ − for p 2< sufficiently close to 2.

Theorem 66. Let m 1≥ and d 2≥ be integers. Let L be an operator of order m2 of the form (26) associated to
coefficients A that satisfy the Gårding inequality (6) and either bound (8) or bound (10).

Let ΠL and ϒL be as in Definitions 30 and 35. Let p, μ ϒ ΠL L∈ ∩ and let q0 < ≤ ∞. Let j be an integer
with j m0 ≤ ≤ .

LetQ d�⊂ be a cube with sides parallel to the coordinate axes. Let θ1 2< ≤ . Suppose that u Y θQm μ, ( )
→
∈

and that L u Y θQm p, ( )
→
∈ − .

Then u L Qj p( )∇ ∈ , and there exist positive constants κ and C depending on p, q, and the standard
parameters such that

Q
u C

θ
L u C Q

θ Q
u1

1 1
1 .m j d

j
L Q κ Y θQ

p q

κ
i j

m

j i d
i

L θQ Q
1 1

min ,

p m p q,

b
∣ ∣ ( )

∣ ∣

( ) ∣ ∣( ) ( ) ( )

( )
( ) ( )∑‖∇ ‖ ≤

−
‖
→
‖ +

−
‖∇
→
‖

− /

/ − /

=
− / ⧹−

Given operators with lower order terms, Theorem 64 cannot be strengthened, as shown in the following
example.

Theorem 67. Let d 3≥ , m 1≥ , m d m2,a ( ]∈ − / , and m d m2,b ( )∈ − / be nonnegative integers, and
let ε 0> .
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Let Q d
0 �⊂ be the cube of volume 1 centered at the origin. Let Aα β,͠ be real nonnegative constant

coefficients such that

A A if α m or β mΔ 1 , 0 .m m

α β m
α β

α β
α β, ,( ) ( ) ∣ ∣ ∣ ∣͠ ͠

∣ ∣ ∣ ∣

∑− = − ∂ = < <
= =

+

Then there exists a linear operator L of the form (26) with N 1= associated to smooth coefficients
A Aα β α β, ,

1,1= and a C∞ function u such that

• A A εα β α β L Q, ,͠
( )‖ − ‖ ≤∞ for all α m∣ ∣ ≤ and β m∣ ∣ ≤ .

• The numbers a and b chosen above also satisfy conditions (28)–(29) given in Definition 30.
• Lu 0= in Q0 in the classical sense (and thus also as an element of Y Qm p,

0( )− for any p ΠL∈ ).
• If C 0͠ > and p2 < < ∞ then there is a cube Q Q0⊆ with

u C Q u .m
L Q

i

m
p m i d i

L Q
1

1 1 2
2p 2

b

∣ ∣͠
( )

( )
( )∑‖∇

→
‖ ≥ ‖∇

→
‖

= +

/ − / − − /

Constant coefficient operators without lower order terms such as Δ m( )− clearly satisfy bounds (8) and
(10) for some Λ 0> . Extending Aα β, by zero, we see that by taking ε small enough, and wemay ensure that L
satisfies bound (8) with constant Λ arbitrarily close to that of Δ m( )− .

By an elementary (and very well known) argument using the Fourier transform, the operator Δ m( )−

satisfies bound (6) for some λ 0> . By Corollary 38, and again by taking ε small enough, the operator L
satisfies bound (6) with constant λ arbitrarily close to that of Δ m( )− .

We will prove Theorems 64 and 66 in Section 6.1 and prove Theorem 67 in Section 6.2.

6.1 Proof of Theorems 64 and 66

We begin with the following variant of Lemmas 41, 42, and 43 in the case where the exponents on each side
are different.

Lemma 68. Let m, d �∈ , d 2≥ , p 1,[ )∈ ∞ , and let j, k 0�∈ satisfy j k0 1≤ ≤ − and m d p k m− / < ≤ . Let
p pk m d k, ,= . Let θ1 2< ≤ . Let μ satisfy μ p d0 1 min 1, 1 1( )< / ≤ / + / .

Then there is a constant C depending only on p, d, and m such that if Q d�⊂ is a cube with sides parallel
to the coordinate axes and u W θQm p, ( )∈ , then

u C Q u

u C Q
θ

u

,

1
.

j
L θQ

i j

m
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j
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i
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∑
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−

‖∇ ‖
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/ − / − − + − /

⧹
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/ − / − − + − /

− + − + ⧹

If in addition k m d p1( )> − − / , then

u C Q u

u C Q
θ

u

,

1
.

j
L L θQ

i j

m
p μ m k j i d i

L θQ

j
L L θQ Q
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m p μ m k j i d
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1 1

1 1
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x
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t
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∑
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−
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⧹
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Proof. ByHölder’s inequality, it suffices to establish the listed bounds for the endpoint value μ p d1 min 1, 1 1( )/ = / + / .
We will establish the last of the listed bounds; the arguments for the three preceding bounds are similar (in the first two
cases with Lemmas 41 or 42 in place of Lemma 43).

By Lemma 43, and because k j 1− ≥ , we have that
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Recall that we have taken μ to satisfy μ p d1 min 1, 1 1( )/ = / + / . Because d 2≥ , we have that

μ μ d p
0 1 1 1 1

m 1
< = − ≤

−

(in particular, μm 1− exists), and so by Hölder’s inequality,
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Another application of Lemma 43 yields

u C
θ Q

Q u
1
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⧹

as desired. □

Now, recall from Lemma 45 that if u Y θQm μ, ( )∈ then uχ Y θQm μ, ( )∈ for all χ C θQ0 ( )∈ ∞ . By Definition 30,

if μ ΠL∈ then L uχ Y m μ d, �( ) ( )∈ − . We now show that under some circumstances, L uχ( ) is also in Y m p d, �( )− .

Lemma 69. Let m 1≥ and d 2≥ be integers. Let L be an operator of the form (26) for some coefficients A that
satisfy either bound (8) or bound (10).

If A satisfies bound (8), let p, μ ,d
d m

d
ma b

( )∈
+ − −

. If A satisfies bound (10), let p, μ ,d
d m

d
m

1
1

1
a b

( )∈
−

− + −

−

−
. By

Lemma 56, these ranges include ,d
d

d
d

2
1

2
1( )

+ −
. In either case, we additionally require that μ p d1 1 1/ ≤ / + / .

Let Q d�⊂ be a cube with sides parallel to the coordinate axes. Let θ1 2< ≤ . Let u Y θQm μ, ( )
→
∈ be such

that L u Y θQm p, ( )
→
∈ − (in the sense that if ψ Y θQ Y θQm p m μ

0
,

0
,( ) ( )

→
∈ ∩′ ′ then L u ψ C ψ, θQ Y θQm p,∣ ∣ ( )⟨

→ →
⟩ ≤ ‖

→
‖ ′ ).

Let χ Cc
d�( )∈ ∞ be a test function with χ0 1≤ ≤ such that χ 1= inQ and χ 0= outside θQ.We extend u χ→

by 0 outside of θQ.

Then L u χ( )
→ extends to a bounded operator on Y m p d, �( )′ .

Furthermore, if ϖ0 b≤ ≤ , then there is a polynomial P
→

of degree less than ϖ and positive constants C and
κ depending on the standard parameters such that
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where X θ Q χmax 1i d
i i d i

L Q1 ( ) ∣ ∣ ( )= − ‖∇ ‖≤ ≤
/ ∞ .

We follow the convention that the zero function is a polynomial of negative degree; thus, if ϖ 0= , then

P 0≡ . For any p ,d
d m

d
ma b

( )∈
+ − −

or ,d
d m

d
m

1
1

1
a b

( )
−

− + −

−

−
, there is a μ in the same range with μ p< and

with μ p d1 1 1/ ≤ / + / .

Proof of Lemma 69. Let P
→

be the polynomial of degree less than ϖ with u P 0
θQ Q

γ( )∫ ∂ → −
→
=

⧹
for all γ ϖ∣ ∣ < .

Because ϖ b≤ and by definition of b, LP 0
→
= . The function χP

→
is smooth and compactly supported and so

L χP Y m p d, �( ) ( )
→
∈ − . Thus, we need only show that L u P χ Y m p d, �(( ) ) ( )

→
−
→
∈ − and establish an appropriate

bound on its norm. For notational convenience, we will take P 0
→
= .

Recall thatY m p d, �( )− is the antidual space toY m p d, �( )′ . So to show that L χ u Y m p d, �( ) ( )
→
∈ − , we need only

bound L χ u φ,( )⟨
→ →
⟩ for all φ→ in Y m p d, �( )′ . By density, we may assume that φ Y m μ d, �( )

→
∈ ′ , and so by Lemma

45, L u χ φ,( )⟨
→
⟩ represents an absolutely convergent integral.
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Let φ→ be (a representative of) an element of Y Ym p d m μ d, ,� �( ) ( )∩′ ′ . By the weak definition (26) of L,

L u χ φ φ A χu, .
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N

α m β m
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j k β
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, 1
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,( ) ( )
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⟩ = ∂ ∂
= ≤ ≤

Let ψ φ R
→
=
→
−
→
, where R

→
is the polynomial of degree less than a with φ R 0

θQ
γ( )∫ ∂ → −
→
= for all γ a∣ ∣ < . Then

L R 0
→
=∗ . Therefore,
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∫∑ ∑ ∑⟨
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⟩ = ⟨
→ →

−
→
⟩ = ⟨
→ →

⟩ = ∂ ∂
= ≤ ≤

We remark on the symmetry of our situation: ψ Y θQm p, ( )
→
∈ ′ , u Y θQm μ, ( )

→
∈ , ψ 0

θQ
γ∫ ∂
→
= if γ a∣ ∣ < , and

u 0
θQ Q

δ∫ ∂ → =
⧹

if δ ϖ∣ ∣ < .

By the Leibniz rule,

L u χ φ ψ χ A u
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γ β γ
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β γ

j k

N

α m β m δ α θQ Q
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Recall from Lemma 45 that χ ψ Y θQ Y θQ¯ m p m μ
0

,
0

,( ) ( )
→
∈ ∩′ ′ . By the weak definition (26) of L, we have that

ψ χ A u L u χ ψ¯ , ¯ .
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k θQ

, 1
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By definition of Y m p,− ,
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By Lemmas 45 and 41,
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( ) ( ) ( )∑‖
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−
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By the Poincaré inequality, and because ψ φi i∇
→
= ∇
→ for all i a≥ ,

χ ψ CX
θ Q

φ¯
1

1 .Y θQ m
i

m

m i d
i

L θQm p p
0

,

a
( ) ∣ ∣

( ) ( ) ( )∑‖
→
‖ ≤

−
‖∇
→
‖

=
− /

′ ′

Recall that p d
d m a
>
− +

. If i a≥ , then p m i d1 0( )/ ′ − − / > , and so by formula (23), p i( )′ is well defined and
finite. Thus, by Hölder’s inequality,
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Thus,
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We will now bound the integrals over θQ Q⧹ .

Suppose that the coefficients A satisfy condition (10). Let α and β be such that Aα β
j k
,
, is not identically

equal to zero. By assumption on μ and p, this means that μβ͠ , pβ͠ , p α( )′ , and μ α
( )′ exist and are finite. By

Hölder’s inequality in d 1� − and then in �,
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⧹
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⧹ ⧹ ⧹′ ′

∞ ∼

Because α a∣ ∣ ≥ we have that ψ φα α∂
→
= ∂
→. By Lemma 42 with j k α∣ ∣= = , the definitions (24) and (23) of

Y m p, ′ and pα, and Hölder’s inequality,
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j L L θQ Q Y θQt
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By Lemma 43 with j k β∣ ∣= = ,
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By Lemma 68 with j γ k β∣ ∣ ∣ ∣= < = ,
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and by Lemma 44,
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−∣ ∣+ ⧹

Observe that p μ d1 1 1/ ′ ≤ / ′ + / ; thus, by Lemma 68 and the Poincaré inequality with j δ k α∣ ∣ ∣ ∣= < = , and
with p, μ, u replaced by μ′, p′, ψ, we have that

ψ C Q ψ .γ
L L θQ

i

m
p μ m α δ i d i
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Because ψ φi i∇
→
= ∇
→ for all i a≥ , and by Hölder’s inequality, we have that

ψ C Q φ C Q φ .δ
L L θQ

i

m
p μ α δ d i

L θQ
p μ α δ d

Y θQ
1 1 1 1
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μ α p i m p,
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‖
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Combining all of the aforementioned estimates and the definitions of X and Λ, we see that

L u χ φ C
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L u φ φ
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u

,
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‖

×
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‖
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/ − / − − /

+ ⧹

− ′ ′

This completes the proof in the case where A satisfies condition (10).
If instead A satisfies condition (8), a similar argument with Lemma 41 in place of Lemma 42 establishes

the same bound. □
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From Lemma 69, we have a bound on L u χ( )
→ . We may now prove the following result; this is Theorem 66

in the case q μ= .

Lemma 70. Let m, d, L, p, μ,Q, θ, and ϖ be as in Lemma 69. Let u Y θQm μ, ( )
→
∈ be such that L u Y θQm p, ( )

→
∈ − .

Suppose in addition that p, μ ϒ ΠL L∈ ∩ , where ΠL and ϒL are as in Definitions 30 and 35.
Then there is a constant C depending only on p and L such that, for all j with ϖ j m≤ ≤ , we have that
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p m p μ,

∣ ∣ ( )

∣ ∣

( ) ∣ ∣( ) ( ) ( ) ( ) ( )∑‖∇
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→
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− /

/ − /

=
− / ⧹−

If δ p δ2 2− < < + , where δ is the number in Lemma 63, then C may be taken depending only on p and the
standard parameters.

Proof. Let χ C θQc ( )∈ ∞ be as in Lemma 69; wemay require that the parameter X be bounded depending only

on m and d. We extend u P χ( )
→
−
→

by zero, where P is the polynomial in Lemma 69. By Lemma 69,

L u P χ Y θQm p,(( ) ) ( )−
→
∈ − . By Lemma 45, u P χ Y θQm μ,( ) ( )

→
−
→
∈ − , and so by Definition 30 and because

μ ΠL∈ , we have that L u P χ Y θQ Y θQm p m μ, ,(( ) ) ( ) ( )−
→
∈ ∩− − .

By the definition of ϒL, L is invertible Y Ym p d m p d, ,� �( ) ( )→ − , Y Ym μ d m μ d, ,� �( ) ( )→ − , and Y m d,2 �( ) →

Y m d,2 �( )− .
Furthermore, if T Y Ym p d m d, ,2� �( ) ( )∈ ∩− − , then L T Y Ym p d m d1 , ,2� �( ) ( )∈ ∩− . Observe that we may

approximate elements of Y Ym p d m μ d, ,� �( ) ( )∩− − by elements of Y Y Ym p d m μ d m d, , ,2� � �( ) ( ) ( )∩ ∩− − − ; thus,
by density, if T Y Ym p d m μ d, ,� �( ) ( )∈ ∩− − , then L T Y Ym p d m μ d1 , ,� �( ) ( )∈ ∩− (even if T Y m d,2 �( )∉ − ).

Thus, because χ u P Y m μ d, �( ( )) ( )
→
−
→
∈ , we have that

χ u P L L χ u P .1( ) ( ( ( )))
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=
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−
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→
−
→
∈ . By boundedness of

L Y Y: m p d m p d1 , ,� �( ) ( )→− − , we have that

χ u P C p L L χ u P, .Y Ym p d m p d, ,� �( ) ( ) ( ( ))( ) ( )‖
→
−
→
‖ ≤ ‖

→
−
→
‖ −

By Lemma 69,
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If j m d p> − / , then pj exists and by Hölder’s inequality
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→
−
→
‖− /

If ϖ j m d p≤ ≤ − / , recall that χ u P( )
→
−
→

is supported in θP; by the Poincaré inequality, we again
have that
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In either case,

Q χ u P C χ u Pj m d j
L Q Yp m p d, �∣ ∣ ( ( )) ( )( )

( ) ( )‖∇
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−
→
‖ ≤ ‖

→
−
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‖− /

and the proof is complete. □

We may combine Lemma 70 with the Caccioppoli inequality (Lemma 53) to prove Theorem 64 in the
case q 2= .
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Lemma 71. Let m, d, L, p, μ,Q, θ, u, ϖ, and j be as in Lemma 70, that is, that they are as in Lemma 69 with p,
μ ϒ ΠL L∈ ∩ and ϖ j m≤ ≤ .

Suppose in addition that p 2≥ .
Then there is a positive constant κ depending only on the standard parameters and a positive constant C

depending on p and L such that, if j m0 ≤ ≤ , then
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⧹
−

If p δ2 2≤ < + , where δ is the number in Lemma 63, then C may be taken depending only on p and the
standard parameters.

Proof. Let θ 10 = , θ θ3 = , and θ θ θ θ θ θ θ 1 33 2 2 1 1 0 ( )− = − = − = − / . Choose μ 2= . Lemma 70 yields that
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Let P
→

be a polynomial of degree less than ϖ jmin , b( )≤ such that u P 0θQ Q
γ( )⨏ ∂
→
−
→
=

⧹
for all γ ϖ∣ ∣ < .

Observe that L u L u P( )
→
=
→
−
→

and u u Pj j( )∇
→
= ∇
→
−
→

. Applying Corollary 53 to u P→
−
→

and a covering argu-
ment yields that
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Because p 2≥ , by Hölder’s inequality Q L u C L up
Y θQ Y θQ

1 1 2 m m p,2 ,∣ ∣ ( ) ( )‖
→
‖ ≤ ‖

→
‖/ − / − − . By Lemma 44, we may replace

u P L θQ Q2( )‖
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→
‖ ⧹ by Q uϖ d ϖ

L θQ Q2∣ ∣ ( )‖∇
→
‖/
⧹ . Redefining κ completes the proof. □

Remark 72. If p 2= , Lemma 71 still represents an improvement over the Caccioppoli inequality (Corollary
53) in that, if m d j m2− / < < , then we can bound uj L Q2( )‖∇ ‖ by u L θQ Q2( )‖

→
‖ ⧹ and not u L θQ2( )‖

→
‖ .

Remark 73. If p 2= and ϖ 1≥ , then by Lemmas 71 and 43,
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for q satisfying μ d1 1 2 1/ = / + / ; notice that this q satisfies q 2< .

We have now established that Theorem 66 is valid if q μ= , and that Theorem 64 is valid if q 2= or if
ϖ 1≥ and q takes a specific value less than 2. In particular, these theorems are valid for at least one q p< .
By Hölder’s inequality, these theorems are valid for all q p≥ . The following lemma will complete the proof
by establishing validity for all positive but smaller q.

Lemma 74. Let d 2≥ and ϖ n m0 ≤ ≤ ≤ be integers. Let Q d�⊂ be a cube and let θ1 2< ≤ .
For each i with ϖ i m≤ ≤ , let pi, ui satisfy p0 i< ≤ ∞ and u L θQi

pi( )∈ ; if in addition ϖ i n≤ ≤ , let qi
satisfy q p0 i i< < .

Suppose that, whenever ϑ ζ θ1 ≤ < ≤ , we have the bound
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⧹ (75)
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for some nonnegative constants c0, κ, and F independent of ζ and ϑ.
Then for every set of numbers qi with q q0 i i< ≤ , there are some constants C and κ∼, depending only on the

qis, qis, pis, c0, and κ, such that
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Proof. If c 00 = , then applying bound (75) with ϑ1 = and θ ζ= immediately yields bound (76) with κ κ=∼

(and in fact without the sum on the right-hand side). Thus, throughout we may assume c 00 > . We are also
done if q qi i= for all i; we will consider the case where q qi i< for at least one i. In the present article, we will
only need the case where q qi = , q qi = for some q, q independent of i, but for completeness, we present the
general case.

Let ϑ ϑ ϑ1 0 1 2= < < <… for some ϑ θ1,[ )∈ℓ to be chosenmomentarily, and letQ ϑ Q=ℓ ℓ . Let A Q Q1= ⧹ℓ ℓ+ ℓ.
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We compute that

q
τq

p q
p q

q
τq

τ q p1, , 1 .i

i i

i i

i i

i

i i
i i i  
⎜ ⎟( ) ⎛

⎝

⎞

⎠
( )=

−

−
∈ ∞

′
− =

So we may apply Hölder’s inequality to see that

u u u .
i ϖ

n

i L A
i ϖ

n

i L A
τ

i L A
τ1qi qi

i pi
i

( ) ( ) ( )∑ ∑‖ ‖ ≤ ‖ ‖ ‖ ‖
= =

−
ℓ ℓ ℓ

By Young’s inequality,

u τ c
ϑ ϑ

u τ ϑ ϑ
c

u1 .
i ϖ

n

i L A
i ϖ

n

i κ

τ τ

i L A
i ϖ
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i
κ
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1
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0
qi

i i
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( )
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−

‖ ‖ + −
−
‖ ‖

= = ℓ+ ℓ

− /

=

ℓ+ ℓ

ℓ ℓ ℓ

If q qi i= and so τ 1i = , this bound is still true. By bound (75),

u F
ϑ ϑ

c
ϑ ϑ

u

F
ϑ ϑ

τ c
ϑ ϑ

u τ u1 .

j ϖ

m

j L Q κ κ
i ϖ

n
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κ
i ϖ

n

i κ

τ
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0
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pj qi

i
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
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⎛

⎝ ( )
⎞
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−
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−
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≤
−
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‖ ‖ + − ‖ ‖

= ℓ+ ℓ ℓ+ ℓ =

ℓ+ ℓ = ℓ+ ℓ

/

=

ℓ ℓ

ℓ ℓ

Recall that ϑ 10 = . We now let ϑ ϑ θ σ σ1 11 ( )( )= + − −ℓ+ ℓ
ℓ for some constant σ 0, 1( )∈ to be chosen momen-

tarily. Notice that ϑ θlim =ℓ→∞ ℓ . Recall that A Q 1⊆ℓ ℓ+ . Then

u F
θ σ σ

τc
θ σ σ

u

τ u

1 1 1 1

1 .

j ϖ

m

j L Q κ κ κ
i ϖ

n
i

τ

κ τ κ τ κ τ i L A

i ϖ

n

i i L Q

0
1

pj

i

i i i
qi

pi 1

( ) ( ) ( ) ( )

( )

( ) ( )

( )

∑ ∑

∑

‖ ‖ ≤
− −

+
− −

‖ ‖

+ − ‖ ‖

=
ℓ
=

/

/ / ℓ/

=

ℓ ℓ

ℓ+

Let τ τmin
i

i= . If τ 1= , then q qi i= for all i, and there is nothing to prove; otherwise, τ 0, 1( )∈ . Recall that
ϖ n m≤ ≤ . Iterating, we see that if K 0≥ is an integer, then
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u τ F
θ σ σ

τc
θ σ σ

u

τ u

1
1 1 1 1
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j ϖ

m

j L Q

K

κ κ κ
i ϖ

n
i

τ
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/
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=

+

ℓ
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Recall that Q Q0 = and Q θQ⊂ℓ , A θQ Q⊂ ⧹ℓ for all 0ℓ ≥ . By changing the order of summation, we see that

u F
θ σ

τ
σ

τc
θ σ

u τ
σ

τ u

1 1
1

1 1
1

1 .

j ϖ

m

j L Q κ κ
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κ
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n
i

τ

κ τ κ τ i L θQ Q

K

κ τ

K

j ϖ

m
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/

ℓ

+

=

Choose σ 0, 1( )∈ such that τ σ1 κ τ− < / ; since τ 0, 1( )∈ , this implies τ σ1 κ− < . Taking the limit as K → ∞,
we have that the geometric series converge and the final term approaches zero, and so

u C F
θ

C
θ

u
1

1
1j ϖ

m

j L Q κ
i ϖ

n

κ τ i L θQ Qpj qi
( ) ( )

( ) ( )∑ ∑‖ ‖ ≤
−
+

−
‖ ‖

= =
/ ⧹

as desired. □

6.2 A counterexample

In this section, we will prove Theorem 67.
Let a,b, and ε be as in the theorem statement. Without loss of generality we may require ε0 1< ≤ . Fix a

multiindex ζ with ζ b∣ ∣ = .

Define w X X1 d2( ) ( ∣ ∣ )= + − . We may easily compute that w Lm p d�( )∇ ∈ for any p d d m2( )> / + (in
particular, for all p 2≥ ).

Let Qk k 1{ } =
∞ be a sequence of pairwise-disjoint cubes contained inQ0 (whose volumes necessarily tend to

zero). Let φ be a smooth cutoff function with φ supported in Q0 and with φ 1= in Q1
2 0, and let

φ X φ X Xk k k( ) (( ) )= − /ℓ , where Xk is the midpoint of Qk and Qk k
d1∣ ∣ℓ = / is the side length of Qk. Then φk

is a smooth cutoff function supported in Qk and identically 1 in Qk
1
2 .

Let nk k 1{ } =
∞ be a sequence of positive numbers such that nk kℓ → ∞ and n 1k kℓ ≥ for all k. Notice that

1kℓ < so n 1k > for all k . Define

u X X ε
C

φ X
n

w n X X1ζ

k
k

k
m k k

0 1
2( ) ( ) ( ( ))∑= + −

=

∞

for a positive constant C0 to be chosen momentarily. We may easily compute that if X Qk
1
2∈ and γ is a

multiindex, then

u X X ε
C n

w n X X1 .γ γ ζ

k
m γ

γ
k k

0
2( ) ( )( ( ))∂ = ∂ + ∂ −
−∣ ∣ (77)

Furthermore, if X Qk∈ and γ m0 2∣ ∣≤ ≤ , then

u X X ε
C

C γ φ d n ε
C

C γ φ d, , , , .γ γ ζ
k
γ m

0

2

0
∣ ( ) ∣ ( ) ( )∂ − ∂ ≤ ≤∣ ∣−

We choose C C ζ φ d2 , ,0 ( )≥ ; this ensures that

u ζ u X ζ1
2

1
2

ζ ζ ζ ζ∣ ∣ ∣ ∣∂ − ! = ∂ − ∂ ≤ ≤ !

and so u Xζ 1
2∣ ( )∣∂ ≥ for all X .
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Recall that Aα β,͠ is a set of real nonnegative constants that satisfies

AΔ 1 .m m

α m β m
α β

α β
,( ) ( ) ͠

∣ ∣ ∣ ∣

∑ ∑− = − ∂
= =

+

(Many possible families of such constants exist.) Similarly, for any ma ≤ , there exist families of constants
Bα γ,͠ such that

BΔ 1 .m m

α γ m
α γ

α γ

2
,

a a

( ) ( ) ͠

∣ ∣ ∣ ∣

∑ ∑− = − ∂
= = −

+

Choose some such family.
Define the coefficients A Aα β α β, ,

1,1= as follows.

• If α β m∣ ∣ ∣ ∣= = , let A Aα β α β, ,͠= .

• If α a∣ ∣ = and β ζ= , let

A B u
u

1 .α ζ
m

γ m
α γ

γ

ζ,
1

2
,

a

a

( ) ͠

∣ ∣

∑= −
∂

∂
+ −

= −

• Otherwise, let A 0α β, = .

Because ζ mb∣ ∣ = < , Aα β, is well defined.

If L is as given by formula (26), then formulas (28) and (29) are clearly valid. If C0 is large enough, then

A X A X εα β α β, ,∣ ( ) ( )∣͠− < for all X , α, and β.
Furthermore, because u is smooth, we may compute that

A u1 0.
α m β m

α α
αβ

β

a b

( ) ( )
∣ ∣ ∣ ∣

∑ ∑ − ∂ ∂ =
≤ ≤ ≤ ≤

∣ ∣

This is the classical definition of Lu 0= . An integration by parts argument yields that φ Lu, 0⟨ ⟩ = for any
test function φ such that the integral in formula (26) is well defined; in particular, Lu 0= in Y Qm p,

0( )− for
any p ΠL∈ .

It remains only to establish a lower bound on u
Q

m
k

1
2

∣ ∣∫ ∇ .

If p 2≥ and j m1b + ≤ ≤ , then by definition of u and a change of variables,

u ε
C n

w n X X X

ε
C n

w X X

ε
C n n

w X X

d

d

2 d .

Q

j p

p

k
m j

Q

j
k k

p

p

k
m j

n Q

j p

p

d p

k
m j

k k
d p

n Q

j p
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2
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0
2

1
2

1

0
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1
2
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0
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1
2

1

k k

k k
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Thus, recalling that n 1k kℓ ≥ , we have that

u ε
C n n

w X X c
n n

2 d ,
Q

m p

p
d p

k
m

k k
d p

Q

m p

p

k
m
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k
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⎠
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ℓ
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ℓ
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where c 01 > is independent of k .
Furthermore, if X Q Qk k

1
2∈ ⧹ then
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u X Cε
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Thus,
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Again using the fact that n 1k kℓ ≥ and the fact that w Lj d2 �( )∇ ∈ for any j 0≥ , we have that

u C
n n

1 .
j

m

k
m j

Q

j

k
m

k k
d

1

2
1 2

2
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⎠
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∑
ℓ
⨏ ∇ ≤

ℓ
= +
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/

/

If p 2> , then because nk kℓ → ∞, there is some k large enough that

C C
n n

c
n nk

m
k k

d
k
m

k k
d p

2
2

1

( ) ( )
͠
ℓ

≤
ℓ/ /

as desired. This completes the proof of Theorem 67.

7 The fundamental solution

In this section, we will construct the fundamental solution. We will begin in Section 7.1 with local estimates
on functions in Y m p d, �( ) for m large enough. By using these estimates, in Section 7.2, we will construct a
preliminary version of the fundamental solution in the case m d2 > . We will investigate the properties of
this fundamental solution in Sections 7.2–7.5. We will slightly modify our definition in Section 7.4. In
Section 7.6, we will construct the fundamental solution in the case m d2 ≤ , and will address uniqueness
in Section 7.7.

7.1 Preliminaries for operators of high order

Recall from the definition (24) of Y m q d, �( ) that if u Y m q d, �( )∈ , then the derivatives uγ∂ of u are defined
as locally integrable functions if γ m d q∣ ∣ > − / and are defined only up to adding polynomials if
γ m d q∣ ∣ ≤ − / . We will now wish to fix a family of normalizations of functions in Y m q d, �( ) and investigate
their properties.

If d m q/ < < ∞, let sm d q, , be the number of multiindicies γ d
0�( )∈ so that γ m d q∣ ∣ ≤ − / . Observe that

sm d q, , is nonnegative, nondecreasing in q and that if q < ∞ then s sm d q m d d, , , ,≤ . Choose distinct points H1,

H H, , s2 m d d, ,… in B B0, 1 0, 1 2( ) ( )⧹ / (so H1 2 1i∣ ∣/ < < for all i s1 m d d, ,≤ ≤ ). If the points Hi are chosen appro-
priately (see [44] for a survey on polynomial interpolation in several variables), then for any q with
d m q/ < < ∞ and any numbers ai there is a unique polynomial

P X p X P H a i ssuch that for all 1 .
γ m d q

γ
γ

i i m d q, ,( ) ( )
∣ ∣

∑= = ≤ ≤
≤ − /

(We emphasize that if q d< then we cannot specify the values of P Hi( ) for s i sm d q m d d, , , ,< ≤ .) Also there is
some constant h < ∞ depending only on Hi such that
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p h asup sup .
γ m d q

γ
i s

i
1 m d q, ,

∣ ∣ ∣ ∣
∣ ∣

≤
≤ − / ≤ ≤

We now show that this gives a normalization in Y m q d, �( ). We will need some additional properties of
this normalization.

Lemma 78. Let m, d �∈ with d 2≥ , let r 0> , and let Z d
0 �∈ . Let d m μ qmax 1,( )/ < ≤ < ∞. Let U

satisfy U Y m μ d, �( )‖ ‖ < ∞.

Then there is a unique function UZ r q, ,0 that is continuous and satisfies

U Z rH U U almost everywhere0,Z r q i
ζ ζ

Z r q, , 0 , ,0 0( )+ = ∂ = ∂

for all i s1 m d q, ,≤ ≤ and all multiindices ζ with m d q ζ m∣ ∣− / < ≤ . In particular, if q μ= , then U and UZ r q, ,0

are representatives of the same element of Y m μ d, �( ).

Furthermore, if X, Y d�∈ , R r X Z0∣ ∣= + − , X Y R1
2∣ ∣− ≤ , and γ m d μ∣ ∣ < − / , then we have the bounds

U X C R R
r

U

U X U Y C R R
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U X Y
R

,

,

γ
Z r q μ

m d μ γ
ω
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γ
Z r q
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Z r q μ

m d μ γ
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Y

ε
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, , , ,

1

q
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q
m μ d

0 ,

0 0 ,
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�
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∣ ( ) ( )∣ ⎛
⎝

⎞
⎠
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⎝

∣ ∣
⎞
⎠

( )

( )

∂ ≤ ‖ ‖

∂ − ∂ ≤ ‖ ‖
−

− / −∣ ∣
−

− / −∣ ∣
−

whereCμ and ε 0> depend on d,m, and μ, andωq is the smallest (necessarily positive) integer withm d q ωq− / < .

Proof. Fix X d�∈ . LetQ be a cube centered at Z0 of side length R4 . Observe that U UY Q Ym μ m μ d, , �( ) ( )‖ ‖ ≤ ‖ ‖ < ∞.
By definition ofY m μ d, �( ), we have that Ui∇ is locally integrable in d� (and thus, in particular is integrable inQ)
for any i m0 ≤ ≤ . LetV U P= + , where P is a polynomial of degree at mostm d μ− / so that V 0

Q
γ∫ ∂ = for all γ

with γ m d μ∣ ∣ ≤ − / (i.e., all γ with γ ωμ∣ ∣ < ). Observe that U V 0Y m μ d, �( )‖ − ‖ = , so V UY Q Y Qm μ m μ, ,( ) ( )‖ ‖ = ‖ ‖ < ∞.

If d μ/ is not an integer, let θ μ= . Otherwise, let θ satisfy d θ d μ 1 2/ = / + / . In either case, d θ/ is not an
integer and θ μ≤ . Since m d μ γ∣ ∣> / + , if d μ/ is an integer, then m d μ γ 1∣ ∣≥ / + + and so m d θ γ∣ ∣> / + .
Because μ 1> we have that d d μ> / , so similarly d d θ> / and so θ 1> .

Let k be the unique integer such that m d θ k m d θ 1− / < < − / + . Thus, γ m d θ k m 1∣ ∣ < − / < < + and
so γ k m1∣ ∣ + ≤ ≤ . By Lemma 41,

V C R V ,γ
L Q μ

i

m k
i k m i γ

L Q
1

1
1θk θ( ) ( )∑‖∇∂ ‖ ≤ ‖∇ ∂ ‖

=

− +
− + −

and by Hölder’s inequality and because k γ1 ∣ ∣≥ + ,

V C R V .γ
L Q μ

i

m
i γ k m d θ d μ i

L Q
1

1θk μ
( ) ( )∑‖∇∂ ‖ ≤ ‖∇ ‖

=

− −∣ ∣+ − + / − /

By formula (23),

θ θ
m k

d d
1 1 0, 1 .
k

⎛
⎝

⎞
⎠

= −
−
∈

By Morrey’s inequality (see [41, Section 5.6.2]), we may redefine the weak derivative Vγ∂ of V on a set of
measure zero in a unique way so that it is continuous (thus defined pointwise everywhere) and, if X Q1

2
͠ ∈

and X Y R 2∣ ∣͠ − < / , then

V X V Y C X Y V .γ γ
μ

d θ γ
L Q

1 k θk∣ ( ) ( )∣ ∣ ∣͠ ͠
( )∂ − ∂ ≤ − ‖∇∂ ‖− /

Let ε d θ d θ m k1 1k= − / = − / + − . Observe that ε0 1< < . Then

V X V Y C X Y
R

R V .γ γ
μ

ε

ε γ d μ
i

m
i i

L Q
1

μ∣ ( ) ( )∣
∣ ∣͠

͠
( )∑∂ − ∂ ≤

−
‖∇ ‖

+∣ ∣+ /
=

(79)
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Averaging V X V X V Y V Yγ γ γ γ∣ ( )∣ ∣ ( ) ( )∣ ∣ ( )∣͠ ͠∂ ≤ ∂ − ∂ + ∂ over Y B X R, 2( )͠∈ / , we have that

V X
C

R
R V .γ μ

γ d μ
i

m
i i

L Q
0

μ∣ ( )∣͠
( )∑∂ ≤ ‖∇ ‖

∣ ∣+ /
=

(80)

We will consider the cases X X͠ = and X Z rHj0͠ = + .
We may write
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Recall thatV satisfies V 0
Q

i∫ ∇ = for all i ω0 1μ≤ ≤ − . We may apply the Poincaré inequality in the first sum,
so that

R V C R V .i

Q

i μ

μ

μ
ω

Q

ω μ

μ1 1

μ μ
⎛

⎝

⎜
⎜

∣ ∣
⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

∣ ∣
⎞

⎠

⎟
⎟

∫ ∫∇ ≤ ∇

/ /

Thus,
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By Hölder’s inequality, we have that

R V C R V .
i

m
i i

L Q μ
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By formula (23), we have that i d μ d μ mi+ / − / = . Thus, by the definition (24) of the norm on Y Qm μ, ( ), we
have that

R V C R U .
i

m
i i

L Q μ
m

Y Q
0

μ m μ,( ) ( )∑ ‖∇ ‖ ≤ ‖ ‖
=

(81)

Let P1 be the (unique) polynomial of degree at most m d q− / with P Z rH V Z rHj j1 0 0( ) ( )+ = + for each
j s1 m d q, ,≤ ≤ , and letU V PZ r q, , 10 = − . ThenUZ r q, ,0 is the unique continuous function withU Z rH 0Z r q j, , 00 ( )+ =

for all j μ1 ≤ ≤ and with U V Uζ
Z r q

ζ ζ
, ,0∂ = ∂ = ∂ almost everywhere for all ζ m d q∣ ∣ > − / . Thus, the specified

function UZ r q, ,0 is constructed; we need only establish the desired bounds on UZ r q, ,0 .

We now take X Z rHj0͠ = + for some j. By formulas (80) and (81),

P Z rH V Z rH C R V C R U .j j μ
i

m
i d μ i

L Q μ
m d μ

Y Q1 0 0
0

μ m μ,∣ ( )∣ ∣ ( )∣ ( ) ( )∑+ = + ≤ ‖∇ ‖ ≤ ‖ ‖
=

− / − /

Let P Z P Z Z r1 2 0( ) (( ) )= − / so that P H P Z rHi i2 1 0( ) ( )= + and P Z p Zγ ω γ
γ

2 1q
( ) = ∑∣ ∣≤ − for some pγ, where

p h P Z rH C R Usupγ j j μ
m d μ

Y Q2 0 m μ,∣ ∣ ∣ ( )∣ ( )≤ + ≤ ‖ ‖− / . We then have that P Z p r Z Zγ ω γ
γ γ

1 1 0q
( ) ( )

∣ ∣
= ∑ −≤ −

−∣ ∣ . We may
then compute that if Z Q∈ and i ω0 1q≤ ≤ − , then

P Z C R U R r .i
μ

m d μ i
Y Q

ω
1

1m μ q,∣ ( )∣ ( )( )∇ ≤ ‖ ‖ /− / − −

Combining these pointwise bounds on P1 with bound (81) yields that

R U C R U R r .
i

m
i i

Z r q L Q μ
m

Y Q
ω

0
, ,

1μ m μ q
0

, ( )( ) ( )∑ ‖∇ ‖ ≤ ‖ ‖ /
=

− (82)

Combining this bound with bounds (79) and (80) with X X͠ = completes the proof. □
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Remark 83. We observe that if U Y m μ d, �( )∈ , then U Lγ μ dγ �( )∂ ∈ is defined up to sets of measure zero
whenever γ m d μ∣ ∣ > − / , while Uγ

Z r q, ,0∂ is continuous and satisfies the bounds given by Lemma 78 when-
ever q μ≥ and γ m d μ∣ ∣ < − / .

Suppose γ m d μ∣ ∣ = − / . If k γ 1∣ ∣= + , then by formula (23) μ dk = and so U Lγ d d�( )∇∂ ∈ . By [41, Section
5.8.1], we have that Uγ∂ lies in the space BMO of bounded mean oscillation with U C Uγ

BMO μ Y m μ d, �( )‖∂ ‖ ≤ ‖ ‖ . By

the John-Nirenberg inequality (see, for example, [78]), we have that if p1 ≤ < ∞ and Q is any cube then

U U C U .
Q

γ

Q

γ p
p

p μ Y

1

, m μ d, �
⎛

⎝
⎜ ∣ ∣

⎞

⎠
⎟ ( )⨏ ∂ − ⨏∂ ≤ ‖ ‖

/

Let Z0, r, andUZ r q, ,0 be as in Lemma 78. Observe that U Uζ ζ
Z r q, ,0∂ = ∂ for all ζ γ∣ ∣ ∣ ∣> , and so Uζ∂ differs from

Uζ
Z r q, ,0∂ by a constant. Thus,

U U C U .
Q

γ
Z r q

Q

γ
Z r q

p
p

p μ Y, , , ,

1

, m μ d0 0 , �
⎛

⎝
⎜ ∣ ∣

⎞

⎠
⎟ ( )⨏ ∂ − ⨏∂ ≤ ‖ ‖

/

By bound (82) and Hölder’s inequality, if Q is a cube centered at Z0 of side length R r4 4> , then

U Q U C R R r U ,
Q

γ
Z r q

μ γ
Z r q L Q μ

m γ ω
Y Q, ,

1
, ,

1μ q m μ
0 0

,∣ ∣ ( )( ) ( )⨏∂ ≤ ‖∂ ‖ ≤ / ‖ ‖− / −∣ ∣ −

and so

U C R R r U .
Q

γ
Z r q

p

p

p μ
d p ω

Y, ,

1

,
1q m μ d0 , �

⎛

⎝

⎜
⎜

∣ ∣
⎞

⎠

⎟
⎟

( ) ( )∫ ∂ ≤ / ‖ ‖

/

/ −

7.2 The fundamental solution for operators of high order

We now define a preliminary version of our fundamental solution for operators of high order. If d is odd, we
will use this definition throughout; if d is even, then we will modify the definition somewhat in Section 7.4.
We will consider operators of lower order in Section 7.6.

Definition 84. Let m and d be integers with m d2 2> ≥ . Let L be a bounded and invertible linear operator
L Y Y: m q d m q d, ,� �( ) ( )→ − for some q with q1 < < ∞ and m d q m d1 1− / < / < / . Let Z d

0 �∈ , let r 0> , and
let j N1 ≤ ≤ .

Let TX j Z r q, , , ,0 be given by

T X, Φ Φ ,X j Z r q j Z r q, , , , , ,0 0( ) ( )⟨
→
⟩ = ′

where q q1 1 1/ + / ′ = . By Lemma 78, this is a well-defined bounded linear functional on Y m q d, �( )′ ; that
is, T YX j Z r q

m q d
, , , ,

,
0 �( )∈ − .

We define the fundamental solution E X j Z r q
L
, , , ,0

→
by

E L T .X j Z r q
L

X j Z r q Z r q, , , ,
1

, , , , , ,0 0 0( )
→

= −

Remark 85. If L is bounded and invertible L Y Y: m d m d,2 ,2� �( ) ( )→ − , and if L is defined and bounded
Y Ym q d m q d, ,� �( ) ( )→ − for all q in an open neighborhood of 2, then by Lemma 63, q satisfies the conditions
of Definition 84 for all q in a (possibly smaller) neighborhood of 2.

Remark 86. Since Y m q d, �( )− is by definition the dual space to Y m q d, �( )′ , by standard function theoretic
arguments L Y Y: m q d m q d, ,� �( ) ( )→ − is bounded and invertible if and only if its adjoint operator
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L Y Y: m q d m q d, ,� �( ) ( )→∗ ′ − ′ is bounded and invertible. Furthermore, L L1 1( ) ( )=− ∗ ∗ − . Also observe that
m d q m dmax 0, 1 1 min 1,( ) ( )− / < / < / if and only if m d q m dmax 0, 1 1 min 1,( ) ( )− / < / ′ < / . Thus, L and

q satisfy the conditions of Definition 84 if and only if L∗ and q′ satisfy those conditions.

That is, E X j Z r q
L
, , , ,0

→
exists (for all X , j, Z0, r) if and only if EY k Z r q

L
, , , ,0

→
′

∗

exists (for all Y , k, Z0, and r).

In the remainder of this subsection, we will establish some basic properties of the fundamental solu-
tion; we will establish further properties in Sections 7.3–7.5. We will begin with a symmetry property for the
operators L and L∗; we will use this property to establish certain symmetries of the fundamental solution.

Theorem 87. Let L and q satisfy the conditions of Definition 84. Let Z d
0 �∈ , let r 0> , and let j, k be integers

in N1,[ ].
For all X , Y d�∈ , we have that

E Y E X .X j Z r q
L

k Y k Z r q
L

j, , , , , , , ,0 0( ) ( )( ) ( )
→

=
→

′

∗

(88)

For every S Y m q d, �( )∈ − ′ and every X d�∈ , we have that

S E L S X, .X j Z r q
L

j Z r q, , , ,
1

, ,0 0((( ) ) ) ( )⟨
→

⟩ = ∗ −
′

(89)

Finally, if we let

E X Y E X E Y, ,j k Z r q
L

Y k Z r q
L

j X j Z r q
L

k, , , , , , , , , , , ,0 0 0( ) ( ) ( )( ) ( )=
→

=
→

′

∗

then Ej k Z r q
L
, , , ,0 is continuous on d d� �× .

Proof. That EY k Z r q
L
, , , ,0

→
′

∗

exists is Remark 86.
If X , Y d�∈ and j N1 ≤ ≤ , k N1 ≤ ≤ , then by Definition 84 and Remark 86,

E Y T E T L T

T L T T E E X

, ,

, , .

X j Z r q
L

k Y k Z r q X j Z r q
L

Y k Z r q X j Z r q

X j Z r q Y k Z r q X j Z r q Y k Z r q
L

Y k Z r q
L

j

, , , , , , , , , , , , , , , ,
1

, , , ,

, , , ,
1

, , , , , , , , , , , , , , , ,

0 0 0 0 0

0 0 0 0 0

( )

( ) ( )

( )

( )

→
= ⟨

→
⟩ = ⟨ ⟩

= ⟨ ⟩ = ⟨
→

⟩ =
→

′ ′
−

∗ −
′ ′ ′

∗ ∗

In particular, observe that by Lemma 78, E XY k Z r q
L
, , , ,0 ( )
→

is locally uniformly continuous in both X andY , and
so Ej k Z r q

L
, , , ,0 is continuous on d d� �× .

Similarly, we have that if S Y m q d, �( )∈ − ′ , then

S E S L T T L S L S X, , , .X j Z r q
L

X j Z r q X j Z r q j Z r q, , , ,
1

, , , , , , , ,
1 1

, ,0 0 0 0( ) ((( ) ) ) ( )⟨
→

⟩ = ⟨ ⟩ = ⟨ ⟩ =− ∗ − ∗ −
′

This establishes formula (89). □

We will conclude this section with a preliminary bound on the derivatives of the function E X j Z r q
L
, , , ,0

→
.

Theorem 90. Let L and q satisfy the conditions of Definition 84. Let p q1 2< ≤ . Suppose that L also satisfies
the conditions of Definition 84 with q replaced by p, and that the inverses are compatible in the sense of
Definition 35, that is, if T Y Ym p d m q d, ,� �( ) ( )∈ ∩− − then L T Y Ym p d m q d1 , ,� �( ) ( )∈ ∩− .

Suppose that β is a multiindex with β m0 ∣ ∣≤ ≤ . Let Q d�⊂ be a cube. Then we have the bound

E CR R
r

Q

β
X j Z r q
L

p

p

m d d p β
κ

, , , ,

1

2
0

⎛

⎝

⎜
⎜

∣ ∣
⎞

⎠

⎟
⎟

⎛
⎝

⎞
⎠

∫ ∂
→

≤

/

− + / −∣ ∣ (91)

where R r X Z Z Q Qmax , , dist , diam0 0( ∣ ∣ ( ) )= − + , and where C and κ are positive constants depending on q,
p, the norms of L Y Y: m q d m q d1 , ,� �( ) ( )→− − and L Y Y: m p d m p d1 , ,� �( ) ( )→− − , and the standard parameters.
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Recall from Definition 35 that ϒL is the set of all q such that L 1− is compatible between Y m d,2 �( ) and
Y m q d, �( ). By density, if p, q ϒL∈ , then L 1− is compatible between Y m p d, �( ) and Y m q d, �( ), as required by the
lemma.

Proof of Theorem 90. By Lemma 78, if TX j Z r q, , , ,0 is as in Definition 84, then

T C R R
rX j Z r q Y q

m d q
ω

, , , ,

1
m q d

q

0 , �
⎛
⎝

⎞
⎠

( )‖ ‖ ≤ − / ′
−

−

′

and so by invertibility of L,

E CR R
r

.X j Z r q
L

Y
m d q

ω

, , , ,

1
m q d

q

0
, �

⎛
⎝

⎞
⎠

( )‖
→

‖ ≤ − / ′
−′

(92)

By Lemma 78, if β m d q∣ ∣ < − / and Y Z R0∣ ∣− < , then

E Y CR R
r

.Y
β

X j Z r q
L

m d β
κ

, , , ,
2

0∣ ( )∣ ⎛
⎝

⎞
⎠

∂
→

≤ − −∣ ∣

Integration yields bound (91) in this case (for all p 1,[ ]∈ ∞ ).
By Remark 83, if β m d q∣ ∣ = − / and Q R4∣ ∣͠ = with Q͠ centered at Z0, then

E Y Y CR R
r

d .
Q

Y
β

X j Z r q
L

p

p

d p m d q
κ

, , , ,

1

0

⎛

⎝

⎜
⎜

∣ ( )∣
⎞

⎠

⎟
⎟

⎛
⎝

⎞
⎠

͠

∫ ∂
→

≤

/

/ + − / ′

Because β m d q m d d q∣ ∣ = − / = − + / ′, bound (91) is valid in this case (for all p 1,[ )∈ ∞ ).
We are left with the case β m d q∣ ∣ > − / . If q p≥ and m d q β∣ ∣− / < , or if q p< and m d q β∣ ∣− / < ≤

m d q d p− / + / , then by formula (23) we have that p qβ≤ < ∞. By bound (92) and Hölder’s inequality,

E CR R
r

.
Q

β
X j Z r q
L

p

p

m d d p β
κ

, , , ,

1

2
0

⎛

⎝

⎜
⎜

∣ ∣
⎞

⎠

⎟
⎟

⎛
⎝

⎞
⎠

∫ ∂
→

≤

/

− + / −∣ ∣

Finally, suppose that q p< and that m d q d p β m∣ ∣− / + / < ≤ . If q p< , then q p′ > ′, and so by Lemma 78

T CR R
r

.X j Z r q Y
m d p

ω

, , , ,

1
m p d

q

0 , �
⎛
⎝

⎞
⎠

( )‖ ‖ ≤ − / ′
−

−

′

By compatible invertibility of L Y Y: m p d m p d, ,� �( ) ( )→ − , we have that

E CR R
r

.X j Z r q
L

Y
m d d p

ω

, , , ,

1
m p d

q

0
, �

⎛
⎝

⎞
⎠

( )‖
→

‖ ≤ + − /
−

−

′

(93)

If β m d q d p∣ ∣ > − / + / and p q2≤ , then β m d p∣ ∣ > − / and so this provides a Lebesgue space bound on
Eβ

X j Z r q
L
, , , ,0∂
→

. By Hölder’s inequality,

E CR R
r

,
Q

β
X j Z r q
L

p

p

m d d p β
κ

, , , ,

1

2
0

⎛

⎝

⎜
⎜

∣ ∣
⎞

⎠

⎟
⎟

⎛
⎝

⎞
⎠

∫ ∂
→

≤

/

− + / −∣ ∣

which is bound (91).
In any case, bound (91) holds. □

7.3 Mixed derivatives of the fundamental solution

Recall that E YX j Z r q
L
, , , ,0 ( )
→

is a function of both X and Y . We may control derivatives in Y using Theorem 90,

and derivatives in X using formula (88) and Theorem 90 applied to EY k Z r q
L
, , , ,0

→
′

∗

. We will also wish to control
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mixed derivatives, that is, derivatives in both X andY . This subsection will consist of the following theorem
and its proof.

Theorem 94. Let L beanoperator of the form (26)with2 ϒ ΠL L∈ ∩ ,and letq ϒ ΠL L∈ ∩ with m d q m d1 1− / < / < / ,
whereΠL and ϒL are as in Definitions 30 and 35. Then L and q satisfy the conditions of Definition 84 and Theorem 90 for
all p qϒ Π 1, 2L L ( ]∈ ∩ ∩ with m d p m d1 1− / < / < / .

Let p qϒ Π 1, 2L L ( ]∈ ∩ ∩ with m d p m d1 1− / < / < / . Suppose that the Caccioppoli-Meyers inequality

Q u C Q u C Q L u
j

m
j d
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m d
Y Q
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1 1 2

2

2

1 2
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⎟
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⎟

∣ ∣ ( )∫ ∫∑ ∇
→

≤
→

+ ‖
→
‖

=

/

/

/ − /

/

/ − (95)

holds wheneverQ d�⊂ is a cube with sides parallel to the coordinate axes and whenever u→ is a representative

of an element of Y Q2m p, ( ), with C independent of u→ and Q. Suppose in addition this statement is valid with p
replaced by 2.

Suppose that α is a multiindex with α m0 ∣ ∣≤ ≤ .

Then for every compact set K d�⊆ , the function EX
α

X j Z r q
L
, , , ,0∂
→

is in Y Km p, ( ) for almost every X Kd�∈ ⧹ . If

α m d p m dmin , 2∣ ∣ ( )< − / ′ − / , then E Y KX
α

X j Z r q
L

m p
, , , ,

,
0 ( )∂

→
∈ for almost every X d�∈ . Furthermore, we have the

bound

E X CR R
r Q

d
min ,

,X
α

X j Z r q
L

Y Q
m d d p α

d

κ

Γ

, , , ,
2 2 2 2

1m p0 , ⎜ ⎟
⎛

⎝ ( ∣ ∣ )
⎞

⎠
( )∫‖∂

→
‖ ≤ − + / − ∣ ∣

/ (96)

whenever Γ and Q are cubes with QΓ∣ ∣ ∣ ∣= , QΓ 8⊂ , and either Q QΓ 8 4⊂ ⧹ or α m d p∣ ∣ < − / ′. Here,
R r Q Z Qmax , , dist ,d1

0( ∣ ∣ ( ))= / and κ is a positive constant depending on the standard parameters.
In particular, if the Caccioppoli inequality (95) is valid for p 2= , then for all multiindices β with

β m0 ∣ ∣≤ ≤ , the mixed partial derivative E YX
α

Y
β

X j Z r q
L
, , , ,0 ( )∂ ∂
→

exists as a locally L2 function defined on

X X X, :d d d� � �{( ) }× ⧹ ∈ . Furthermore, if Q, Γ d�⊂ are two cubes with Q Γ∣ ∣ ∣ ∣= and Q QΓ 8 4⊂ ⧹ , then

E Y Y X C R
Q r

Rd d
min ,

.
Q

X
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Y
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X j Z r q
L

d

κ
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, , , ,
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→
≤

/
− ∣ ∣− ∣ ∣ (97)

If α m d 2∣ ∣ < − / , then E YX
α

Y
β

X j Z r q
L
, , , ,0 ( )∂ ∂
→

exists as a locally L2 function on all of d d� �× . Furthermore, if

Q d�⊂ is a cube, then

E Y dY X C R
Q r

Rd
min ,

Q Q

X
α

Y
β

X j Z r q
L

d

κ
m α β

, , , ,
2

1
4 2 2
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⎝ (∣ ∣ )
⎞

⎠
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→
≤

/
− ∣ ∣− ∣ ∣ (98)

where R r Q Z Qmax , , dist ,d1
0( ∣ ∣ ( ))= / , and κ is a positive constant depending on the standard parameters. If

the Caccioppoli inequality is valid for L∗, that is, if bound (95) is valid with p 2= and L replaced by L∗, then
bound (98) is valid whenever β m d 2∣ ∣ < − / even if m d α m2 ∣ ∣− / ≤ ≤ .

The remainder of this subsection will be devoted to the proof of Theorem 94. We remark that if L is an
operator of the form (26) associated to coefficients A that satisfy the Gårding inequality (6) and either bound
(8) or (10), then by Theorem 64, the condition (95) is valid for p ϒ ΠL L∈ ∩ with p 2≥ . Thus, the aforemen-
tioned theorem gives bound (96) only for p 2≥ .

Let α be a multiindex with α m∣ ∣ ≤ . Let j N1 ≤ ≤ .
Let η be a nonnegative real-valued smooth cutoff function supported in B 0, 1( ) and integrating to 1 and

define η X η Xε ε ε
1 1
d( ) ( )′ = ′ for ε 0> . Define
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u Y η X X E Y Xd .ε α X

B X ε

α
ε X j Z r q

L
, ,

,

, , , ,0( ) ( ) ( )

( )

∫→
= ∂ − ′

→
′′ (99)

By the weak definition of derivative and the symmetry relation (88),

u Y η E X .ε α X k ε
α

Y k Z r q
L

j, , , , , ,0( ( )) ( )( )→
= * ∂

→
′

∗

(100)

We now investigate uε α X, ,
→ .

Lemma 101. With the aforementioned construction and under the conditions of Theorem 90, if Q d�⊂ is a

cube, then u W Q2ε α X
m p

, ,
, ( )

→
∈ , and if β m∣ ∣ ≤ , then

u Y η X X E Y Xd .β
ε α X

α
ε

β
X j Z r q
L

, , , , , ,0( ) ( ) ( )∫∂ = ∂ − ′ ∂
→

′′ (102)

Proof. Let Y d
0 �∈ and let ρ 0> . If β m0 ∣ ∣≤ ≤ and φ C B Y ρ, 20 0( ( ))

→
∈ ∞ , then
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⋅ ∂ − ′

→
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By Theorem 90, E X j Z r q
L

, , , ,0

→
′ and Eβ

X j Z r q
L

, , , ,0∂
→
′ are locally square integrable and thus locally integrable. By

Fubini’s theorem and the definition of weak derivative,
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→
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This is true for all test functions φ→, and so we have that formula (102) is valid. By the triangle inequality in
L p, we have that

η X X E X η X X E Xd d .α
ε

β
X j Z r q
L

L Q

α
ε

β
X j Z r q
L

L Q, , , ,
2

, , , , 2
p

p
0 0( ) ∣ ( )∣

( )

( )∫ ∫∂ − ′ ∂
→

′ ≤ ∂ − ′ ‖∂
→

‖ ′′ ′

By Theorem 90, we have that the quantities Eβ
X j Z r q
L

L Q, , , , 2p
0 ( )‖∂

→
‖′ are bounded. Because ηα

ε∂ is bounded and
compactly supported, albeit with a bound depending on α and ε, we have that u L Q2β

ε α X
p

, , ( )∂ ∈ , as
desired. □

We will need a bound on uβ
ε α X L Q, , 2( )‖∂
→
‖ , specifically a bound that is independent of ε. We seek to apply

the Caccioppoli (and Meyers) inequalities; we will need to compute L uε α X, ,
→ .

Lemma 103.With the aforementioned construction, if L is of the form (26) and q ΠL∈ with m d q m d1 1− / < / < /

and with L Y Y: m q d m q d, ,� �( ) ( )→ − invertible, and ifQ d�⊂ is a cube, then for all ε Q0, d1
2

1( ∣ ∣ )∈ / and all p with

p m d1 1 max 0, 1( )> / > − / , if X Q9∈ and either X Q3∉ or α m d p∣ ∣ < − / ′, then

L u CR R
r

,ε α X Y Q
m d p α

κ

, , 2m p, ⎛
⎝

⎞
⎠

( )‖
→
‖ ≤ − / ′−∣ ∣
− (104)

where R r Q Z Qmax , , dist ,d1
0( ∣ ∣ ( ))= / and C and κ are constants depending on the standard parameters.

Proof. Let C QΦ 20 ( )
→
∈ ∞ . By bound (92) and the definition of ΠL, LE , ΦX j Z r q

L
, , , ,0⟨
→ →

⟩′ denotes an absolutely

convergent integral whenever YΦ m q d, �( )
→
∈ ′ , and furthermore, the integrand has uniform L1 norm. Thus,

we may apply Fubini’s theorem to the integral
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η X X LE X, Φ dα
ε X j Z r q

L
, , , ,0( )∫∂ − ′ ⟨
→ →

⟩ ′′

and compute that

L u η X X LE X, Φ , Φ d .ε α X
α

ε X j Z r q
L

, , , , , ,0( )∫⟨
→ →

⟩ = ∂ − ′ ⟨
→ →

⟩ ′′

By formula (89),

LE L E L L X X, Φ Φ, Φ Φ .X j Z r q
L

X j Z r q
L

j Z r q j Z r q, , , , , , , ,
1

, , , ,0 0 0 0(((( ) ) ) ) ( ) ( ) ( )⟨
→ →

⟩ = ⟨
→ →

⟩ =
→

= ′′
∗

′
∗ − ∗

′ ′

Thus,

L u η X, Φ Φ .ε α X ε
α

j Z r q, , , ,0( ) ( )( )⟨
→ →

⟩ = * ∂ ′

Recall that PΦ Φj Z r q j, ,0( ) = +′ for some polynomial P of degree at most m d q− / ′ satisfying P Z rHi0( )+ =

Z rHΦj i0( )− + . As in the proof of Lemma 78, if P X pγ m d q γ
X Z

r
γ0( )

∣ ∣ ( )= ∑ ≤ − / ′
− , then

p h p H h P Z rH h Z rHsup sup sup Φ .γ
i γ m d q

γ i
γ

i
i

i
j i0 0∣ ∣ ∣ ( )∣ ∣ ( )∣

∣ ∣

∣ ∣∑≤ = + = +
≤ − / ′

Because C QΦ 20 ( )
→
∈ ∞ , we have that Φ 0

→
= outside of B Z d R, 1 20( ( ) )+ . Thus, Φ Φ ΦZ CR q Z CR p, , , ,0 0

→
=
→

=
→

′ ′

because H 1 2i∣ ∣ > / for all i. Thus,

p h Z rHsup Φγ
i

Z CR p i, , 00∣ ∣ ∣ ( )∣≤
→

+′

and by Lemma 78, since p d m′ > / ,

p CR Φ .γ
m d p

Y m p d, �∣ ∣ ( )≤ ‖
→
‖− / ′

′

Thus,

L u η P X η X η X CR R
r

, Φ Φ Φ Φ .ε α X ε
α

ε
α

j ε
α

j
m d p α

κ

Y, , m p d, �∣ ∣ ∣ ( )( ) ( )( )∣ ∣ ( )( )∣ ⎛
⎝

⎞
⎠

( )⟨
→ →

⟩ = * ∂ + * ∂ ≤ * ∂ + ‖
→
‖− / ′−∣ ∣

′

If X Q3∉ and ε Q Q Q0 dist 2 , 3d d1
2

1 �∣ ∣ ( )< < = ⧹/ , then η XΦ 0ε
α

j( )( )* ∂ = . If α m d p∣ ∣ < − / ′, then again by
Lemma 78 applied to Φ Φj j Z CR p, ,0( )= ′, if ε R0 < < , then

L u CR R
r

, Φ Φ .ε α X
m d p α

κ

Y, , m p d, �∣ ∣ ⎛
⎝

⎞
⎠

( )⟨
→ →

⟩ ≤ ‖
→
‖− / ′−∣ ∣

′

This completes the proof. □

We have established that u W Q2ε α X
m p

, ,
, ( )

→
∈ and have a bound on L uε α X, ,

→ . We will now bound the

derivatives of uε α X, ,
→ .

Lemma 105. Let L, q, and p satisfy the conditions of Theorem 90. Suppose in addition that the conclusion
(104) of Lemma 103 is valid (under the given conditions on ε, X , and α). LetQ d�⊂ be a cube. Suppose further

that the Caccioppoli-Meyers estimate (95) is valid in Q for all u Y Q2m p, ( )
→
∈ . Let QΓ 8⊂ be a cube

with QΓ∣ ∣ ∣ ∣= .

Then for all ε Q0, d1
2

1( ∣ ∣ )∈ / , if either Q QΓ 8 4⊂ ⧹ or α m d p∣ ∣ < − / ′, then

u X C Q R R
r

d ,ε α X Y Q
p m d m d α

κ

Γ

, , 2 2 1 2 4 2
m p, ∣ ∣ ⎛

⎝
⎞
⎠

( )∫‖→ ‖ ≤ / − − / − − ∣ ∣

where R r Q Z Qmax , , dist ,d1
0( ∣ ∣ ( ))= / and C and κ are constants depending on the standard parameters.

In particular, if p 2= , then for all β with β m∣ ∣ ≤ , we have that
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u Y Y X C Q R R
r

d d .
Q

β
ε α X

β d m d α
κ

Γ

, ,
2 2 4 2∣ ( )∣ ∣ ∣ ⎛

⎝
⎞
⎠

∫∫ ∂ → ≤ − ∣ ∣ / − − ∣ ∣

Proof. Applying bounds (104) and (95) and Lemma 41 to u uε α X, ,
→
=
→ yields

u C Q u CR R
r

.ε α X Y Q
p m d

Q

ε α X
m d p α

κ

, ,
1 1 2

2

, ,
2

1 2

m p, ∣ ∣
⎛

⎝

⎜
⎜

∣ ∣
⎞

⎠

⎟
⎟

⎛
⎝

⎞
⎠

( ) ∫‖
→
‖ ≤

→
+/ − / − /

/

− / ′−∣ ∣

By formula (100), the L2 boundedness of convolution, and bound (91), if ε is small enough, QΓ 8⊂ and
Y Q2∈ , then

u Y X E X X C R
r

Rd sup d .ε α X
k N

α
Y k Z r
L κ

m d α

Γ

, ,
2

1
2Γ

, , ,
2 4 2

0∣ ( )∣ ∣ ( )∣ ⎛
⎝

⎞
⎠

∫ ∫→
≤ ∂

→
≤

≤ ≤

− − ∣ ∣
∗

Combining the aforementioned bounds completes the proof. □

We now prove Theorem 94. The assumptions of Theorem 94 include the assumptions of Theorem 90
and Lemmas 103 and 105 with p 2= ; we will use only the conclusions of Lemma 105 and the definitions (99)
and (100) of uε α X, ,

→ .

The Lebesgue space L QΓ2( )× is weakly sequentially compact. Thus, because uε α X ε Q, , 0 d1
2

1{ }
→

< < ∣ ∣ / is a

bounded set in L QΓ2( )× , if β m0 ∣ ∣≤ ≤ , there is a function Eα β j, ,
→

with

E X Y Y X CR R
r Q

, d d
min ,

Q

α β j
m α β

d

κ

Γ

, ,
2 4 2 2

1⎜ ⎟∣ ( )∣ ⎛

⎝ ( ∣ ∣ )
⎞

⎠
∫∫
→

≤ − ∣ ∣− ∣ ∣
/

and a sequence of positive numbers εi with ε 0i → and such that, for all φ L QΓ2( )
→
∈ × , we have that

φ X Y E X Y Y X φ X Y u Y Y X, , d d lim , d d .
Q

α β j
i

Q

β
ε α X

Γ

, ,

Γ

, ,i( ) ( ) ( ) ( )∫∫ ∫∫→
⋅
→

=
→

⋅∂
→

→∞

Integrating by parts and applying formula (100), we see that if φ→ is smooth and compactly supported then

φ X Y E X Y Y X

φ X Y u Y Y X

φ X Y η E X Y X

, , d d

1 lim , d d

1 lim , d d .

Q
k α β j k

β
i

Q

Y
β

k ε α X k

β
i

Q

Y
β

k ε
α

Y k Z r q
L

j

Γ

, ,

Γ

, ,

Γ

, , , ,

i

i 0

( ) ( ( ))

( ) ( ) ( )

( ) ( ) ( )

∫∫

∫∫ ( )

∫∫ ( )

→

= − ∂
→

= − ∂ *∂
→

∣ ∣

→∞

∣ ∣

→∞
′

∗

By using properties of convolutions, we see that

φ X Y E X Y Y X

η φ X Y E X Y X

, , d d

1 lim , d d ,

Q
k α β j k

β α
i

Q

ε X X
α

Y
β

k Y k Z r q
L

j

Γ

, ,

Γ

, , , ,i 0

( ) ( ( ))

( ) ( ) ( )

∫∫

∫∫ ( )

→

= − * ∂ ∂
→

∣ ∣+∣ ∣

→∞
′

∗

where X∗ denotes convolution in the X variable only. By the dominated convergence theorem,

φ X Y E X Y Y X φ X Y E X Y X, , d d 1 , d d ,
Q

k α β j k
β α

Q

X
α

Y
β

k Y k Z r q
L

j

Γ

, ,

Γ

, , , ,0( ) ( ( )) ( ) ( ) ( )∫∫ ∫∫ ( )
→

= − ∂ ∂
→

∣ ∣+∣ ∣
′

∗
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and so E X Y E X E Y,α β j k X
α

Y
β

Y k Z r q
L

j X
α

Y
β

X j Z r q
L

k, , , , , , , , , ,0 0( ( )) ( ) ( )( ) ( )
→

= ∂ ∂
→

= ∂ ∂
→

′

∗

in the weak sense. Furthermore, we may
derive bounds on E X Y,α β j, , ( )

→
from our bounds on uε α X, ,i

→ . Thus, by Lemma 105, we have bound (97) and
bound (98) in the case α m d 2∣ ∣ < − / .

Suppose β m d 2∣ ∣ < − / and the Caccioppoli inequality ((95) with p 2= ) holds for L∗. By Remark 86, we

may thus apply the aforementioned results to E
L→ ∗
. By bound (98) for E

L→ ∗
, if β m d 2∣ ∣ < − / , then

E X dX Y C R
Q r

Rd
min ,

.
Q Q

Y
α

X
β

Y k Z r q
L

d

κ
m α β

, , , ,
2

1
4 2 2

0 ⎜ ⎟∣ ( )∣ ⎛

⎝ (∣ ∣ )
⎞

⎠
∫∫ ∂ ∂

→
≤′ /

− ∣ ∣− ∣ ∣
∗

Applying formula (88) yields bound (98) in the case β m d 2∣ ∣ < − / .

The space L L QΓ; p2 β( )( ) is a Bochner space and so is a reflexive Banach space with dual L L QΓ; p2 β ( )( )( )′ .

By Lemma 105, we have that if φ L QΓ,2( )
→
∈ , then

φ X Y E Y Y X φ X Y u Y Y X

φ X Y dY X CR R
r Q

, d d lim , d d

, d
min ,

,

Q

X
α

Y
β

X j Z r q
L

i
Q

Y
β

ε α X

Q

p

p

θ
d

κ

Γ

, , , ,

Γ

, ,

Γ

2 1 2

1

i

β

β

0

⎜ ⎟

( ) ( ) ( ) ( )

⎛

⎝

⎜

⎜

⎛

⎝

⎜
⎜

∣ ( )∣
⎞

⎠

⎟
⎟

⎞

⎠

⎟

⎟

⎛

⎝ ( ∣ ∣ )
⎞

⎠

( )

( )

∫∫ ∫∫

∫ ∫

→
⋅∂ ∂
→

=
→

⋅∂
→

≤
→

→∞

′

/ ′
/

/

where θ m d d p α2 ∣ ∣= − / + / − . The space L QΓ2( )× is dense in L L QΓ; p2 β ( )( )( )′ . Thus, this bound is valid for
all φ L L QΓ; p2 β ( )( )( )
→
∈ ′ , and so

E Y L L QΓ;X
α

Y
β

X j Z r q
L

p
, , , ,

2 β
0 ( ) ( )( )∂ ∂

→
∈

and satisfies bound (96).

7.4 Extraneous parameters

The fundamental solution E YX j Z r q
L

, , , ,0 ( ) of Definition 84 depends on the parameters Z0, r, and q in a some-
what artificial way: they are used only to normalize TX j Z r q, , , ,0 and EX j Z r q

L
, , , ,0 . We would like (to the extent

possible) to remove the dependencies on Z0, r, and q. The following lemma will allow us to remove (or at
least reduce) these dependencies.

Lemma 106. Let q1, q 1,2 ( )∈ ∞ . Let L satisfy the conditions of Definition 84 for both q q1= and q q2= . Suppose
that L is compatible in the sense that if S Y Ym q d m q d, ,1 2� �( ) ( )∈ ∩− − , then L S Y Ym q d m q d1 , ,1 2� �( ) ( )∈ ∩− .

Suppose that α and β are multiindices such that

m d q m d q α m m d q m d q β mmax , , max , .1 2 1 2( ) ∣ ∣ ( ) ∣ ∣− / ′ − / ′ < ≤ − / − / < ≤

Let j N1 ≤ ≤ , r 01 > , r 02 > , Z d
1 �∈ , and Z d

2 �∈ . Suppose that, for i 1, 2{ }∈ , the mixed derivative
E YX

α
Y
β

X j Z r q
L
, , , ,i i i( )∂ ∂
→

exists almost everywhere and is locally integrable on X X X, :d d d� � �{( ) }× ⧹ ∈ .

Then we have that

E Y E YX
α

Y
β

X j Z r q
L

X
α

Y
β

X j Z r q
L

, , , , , , , ,1 1 1 2 2 2( ) ( )∂ ∂
→

= ∂ ∂
→ (107)

for almost every X Y, d d� �( ) ∈ × .

As noted after Theorem 90, if ϒL is as in Definition 35 and q1, q ϒL2 ∈ , then L, q1, and q2 satisfy the
conditions of the lemma.
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Under the conditions of Theorem 94, existence and local integrability of the mixed partial derivative is
valid. Furthermore, under these conditions, we may combine formulas (107) and (97) to see that if α and β
are multiindices with m d q α m∣ ∣− / ′ < ≤ and m d q β m∣ ∣− / < ≤ , then by choosing Z0 and r appropriately,
we have that if ρ X Y 80 0∣ ∣= − / , then

E Y Y X Cρd d .
B X ρ B Y ρ

X
α

Y
β

X j Z r q
L

m α β

, ,

, , , ,
2 4 2 2

0 0

0∣ ( )∣

( ) ( )

∫ ∫ ∂ ∂
→

≤ − ∣ ∣− ∣ ∣
(108)

Proof of Lemma 106. Fix some such j, α, and β.
Let η and φ be smooth functions with disjoint compact support. Let T be given by

T Y η Y Y Y η Y Y, Φ Φ d 1 Φ d .k
β β β

k
d d

� �

( ) ( ) ( ) ( ) ( )∫ ∫⟨
→
⟩ = ∂ = − ∂∣ ∣

Because β m d qi∣ ∣ > − / , we have that if YΦ m q d, i �( )
→
∈ then Φβ

k∂ is well defined as a L q di β �( )( ) -function (i.e.,
up to sets of measure zero, not up to polynomials), and soT Y m q d, �( )∈ − ′ with no normalization necessary.

By formula (89),

L T X T E, .j Z r q X j Z r q
L

1
, , , , , ,i i i i i((( ) ) ) ( ) = ⟨

→
⟩∗ −

′

By duality, ifT Y Ym q d m q d, ,1 2� �( ) ( )∈ ∩− −′ ′ , then L T L T Y Ym q d m q d1 1 , ,1 2� �( ) ( ) ( ) ( )= ∈ ∩∗ − − ∗ ′ ′ . That is, the inverses
are identical whether we consider L Y Y: m q d m q d, ,1 1� �( ) ( )→∗ −′ ′ or L Y Y: m q d m q d, ,2 2� �( ) ( )→∗ −′ ′ . Furthermore,
α m d q∣ ∣ > − / ′ and so L Tα

j
1(( ) )∂ ∗ − is a well-defined locally integrable function that does not depend on Zi, ri,

or qi. Thus,

φ X η Y E Y Y X φ X T E X

φ X L T X X

φ X η Y E Y Y X

d d , d

d

d d .

α β
X j Z r q
L

k
α

X j Z r q
L

α
j

α β
X j Z r q
L

k

, , , , , , , ,

1

, , , ,

1 1 1 1 1 1

2 2 2

( ) ( ) ( ) ( )

( ) (( ) ) ( )

( ) ( ) ( )

∬ ( ) ∫

∫

∬ ( )

∂ ∂
→

= ∂ ⟨
→

⟩

= ∂

= ∂ ∂
→

∗ −

By applying the definition of weak derivative, we see that

φ X η Y E Y Y X φ X η Y E Y Y Xd d d dX
α

Y
β

X j Z r q
L

k X
α

Y
β

X j Z r q
L

k, , , , , , , ,1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( )∬ ( ) ∬ ( )∂ ∂
→

= ∂ ∂
→

for any smooth functions with disjoint compact support. By the Lebesgue differentiation theorem, formula
(107) is valid for almost every X Y, d d� �( ) ∈ × . □

We now consider the dependency of E X j Z r q
L
, , , ,0

→
on q in more detail. Define

α β α β m d q α m m d q β mΞ , : , are multiindices , , and .q {( ) ∣ ∣ ∣ ∣ }= − / ′ < ≤ − / < ≤

Ξq is illustrated in Figure 2. By Lemma 106, if α β, Ξq( ) ∈ , then E YX
α

Y
β

X j Z r q
L
, , , ,0 ( )∂ ∂
→

is independent of Z0 and r.
Thus, we may largely ignore the dependency on Z0 and r.

However, the range Ξq of acceptable derivatives does depend on q. We would like to discuss this
dependency in more detail.

7.4.1 Odd dimensions

In odd dimensions, we will let our fundamental solution be E Y E YX j
L

X j Z r
L

, , , , ,20( ) ( )
→

=
→

. In light of the Gårding
inequality (6) and the Lax-Milgram lemma, and their consequence Lemma 58, q 2= is the most natural
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value. A straightforward computation yields that if the dimension d is odd, then Ξ Ξq 2= whenever

qd
d

d
d

2
1

2
1≤ ≤

+ −
, that is, for all q sufficiently close to 2.

Note that for general rough coefficients, it may be that q ϒL∈ and so q satisfies the conditions of
Definition 84 only for q very close to 2 (and in particular may not satisfy these conditions for any q outside

of ,d
d

d
d

2
1

2
1[ ]

+ −
); thus, we cannot in general expect to improve upon E YX j Z r

L
, , , ,20 ( )
→

in terms of the number of

derivatives independent of Z0, r.

7.4.2 Even dimensions

The situation in even dimensions is more complicated. In this case, if qd
d

d
d

2
2

2
2< <

+ −
and q 2≠ , then

Ξ Ξq 2⊋ ; that is, E YX j Z r q
L
, , , ,0 ( )
→

has strictly more derivatives independent of Z0, r than E YX j Z r
L
, , , ,20 ( )
→

. See

Figure 3. However, if q s2d
d

d
d

2
2

2
2< < < <

+ −
and m d 2≥ / , then Ξq and Ξs are not equal; indeed we have

both of the two noninclusions Ξ Ξq s⊈ and Ξ Ξs q⊈ . Thus, neither of the functions E X j Z r q
L
, , , ,0

→
and E X j Z r s

L
, , , ,0

→
is

entirely satisfactory; we thus wish to define a new fundamental solution E YX j Z r
L
, , ,0 ( )
→

with the correct
derivatives for all multiindices in either Ξs or Ξq.

Theorem 109. Let d 2≥ be an even integer and let m �∈ . Let L be such that there exists an open neighbor-
hood ϒL͠ of 2 such that if q, q1, q ϒL2 ͠∈ , then L and q satisfy the conditions of Definition 84, bound (97) is valid,
and formula (107) is true whenever α β, Ξ Ξq q1 2( ) ∈ ∩ .

Then there exists a function E YX j
L
, ( )
→

such that if q ϒ ,L
d

d
d

d
2

2
2

2
͠ ( )∈ ∩

+ −
(or q ϒ 1,L ( )͠∈ ∩ ∞ if d 2= ), then

E Y E Y for all α β, Ξ .X
α

Y
β

X j Z r q
L

X
α

Y
β

X j
L

q, , , , ,0 ( ) ( ) ( )∂ ∂
→

= ∂ ∂
→

∈ (110)

Furthermore, α β, Ξq( ) ∈ for some such q if and only if

m d α m m d β m m d α β2 , 2 , 2 .∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣− / ≤ ≤ − / ≤ ≤ − < + (111)

Proof. If q, q , 2d
d

2
2( )∈∼
+

, then Ξ Ξq q= ∼ and so if q, q ϒL͠∈
∼ , then

E Y E YX
α

Y
β

X j Z r q
L

X
α

Y
β

X j Z r q
L

, , , , , , , ,0 0( ) ( )∂ ∂
→

= ∂ ∂
→

∼

for all α β, Ξq( ) ∈ . The same is true if q, q 2, ϒd
d L

2
2( ) ͠∈ ∩∼
−

. Thus, it suffices to find a function E X j
L
,
→

such that
the condition (110) is valid for a single q , 2 ϒd

d L
2

2( ) ͠∈ ∩
+

and a single q 2, ϒd
d L

2
2( ) ͠∈ ∩
−

.

Fix q, s ϒL͠∈ such that q s2d
d

d
d

2
2

2
2< < < <

+ −
. By assumption, some such q and s exist. An elementary

computation shows that α β, Ξ Ξq s( ) ∈ ∪ if and only if Condition (111) is true. Furthermore, we can compute
that

α β m d α m m d β m
α β m d α m β m d
α β α m d m d β m

Ξ Ξ Ξ , : 2 , 2 ,
Ξ Ξ , : 2 , 2 ,
Ξ Ξ , : 2, 2 .

q s

q s

s q

2 {( ) ∣ ∣ ∣ ∣ }

{( ) ∣ ∣ ∣ ∣ }

{( ) ∣ ∣ ∣ ∣ }

∩ = = − / < ≤ − / < ≤

⧹ = − / < ≤ = − /

⧹ = = − / − / < ≤

Thus, it suffices to find a function E X j
L
,
→

such that

E Y E Y

E Y E Y

,X X
α

Y
β

X j
L

X X
α

Y
β

X j Z r q
L

Y X
α

Y
β

X j
L

Y X
α

Y
β

X j Z r s
L

, , , , ,

, , , , ,

0

0

( ( )) ( ( ))

( ( )) ( ( ))

∇ ∂ ∂
→

= ∇ ∂ ∂
→

∇ ∂ ∂
→

= ∇ ∂ ∂
→

whenever α β m d 2∣ ∣ ∣ ∣= = − / .
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We observe that if α β m d 2∣ ∣ ∣ ∣= = − / , then α e β e, Ξ Ξi q s( )+
→
+
→
∈ ∩ℓ for any unit coordinate vectors ei

→

and ej
→, and so by Lemma 106,

E Y E Y .X Y X
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L

X Y X
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Y
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X j Z r s
L

, , , , , , , ,0 0( ( )) ( ( ))∇ ∇ ∂ ∂
→

= ∇ ∇ ∂ ∂
→

The lemma is thus reduced to a variant of the classical result that a curlfree vector field is the gradient of a
function.

For each W d�∈ and each ζ with ζ m d 2∣ ∣ = − / , define

G W E Y E Y .j ζ Y W
ζ

W j Z r s
L

W
ζ

W j Z r q
L

, , , , , , , , , ,0 0( ) ( ) ( )
→

= ∂
→

− ∂
→

By Remark 86, formula (88), and bound (92) applied to E
L→ ∗
, for each Y d�∈ , Gj ζ Y, ,

→
is a locally integrable

function. Furthermore, if m d β2 ∣ ∣− / = then G W 0W Y Y
β

j ζ Y, ,( ( ))∇ ∇ ∂
→

= and so there is a constant Gβ j ζ Y, , ,
→ (more

accurately, a function of Y , ζ , and j, but not of W ) such that G W GY Y
β

j ζ Y β j ζ Y, , , , ,( )∇ ∂
→

=
→

for almost
every W d�∈ .

Now, fix some cube Q d
0 �⊂ , and define
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Let α β m d 2∣ ∣ ∣ ∣= = − / . Then X 0X X
α ζ∇ ∂ = whenever ζ m d 2∣ ∣ = − / , and so
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We furthermore compute that
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Q
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Figure 2: Ξq denotes the set of lattice points in the gray rectangle (including the top and right edges, but not the bottom or left
edges). In odd dimensions (upper left), Ξ Ξq 2= if q is sufficiently close to 2. In even dimensions, Ξ2 (upper right) is a proper
subset of Ξq for all q sufficiently close to 2 but either less than 2 (bottom left) or greater than 2 (bottom right).
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Recall that G WY Y
β

j ζ Y, , ( )∇ ∂
→

is independent of W . Thus, if Q d�⊂ is a cube, then

G W W Y G W W Yd d d d
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j α Y

Q R
Y Y

β
j α Y, , , ,

0

∣ ( )∣ ∣ ( )∣∫ ∫⨏ ∇ ∂
→
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→

for any cube R d�⊂ ; choosing R appropriately, we have that by bound (97),

G W W Yd d .
Q Q
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β
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0
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→

< ∞

Thus, by Fubini’s theorem
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Q
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β
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0 0
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→

= ⨏∇ ∂
→

for almost every Y d�∈ , and so for almost every X d�∈ we have that
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→
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→
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→

= ∇ ∂ ∂
→

+ ∇ ∂
→

= ∇ ∂ ∂
→

as desired. □

7.5 Derivatives of L −1( )∗

Recall from formula (89) that, if T Y m q d, �( )∈ − ′ , then

L T X T E, .j Z r q X j Z r q
L

1
, , , , , ,0 0((( ) ) ) ( ) = ⟨

→
⟩∗ −

′

By the Hahn-Banach theorem, if T Y m q d, �( )∈ − ′ , then there exist functions Fξ
→

with

F
m d q ξ m

ξ L qξ d�

∣ ∣

( )( )∑ ‖
→
‖ < ∞

− / < ≤

′

and where

T φ φ Y F Y Y, d .
m d q ξ m

ξ
ξ

d
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→
⟩ = ∂

→
⋅
→

− / ′< ≤

Figure 3: The points α β,(∣ ∣ ∣ ∣) that satisfy Condition (111).
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Thus,

L T X E Y F Y Yd .j Z r q
m d q ξ m

Y
ξ

X j Z r q
L

ξ
1

, , , , , ,
d

0 0

�

((( ) ) ) ( ) ( ) ( )
∣ ∣

∫∑= ∂
→

⋅
→

∗ −
′

− / < ≤
(112)

We would like a similar integral formula for the derivatives of L T1( )∗ − .

Theorem 113. Let L and q satisfy the conditions of Definition 84. Assume that bound (96) in Theorem 94 is
valid for p q= .

Let T T YF ξ
m q d

,
, �( )= ∈→ − ′ be a linear functional defined by

T φ φ Y F Y Y, dF ξ
ξ

,
d

�

( ) ( )∫⟨
→
⟩ = ∂

→
⋅
→

→

for some ξ and F
→

such that m d q ξ m∣ ∣− / < ≤ and F L q dξ �( )( )→
∈ ′ is compactly supported.

If α m d q∣ ∣ > − / ′, and if α m∣ ∣ < or ξ m∣ ∣ < , then

L T X E Y F Y Ydα
F ξ j X
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Y
ξ

X j Z r q
L

1
, , , , ,

d

0

�

( ) ( ) ( ) ( )( ) ∫∂ = ∂ ∂
→

⋅
→

∗ − → (114)

and the integral converges absolutely for almost every X d�∈ . If α ξ m∣ ∣ ∣ ∣= = , this formula is true for almost
every X Fsupp∉ .

Proof. By bound (92) and Hölder’s inequality,
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L
, , , ,
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∣ ( )∣ ∣ ( )∣∫ ∂
→ →

< ∞

Let Q d
0 �⊂ be a cube. We begin with the case where Q0 and Fsupp are disjoint. If α m∣ ∣ ≤ , and if Fsupp is

compact, then a covering argument combined with bound (96) yields
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L
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< ∞ (115)

By Fubini’s theorem, if φ C Q0 0( )∈ ∞ , then
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and so
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d d
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as L Q1
0( ) functions. Combining this result with formula (112) yields that
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⋅
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′ (116)

for almost every X Fsupp∉
→
. If α m d q∣ ∣ > − / ′, then

L T L T ,α
F k ξ

α
F k ξ Z r q

1
, ,

1
, , , ,0(( ) ) (( ) )∂ = ∂∗ − ∗ −

′

and so formula (114) is valid for almost every X Fsupp∉
→
.
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Remark 117. If α m d m d qmin 2,∣ ∣ ( )< − / − / ′ , then bound (96) yields bound (115) even if Q0 and Fsupp are
not disjoint, and so in this case, formula (116) is valid for almost every X d�∈ .

We are left with the case where X Fsupp∈ and α ξ m2∣ ∣ ∣ ∣+ < . We will show that bound (115) is still
valid; the argument given earlier then yields formula (116) and thus formula (114).

Since F has compact support, we may assume thatQ0 is large enough that F Qsupp 0⊆ . LetGa be a grid
of 2ad pairwise-disjoint dyadic open subcubes ofQ0 of measure Q2 ad

0∣ ∣− whose union (up to a set of measure
zero) is Q0. If X Q0∈ , let Q Xa( ) be the cube that satisfies X Q X Ga a( )∈ ∈ . If Q Ga 1∈ + , let P Q( ) be the dyadic
parent of the cube Q, that is, the unique cube with Q P Q Ga( )⊂ ∈ . Then by the monotone convergence
theorem,
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By bound (96) and Fubini’s theorem, we may interchange the order of integration. Applying Hölder’s
inequality first in Q and then in sequence spaces,
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The final term is F FL Q Lqξ qξ d
0 �( ) ( )( ) ( )‖ ‖ = ‖ ‖ < ∞′ ′ , so we need only bound the previous term.

If a 0≥ is an integer and Q Ga 1∈ + , then by bound (96), and applying Lemma 106 to change Z0 and r as
desired, we have that
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By Hölder’s inequality,
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Thus, recalling that there are 2d a 1( )+ cubes Q in Ga each satisfying Q Q2 a d1
0∣ ∣ ∣ ∣( )= − + ,
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Recall from formula (23) that d q d q m ξξ ∣ ∣/ = / − + . Thus, the final sum reduces to

2
a

a m ξ α

0

2( )∑
=

∞
− −∣ ∣−∣ ∣

which converges provided α m∣ ∣ < or ξ m∣ ∣ < . This completes the proof. □

7.6 The fundamental solution for operators of arbitrary order

In this section, we show how to use the fundamental solution for operators of high order to construct the
fundamental solution for operators of arbitrary order.

We begin by defining a suitable higher order operator associated to each lower order operator and
investigate its properties.

Lemma 118. Let L Y Y: m d m d,2 ,2� �( ) ( )→ − be a bounded linear operator. Let M be a nonnegative integer.
Define

L L m m MΔ Δ , 2 .M M͠ ͠= = + (119)

Here, LΔ ΔM M is the operator given by

L ψ φ L ψ φ for all φ ψ YΔ Δ , Δ , Δ , .M M M M m d,2 �( ) ( ) ( )͠⟨
→ →
⟩ = ⟨

→ →
⟩

→ →
∈

Then:

(a) If q1 < < ∞ and L is bounded or invertible Y Ym q d m q d, ,� �( ) ( )→ − , then L͠ is bounded or invertible

Y Ym q d m q d, ,� �( ) ( )͠ ͠→ − . If L is invertible and in addition M is large enough (depending on d, m, and q),
then L͠ and q satisfy the conditions of Definition 84.

(b) If L is bounded and invertible Y Ym d m d,2 ,2� �( ) ( )→ − , then ϒ ϒL L͠ = , where ϒL is as in Definition 35.

(c) If L is of the form (26), then so is L͠ , and

m m m m, , Π Π ,L L L L L La a b b͠ ͠͠ ͠ ͠− = − − = − ⊇

where La and Lb are as in formulas (28) and (29) and ΠL is as in Definition 30.

(d) If T Y m q d, �( )∈ − , define T Y m q d, �( )͠ ͠∈ − by

T ψ T ψ for all ψ Y, , Δ .M m q d, �( )͠ ͠
⟨
→
⟩ = ⟨

→
⟩

→
∈ ′

If L is invertible Y Ym q d m q d, ,� �( ) ( )→ − , then

L T L TΔ .M 1 1( )͠ ͠ =
− − (120)

Proof. We need only consider the case M 0> . The polylaplacian is obviously bounded YΔ :M m p d, �( )͠ →

Y m p d, �( ) for any p1 < < ∞ (in particular, for both p q= and p q= ′), and so if L is bounded

Y Ym q d m q d, ,� �( ) ( )→ − , then L͠ is bounded Y Ym q d m q d, ,� �( ) ( )͠ ͠→ − .
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It is well known (see, e.g., [80, Section 5.2.3]) that the Laplacian is a bounded and invertible operator

W W˙ ˙s p d s p d, 2,
� �( ) ( )→

− for any p1 < < ∞ and any s−∞ < < ∞. Recall that there is a natural isomorphism

between Y m p d, �( ) and Ẇ m p d,
�( ).

Thus, L Y Y: m q d m q d, ,� �( ) ( )→ − is bounded if and only if L Y Y: m q d m q d, ,� �( ) ( )͠ ͠ ͠→ − is bounded, and

L Y Y: m q d m q d, ,� �( ) ( )→ − is invertible if and only if L Y Y: m q d m q d, ,� �( ) ( )͠ ͠ ͠→ − is invertible.

If in addition M d q q m2 max 1 , 1 2( ) ( )> / / / ′ − / , then m d q m d1 1͠ ͠− / < / < / , and so L͠ and q satisfy the
conditions of Definition 84.

Furthermore, Δ 1− is compatible, and so L LΔ ΔM M1 1( )͠ =− − − − is compatible if and only if L 1− is compatible.
Thus, ϒ ϒL L͠= .

There are real nonnegative constants κζ such that κΔM
ζ M ζ

ζ2
∣ ∣

= ∑ ∂= . If u→ and φ→ lie in suitable function

spaces, and L is of the form (26), we have that
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We may rearrange our order of summation to see that L͠ is an operator of the form (26) of order m2 ͠ with
coefficients

A κ κ A .ν ϖ
j k

ξ M
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ζ M
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− − (121)

Furthermore,

φ A u φ A uΔ Δ .
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N
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ν
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If φ Y m q d, �( )
͠→

∈ ′ and u Y m q d, �( )͠→
∈ , then φ YΔM m q d, �( )

→
∈ ′ and u YΔM m q d, �( )

→
∈ . Thus, if q ΠL∈ , then the

right-hand side represents a L d1 �( ) function, and so q ΠL͠∈ .

Finally, recall that ΔM is invertible Y Ym q d m q d, ,� �( ) ( )͠ → . Thus, if YΦ m q d, �( )
→
∈ , and L Y: m q d, �( ) →

Y m q d, �( ) and L Y Y: m q d m q d, ,� �( ) ( )͠ ͠ ͠→ are bounded and invertible, then

L L T L L T L L T T T TΔ , Φ Δ , Δ Δ Φ , Δ Φ , Δ Φ , Δ Δ Φ , ΦM M M M M M M M1 1 1( ( ) ) ( ( ) ) (( ) )͠ ͠ ͠ ͠͠ ͠ ͠ ͠⟨
→
⟩ = ⟨

→
⟩ = ⟨

→
⟩ = ⟨

→
⟩ = ⟨

→
⟩ = ⟨

→
⟩− − − − − − −

and so L T L TΔM 1 1( ) ( )͠ ͠ =− − . This completes the proof. □

Thus, natural conditions on L guarantee that L͠ has a fundamental solution.

We now use E
L͠→
to construct E

L→
for operators of arbitrary order. Theorem 122 (with E Y X,j k

L
, ( ) =

E YX k
L

j,( ) ( )
→

and L and L∗ interchanged as needed) comprises most of Theorem 15; the remaining property
cited in Theorem 15 (the uniqueness of the fundamental solution) will be addressed in Section 7.7.

Theorem 122. Let L be an operator of order m2 of the form (26) that satisfies the ellipticity condition (6) such
that 2 ΠL∈ , where ΠL is the interval of Definition 30. Let M be the smallest nonnegative integer with

m M d2 2+ > / . Let L͠ be given by formula (119).
Suppose in addition that the Caccioppoli-Meyers inequality for L͠ holds, that is, that there is an interval SL͠

with S2 2, 4 ΠL L[ ]͠∈ ⊆ ∩ such that if p SL͠∈ , ifQ d�⊂ is a cube with sides parallel to the coordinate axes, and

if u→ is a representative of an element of Y Q2m p, ( )͠ , then we have the estimate

Q u C Q u C Q L u .
j

m
j d j

L Q
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L Q
m d

Y Q
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1 1 2
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( ) ( ) ( )
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͠∑ ‖∇

→
‖ ≤ ‖

→
‖ + ‖

→
‖

=

/ / − / /
− (123)

If L satisfies either bound (8) or bound (10), then this condition is true with S Π ϒ 2, 4 2L L L [ ] { }͠ ͠= ∩ ∩ ⊋ , with ϒL
given by formula (36).

Gradient estimates and the fundamental solution  55



Then there exists some array of functions E YX j
L
, ( )
→

with the following properties.

Suppose that α and β are two multiindices with m d α m2 ∣ ∣− / ≤ ≤ , m d β m2 ∣ ∣− / ≤ ≤ , and α β,(∣ ∣ ∣ ∣) ≠

m d m d2, 2( )− / − / . If ΠL does not contain a neighborhood of 2, then we impose the stronger condition
m d α m2 ∣ ∣− / < ≤ , m d β m2 ∣ ∣− / < ≤ .

Suppose further thatQ and Γ are two cubes in d� with Q Γ∣ ∣ ∣ ∣= and Q QΓ 8 4⊂ ⧹ . Then the partial derivative

E YX
α

Y
β

X j
L
, ( )∂ ∂
→

exists as a locally L Q Γ2( )× function and satisfies the bounds

E Y C Q ,
Q

X
α

Y
β

X j
L

m α β d

Γ

,
2 4 2 2∣ ( )∣ ∣ ∣( )∫∫ ∂ ∂

→
≤ − ∣ ∣− ∣ ∣ / (124)

E Y Y X C Qd d
Q

X
α

Y
β

X j
L

p

p

m d p α

Γ

,

2

2 1 2 2β

β
⎛

⎝

⎜
⎜

∣ ( )∣
⎞

⎠

⎟
⎟

∣ ∣∫ ∫ ∂ ∂
→

≤

/

/ − + / − ∣ ∣ (125)

for all p SϒL L͠∈ ∩ with m d p α∣ ∣− / ′ < , m d p β∣ ∣− / < .
Furthermore, we have the symmetry property

E Y E XX
α

Y
β

X j
L

k X
α

Y
β

Y k
L

j, ,( ( )) ( )( )∂ ∂
→

= ∂ ∂
→ ∗ (126)

for almost every X , Y d d� �∈ × .
Finally, let ϒL be as in Definition 35. Suppose that q Sϒ , 2L L( ) ͠( )∈ ∩ −∞ ∪ and m d q ξ m∣ ∣− / < ≤ . Let

T T YF ξ
m q d

,
, �( )= ∈→ − ′ be a linear functional defined by

T φ φ Y F Y Y, dF ξ
ξ

,
d

�

( ) ( )∫⟨
→
⟩ = ∂

→
⋅
→

→

for some compactly supported F L q dξ �( )( )→
∈ ′ . Whenever ζ m d q∣ ∣ > − / ′, we have that

L T X E Y F Y Ydζ
F ξ j X

ζ
Y
ξ

X j
L

1
, ,

d
�

( ) ( ) ( ) ( )( ) ∫∂ = ∂ ∂
→

⋅
→

∗ − → (127)

and the integral converges absolutely for almost every X Fsupp∉ . If in addition ζ m∣ ∣ < or ξ m∣ ∣ < then

formula (127) is valid for almost every X d�∈ .

Proof. If L satisfies either bound (8) or bound (10), then by Lemma 118 and formula (121), so does L͠ . By
Lemma 118, ϒ ϒL L͠ = . By Lemma 63, ϒL contains a neighborhood of 2, and so ϒ 2,L [ )∩ ∞ contains values
greater than 2. The inequality (123) is valid for all p Π ϒ 2,L L [ )͠ ͠∈ ∩ ∩ ∞ by Theorem 64.

By assumption and Lemma 58, 2 ϒ ΠL∈ ∩ and m d m d1 1 2͠ ͠− / < / < / . Also observe that L͠ satisfies the
conditions of Definition 84 and Theorem 94 for all q ϒ ΠL L∈ ∩ with m d q m d1 1͠ ͠− / < / < / and all

p S qϒ Π 1, 2L L L ( ]͠ ͠ ͠∈ ∩ ∩ ∩ with m d p m d1 1͠ ͠− / < / < / (in particular, for q p 2= = ). Consequently, L͠ satis-
fies the conditions of Lemma 106 for all q1, q ϒ ΠL L2 ∈ ∩ with q1 1/ , q m d m d1 1 ,2 ( )/ ∈ − / / .

If ΠL contains an open neighborhood of 2, then by Lemma 63, ϒL also contains an open neighborhood of
2. Thus, the conditions of Theorem 109 are valid whenever d is even.

If d is odd, or if ΠL does not contain a neighborhood of 2, let E EX j
L

X j
L

, , ,0,1,2

͠ ͠→
=
→

be as in Definition 84.

If d is even, and if ΠL contains a neighborhood of 2, we let E X j
L
,

͠→
be as in Theorem 109.

In either case, by Theorem 94, E YX
ζ

Y
ξ

X j
L
, ( )
͠

∂ ∂
→

exists for almost every X Y, d d� �( ) ∈ × and every ξ , ζ with

ξ∣ ∣, ζ m0,∣ ∣ [ ]͠∈ . We define

E Y κ κ E Y .X j
L

ϖ M ν M
ϖ ν X

ϖ
Y

ν
X j
L

,
2 2

,( ) ( )
∣ ∣ ∣ ∣

͠

∑ ∑
→

= ∂ ∂
→

= =
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Bounds (124) and (125) follow from Theorem 94 and Lemmas 106 and 118. The symmetry property (126)

follows from the symmetry property (88) for E X j
L
,

͠→
.

We are left with formula (127). This property follows from Theorem 113 if m d2 > and so M 0= . If

m d2 ≤ , let m d q ξ m∣ ∣− / < ≤ and F
→

satisfy the conditions given in the theorem statement. Let T T F ξ,= → ,

and let T͠ be as in formula (120). Observe that

T ψ T ψ κ ψ Y F Y Y, , Δ d ,M

ν M
ν

ξ ν2

d
�

( ) ( )͠

∣ ∣

∫∑⟨
→
⟩ = ⟨ ⟩ = ∂

→
⋅
→

=

+

and so T͠ is a (linear combination of) operators as in Theorem 113. By formula (114) and linearity, we have
that if ζ m d q∣ ∣ ͠> − /

∼
, then

L T X κ E Y F Y Ydζ
j

ν M
ν X

ζ
Y
ξ ν

X j
L

1 2
,

d
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∫∑∂ = ∂ ∂
→

⋅
→∗ −

=

+∼ ∼

for almost every X or almost every X Fsupp∉
→
. In particular, if m d q ζ m∣ ∣− / ′ < ≤ and ϖ M∣ ∣ = , then

m d q ζ ϖ m2∣ ∣͠ ͠− / < + ≤ , and so

L T X κ κ E Y F Y Y

E Y F Y Y

Δ d

d

ζ M
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1 2 2
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⋅
→

∗ −

= =

+ +

Observe that L L( ) ( )͠=∗ ∗. By formula (120) with L replaced by L∗, formula (127) is valid. □

Remark 128. Theorem 122 involves conditions on L LΔ ΔM M͠ = for the smallest M such that E X j Z r
L
, , , ,20

͠→
exists.

The fundamental solution also exists for larger values of M . However, there is no loss of generality in
Theorem 122 in taking the smallest available M; that is, we claim that if the Caccioppoli-Meyers inequality

(123) is valid for L LΔ ΔM M͠ = , and if L Y Y: Ω Ωm p m p, ,( ) ( )→ − is bounded for all open sets Ω, then it is valid for

L LΔ ΔN N͠ = for any integer N with N M0 ≤ ≤ .
We now prove the claim. Suppose that p 2≥ and the Caccioppoli or Meyers inequality

Q w C Q w C Q L wΔ Δ
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/
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is valid for all w Y Q2m M p2 , ( )
→
∈ + for some cube Q. Let N M0 ≤ < .

It is well known (see [77, Chapter VI, Section 3]) that there is a bounded, linear extension operator E
such that for all k 0�∈ and all p1 ≤ < ∞ we have that E u C uW k p W Q, 2k p d k p, ,

�( ) ( )‖
→
‖ ≤ ‖

→
‖ . Recall that ΔM N− is an

isomorphism from Wk M N p d2 2 , �( )+ − to Wk p d, �( ).

Choose some u W Q2m N p2 , ( )
→
∈ + . Let v E uΔ M N ( )( )→

=
→− − . Then v W m M p d2 , �( )

→
∈ + and also satisfies
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, where P
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is a polynomial of degree at most M N2 2 1− − such that w 0
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By the Meyers inequality for LΔ ΔM M,
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Q u C Q w C Q L wΔ Δ .
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By the Poincaré inequality and because w uΔ ΔM N→
=
→,
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Finally, by using the estimate w v C uM N
L Q

M N
L Q L Q

2 2
2

2 2
2 22 2 2( ) ( ) ( )‖∇

→
‖ = ‖∇

→
‖ ≤ ‖

→
‖− − , we see that the Caccioppoli-

Meyers estimate for LΔ ΔN N is also valid.

7.7 Uniqueness

We have constructed a fundamental solution; we now show that it is unique.

Theorem 129. Let L Y Y: m q d m q d, ,� �( ) ( )→ − be bounded and invertible. Suppose that ΨX j,
→

and ΓX j,
→

are such

that bound (124) and formula (127) are valid with E
L→
replaced by either Ψ

→
or Γ
→
.

Then Y YΨ ΓX
α

Y
β

X j X
α

Y
β

X j, ,( ) ( )∂ ∂
→

= ∂ ∂
→

for almost every X Y, d d� �( ) ∈ × and all α, β as in Theorem 122.

Proof. By bound (124), we have that ΨX
α

Y
β

X j,∂ ∂
→

and ΓX
α

Y
β

X j,∂ ∂
→

are locally integrable away fromY X= for almost
every X d�∈ . By formula (127),

Y F Y Y Y F Y YΨ d Γ dX
α

Y
β

X j X
α

Y
β

X j, ,
d d

� �

( ) ( ) ( ) ( )∫ ∫∂ ∂
→
⋅
→

= ∂ ∂
→
⋅
→

for all sufficiently nice test functions F
→
. The result follows from the Lebesgue differentiation theorem. □
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