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Abstract: This article is concerned with the stationary problem for a prey-predator model with prey-taxis/
predator-taxis under homogeneous Dirichlet boundary conditions, where the interaction is governed by a
Beddington-DeAngelis functional response. We make a detailed description of the global bifurcation struc-
ture of coexistence states and find the ranges of parameters for which there exist coexistence states. At the
same time, some sufficient conditions for the nonexistence of coexistence states are also established. Our
method of analysis uses the idea developed by Cintra et al. (Unilateral global bifurcation for a class of
quasilinear elliptic systems and applications, J. Differential Equations 267 (2019), 619–657). Our results
indicate that the presence of prey-taxis/predator-taxis makes mathematical analysis more difficult, and
the Beddington-DeAngelis functional response leads to some different phenomena.
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1 Introduction

The present article is concerned with the following Dirichlet problem of quasilinear elliptic equations:
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where Ω is a bounded domain in n� with smooth boundary Ω∂ ; ∇ is the gradient operator; div is the
divergence operator. The coefficients d d γ m, , ,N P , and k are positive constants, βN and βP are nonnegative
constants, and λ and μ may change sign. System (1.1) is the stationary problem of a prey-predator model in
which unknown functions N N x( )= and P P x( )= denote the stationary population densities of the prey
and the predator in the habitat Ω, respectively. In the reaction terms, λ and μ are the growth rates of
respective species; γ accounts for the intrinsic predation rate; the function N mN kP1( )/ + + represents the
functional response of the predator, which is the so-called “Beddington-DeAngelis response” introduced by
Beddington [1] and DeAngelis et al. [9]. In the diffusion terms, d NdivN ( )∇ and d PdivP ( )∇ denote the linear
diffusion of respective species, and dN and dP are the random-diffusion rates of respective species;
β N PdivN ( )∇ describes an ecological tendency such that the prey diffuses from the high-density area of
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the predator toward the low-density area of the predator, and βN is the intrinsic predator-taxis rate;
β P NdivP ( )− ∇ describes the tendency of the predator to move from the low-density area of the prey toward

the high-density area of the prey, and βP is the intrinsic prey-taxis rate.
Such a prey-predator system with predator-taxis and prey-taxis was proposed by Tsyganov et al. [35].

It should be noted that the relevance of attractive prey-taxis (i.e., “predators move towards their prey”) was
first biologically verified by Kareiva and Odell in their study of heterogeneous aggregative patterns [20], and
the repulsive predator-taxis (i.e., “prey moves away from their predators”) has been detected for crayfish seeking
shelter [14]. As far as we know, among prey-predator systemswith predator-taxis or prey-taxis, the corresponding
Neumann problem has been studied most extensively (see, for instance, [2,13,18,19,22,31,34,36–39] and refer-
ences therein). While less extensively studied than those with Neumann boundary conditions, those with
Dirichlet conditions have been mathematically examined by Cintra et al. [4–6].

When there are no prey-taxis and predator-taxis effects (i.e., β β 0N P= = ), (1.1) is reduced to the
classical Beddington-DeAngeli prey-predator model, which has been extensively studied by Guo and Wu
in [16,17]. They gave a good understanding of the existence, nonexistence, stability, and number of positive
solutions for large m or k . However, to the best of our knowledge, there are few works in the field of
reaction-diffusion systems, which specialize in problem (1.1) with prey-taxis/predator-taxis (i.e., β 0N >

or β 0P > ). From a mathematical point of view, system (1.1) is much more challenging than those “only”
containing random-diffusion (i.e., β β 0N P= = ). For instance, for those “only” containing random-diffu-
sion, theW Ωp2, ( )-estimate of solutions “automatically” follows, provided the L Ω( )∞ -estimate of solutions is
obtained. However, the presence of prey-taxis/predator-taxis results in the fact that the L Ω( )∞ -estimate of
solutions does not “automatically” implies the W Ωp2, ( )-estimate of solutions. As another example, the
nonexistence of positive solutions to those “only” containing random-diffusion is usually easy to obtain
by the monotonicity properties of principal eigenvalue. However, for system (1.1), the nonexistence of
positive solutions is not trivial. Therefore, it is not too surprising that the analysis of system (1.1) is
much less developed than those “only” containing random-diffusion.

Main results. To present our main results, we introduce some notations and basic facts. For any given
p x C Ωα1,( ) ( )∈ and q x m x C, Ωα( ) ( ) ( )∈ , where α 0, 1( )∈ , m x 0( ) > , and p x p 00( ) ≥ > for x Ω∈ , it is well
known that the eigenvalue problem
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div , Ω,
0, Ω

⎧
⎨⎩

( ( ) ) ( ) ( )− ∇ + = ∈

= ∈ ∂

has an infinite sequence of eigenvalues that are bound from below. We denote the i-th eigenvalue by
σ p x q x m xdiv ;i[ ( ( ) ) ( ) ( )]− ∇ + , where the first eigenvalue σ p x q x m xdiv ;1[ ( ( ) ) ( ) ( )]− ∇ + is a simple eigen-
value and the corresponding eigenfunction does not change sign in Ω. Particularly, if p x p0( ) ≡ is a positive
constant, then p pdiv Δ0 0( )− ∇ = − , and hence, we will denote σ p q x m xdiv ;1 0[ ( ) ( ) ( )]− ∇ + simply by
σ p q x m xΔ ;1 0[ ( ) ( )]− + . In addition, for any given p x C Ωα1,( ) ( )∈ and b x C Ωα( ) ( )∈ , where b x b 00( ) ≥ >

and p x p 00( ) ≥ > for x Ω∈ , the following logistic equation
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div , Ω,
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admits a unique positive solution if and only if a σ p xdiv ; 11[ ( ( ) ) ]> − ∇ , and we denote the unique positive
solution by θp a b, , . Particularly, if b x 1( ) ≡ in Ω, then we will denote θp a, ,1 simply by θp a, . Some further
properties concerning σ p x q x m xdiv ;1[ ( ( ) ) ( ) ( )]− ∇ + and θp a b, , will be presented in Section 2.

The first purpose of this article is to study the positive solutions of (1.1) in the case β 0N = and β 0P > .
That is, we focus on the solutions to the following Dirichlet problem of quasilinear elliptic equations:
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By regarding λ and μ as main parameters, the existence and nonexistence of positive solutions to (1.2) are
summarized as follows.

Theorem 1.1. For any given d d β γ m, , , ,N P P , and k, the following statements hold true.
(1) If λ d σ Δ; 1N 1[ ]≤ − is fixed, then (1.2) has no positive solution.
(2) If d σ λ d σ kΔ; 1 Δ; 1 1N N1 1[ ] [ ]− < < − + / is fixed, then

(a) there exists a positive number M M d d β λ γ m k, , , , , ,N P P( )= large enough such that (1.2) has no
positive solution if μ M∣ ∣ ≥ ;

(b) there exists a continuum 1C of positive solutions to (1.2) such that it bifurcates from the semi-trivial
solution set μ θ μ, , 0 :d λ,N �

{( ) }
∈ at μ θ, , 0λ d λ,N( )

, and it is a smooth curve near the bifurcation point
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therefore, (1.2) admits at least one positive solution for μ μ μ μ μmin , , max ,λ λ( { } { })∈

∗ ∗ .
(3) If λ d σ kΔ; 1 1N 1[ ]≥ − + / is fixed, then

(a) there exists a positive number M M d d β λ γ m k, , , , , ,N P P( )= large enough such that (1.2) has no
positive solution if μ M≤ − ;

(b) the semi-trivial solution θ0, d μ,P( )
is unstable for any μ d σ Δ; 1P 1[ ]> − , and there is no bifurcation of

positive solutions occurring from the semi-trivial solution set μ θ μ d σ, 0, : Δ; 1d μ P, 1P [ ]
{( ) }

> − ;

(c) there exists an unbounded continuum 2C of positive solutions to (1.2) such that it bifurcates from the
semi-trivial solution set μ θ λ, , 0 :d λ,N �

{( ) }
∈ at μ θ, , 0λ d λ,N( )

and goes to ∞ as μ → ∞, and there-
fore, (1.2) admits at least one positive solution for μ μ ,λ( )∈ ∞ .

In Figure 1, an indication of the behavior of the global bifurcation branches of the positive solutions to
(1.2) is shown, where drastic changes can be observed between the cases d σ λ d σ kΔ; 1 Δ; 1 1N N1 1[ ] [ ]− < < − + /

and λ d σ kΔ; 1 1N 1[ ]≥ − + / .

Figure 1: Possible bifurcation diagram of positive solutions to (1.2). (a) d σ λ d σ k−Δ; 1 −Δ; 1 1N N1 1[ ] [ ]< < + /

(b) λ d σ k−Δ; 1 1N 1[ ]≥ + / .

Global bifurcation of coexistence states  3



The second purpose of this article is to study the positive solutions of (1.1) in the case β 0N > and β 0P = .
That is, we focus on the solutions to the following Dirichlet problem of quasilinear elliptic equations:
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By regarding λ and μ as main parameters, the existence and nonexistence of positive solutions to (1.3) are
summarized as follows.

Theorem 1.2. For any given d d β γ m, , , ,N P N , and k, the following statements hold true.
(1) If μ d σ γ mΔ; 1P 1[ ]≤ − − / is fixed, then (1.3) has no positive solution for all λ �∈ .
(2) If d σ γ m μ d σΔ; 1 Δ; 1P P1 1[ ] [ ]− − / < < − is fixed, then

(a) (1.3) has no positive solution for λ 0≤ ;
(b) there exists a continuum 3C of positive solutions to (1.3) such that it bifurcates from the semi-trivial
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(c) the continuum 3C can be extended to an unbounded global continuum of positive solutions to (1.3)
and it goes to ∞ as λ → ∞, therefore, (1.3) admits at least one positive solution for λ λ ,( )∈ ∞

∗

.
(3) If μ d σ Δ; 1P 1[ ]> − is fixed, then

(a) (1.3) has no positive solution for λ 0≤ ;
(b) there exists a continuum 4C of positive solutions to (1.3) such that it bifurcates from the semi-trivial

solution set λ θ λ, 0, :d μ,P �
{( ) }

∈ at λ θ, 0,μ d μ,P( )
and it is a smooth curve near the bifurcation point
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(c) the continuum 4C can be extended to an unbounded global continuum of positive solutions to (1.3)
and it goes to ∞ as λ → ∞, and therefore, (1.3) admits at least one positive solution for λ λ ,μ( )∈ ∞ .

Figure 2: Possible bifurcation diagram of positive solutions to (1.2). (a) d σ γ m μ d σ−Δ; 1 − −Δ; 1P P1 1[ ] [ ]/ < <

(b) μ d σ −Δ; 1P 1[ ]> .
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In Figure 2, an indication of the behavior of the global bifurcation branches of the positive solutions to
(1.3) is shown, where the differences can be observed between the cases d σ γ m μ d σΔ; 1 Δ; 1P P1 1[ ] [ ]− − / < < −

and μ d σ Δ; 1P 1[ ]> − .

Remark 1.1. The unilateral bifurcation result used in this article is developed by Cintra et al. [5] (see
Theorems 1.1 and 1.2 in [5], which is based on the unilateral bifurcation result of [23]). Precisely, Cintra
et al. have extended the unilateral bifurcation result for semilinear elliptic systems to quasilinear elliptic
systems. It is worth noting that another interesting bifurcation result for quasilinear elliptic systems devel-
oped by Shi and Wang has been widely used in recent years (see Theorem 4.4 in [32], which is based on
Degree theory forC1 Fredholm mappings of index 0 of [29] and the unilateral bifurcation result of [23]). For
more details on the unilateral bifurcation result, one can refer to the results established by Rabinowitz [30],
López-Gómez [25], López-Gómez and Mora-Corral [26], and Pejsachowicz and Rabier [29].

The contents of this article are as follows: inSection 2,we state somepreliminary results thatwill beused repeatedly
in later discussions. In Section 3, we study (1.2), where for both cases d σ λ d σ kΔ; 1 Δ; 1 1N N1 1[ ] [ ]− < < − + / and
λ d σ kΔ; 1 1N 1[ ]≥ − + / , the structure of positive solutions are investigated. Our analysis is based on the a priori
estimate results (Propositions 3.1 and 3.2), the nonexistence results (Propositions 3.3 and 3.4), and a global
bifurcationmethod adapted from [5]. In Section 4, we carry out a similar analysis for (1.3), but the phenomena
revealed there are quite different from those in Section 3.

2 Preliminaries

In this section, we will introduce two important lemmas that will be used repeatedly throughout this article.
The first lemma provides some important properties of the principal eigenvalueσ p x q x m xdiv ;1[ ( ( ) ) ( ) ( )]− ∇ +

(see, for instance, Lemma 2.2 in [4]).

Lemma 2.1. For any fixed p x C Ωα1,( ) ( )∈ and q x m x C, Ωα( ) ( ) ( )∈ , where α 0, 1( )∈ , m x 0( ) > , and
p x p 00( ) ≥ > for x Ω∈ , the linear eigenvalue problem

p x ϕ q x ϕ σm x ϕ x
ϕ x

div , Ω,
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Furthermore, the following monotonicity properties hold:
(1) σ p x q x m xdiv ;1[ ( ( ) ) ( ) ( )]− ∇ + is increasing with respect to p x( );
(2) σ p x q x m xdiv ;1[ ( ( ) ) ( ) ( )]− ∇ + is increasing with respect to q x( );
(3) the monotonicity of σ p x q x m xdiv ;1[ ( ( ) ) ( ) ( )]− ∇ + with respect to m x( ) depends on the sign of

σ p x q xdiv ; 11[ ( ( ) ) ( ) ]− ∇ + , and
(a) if σ p x q xdiv ; 1 01[ ( ( ) ) ( ) ]− ∇ + > , then σ p x q x m xdiv ;1[ ( ( ) ) ( ) ( )]− ∇ + is positive and decreasing with

respect to m x( );
(b) if σ p x q xdiv ; 1 01[ ( ( ) ) ( ) ]− ∇ + = , then σ p x q x m xdiv ; 01[ ( ( ) ) ( ) ( )]− ∇ + = for every m x( );
(c) if σ p x q xdiv ; 1 01[ ( ( ) ) ( ) ]− ∇ + < , then σ p x q x m xdiv ;1[ ( ( ) ) ( ) ( )]− ∇ + is negative and increasing with

respect to m x( ).
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The second lemma provides some information on the diffusive logistic equation (see, for instance,
Lemma 2.3 in [4]).

Lemma 2.2. For any fixed p x C Ωα1,( ) ( )∈ and b x C Ωα( ) ( )∈ , where α 0, 1( )∈ , b x b 00( ) ≥ > , and
p x p 00( ) ≥ > for x Ω∈ , the diffusive logistic equation

p x ϕ a b x ϕ ϕ x
ϕ x

div , Ω,
0, Ω

⎧
⎨⎩

( ( ) ) ( ( ) )− ∇ = − ∈

= ∈ ∂

admits a unique positive solution, denoted by θp a b, , , if and only if a σ p xdiv ; 1 .1[ ( ( ) ) ]> − ∇ Moreover, the map

a θp a b, ,⟼ is continuous and increasing from σ p xdiv ; 1 ,1( [ ( ( ) ) ] )− ∇ ∞ to C Ωα2, ( ), and it satisfies

a σ p x
b x ϕ

ϕ θ a
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C a C
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1

Ω Ω
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[ ( ( ) ) ]
( ) ( ) ( )

− − ∇

‖ ‖ ‖ ‖
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where ϕa is a principal eigenfunction associated to σ p xdiv ; 11[ ( ( ) ) ]− ∇ .

If P 0= in Ω, then N satisfies

d N λN N x N xΔ , Ω, 0, Ω.N
2

− = − ∈ = ∈ ∂

(2.1)

By virtue of Lemma 2.2, it is clear that (2.1) admits a unique positive solution θd λ,N if and only if
λ d σ Δ; 1N 1[ ]> − . Likewise, if N 0= in Ω, then P satisfies

d P μP P x P xΔ , Ω, 0, Ω,P
2

− = − ∈ = ∈ ∂
(2.2)

and (2.2) admits a unique positive solution θd μ,P if and only if μ d σ Δ; 1P 1[ ]> − .

3 Structure of solutions for β 0N = and β 0P >

This section is devoted to the understanding of the global bifurcation structure of the set of positive
solutions to (1.2) by treating μ as the main bifurcation parameter.

3.1 A priori estimates

The main purpose of this subsection is to prove some a priori estimates of positive solutions. The first
proposition of this subsection gives the L Ω( )∞ -estimate of any positive solution.

Proposition 3.1. If λ d σ Δ; 1N 1[ ]≤ − is fixed, then (1.2) has no positive solution. If λ d σ Δ; 1N 1[ ]> − is fixed, then
any positive solution N P,( ) of (1.2) satisfies

N x θ λ and P x e μ γ md λ
β d λ

,N
P P( ) ( ) (∣ ∣ )( )

≤ ≤ ≤ + /

/

for all x Ω∈ .

Proof. Observe that N is a subsolution of the equation (2.1), and then N θ λd λ,N≤ ≤ in Ω. Since θ 0d λ,N = in Ω
if λ d σ Δ; 1N 1[ ]≤ − , this implies that N 0= in Ω if λ d σ Δ; 1N 1[ ]≤ − . Consequently, when λ d σ Δ; 1N 1[ ]≤ − , (1.2)
has no positive solution.

When λ d σ Δ; 1N 1[ ]> − is fixed, we assume x Ω1 ∈ is a maximum point of N , i.e., N x N xmax 01 Ω( ) ( )= > . It
is clear that x Ω1 ∈ , and hence,
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mN x kP x

N x0 Δ
1

.N 1 1
1

1 1
1⎜ ⎟( ) ⎛

⎝
( ) ( )

( ) ( )
⎞
⎠

( )≤ − = − −

+ +

Thus, we have

N x λ P x
mN x kP x

λ
1

.1
1

1 1
( ) ( )

( ) ( )
≤ −

+ +

≤

This implies that N x λ( ) ≤ for all x Ω∈ if λ d σ Δ; 1N 1[ ]> − is fixed.
Let us denote

W e P.β d NP P( )
≔

− /

The second equation with the boundary condition of (1.2) can be rewritten as follows:
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(3.1)

Suppose that x Ω2 ∈ is a maximum point of W , i.e., W x W xmax 02 Ω( ) ( )= > . Then, x Ω2 ∈ , and hence,
W x 02( )∇ = and W xΔ 02( ) ≤ . A simple calculation provides

d e W β e N W d e Wdiv Δ 0.P
β d N

x x P
β d N

x x P
β d N

x xP P P P P P
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By virtue of (3.1), we have

P x μ γN x
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and so,
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Thus, W x μ γ m( ) ∣ ∣≤ + / for all x Ω∈ . Since P e Wβ d NP P( )
=

/ in Ω, we obtain

P x e W x e μ γ mmaxβ d N x β d λmax
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P P P PΩ( ) ( ) (∣ ∣ )( ) ( ) ( )

≤ ≤ + /

/

/

for all x Ω∈ . □

The next proposition of this subsection gives the W Ωp2, ( )-estimate of any positive solution.

Proposition 3.2. Let λ d σ Δ; 1N 1[ ]> − be fixed. Assume that N P,( ) is any positive solution of (1.2). Then, for any
p 1,( )∈ ∞ , there exists a positive constant M, depending on the parameters of system (1.2), such that

N M and P M.W WΩ Ωp p2, 2,( ) ( )‖ ‖ ≤ ‖ ‖ ≤

Proof. For simplicity, we denote the positive constants by Mi depending on the parameters of system (1.2).
By virtue of Proposition 3.1, there exists a positive constant M1 such that

d
λN N NP

mN kP
M1

1N L

2

Ω
1

p

⎛
⎝

⎞
⎠ ( )

− −

+ +

≤

for any p 1,( )∈ ∞ . It follows from L p-estimate for elliptic equations [15] that N W Ωp2, ( )‖ ‖ is bound for any
p 1,( )∈ ∞ . That is, there exists a positive constant M2 such that N MW Ω 2p2, ( )‖ ‖ ≤ . Thus, the Sobolev embed-
ding theorem ensures that there exists a positive constant M3 such that N MC Ω 31( )‖ ‖ ≤ .

As above, we apply the elliptic regularity [15] to (3.1) to conclude that there exists a positive constant M4
such that

e P W M .β d N
C CΩ Ω 4P P 1 1( )

( ) ( )‖ ‖ = ‖ ‖ ≤

− /

Global bifurcation of coexistence states  7



Since

e P e P β d Pe N ,β d N β d N
P P

β d NP P P P P P( ) ( )( ) ( ) ( )
∇ = ∇ − / ∇

− / − / − /

the triangular inequality and Proposition 3.1 yield

e P e P e P β d Pe N .β d λ β d N β d N
P P

β d NP P P P P P P P∣ ∣ ∣ ∣ ∣ ( )∣ ∣( ) ∣( ) ( ) ( ) ( )
∇ ≤ ∇ ≤ ∇ + / ∇

− / − / − / − /

Thus, there exists a positive constant M5 such that P M5∣ ∣∇ ≤ . In view of Proposition 3.1, there exists a
positive constant M6 such that P MC Ω 61( )‖ ‖ ≤ .

Note that the second equation of (1.2) can be expressed as follows:

P
d

β P N
β
d

λN N NP
mN kP

P μP P γNP
mN kP

x

P x

Δ 1
1 1

, Ω,

0, Ω.
P

P
P

N

2 2
⎜ ⎟

⎧

⎨
⎩

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

− = − ∇ ∇ + − −

+ +

+ − +

+ +

∈

= ∈ ∂

Since N MC Ω 31( )‖ ‖ ≤ and P MC Ω 61( )‖ ‖ ≤ , there exists a positive constant M7 such that

d
β P N

β
d

λN N NP
mN kP

P μP P γNP
mN kP

M1
1 1P

P
P

N L

2 2

Ω
7

p

⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠ ( )

− ∇ ∇ + − −

+ +

+ − +

+ +

≤

for any p 1,( )∈ ∞ . Hence, it follows from L p-estimates for elliptic equations that P W Ωp2, ( )‖ ‖ is bounded for
any p 1,( )∈ ∞ . The desired estimate is derived. □

3.2 Nonexistence of positive solutions

The main purpose of this subsection is to study the nonexistence of positive solutions. By virtue of
Proposition 3.1, one has known that (1.2) has no positive solution for λ d σ Δ; 1N 1[ ]≤ − . The following pro-
position asserts that for any fixed λ d σ Δ; 1N 1[ ]> − , (1.2) has no positive solution if μ is too small.

Proposition 3.3. If λ d σ Δ; 1N 1[ ]> − is fixed, then there exists a constant M M d β λ γ, , ,P P( )= such that (1.2)
has no positive solution for μ M≤ .

Proof. Assume that N P,( ) is a positive solution of (1.2). It follows from (3.1) that W satisfies

d e W P γN
mN kP

e W μe W x

W x

div
1

, Ω,

0, Ω,

P
β d N β d N β d NP P P P P P⎧

⎨
⎩

( ) ⎛
⎝

⎞
⎠

( ) ( ) ( )
− ∇ + −

+ +

= ∈

= ∈ ∂

/ / /

whereW e Pβ d NP P( )
=

− / . Since N P,( ) is a positive solution of (1.2), it is clear thatW 0> in Ω. Thus, the Krein-
Rutman theorem implies that

μ σ d e P γN
mN kP

e ediv
1

; .P
β d N β d N β d N

1 P P P P P P⎡
⎣⎢

( ) ⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( ) ( )
= − ∇ + −

+ +

/ / /

By virtue of Lemma 2.1 and Proposition 3.1, we have

μ σ d γλe eΔ ; .P
β d λ β d N

1 P P P P[ ]( ) ( )
> − −

/ /

Moreover, Lemma 2.1 also shows that the monotonicity of σ d γλe eΔ ;P
β d λ β d N

1 P P P P( ) ( )
[ ]
− −

/ / with respect to
e β d NP P( )/ is determined by the sign σ d γλeΔ ; 1P

β d λ
1 P P( )
[ ]
− −

/ . Thus,

μ
σ d γλe e σ d γλe

σ d γλe
σ d γλe σ d γλe

Δ ; , if Δ ; 1 0,
0, if Δ ; 1 0,

Δ ; 1 , if Δ ; 1 0.

P
β d λ β d λ

P
β d λ

P
β d λ

P
β d λ

P
β d λ

1 1

1

1 1

P P P P P P

P P

P P P P

⎧

⎨
⎪

⎩
⎪

[ ] [ ]
[ ]

[ ] [ ]

( ) ( ) ( )

( )

( ) ( )

>

− − − − >

− − =

− − − − <

/ / /

/

/ /
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Consequently, there exists a constant M M d β λ γ, , ,P P( )= such that if (1.2) has a positive solution N P,( ),
then μ M> . In other words, (1.2) has no positive solution for any μ M≤ . □

For any fixed λ d σ d σ kΔ; 1 , Δ; 1 1N N1 1( [ ] [ ] )∈ − − + / , the next proposition asserts that (1.2) has no positive
solution if μ is too large.

Proposition 3.4. If λ d σ d σ kΔ; 1 , Δ; 1 1N N1 1( [ ] [ ] )∈ − − + / is fixed, then there exists a positive constant
M M d d β λ γ m k, , , , , ,N P P( )= such that (1.2) has no positive solution for μ M≥ .

Proof. To achieve the proof, we will adapt the proof of Lemma 5.5 of [5], which in turn came from
Proposition 6.5 of [10]. Suppose the conclusion is false. Then (1.2) admits at least one positive solution
N P,( ) for all μ 0> large. To make the proof more clear, we divide the proof into the following steps.

Step 1: It follows from Proposition 3.1 that

e e1 in Ω.β d N β d λP P P P( ) ( )
≤ ≤

/ /

In view of (3.1), we deduce that

d e W e W μ P γN
mN kP

μe W e W γNe W
mN ke W

μW e W

div
1

1
in Ω.

P
β d N β d N

β d N β d N
β d N

β d N

β d λ

2 2

2 2

P P P P

P P P P
P P

P P

P P

( ) ⎛
⎝

⎞
⎠

( ) ( )

( ) ( )
( )

( )

( )

− ∇ = − +

+ +

= − +

+ +

≥ −

/ /

/ /

/

/

/

Thus, W is a super-solution of

d e ϕ μ e ϕ ϕ x
ϕ x

div , Ω,
0, Ω.

P
β d N β d λ2P P P P⎧

⎨⎩

( ) ( )( ) ( )
− ∇ = − ∈

= ∈ ∂

/ /

(3.2)

By virtue of Lemma 2.2, (3.2) has a unique positive solution if μ σ d ediv ; 1P
β d N

1 P P( )
[ ( ) ]

> − ∇

/ , and it is
θd e μ e, ,P

βP dP N βP dP λ2( ) ( )/ / . Moreover, Lemma 2.2 also shows that

μ σ d e
e ϕ

ϕ θdiv ;1 in Ω,P
β d N

β d λ
μ C

μ d e μ e
1

2
Ω

, ,
P P

P P P
βP dP N βP dP λ2

[ ( ) ]( )

( )
( )

( ) ( )
− − ∇

‖ ‖

≤

/

/

/ /

where ϕμ with ϕ 1μ L Ω2( )‖ ‖ = is the corresponding eigenfunction associated to σ d ediv ; 1P
β d N

1 P P( )
[ ( ) ]
− ∇

/ . It is
worth noting that ϕμ depends on μ since N depends on μ. In view of the proof of Lemma 2.3 in [4], one sees
that

μ σ d e
e ϕ

ϕdiv ;1P
β d N

β d λ
μ C

μ
1

2
Ω

P P

P P

[ ( ) ]( )

( )
( )

− − ∇

‖ ‖

/

/

is a sub-solution of (3.2). Thus, the sub-supersolution method and the uniqueness of the positive solution of
(3.2) show that

μ σ d e
e ϕ

ϕ θ Wdiv ; 1 in Ω.P
β d N

β d λ
μ C

μ d e μ e
1

2
Ω

, ,
P P

P P P
βP dP N βP dP λ2

[ ( ) ]( )

( )
( )

( ) ( )
− − ∇

‖ ‖

≤ ≤

/

/

/ /

Furthermore, it follows from Lemma 2.1 and Proposition 3.1 that

σ d e σ d e d e σdiv ; 1 div ;1 Δ; 1 .P
β d N

P
β d λ

P
β d λ

1 1 1P P P P P P[ ( ) ] [ ( ) ] [ ]( ) ( ) ( )
− ∇ ≤ − ∇ = −

/ / /

This, together with W e Pβ d NP P( )
=

− / , implies that

μ d e σ
e ϕ

ϕ θ W PΔ; 1 in Ω.P
β d λ

β d λ
μ C

μ d e μ e
1

2
Ω

, ,
P P

P P P
βP dP N βP dP λ2

[ ]( )

( )
( )

( ) ( )
− −

‖ ‖

≤ ≤ ≤

/

/

/ /
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That is, if μ σ d ediv ; 1P
β d N

1 P P( )
[ ( ) ]

> − ∇

/ , then

P μ d e σ
e ϕ

ϕΔ; 1 in Ω.P
β d λ

β d λ
μ C

μ
1

2
Ω

P P

P P

[ ]( )

( )
( )

≥

− −

‖ ‖

/

/

Consequently, we prove that P has a positive lower bound.
Step 2: For writing convenience, we denote

ρ μ μ d e σ
e ϕ

Δ; 1 .P
β d λ

β d λ
μ C

1
2

Ω

P P

P P
( )

[ ]( )

( )
( )

≔

− −

‖ ‖

/

/

According to Theorem 4.1 in [33], it is well known that ϕμ C Ω( )‖ ‖ is uniformly bound with respect to μ. That is,
there exists a positive constant M , which is independent of μ, such that ϕ Mμ C Ω( )‖ ‖ ≤ . This ensures we can
obtain

ρ μ μ d e σ
e M

μΔ; 1 as .P
β d λ

β d λ
1

2

P P

P P
( )

[ ]( )

( )≥

− −

→ ∞ → ∞

/

/

By virtue of the first equation of (1.2), we obtain from Lemma 2.1 that

λ σ d N P
mN kP

σ d
ρ μ ϕ

mλ kρ μ ϕ
Δ

1
; 1 Δ

1
; 1 .N N

μ

μ
1 1⎡
⎣

⎤
⎦

⎡

⎣
⎢

( )

( )
⎤

⎦
⎥= − + +

+ +

> − +

+ +

We further denote

t μ σ d
ρ μ ϕ

mλ kρ μ ϕ
Δ

1
; 1 .N

μ

μ
1( ) ⎡

⎣
⎢

( )

( )
⎤

⎦
⎥≔ − +

+ +

Consequently, we prove that λ t μ( )> for all large μ.
Step 3: We next want to show

t μ d σ k μΔ; 1 1 as .N 1( ) [ ]→ − + / → ∞

If so, then we obtain a contradiction since λ d σ d σ kΔ; 1 , Δ; 1 1N N1 1( [ ] [ ] )∈ − − + / is fixed, and hence, the proof
is complete by contradiction.

By virtue of the variational characterization of the principal eigenvalue (see Lemma 2.1), it follows that

t μ
d ψ x ψ x

ψ x
inf

d d

d
.

ψ H ψ

N
ρ μ ϕ

mλ kρ μ ϕ

Ω , 0

Ω
2

Ω 1
2

Ω
2

μ

μ

0
1

( )
∣ ∣

( )

( )

( )∫ ∫

∫

=

∇ +

∈ ≠

+ +

Thereby, for all ψ H Ω0
1( )∈ and ψ 0≠ , we have

t μ
d ψ x ψ x

ψ x

d ψ x ψ x

ψ x

d d

d

d d

d
.

N
ρ μ ϕ

mλ kρ μ ϕ N kΩ
2

Ω 1
2

Ω
2

Ω
2

Ω
1 2

Ω
2

μ

μ( )
∣ ∣ ∣ ∣

( )

( )∫ ∫

∫

∫ ∫

∫

≤

∇ +

≤

∇ +

+ +

Taking the infimum for all ψ H Ω0
1( )∈ and ψ 0≠ , we find that t μ d σ kΔ; 1 1N 1( ) [ ]≤ − + / , and hence,

t μ d σ klimsup Δ; 1 1 .
μ

N 1( ) [ ]≤ − + /

→∞

On the other hand,

t μ
d ψ x

ψ x
d σinf

d

d
Δ; 1 .

ψ H ψ

N
N

Ω , 0
Ω

2

Ω
2 1

0
1

( )
∣ ∣

[ ]
( )

∫

∫

≥

∇

= −

∈ ≠

This implies that t μ( ) is bounded for all μ σ d ediv ; 1P
β d N

1 P P( )
[ ( ) ]

> − ∇

/ , and hence, there exists a sequence
ψ H Ωμ 0

1( )∈ with ψ 1μ L Ω2( )‖ ‖ = such that
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t μ d ψ x
ρ μ ϕ

mλ kρ μ ϕ
ψ xd

1
d .N μ

μ

μ
μ

Ω

2

Ω

2( ) ∣ ∣
( )

( )∫ ∫

= ∇ +

+ +

(3.3)

Since t μ( ) is bounded, (3.3) implies that ψμ is bounded in H Ω0
1( ). Consequently, by choosing a subsequence

if necessary, there exists some nonnegative function ψ
∞

with ψ 1L Ω2( )‖ ‖ =

∞

such that

ψ ψ H ψ ψ Lweakly in Ω and in Ωμ μ0
1 2( ) ( )→ →

∞ ∞

as μ → ∞.
In order to take the limit in (3.3)with respect to μ, we need to know the limit of ϕμ as μ → ∞. Recall that

ϕμ with ϕ 1μ L Ω2( )‖ ‖ = is a principal eigenfunction associated with σ d ediv ; 1P
β d N

1 P P( )
[ ( ) ]
− ∇

/ . Then, ϕμ satisfies

d e ϕ σ d e ϕ x
ϕ x

div div ; 1 , Ω,
0, Ω.

P
β d N

μ P
β d N

μ

μ

1P P P P⎧
⎨
⎩

( ) [ ( ) ]( ) ( )
− ∇ = − ∇ ∈

= ∈ ∂

/ /

(3.4)

By virtue of Lemma 2.1 and the inequality e e1 β d N β d λP P P P( ) ( )
≤ ≤

/ / , we have

d σ σ d e d e σΔ; 1 div ; 1 Δ; 1 .P P
β d N

P
β d λ

1 1 1P P P P[ ] [ ( ) ] [ ]( ) ( )
− ≤ − ∇ ≤ −

/ /

This means that the principal eigenvalue σ d ediv ; 1P
β d N

1 P P( )
[ ( ) ]
− ∇

/ is bounded, and hence, there exists some
number σ d σ d e σΔ; 1 , Δ; 1P P

β d λ
1 1P P[ ] [ ]͠ ( )

[ ]
∈ − −

/ such that

σ d e σ μdiv ; 1 as ,P
β d N

1 P P[ ( ) ] ͠( )
− ∇ → → ∞

/

by choosing a subsequence if necessary. On the other hand, we multiply both sides of (3.4) by ϕμ and
integrate the resulting expression over Ω to obtain

d ϕ x d e ϕ x

σ d e ϕ x

d e σ ϕ x

d d

div ; 1 d

Δ; 1 d .

P μ P
β d N

μ

P
β d N

μ

P
β d λ

μ

Ω

2

Ω

2

1

Ω

2

1

Ω

2

P P

P P

P P

∣ ∣ ∣ ∣

[ ( ) ]

[ ]

( )

( )

( )

∫ ∫

∫

∫

∇ ≤ ∇

= − ∇

≤ −

/

/

/

Since ϕ 1μ L Ω2( )‖ ‖ = and d 0P > , it is clear that ϕμ is bounded in H Ω0
1( ). Consequently, by choosing a sub-

sequence if necessary, there exists some nonnegative function ϕ
∞

with ϕ 1L Ω2( )‖ ‖ =

∞

such that

ϕ ϕ H ϕ ϕ Lweakly in Ω and in Ωμ μ0
1 2( ) ( )→ →

∞ ∞

as μ → ∞. It is noted that (3.4) is verified in H Ω1( )− . Thus, the homogenization technique (see, for instance,
Theorem 2.1 in [21]) shows that the following equation is verified in H Ω1( )− :

A ϕ σϕ x ϕ xdiv , Ω, 0, Ω,( ) ͠
− ∇ = ∈ = ∈ ∂

∞ ∞ ∞

where A L Ω N N( ( ))∈

∞ × is a uniformly elliptic symmetric matrix. Because σϕ 0 0( )͠
≥ ≢

∞

, we apply the strong
maximum principle (see, for instance, [24]) to derive ϕ 0>

∞

in Ω.
We now begin to take the limit in (3.3) with respect to μ. Note that

ρ μ ϕ
mλ kρ μ ϕ

ψ x
k

ψ x

ρ μ ϕ
mλ kρ μ ϕ

ψ ψ x
ρ μ ϕ

mλ kρ μ ϕ k
ψ x

k
ψ ψ ψ ψ

ρ μ ϕ
mλ kρ μ ϕ k

ψ x

1
d 1 d

1
d

1
1 d

1
1

1 d .

μ

μ
μ

μ

μ
μ

μ

μ

μ L μ L
μ

μ

Ω

2

Ω

2

Ω

2 2

Ω

2

Ω Ω

Ω

22 2

( )

( )

( )

( )
( ) ⎛

⎝
⎜

( )

( )
⎞

⎠
⎟

⎛

⎝
⎜

( )

( )
⎞

⎠
⎟( ) ( )

∫ ∫

∫ ∫

∫

+ +

−

≤

+ +

− +

+ +

−

≤ ‖ + ‖ ‖ − ‖ +

+ +

−

∞

∞ ∞

∞ ∞

∞
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In addition, Lebesgue’s dominated convergence theorem ensures that

ρ μ ϕ
mλ kρ μ ϕ

ψ x
k

ψ xlim
1

d 1 d .
μ

μ

μΩ

2

Ω

2
( )

( )∫ ∫

+ +

=

→∞

∞ ∞

Thus, we derive

ρ μ ϕ
mλ kρ μ ϕ

ψ x
k

ψ xlim
1

d 1 d .
μ

μ

μ
μ

Ω

2

Ω

2
( )

( )∫ ∫

+ +

=

→∞

∞

In view of (3.3), it follows from Poincaré inequality ψ σ ψΔ; 1L LΩ
2 1 Ω

2
2 2[ ]
( ) ( )

‖∇ ‖ ≥ − ‖ ‖

∞ ∞

and classic inequality
ψ ψliminfμ μ L LΩ Ω2 2( ) ( )‖∇ ‖ ≥ ‖∇ ‖

→∞

∞

that

t μ d ψ x
k

ψ x d σ kliminf d 1 d Δ; 1 1 .
μ

N N

Ω

2

Ω

2
1( ) ∣ ∣ [ ]

∫ ∫

≥ ∇ + ≥ − + /

→∞

∞

∞

By summarizing the above analysis, we obtain

t μ d σ klim Δ; 1 1 .
μ

N 1( ) ( )= − + /

→∞

This completes the whole proof of this proposition. □

3.3 Bifurcation structure of positive solutions

The main purpose of this subsection is to investigate the bifurcation structure of positive solutions to (1.2)
by regarding μ as a bifurcation parameter and fixing all other constants.

For any μ �∈ , (1.2) has a trivial solution branch μ μΓ , 0, 0 :0 �{( ) }≔ ∈ . As μ increases across
d σ Δ; 1P 1[ ]− , there is a semi-trivial solution branch

μ θ μ d σΓ , 0, : Δ; 1 ,P d μ P, 1P [ ]
{( ) }

≔ > −

which bifurcates from Γ0. By virtue of Proposition 3.1, one has known that if λ d σ Δ; 1N 1[ ]≤ − is fixed, then
(1.2) has no positive solution. Thus, all nonnegative solutions of (1.2) lie on either Γ0 or ΓP. In what follows,
we always assume that λ d σ Δ; 1N 1[ ]> − is fixed so that (1.2) has a semi-trivial solution branch

μ θ μΓ , , 0 : .N d λ,N �
{( ) }

≔ ∈

We now apply the result of Crandall and Rabinowitz [7] on bifurcation from a simple eigenvalue to

obtain a local result on bifurcation from ΓN . Let X W WΩ Ωp p2,
0
1,( ) ( )= ∩ with p n> . We define an operator

X X X X:L � × × ⟼ ×

given by

μ N P
d N λN N NP

mN kP

d P β P N μP P γNP
mN kP

, ,
Δ

1

div
1

.
N

P P

2

2
L( )

⎛

⎝

⎜
⎜⎜ ( )

⎞

⎠

⎟
⎟⎟

=

− − + +

+ +

− ∇ − ∇ − + −

+ +

Clearly, N P X X,( ) ∈ × is a nonnegative solution of (1.2) if and only if μ N P, , 0L( ) = .
In order to find a bifurcation point on the semi-trivial solution branch ΓN from which positive solutions

of (1.2) bifurcate, the necessary condition for bifurcation is that μ θ, , 0N P d λ, ,NL( )( )
is degenerate, where

μ θ, , 0N P d λ, ,NL( )( )
is the linearization of μ N P, ,L( ) with respect to N P,( ) at θ , 0d λ,N( )

and is given by
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μ θ
d λ θ

θ
mθ

d β θ μ
γθ

mθ

, , 0
Δ 2

1

0 div
1

.N P d λ

N d λ
d λ

d λ

P P d λ
d λ

d λ

, ,

,
,

,

,
,

,

N

N
N

N

N
N

N

L

⎛

⎝

⎜
⎜
⎜ ( )

⎞

⎠

⎟
⎟
⎟

( )( )

=

− − +

+

− ∇ − ∇ − −

+

By setting μ θ ϕ ψ, , 0 , 0N P d λ, ,NL ( )( )( )
= , we have

d ϕ θ λ ϕ
θ
mθ

ψ x

d ψ β θ ψ
γθ

mθ
ψ μψ x

ϕ ψ x

Δ 2
1

, Ω,

div
1

, Ω,

0, Ω.

N d λ
d λ

d λ

P P d λ
d λ

d λ

,
,

,

,
,

,

N
N

N

N
N

N

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )

( )

− + − = −

+

∈

− ∇ − ∇ −

+

= ∈

= = ∈ ∂

Let ψeΨ β d θP P dN λ,( )
=

− / . Then this system can be rewritten as follows:

d ϕ θ λ ϕ
θ
mθ

e x

d e
γθ

mθ
e μe x

ϕ x

Δ 2
1

Ψ, Ω,

div Ψ
1

Ψ Ψ, Ω,

Ψ 0, Ω.

N d λ
d λ

d λ

β d θ

P
β d θ d λ

d λ

β d θ β d θ

,
,

,

,

,

N
N

N

P P dN λ

P P dN λ N

N

P P dN λ P P dN λ

,

, , ,

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )

( )

( ) ( ) ( )

( )

− + − = −

+

∈

− ∇ −

+

= ∈

= = ∈ ∂

/

/ / /

(3.5)

Since θd λ,N is the unique positive solution of (2.1), it is clear that σ d θ λΔ ; 1 0N d λ1 ,N[ ]
− + − = . Moreover,

Lemma 2.1 shows that

σ d θ λ σ d θ λΔ 2 ; 1 Δ ; 1 0.N d λ N d λ1 , 1 ,N N[ ] [ ]− + − > − + − =

This ensures the invertibility of the operator d θ λ X XΔ 2 :N d λ,N− + − ⟼ . Consequently, (3.5) is solvable,
provided the second equation of (3.5) has a solution. Since we hope to obtain positive solutions, the
bifurcation should occur at the principal eigenvalue, which ensures that the eigenfunction is positive. In
view of the Krein-Rutman theorem, the second equation of (3.5) has positive solutions if and only if μ μλ= .
Let Ψμλ be the positive eigenfunction associated to μλ. Then,

μ θ ϕ ψker , , 0 span , ,N P λ d λ μ μ, ,N λ λ
L( )[ ( )] ( )

= ⟨ ⟩

where

ψ e

ϕ d θ λ
θ
mθ

e

Ψ ,

Δ 2
1

Ψ .

μ
β d θ

μ

μ N d λ
d λ

d λ

β d θ
μ,

1 ,

,

λ
P P dN λ

λ

λ N
N

N

P P dN λ
λ

,

,⎜ ⎟

⎧

⎨
⎪

⎩
⎪

( ) ⎛
⎝

⎞
⎠

( )

( )

=

= − − + −

+

/

− /

This shows that μ θker , , 0N P λ d λ, ,NL( )[ ( )]
is one-dimensional.

We now show that μ θcodim Range , , 0 1N P λ d λ, ,NL( )[ ( )]
= . Suppose h k μ θ, Range , , 0N P λ d λ, ,NL( ) ( )[ ( )]

∈ .
Then, there exists ϕ ψ X X,( ) ∈ × such that

d ϕ θ λ ϕ
θ
mθ

ψ h x

d ψ β θ ψ μ
γθ

mθ
ψ k x

ϕ ψ x

Δ 2
1

, Ω,

div
1

, Ω,

0, Ω.

N d λ
d λ

d λ

P P d λ λ
d λ

d λ

,
,

,

,
,

,

N
N

N

N
N

N

⎜ ⎟

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( ) ⎛
⎝

⎞
⎠

( )

− + − +

+

= ∈

− ∇ − ∇ − +

+

= ∈

= = ∈ ∂

As above, we set ψeΨ β d θP P dN λ,( )
=

− / . Then, Ψ satisfies

d e μ
γθ

mθ
e k x

x

div Ψ
1

Ψ , Ω,

Ψ 0, Ω.

P
β d θ

λ
d λ

d λ

β d θ,

,
P P dN λ N

N

P P dN λ, ,⎜ ⎟
⎧

⎨
⎪

⎩
⎪

( ) ⎛
⎝

⎞
⎠

( ) ( )
− ∇ − +

+

= ∈

= ∈ ∂

/ /

(3.6)
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Since the operator

d e μ
γθ

mθ
e X Xdiv

1
:P

β d θ
λ

d λ

d λ

β d θ,

,
P P dN λ N

N

P P dN λ, ,⎜ ⎟( ) ⎛
⎝

⎞
⎠

( ) ( )
− ∇ − +

+

⟼

/ /

is self-adjoint, it follows from the Fredholm alternative theorem that (3.6) has a solution Ψ if and only if

k xΨ d 0.μ

Ω
λ∫

=

Thus, the invertibility of the operator d θ λ X XΔ 2 :N d λ,N− + − ⟼ ensures that

ϕ d θ λ h
θ
mθ

eΔ 2
1

Ψ .N d λ
d λ

d λ

β d θ
,

1 ,

,
N

N

N

P P dN λ,⎜ ⎟( ) ⎛
⎝

⎞
⎠

( )
= − + − −

+

− /

Therefore,

μ θRange , , 0 span 0, Ψ .N P λ d λ μ, ,N λL { }( )[ ( )] ( )

= ⟨ ⟩

⊥

The desired result is obtained.
We further check the transversality condition:

μ θ
ϕ
ψ

μ θ, , 0 Range , , 0 .N P μ λ d λ
μ

μ
N P λ d λ, , , , ,N

λ

λ

NL L
⎛

⎝
⎜

⎞

⎠
⎟( ) ( )( ) [ ( )]

∉ (3.7)

By a simple calculation, we have

μ θ
ϕ
ψ ψ, , 0

0
.N P μ λ d λ

μ

μ μ
, , ,N

λ

λ λ

L ⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

( ) ( )

=

−

Suppose that (3.7) is not true. Then, there exists ϕ ψ X X,( ) ∈ × such that

d ϕ θ λ ϕ
θ
mθ

ψ x

d ψ β θ ψ μ
γθ

mθ
ψ ψ x

ϕ ψ x

Δ 2
1

0, Ω,

div
1

, Ω,

0, Ω.

N d λ
d λ

d λ

P P d λ λ
d λ

d λ
μ

,
,

,

,
,

,

N
N

N

N
N

N
λ

⎜ ⎟

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( ) ⎛
⎝

⎞
⎠

( )

− + − +

+

= ∈

− ∇ − ∇ − +

+

= − ∈

= = ∈ ∂

As above, if this system admits a solution ϕ ψ,( ), then the following identity should be true:

ψ x e xΨ d Ψ d 0.μ μ
β d θ

μ

Ω Ω

2
λ λ

P P dN λ
λ

,( )
∫ ∫

= =

/

This is a contradiction as Ψ 0μλ > in Ω.
According to the local bifurcation theorem of Crandall and Rabinowitz (see Theorem 1.7 in [7]), positive

solutions of (1.2) in a neighborhood of μ θ, , 0λ d λ,N( )
are expressed as follows:

μ s N s P s μ μ s θ s ϕ ϕ s s ψ ψ s, , , ,λ λ d λ μ μ,N λ λ
( ( ) ( ) ( )) ( ( ) ( ) ( ) )

( ) ( )

= + + + +

for s ε0,( )∈ with some ε 0> , where μ s ϕ s ψ s X X, ,λ �( ( ) ( ) ( )) ∈ × × is continuously differentiable for
s ε0,( )∈ and satisfies μ ϕ ψ0 , 0 , 0 0, 0, 0λ( ( ) ( ) ( )) ( )= and ψ ψ s xd 0μΩ λ

( )
∫

= for s ε0,( )∈ .
We next calculate the signal of μ 0λ( )′ , which determines the bifurcation direction of positive solutions

near the bifurcation point μ θ, , 0λ d λ,N( )
. Since μ s N s P s, ,( ( ) ( ) ( )) is a positive solution of (1.2), it follows from

(3.1) that

W s e P sβ d N sP P( ) ( )( ) ( )
≔

− /
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satisfies

d e W s e W s μ s P s γN s
mN s kP s

x

W s x

div
1

, Ω,

0, Ω.

P
β d N s β d N sP P P P ⎜ ⎟

⎧

⎨
⎩

( ( )) ( )⎛
⎝

( ) ( )
( )

( ) ( )
⎞
⎠

( )

( ) ( ) ( ) ( )
− ∇ = − +

+ +

∈

= ∈ ∂

/ /

Let us multiply the above equation by Ψμλ and integrate the resulting expression over Ω to obtain

d e W s x e W s μ s P s γN s
mN s kP s

xΨ d
1

Ψ d .P
β d N s

μ
β d N s

μ

Ω Ω

P P
λ

P P
λ

⎜ ⎟( ) ( )⎛
⎝

( ) ( )
( )

( ) ( )
⎞
⎠

( ) ( ) ( ) ( )
∫ ∫

∇ ∇ = − +

+ +

/ / (3.8)

For the sake of convenience in writing, we denote

A s e e A s

B s γN s
mN s kP s

γθ
mθ

B s

,

1 1
,

β d N s β d θ

d λ

d λ

,

,

P P P P dN λ

N

N

,( ) ( )

( )
( )

( ) ( )
( )͠

͠( ) ( ) ( )
≔ = +

≔

+ +

=

+

+

/ /

where

A s s A B s s Blim 0 , lim 0 .
s s0 0

( ) ( ) ( ) ( )͠͠
/ = ′ / = ′

→ →

Then, (3.8) can be rewritten as follows:

d e A s W s x

e A s W s μ μ s x e A s W s P s
γθ

mθ

B s x

Ψ d

Ψ d
1

Ψ d .

P
β d θ

μ

β d θ
λ λ μ

β d θ d λ

d λ

μ

Ω

Ω Ω

,

,

P P dN λ
λ

P P dN λ
λ

P P dN λ N

N

λ

,

, , ⎜

⎟

( ( )) ( )

( ( )) ( )( ( )) ( ( )) ( )⎛
⎝

( )

( )⎞
⎠

͠

͠

͠ ͠

( )

( ) ( )

∫

∫ ∫

+ ∇ ∇

= + + + + − +

+

+

/

/ / (3.9)

Recall that Ψμλ is the positive eigenfunction associated to μλ. Then,

d e
γθ

mθ
e μ e x

x

div Ψ
1

Ψ Ψ , Ω,

Ψ 0, Ω.

P
β d θ

μ
d λ

d λ

β d θ
μ λ

β d θ
μ

μ

,

,
P P dN λ

λ
N

N

P P dN λ
λ

P P dN λ
λ

λ

, , ,⎧

⎨
⎪

⎩
⎪

( )( ) ( ) ( )
− ∇ −

+

= ∈

= ∈ ∂

/ / /

Let us multiply the above equation by W s( ) and integrate the resulting expression over Ω to obtain

d e W s x
γθ

mθ
μ e W s xΨ d

1
Ψ d .P

β d θ
μ

d λ

d λ
λ

β d θ
μ

Ω Ω

,

,
P P dN λ

λ
N

N

P P dN λ
λ

, ,⎜ ⎟( ) ⎛
⎝

⎞
⎠

( )( ) ( )
∫ ∫

∇ ∇ =

+

+

/ / (3.10)

By (3.9) and (3.10), we have

d A s W s x e W s μ s P s B s x

A s W s μ μ s P s
γθ

mθ
B s x

Ψ d Ψ d

1
Ψ d .

P μ
β d θ

λ μ

λ λ
d λ

d λ
μ

Ω Ω

Ω

,

,

λ
P P dN λ

λ

N

N
λ

,

⎜ ⎟

( ) ( ) ( )( ( ) ( ) ( ))

( ) ( )⎛
⎝

( ) ( ) ( )⎞
⎠

͠

͠

͠

͠

( )
∫ ∫

∫

∇ ∇ = − +

+ + − +

+

+

/

Let us divide both sides of this equation by s2. Then,

d A s
s

W s
s

x e W s
s

μ s P s B s
s

x

A s
s

W s
s

μ μ s P s
γθ

mθ
B s x

Ψ d Ψ d

1
Ψ d .

P μ
β d θ λ

μ

λ λ
d λ

d λ
μ

Ω Ω

Ω

,

,

λ
P P dN λ

λ

N

N
λ

, ⎜ ⎟

⎜ ⎟

( ) ⎛
⎝

( ) ⎞
⎠

( ) ⎛

⎝

( ) ( ) ( ) ⎞

⎠

( ) ( ) ⎛
⎝

( ) ( ) ( )⎞
⎠

͠

͠

͠

͠

( )
∫ ∫

∫

∇ ∇ =

− +

+ + − +

+

+

/
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Setting s 0→

+, we have

d A x e μ e B x

A μ
γθ

mθ
x

0 Ψ d 0 Ψ 0 Ψ d

0
1

Ψ d .

P μ
β d θ

λ
β d θ

μ μ

λ
d λ

d λ
μ

Ω

2

Ω

2

Ω

,

,

2

λ
P P dN λ P P dN λ

λ λ

N

N
λ

, ,

⎜ ⎟

( )∣ ∣ ( ( ) ( ))

( )⎛
⎝

⎞
⎠

( ) ( )
∫ ∫

∫

′ ∇ =

′

− + ′

+ ′ +

+

/ /

(3.11)

By virtue of the expressions of A s( ) and B s( ), a direct calculation yields

A β d e ϕ B
γ ϕ kθ ψ

mθ
0 and 0

1
.P P

β d θ
μ

μ d λ μ

d λ

,

,
2

P P dN λ
λ

λ N λ

N

,( ) ( ) ( )( )
( )

( )

′ = / ′ =

−

+

/

Thereby, (3.11) becomes

μ e x β e ϕ x e x

γ ϕ kθ ψ
mθ

e x

β d μ
γθ

mθ
e ϕ x

0 Ψ d Ψ d Ψ d

1
Ψ d

1
Ψ d .

λ
β d θ

μ P
β d θ

μ μ
β d θ

μ

μ d λ μ

d λ

β d θ
μ

P P λ
d λ

d λ

β d θ
μ μ

Ω

2

Ω

2

Ω

2 3

Ω

,

,
2

2

Ω

,

,

2

P P dN λ
λ

P P dN λ
λ λ

P P dN λ
λ

λ N λ

N

P P dN λ
λ

N

N

P P dN λ
λ λ

, , ,

,

,⎜ ⎟

( ) ∣ ∣

( )⎛
⎝

⎞
⎠

( ) ( ) ( )

( )

( )

∫ ∫ ∫

∫

∫

( )

( )

′

= ∇ +

−

−

+

− / +

+

/ / /

/

/

(3.12)

Therefore, the bifurcation is supercritical if μ 0 0λ( )′

> , and subcritical if μ 0 0λ( )′

< .
Summarizing, we have the following result.

Theorem 3.1. Assume that λ d σ Δ; 1N 1[ ]> − is fixed. Then, positive solutions of (1.2) bifurcate from the semi-
trivial solution branch μ θ μΓ , , 0 :N d λ,N �

{( ) }
= ∈ if and only if μ μλ= . To be precise, there exists a neighbor-

hood 1� of μ N P μ θ, , , , 0λ d λ,N( )
( )

= in X X� × × such that 01
1L �( ) ∩

− consists of the union of ΓN 1�∩ and
the local curve

μ s N s P s μ μ s θ s ϕ ϕ s s ψ ψ s, , , ,λ λ d λ μ μ,N λ λ
( ( ) ( ) ( )) ( ( ) ( ) ( ) )

( ) ( )

= + + + +

for s ε ε,( )∈ − with some ε 0> , where μ s ϕ s ψ s X X, ,λ �( ( ) ( ) ( )) ∈ × × is continuously differentiable for

s ε ε,( )∈ − and satisfies μ ϕ ψ0 , 0 , 0 0, 0, 0λ( ( ) ( ) ( )) ( )= and μ 0λ( )′ is given by (3.12). Therefore, positive solu-
tions contained in 01

1L �( ) ∩

− can be expressed as follows:

μ μ s θ s ϕ ϕ s s ψ ψ s s ε, , : 0, .λ λ d λ μ μ1 ,N λ λ
� {( ( ) ( ) ( ) ) ( )}

( ) ( )

≔ + + + + ∈

Although the above analysis provides some information on positive solutions of (1.2) in the neighbor-
hood of μ θ, , 0λ d λ,N( )

, there is no information on the bifurcating curve 1� far from the bifurcation point
μ θ, , 0λ d λ,N( )

. Therefore, a further study is necessary to understand its global structure in the μ N P, ,( ) plane,
i.e., X X� × × . For this, we first prove the following proposition.

Proposition 3.5. Let

λ σ d
θ

kθ
Δ

1
; 1 .μ N

d μ

d μ
1

,

,

P

P

⎡

⎣
⎢

⎤

⎦
⎥≔ − +

+

Then, λμ is a continuous and increasing function with respect to μ and satisfies

λ d σ and λ d σ klim Δ; 1 lim Δ; 1 1 .
μ d σ

μ N
μ

μ N
Δ; 1

1 1
P 1

[ ] [ ]
[ ]

= − = − + /

→ − →∞
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Proof. In view of the positivity of θd μ,P in Ω and the monotonicity properties of principal eigenvalue (see
Lemma 2.1), it is obvious that

d σ λ d σ kΔ; 1 Δ; 1 1N μ N1 1[ ] [ ]− ≤ ≤ − + / (3.13)

for all μ d σ Δ; 1 ,P 1( [ ] )∈ − ∞ . Since θd μ,P is a continuous and increasing function with respect to μ, Lemma 2.1
ensures that λμ is also a continuous and increasing function with respect to μ. Moreover, since

θlim 0μ d σ d μΔ; 1 ,P P1[ ] =

→ −

uniformly in Ω, we deduce from Corollary 8.1 in [24] that λ d σlim Δ; 1μ d σ μ NΔ; 1 1P 1 [ ][ ] = −

→ −

.
We next prove λ d σ klim Δ; 1 1μ μ N 1[ ]= − + /

→∞

. As λμ is bounded for all μ d σ Δ; 1 ,P 1( [ ] )∈ − ∞ , there exists

a sequence ψ H Ωμ 0
1{ } ( )⊂ with ψ 1μ L Ω2( )‖ ‖ = such that

λ d ψ x
θ

kθ
ψ xd

1
d .μ N μ

d μ

d μ
μ

Ω

2

Ω

,

,

2P

P

∣ ∣
∫ ∫

= ∇ +

+

The boundedness of λμ implies that ψμ{ } is bounded in H Ω0
1( ). Hence, by choosing a subsequence if

necessary, there exists some nonnegative function ψ
∞

with ψ 1L Ω2( )‖ ‖ =

∞

such that

ψ ψ H ψ ψ Lweakly in Ω and in Ωμ μ0
1 2( ) ( )→ →

∞ ∞

as μ → ∞. Note that

θ
kθ

ψ x
k

ψ x

θ
kθ

ψ ψ x
θ

kθ k
ψ x

k
ψ ψ ψ ψ

θ
kθ k

ψ x

1
d 1 d

1
d

1
1 d

1
1

1 d .

d μ

d μ
μ

d μ

d μ
μ

d μ

d μ

μ μ
d μ

d μ

Ω

,

,

2

Ω

2

Ω

,

,

2 2

Ω

,

,

2

2 2

Ω

,

,

2

P

P

P

P

P

P

P

P

⎜ ⎟

⎜ ⎟

( ) ⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

∫ ∫

∫ ∫

∫

+

−

≤

+

− +

+

−

≤ ‖ + ‖ ‖ − ‖ +

+

−

∞

∞ ∞

∞ ∞

∞

In addition, Lebesgue’s dominated convergence theorem ensures that

θ
kθ

ψ x
k

ψ xlim
1

d 1 d .
μ

d μ

d μ
Ω

,

,

2

Ω

2P

P
∫ ∫

+

=

→∞

∞ ∞

Thus, we derive

θ
kθ

ψ x
k

ψ xlim
1

d 1 d .
μ

d μ

d μ
μ

Ω

,

,

2

Ω

2P

P
∫ ∫

+

=

→∞

∞

It follows from Poincaré inequality ψ σ ψΔ; 1L LΩ
2 1 Ω

2
2 2[ ]
( ) ( )

‖∇ ‖ ≥ − ‖ ‖

∞ ∞

and the classic inequality
ψ ψliminfμ μ L LΩ Ω2 2( ) ( )‖∇ ‖ ≥ ‖∇ ‖

→∞

∞

that

λ d ψ x
k

ψ x d σ
k

liminf d 1 d Δ; 1 1 .
μ

μ N N

Ω

2

Ω

2
1∣ ∣ [ ]

∫ ∫

≥ ∇ + ≥ − +

→∞

∞

∞

On the other hand, by (3.13), we have λ d σ klimsup Δ; 1 1μ μ N 1[ ]≤ − + /

→∞

. Thus,

λ d σ klim Δ; 1 1 .
μ

μ N 1[ ]= − + /

→∞

This completes the proof of Proposition 3.5. □

Proposition 3.6. Assume that λ d σ kΔ; 1 1N 1[ ]≥ − + / . Then, the semi-trivial solution θ0, d μ,P( )
is unstable for

any μ d σ Δ; 1P 1[ ]> − . Moreover, there is no bifurcation of positive solutions occurring from θ0, d μ,P( )
.
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Proof. The linearization of N P,L( ) with respect to N P,( ) at θ0, d μ,P( )
is given as follows:

θ
d λ

θ
kθ

β θ
γθ

kθ
d μ θ

0,
Δ

1
0

div
1

Δ 2
.N P d μ

N
d μ

d μ

P d μ
d μ

d μ
P d μ

, ,

,

,

,
,

,
,

P

P

P

P
P

P
P

L

⎛

⎝

⎜
⎜
⎜ ( )

⎞

⎠

⎟
⎟
⎟

( )( )

=

− − +

+

∇ −

+

− − +

By the Riesz-Schauder theory, it is well known that the spectrum of θ0,N P d μ, ,PL( )( )
, denoted by

ρ θ0,N P d μ, ,PL( )( ( ))
, consists of real eigenvalues and

ρ θ ρ d λ
θ

kθ
ρ d μ θ0, Δ

1
Δ 2 .N P d μ N

d μ

d μ
P d μ, ,

,

,
,P

P

P
PL ⎜ ⎟( ) ⎛

⎝

⎞

⎠
( )( )( )

= − − +

+

∪ − − +

Since θd μ,P is the unique positive solution of (2.2), it is clear that σ d θ μΔ ; 1 0P d μ1 ,P[ ]
− + − = . Moreover,

Lemma 2.1 shows that

σ d θ μ σ d θ μΔ 2 ; 1 Δ ; 1 0.P d μ P d μ1 , 1 ,P P[ ] [ ]− + − > − + − =

Hence, ρ d μ θΔ 2P d μ,P( )
− − + lies on the positive real axis. In addition, ρ d λ θ kθΔ 1N d μ d μ, ,P P( ( ))

− − + / + lies
on the real axis and the least eigenvalue is λ λμ − . According to Proposition 3.5, one sees that if
λ d σ kΔ; 1 1N 1[ ]≥ − + / , then λ λμ < . Therefore, the semi-trivial solution θ0, d μ,P( )

is unstable for any
μ d σ Δ; 1P 1[ ]> − , provided λ d σ kΔ; 1 1N 1[ ]≥ − + / .

According to the local bifurcation theorem of Crandall and Rabinowitz [7], the necessary condition for
bifurcation from θ0, d μ,P( )

is that θ0,N P d μ, ,PL( )( )
is degenerate. Thus, there exists a pair of functions

ϕ ψ C C, Ω Ω0
1

0
1( ) ( ) ( )∈ × with ϕ ψ, 0, 0( ) ( )≢ such that θ ϕ ψ0, , 0N P d μ, ,PL ( )( )( )

= . That is,

d ϕ λϕ
θ

kθ
ϕ x

d ψ μψ θ ψ β θ
γθ

kθ
ϕ x

ϕ ψ x

Δ
1

0, Ω,

Δ 2 div
1

0, Ω,

0, Ω.

N
d μ

d μ

P d μ P d μ
d μ

d μ

,

,

, ,
,

,

P

P

P P
P

P

⎜ ⎟

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎛

⎝
( ) ⎞

⎠

− − +

+

= ∈

− − + + ∇ −

+

= ∈

= = ∈ ∂

Since we hope to obtain positive solutions by bifurcating from θ0, d μ,P( )
, the bifurcation should occur at the

principal eigenvalue, which ensures that the eigenfunction is positive. In view of the Krein-Rutman the-
orem, the first equation of this system has positive solutions if and only if λ λμ= . Proposition 3.5 shows that
this is impossible for λ d σ kΔ; 1 1N 1[ ]≥ − + / . Consequently, there is no bifurcation of positive solutions
occurring from the semi-trivial solution θ0, d μ,P( )

. □

The following theorem gives the global structure of the local curve 1� in the μ N P, ,( ) plane.

Theorem 3.2. For any given d d β γ m, , , ,N P P , and k, the following statements hold true.
(1) If d σ λ d σ kΔ; 1 Δ; 1 1N N1 1[ ] [ ]− < < − + / is fixed, then the local curve 1� can be extended to a bounded

global continuum of positive solutions to (1.2), which meets the other semi-trivial solution θ0, d μ,P( )

∗ at

μ μ=

∗, where μ∗ is uniquely determined by λ λμ=

∗.

(2) If λ d σ kΔ; 1 1N 1[ ]≥ − + / is fixed, then the local curve 1� can be extended to an unbounded global con-
tinuum of positive solutions to (1.2) along the positive values of μ.

Proof. (1) Let � denote the positive cone inC Ω0
1( ) and the interior of the positive cone � , denoted by int �( ),

is nonempty. By Definition 1.1 in [5], it is easy to check that θd λ,N is a non-degenerate solution of (2.1).
Moreover, for (1.2), the hypotheses HPQRS( ), Hab( ), Hfg( ), and HFG( ) given in [5] are satisfied. Therefore, we
apply Theorem 1.1 in [5] to conclude that there exists a continuum

int intC � � �( ) ( )⊂ × ×
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of positive solutions to (1.2) such that 1 C� ⊂ and C satisfies one of the following statements:
(a) C is unbounded in C CΩ Ω0

1
0
1� ( ) ( )× × ;

(b) there exists a positive solution θd μ,P
∗ of (2.2) such that μ θ, 0, d μ,P C

( )
∈

∗

∗ , where μ∗ is determined by

λ σ d
θ

kθ
Δ

1
; 1 ;N

d μ

d μ
1

,

,

P

P

⎡

⎣
⎢

⎤

⎦
⎥= − +

+

∗

∗

(c) there exists another positive solution of (2.1), denoted by ϕd λ,N
with ϕ θd λ d λ, ,N N≠ , such that

σ d e
γϕ

mϕ
e e ϕdiv

1
; , , 0 ;P

β d ϕ d λ

d λ

β d ϕ β d ϕ
d λ1

,

,
,P P dN λ N

N

P P dN λ P P dN λ
N

, , , C
⎛

⎝
⎜

⎡

⎣
⎢ ( ) ⎤

⎦
⎥

⎞

⎠
⎟

( ) ( ) ( )
− ∇ −

+

∈

/ / /

(d) λ d σ Δ; 1N 1[ ]= − and d σ Δ; 1 , 0, 0N 1 C( [ ] )− ∈ .

We next claim that alternatives (a), (c), and (d) cannot occur. Since d σ λ d σ kΔ; 1 Δ; 1 1N N1 1[ ] [ ]− < < − + / ,
it is clear that alternative (d) cannot be true. By virtue of Lemma 2.2, (2.1) has a unique positive solution for
λ d σ Δ; 1N 1[ ]> − , this means that alternative (c) cannot occur as well. From Propositions 3.3 and 3.4, we find
that (1.2) has no positive solution if μ is too small or large. Moreover, Proposition 3.2 shows that any positive
solution is bounded inW WΩ Ωp p2, 2,( ) ( )× , provided μ is bounded. Thus, for any bounded μ, it follows from the

Sobolev embedding theorem that any positive solution is bounded in C CΩ Ω0
1

0
1( ) ( )× , and hence, alternative

(a) cannot be satisfied either. Consequently, the continuum C of positive solutions to (1.2) must satisfy
alternative (b); that is, there exists a number μ∗ such that μ θ, 0, d μ,P C

( )
∈

∗

∗ . Moreover, Proposition 3.5 ensures
that μ∗ is unique for any given λ d σ d σ kΔ; 1 , Δ; 1 1N N1 1( [ ] [ ] )∈ − − + / . This completes the proof of part (1).

(2) For any given λ d σ kΔ; 1 1 ,N 1[ [ ] )∈ − + / ∞ , as above, there exists a continuum int intC � � �( ) ( )⊂ × ×

of positive solutions to (1.2) such that 1 C� ⊂ andC satisfies one of the alternatives (a)-(d). As above, alternatives (c)
and (d) are unlikely to be true. By virtue of Proposition 3.6, alternative (b) cannot occur as well. The remaining
possibility is thatC is unbounded in C CΩ Ω0

1
0
1� ( ) ( )× × . According to Proposition 3.2 and the Sobolev embedding

theorem, any positive solutions of (1.2) is bounded inC CΩ Ω0
1

0
1( ) ( )× , provided μ is bounded in�. This means that

Proj μC is unbounded. Furthermore, it follows from Proposition 3.3 that C extends to infinity in positive values of
μ. □

4 Structure of solutions for β 0N > and β 0P =

In this section, we study (1.3) and investigate the global bifurcation structure of the set of positive solutions
by treating λ as the main bifurcation parameter.

4.1 A priori estimates

Analogous to the case of (1.2), we first establish some a priori estimates of positive solutions to (1.3) so that
we could make a detailed description for the global bifurcation structure of the set of positive solutions.
Although the proofs of the next two propositions are similar to those of Propositions 3.1 and 3.2, we present
them here for the reader’s convenience.

Proposition 4.1. If λ 0≤ is fixed, then (1.3) has no positive solution. If λ 0> is fixed, then any positive
solution N P,( ) of (1.3) satisfies

N x λe and P x μ γ mβ d μ γ mN N( ) ( ) ∣ ∣( )( )
≤ ≤ + /

/ ∣ ∣+ /

for all x Ω∈ .
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Proof. Suppose (1.3) has at least one positive solution N P,( ) for λ 0≤ . Then, it follows from (4.1) that

d e V x
V x

div 0, Ω,
0, Ω.

N
β d PN N⎧

⎨⎩

( )( )
− ∇ ≤ ∈

= ∈ ∂

− /

By virtue of the maximum principle (see, for instance, [24]), one sees thatV 0≤ inΩ, and so N 0≤ inΩ. This
is impossible since N P,( ) is a positive solution.

When λ 0> is fixed, we assume x Ω1 ∈ is a maximum point of P, i.e., P x P xmax 01 Ω( ) ( )= > . Then,
x Ω1 ∈ , and hence,

d P x μ P x γN x
mN x kP x

P x0 Δ
1

.P 1 1
1

1 1
1⎜ ⎟( ) ⎛

⎝
( )

( )
( ) ( )

⎞
⎠

( )≤ − = − +

+ +

Since P x 01( ) > , we have

P x μ γN x
mN x kP x

μ γ m
1

.1
1

1 1
( )

( )
( ) ( )

∣ ∣≤ +

+ +

≤ + /

Thus, P x μ γ m( ) ∣ ∣≤ + / for all x Ω∈ .
We now consider the upper bound of N in Ω. Let

V e N .β d PN N( )
≔

/

Then, it follows from the first equation of (1.3) that V satisfies

d e V e V λ e V P
mN kP

x

V x

div
1

, Ω,

0, Ω.

N
β d P β d P β d PN N N N N N⎧

⎨
⎩

( ) ⎛
⎝

⎞
⎠

( ) ( ) ( )
− ∇ = − −

+ +

∈

= ∈ ∂

− / − / − /

(4.1)

Suppose that x Ω2 ∈ is a maximum point of V , i.e., V x V xmax 02 Ω( ) ( )= > . Then, x Ω2 ∈ , and hence,
V x 02( )∇ = and V xΔ 02( ) ≤ . A simple calculation provides

d e V β e P V d e Vdiv Δ 0.N
β d P

x x N
β d P

x x N
β d P

x xN N N N N N
2 2 2( )∣ ∣ ∣( ) ( ) ( )

∇ = − ∇ ∇ + ≤

− /

=

− /

=

− /

=

By virtue of (4.1), we have

V x e λ P x
mN x kP x

λe
1

.β d P x β d μ γ m
2

2

2 2
N N N N2 ⎜ ⎟( ) ⎛

⎝

( )
( ) ( )

⎞
⎠

( ) ( ) ( )( )
≤ −

+ +

≤

/ / ∣ ∣+ /

Since N e V Vβ d PN N( )
= ≤

− / in Ω, the desired estimate is derived. □

With the help of Proposition 4.1, we establish the W p2, -estimate for any positive solution of (1.3) in the
following proposition.

Proposition 4.2. Let λ 0> be fixed. Assume that N P,( ) is any positive solution of (1.3). Then, for any
p 1,( )∈ ∞ , there exists a positive constant M, depending on the parameters of system (1.3), such that
N P,( ) satisfies

N M and P M.W WΩ Ωp p2, 2,( ) ( )‖ ‖ ≤ ‖ ‖ ≤

Proof. For simplicity, we denote the positive constants by Mi depending on the parameters of system (1.3).
Proposition 4.1 ensures that there exists a positive constant M1 such that

d
μP P γNP

mN kP
M1

1P L

2

Ω
1

p

⎛
⎝

⎞
⎠ ( )

− +

+ +

≤

for all p 1> . We apply the L p-estimate for elliptic equations [15] to conclude that P W Ωp2, ( )‖ ‖ is bounded for all
p 1> . Thus, there exists a positive constant M2 such that P MW Ω 2p2, ( )‖ ‖ ≤ . It follows from the Sobolev
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embedding theorem that there exists a positive constant M3 such that P MC Ω 31( )‖ ‖ ≤ . Similarly, we apply the
elliptic regularity [15] to (4.1) to conclude that there exists a positive constant M4 such that

e N V M .β d P
C CΩ Ω 4N N 1 1( )

( ) ( )‖ ‖ = ‖ ‖ ≤

/

Note that

e N e N β d Ne P.β d P β d P
N N

β d PN N N N N N( ) ( )( ) ( ) ( )
∇ = ∇ + / ∇

/ / /

By virtue of the triangular inequality, we have

N e N e N β d Ne P .β d P β d P
N N

β d PN N N N N N∣ ∣ ∣ ∣ ∣ ( )∣ ∣( ) ∣( ) ( ) ( )
∇ ≤ ∇ ≤ ∇ + / ∇

/ / /

Consequently, there exists a positive constant M5 such that N M5∣ ∣∇ ≤ , and hence, it follows from
Proposition 4.1 that there exists a positive constant M6 such that N MC Ω 61( )‖ ‖ ≤ .

Observe that the first equation of (1.3) can be expressed as follows:

N
d

β P N β N P λN N NP
mN kP

x

N x

Δ 1 Δ
1

, Ω,

0, Ω.
N

N N
2⎧

⎨
⎩

⎛
⎝

⎞
⎠

− = ∇ ∇ + + − −

+ +

∈

= ∈ ∂

Since P MC Ω 31( )‖ ‖ ≤ and N MC Ω 61( )‖ ‖ ≤ , there exists a positive constant M7 such that

d
β P N β N P λN N NP

mN kP
M1 Δ

1N
N N

L

2

Ω
7

p

⎛
⎝

⎞
⎠ ( )

∇ ∇ + + − −

+ +

≤

for all p 1> . This ensures us to apply L p-estimates for elliptic equations to conclude that N W Ωp2, ( )‖ ‖ is
bounded for all p 1> . The desired estimate is derived. □

4.2 Nonexistence of positive solutions

The main purpose of this subsection is to give an appropriate nonexistence result of positive solutions
to (1.3).

Proposition 4.3. If μ d σ γ mΔ; 1P 1[ ]≤ − − / , then (1.3) has no positive solution.

Proof. If N P,( ) is a positive solution of (1.3), then wemultiply both sides of the second equation of (1.3) by P
and integrate the resulting expression over Ω to obtain

d P x μ P γN
mN kP

P x μ γ m P xd
1

d d .P

Ω

2

Ω

2

Ω

2∣ ∣ ⎛
⎝

⎞
⎠

( )
∫ ∫ ∫

∇ = − +

+ +

< + /

In view of Poincaré’s inequality, one sees that

d σ P x d P x μ γ m P xΔ; 1 d d d .P P1

Ω

2

Ω

2

Ω

2[ ] ∣ ∣ ( )
∫ ∫ ∫

− ≤ ∇ < + /

This implies that μ γ m d σ Δ; 1P 1[ ]+ / > − since P 0> in Ω; in other words, (1.3) has no positive solution for
any fixed μ d σ γ mΔ; 1P 1[ ]≤ − − / . □
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4.3 Bifurcation structure of positive solutions

The main purpose of this subsection is to investigate the bifurcation structure of positive solutions to (1.3)
by regarding λ as a bifurcation parameter and fixing all other constants.

Suppose μ d σ Δ; 1P 1[ ]> − . Then, for any λ �∈ , (1.3) has a semi-trivial solution branch

λ θ λΠ , 0, : .P d μ,P �
{( ) }

≔ ∈

We now use bifurcation techniques to make a direct investigation of this semi-trivial solution branch ΠP for
(1.3). Our argument below is very similar to those of the preceding section (see Section 3.3), and hence we
will only sketch it here.

Define

λ N P
d N β N P λN N NP

mN kP

d P μP P γNP
mN kP

, ,
div

1

Δ
1

.
N N

P

2

2
T( )

⎛

⎝

⎜
⎜⎜

( ) ⎞

⎠

⎟
⎟⎟

=

− ∇ + ∇ − + +

+ +

− − + −

+ +

Clearly, N P X X,( ) ∈ × is a nonnegative solution of (1.3) if and only if λ N P, , 0T( ) = . The linearization of
λ N P, ,T( ) with respect to N P,( ) at θ0, d μ,P( )

is given as follows:

λ θ
d β θ λ

θ
kθ

γθ
kθ

d μ θ
, 0,

div
1

0

1
Δ 2

.N P d μ

N N d μ
d μ

d μ

d μ

d μ
P d μ

, ,

,
,

,

,

,
,

P

P
P

P

P

P
P

T

⎛

⎝

⎜
⎜
⎜

( ) ⎞

⎠

⎟
⎟
⎟

( )( )

=

− ∇ + ∇ − +

+

−

+

− − +

By setting λ θ ϕ ψ, 0, , 0N P d μ, ,PT ( )( )( )
= , we obtain

λ θ ϕ ψker , 0, span , ,N P μ d μ λ λ, ,P μ μ
T( )[ ( )] ( )

= ⟨ ⟩

where

ϕ e

ψ d θ μ
γθ

kθ
e

Φ ,

Δ 2
1

Φ ,

λ
β d θ

λ

λ P d μ
d μ

d μ

β d θ
λ,

1 ,

,

μ
N N dP μ

μ

μ P
P

P

N N dP μ
μ

,

,⎜ ⎟

⎧

⎨
⎪

⎩
⎪

( ) ⎛

⎝

⎞

⎠

( )

( )

=

= − + −

+

− /

− − /

and Φλμ is the positive eigenfunction associated to λμ. This shows that λ θker , 0,N P μ d μ, ,PT( )[ ( )]
is one-

dimensional. Moreover, by virtue of the Fredholm alternative theorem, it is not difficult to show
λ θcodim Range , 0, 1N P μ d μ, ,PT( )[ ( )]

= . In addition, a simple calculation yields

λ θ
ϕ

ψ
ϕ

, 0,
0

.N P λ μ d μ
λ

λ

λ
, ,P

μ

μ

μT ⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

( ) ( )

=

−

Since ϕ xΦ d 0λ λΩ μ μ∫
> , we have

λ θ
ϕ

ψ
λ θ, 0, Range , 0, .N P λ μ d μ

λ

λ
N P μ d μ, , , ,P

μ

μ
PT T

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )( ) [ ( )]

∉

Therefore, we apply the local bifurcation theorem of Crandall and Rabinowitz (see Theorem 1.7 in [7]) to
conclude that positive solutions of (1.3) in the neighborhood of λ θ, 0,μ d μ,P( )

are expressed as follows:

λ s N s P s λ λ s s ϕ ϕ s θ s ψ ψ s, , , ,μ μ λ d μ λ,μ P μ
( ( ) ( ) ( )) ( ( ) ( ) ( ) )

( ) ( )

= + + + +

for s ε0,( )∈ with some ε 0> , where λ s ϕ s ψ s X X, ,μ �( ( ) ( ) ( )) ∈ × × is continuously differentiable for
s ε0,( )∈ and satisfies λ ϕ ψ0 , 0 , 0 0, 0, 0μ( ( ) ( ) ( )) ( )= and ϕ ϕ s xd 0λΩ μ

( )
∫

= for s ε0,( )∈ . In addition, since
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λ s N s P s, ,( ( ) ( ) ( )) is a positive solution of (1.3) and V s e N sβ d P sN N( ) ( )( ) ( )
≔

/ , we use a standard but cumber-
some calculation as before to derive

λ e x β e ψ x e x

ψ mθ ϕ
kθ

e x

β d λ
θ

kθ
e ψ x

0 Φ d Φ d Φ d

1
Φ d

1
Φ d .

μ
β d θ

λ N
β d θ

λ λ
β d θ

λ

λ d μ λ

d μ

β d θ
λ

N N μ
d μ

d μ

β d θ
λ λ

Ω

2

Ω

2

Ω

2 3

Ω

,

,
2

2

Ω

,

,

2

N N dP μ
μ

N N dP μ
μ μ

N N dP μ
μ

μ P μ

P

N N dP μ
μ

P

P

N N dP μ
μ μ

, , ,

,

,⎜ ⎟

( ) ∣ ∣

( )⎛

⎝

⎞

⎠

( ) ( ) ( )

( )

( )

∫ ∫ ∫

∫

∫

( )

′

= − ∇ +

+

−

+

+ / −

+

− / − / − /

− /

− /

(4.2)

Consequently, we have the following result.

Theorem 4.1. Assume that μ d σ Δ; 1P 1[ ]> − is fixed. Then, positive solutions of (1.3) bifurcate from the semi-
trivial solution branch λ θ λΠ , 0, :P d μ,P �

{( ) }
= ∈ if and only if λ λμ= . To be precise, there exists a neighbor-

hood 2� of λ N P λ θ, , , 0,μ d μ,P( )
( )

= in X X� × × such that 01
2T �( ) ∩

− consists of the union of ΠP 2�∩ and
the local curve

λ s N s P s λ λ s s ϕ ϕ s θ s ψ ψ s, , , ,μ μ λ d μ λ,μ P μ
( ( ) ( ) ( )) ( ( ) ( ) ( ) )

( ) ( )

= + + + +

for s ε ε,( )∈ − with some ε 0> , where λ s ϕ s ψ s X X, ,μ �( ( ) ( ) ( )) ∈ × × is continuously differentiable for

s ε ε,( )∈ − and satisfies λ ϕ ψ0 , 0 , 0 0, 0, 0μ( ( ) ( ) ( )) ( )= , and λ 0μ( )′ is given by (4.2). Therefore, positive solu-
tions contained in 01

2T �( ) ∩

− can be expressed as follows:

λ λ s s ϕ ϕ s θ s ψ ψ s s ε, , : 0, .μ μ λ d μ λ2 ,μ P μ
� {( ( ) ( ) ( ) ) ( )}

( ) ( )

≔ + + + + ∈

The following theorem gives the global structure of the local curve 2� in the λ N P, ,( ) plane.

Theorem 4.2. If μ d σ Δ; 1P 1[ ]> − is fixed, then the local curve 2� can be extended to an unbounded global
continuum of positive solutions to (1.3) along the positive values of λ.

Proof. By Definition 1.1 in [5], θd μ,P is a non-degenerate solution of (2.2). Moreover, for (1.3), the hypotheses
HPQRS( ), Hab( ), Hfg( ), and HFG( ) given in [5] are satisfied. Therefore, we apply Theorem 1.2 in [5] to conclude
that there exists a continuum

int intC � � �( ) ( )⊂ × ×

of positive solutions to (1.3), where � is given in Theorem 3.2, such that 2 C� ⊂ and C satisfies one of the
following statements:
(a) C is unbounded in C CΩ Ω0

1
0
1� ( ) ( )× × ;

(b) there exists another positive solution of (2.2), denoted by ψd μ,P
with ψ θd μ d μ, ,P P≠ , such that

σ d e
ψ

kψ
e e ψdiv

1
; , 0, ;N

β d ψ d μ

d μ

β d ψ β d ψ
d μ1

,

,
,N N dP μ P

P

N N dP μ N N dP μ
P

, , , C
⎛

⎝
⎜

⎡

⎣
⎢ ( ) ⎤

⎦
⎥

⎞

⎠
⎟

( ) ( ) ( )
− ∇ +

+

∈

− / − / − /

(c) there exists a positive solution θd λ,N ͠ of (2.1) such that λ θ, , 0d λ,N C͠ ͠
( )

∈ , where λ͠ is determined by

μ σ d
γθ

mθ
Δ

1
; 1 ;P

d λ

d λ
1

,

,

N

N

⎡

⎣
⎢

⎤

⎦
⎥

͠

͠
= − −

+

(d) μ d σ Δ; 1P 1[ ]= − and d σ Δ; 1 , 0, 0P 1 C( [ ] )− ∈ .
We next claim that alternatives (b), (c), and (d) cannot occur. Since μ d σ Δ; 1P 1[ ]> − , it is clear that

alternative (d) cannot be true. By virtue of the uniqueness of positive solution to (2.2), alternative (b) cannot
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occur as well. In addition, it follows from the monotonicity of principal eigenvalue with respect to potential
functions (see Lemma 2.1) that

σ d
γθ

mθ
σ d d σ μΔ

1
; 1 Δ; 1 Δ; 1 .P

d λ

d λ
P P1

,

,
1 1

N

N

⎡

⎣
⎢

⎤

⎦
⎥ [ ] [ ]

͠

͠
− −

+

≤ − = − <

This means that for any given μ d σ Δ; 1P 1[ ]> − , there must be no such value λ͠ , and hence, alternative (c)
cannot be satisfied either. Consequently, the continuum C of positive solutions of (1.3) must satisfy alter-
native (a); that is, C is unbounded in C CΩ Ω0

1
0
1� ( ) ( )× × . According to Proposition 4.2, we assert that any

positive solution of (1.3) is bounded inC CΩ Ω0
1

0
1( ) ( )× , provided λ is bounded in� . This means that Proj λC is

unbounded. Furthermore, by virtue of Proposition 4.1, C extends to infinity in positive values of λ. □

According to Proposition 4.3, one has known that if μ d σ γ mΔ; 1P 1[ ]≤ − − / , then (1.3) does not have
positive solutions. Hence, we suppose now thatd σ γ m μ d σΔ; 1 Δ; 1P P1 1[ ] [ ]− − / < < − . In this case, (1.3) has a
trivial solution branch λ λΠ , 0, 0 :0 �{( ) }≔ ∈ and a semi-trivial solution branch

λ θ λ d σΠ , , 0 : Δ; 1 ,N d λ N, 1N [ ]
{( ) }

≔ > −

which bifurcates from Π0 as λ increases across d σ Δ; 1N 1[ ]− .
Since bifurcation from ΠN seems likely to occur at values of λ such that

μ σ d
γθ

mθ
Δ

1
; 1 ,P

d λ

d λ
1

,

,

N

N

⎡
⎣⎢

⎤
⎦⎥

= − −

+

we first discuss the properties of this principal eigenvalue.

Proposition 4.4. Let

μ λ σ d
γθ

mθ
Δ

1
; 1 .P

d λ

d λ
1

,

,

N

N

( ) ⎡
⎣⎢

⎤
⎦⎥

≔ − −

+

Then, μ λ( ) is a continuous and decreasing function with respect to λ and satisfies

μ λ d σ and μ λ d σ γ mlim Δ; 1 lim Δ; 1 .
λ d σ

P
λ

P
Δ; 1

1 1
N 1

( ) [ ] ( ) [ ]
[ ]

= − = − − /

→ − →∞

Proof. The proof can be completed by the similar arguments to those of Proposition 3.5. □

It can be proved as before that there is the local curve 3� of positive solutions bifurcating from ΠN at
λ θ, , 0d λ,N( )

∗

∗

, and the local curve 3� can be extended as a global continuum and it goes to ∞ as λ → ∞.
More precisely, we have the following theorem.

Theorem 4.3. Assume that d σ γ m μ d σΔ; 1 Δ; 1P P1 1[ ] [ ]− − / < < − is fixed. Then, positive solutions of (1.3)
bifurcate from the semi-trivial solution branch λ θ λ d σΠ , , 0 : Δ; 1N d λ N, 1N [ ]

{( ) }
= > − if and only if λ λ=

∗

.
Moreover, the following statements hold true.
(1) There exists a neighborhood 3� of λ N P λ θ, , , , 0d λ,N( )

( )
=

∗

∗

in X X� × × such that 01
3T �( ) ∩

− consists
of the union of ΠN 3�∩ and the local curve

λ s N s P s λ λ s θ s ϕ ϕ s s ψ ψ s, , , ,d λ λ λ,N( ( ) ( ) ( )) ( ( ) ( ) ( ) )
( ) ( )

= + + + +

∗ ∗

∗

∗ ∗

for s ε ε,( )∈ − with some ε 0> , where
(a) λ s ϕ s ψ s X X, , �( ( ) ( ) ( )) ∈ × ×

∗

is continuously differentiable for s ε ε,( )∈ − and satisfies
λ ϕ ψ0 , 0 , 0 0, 0, 0( ( ) ( ) ( )) ( )=

∗

,
(b) ψλ

∗

is the positive eigenfunction associated to σ d γθ mθΔ 1 ; 1P d λ d λ1 , ,N N[ ]
( )

− − / +

∗ ∗

and
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ϕ d λ θ β θ ψ
θ
mθ

ψΔ 2 div
1

.λ N d λ N d λ λ
d λ

d λ
λ,

1
,

,

,
N N

N

N

( ) ⎡
⎣⎢

( ) ⎤
⎦⎥

= − − + ∇ −

+

∗

−

∗

∗ ∗

∗

∗

∗

∗

(2) Positive solutions contained in 01
3T �( ) ∩

− can be expressed as follows:

λ λ s θ s ϕ ϕ s s ψ ψ s s ε, , : 0, .d λ λ λ3 ,N� {( ( ) ( ) ( ) ) ( )}
( ) ( )

≔ + + + + ∈

∗ ∗

∗

∗ ∗

(3) The local curve 3� can be extended to an unbounded global continuum of positive solutions to (1.3) along
the positive values of λ.

5 Summary and discussion

In this article, we study the stationary problem for a prey-predator model with prey-taxis/predator-taxis
under the homogeneous Dirichlet boundary conditions, where the interaction is governed by a Beddington-
DeAngelis functional response. By applying the local and global bifurcation theory, eigenvalue theory of
the second-order linear elliptic operators, and various elliptic estimates, we establish the sufficient condi-
tions for the existence/nonexistence of coexistence states. These results provide an easy way to predict the
coexistence of two species and manage to explain the occurrence of stationary patterns. In the following,
we compare the findings of this study with those of the previous articles as follows:
• When the Lotka-Volterra type functional response is adopted (i.e., m k 0= = ), Cintra et al. [5] proved that
the continuum of positive solutions is bounded for any given λ d σ Δ; 1 ,N 1( [ ] )∈ − ∞ , and there is no
positive solution for all large μ 0> (see Lemma 5.5 and Theorem 5.2 in [5]). However, our results show
that there exists a critical value for the prey’s growth rate λ such that, above this value, the continuum of
positive solutions is unbounded (see Theorem 1.1(3)) and, below this critical value, the continuum of
positive solutions is bounded (see Theorem 1.1(2)). Moreover, Theorem 1.1(3) also shows that above this
value, (1.2) has at least one positive solution even though the predator’s growth rate μ is large. These
differences suggest that the mutual interference by predators (i.e., k 0> ) affects the behavior of positive
solutions.

• When the prey-taxis is ignored (i.e., β 0P = ), the signal of μ 0λ( )′ , which determines the bifurcation direc-
tion of positive solutions near the bifurcation point μ θ, , 0λ d λ,N( )

, is given as follows:

μ ψ x
γ ϕ kθ ψ

mθ
ψ x ψ x0 d

1
d d .λ μ

μ d λ μ

d λ
μ μ

Ω

3

Ω

,

,
2

2

Ω

2
λ

λ N λ

N
λ λ

( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∫ ∫ ∫

( )

( )

′

= −

−

+

This means that μ 0 0λ( )′

> since ψ 0μλ
> and ϕ 0μλ

< in Ω. Thus, the bifurcation direction is supercritical.
However, when β 0P > , μ 0λ( )′ is given by (3.12) and the signal is difficult to determine. In other words,

μ 0λ( )′ may be positive or negative if the appropriate values of parameters in (3.12) are selected. This
indicates that the bifurcation direction may be supercritical or subcritical. Moreover, this change will
most likely lead to the multiplicity of positive solutions near the bifurcation point μ θ, , 0λ d λ,N( )

. Conse-
quently, the introduction of prey-taxis (i.e., β 0P > ) also changes the behavior of positive solutions.

• Based on a priori estimate of solutions and standard elliptic regularity theory, it is not difficult to show
that as βN , βP, and k tend to zero, any positive solution of (1.2) or (1.3) converges to a solution of the
following Holling-Tanner prey-predator elliptic system:

d N λN N NP
mN

x

d P μP P γNP
mN

x

N P x

Δ
1

, Ω,

Δ
1

, Ω,

0, Ω.

N

P

2

2

⎧

⎨

⎪⎪

⎩
⎪
⎪

− = − −

+

∈

− = − +

+

∈

= = ∈ ∂

(5.1)
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Hence, it is reasonable to think that the existing results of this article have been perturbed from the
existing results of [3] (see also [27]) as βN , βP, and k perturb from zero. In addition, our existing results are

not limited to small βN , βP, and k but hold for any given βN , βP, and k. It is worth noting that the presence

of prey-taxis (i.e., β 0P > ) or predator-taxis (i.e., β 0N > )makes mathematical analysis more difficult (see,
e.g., Proposition 3.4), and hence, the existing results of this article is not just a simple extension of the
existing results of [3].

There are various interesting questions that deserve further exploration. For the semilinear elliptic
system (5.1), Casal et al. analyzed theoretically the multiplicity of positive solutions and found numerically
the existence of a Hopf bifurcation in [3]. Some time later, some of these pioneering findings were shar-
pened by Du and Lou in [11,12]. However, it is unclear whether or not these results hold for the quasilinear
elliptic systems (1.2) and (1.3). Moreover, when the domain of habitation is one-dimensional, the unique-
ness of positive solutions of (5.1) has been established in [3] (see also the result of Dancer et al. [8] and the
result of López-Gómez and Pardo [28]). Whether the method developed in [3] can successfully solve the
uniqueness of positive solutions of (1.2) and (1.3) is unknown. In addition, a more interesting question is
how to study the positive solutions of the complete system (1.1). All these questions are very interesting and
worthwhile to pursue in the future.
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