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Abstract: Let u be a nontrivial harmonic function in a domain �⊂D d, which vanishes on an open set of the
boundary. In a recent article, we showed that if D is a C1-Dini domain, then, within the open set, the
singular set of u, defined as { ( ) ∣ ( )∣}∈ = = ∇X D u X u X: 0 , has finite ( )−d 2 -dimensional Hausdorffmeasure.
In this article, we show that the assumption of C1-Dini domains is sharp, by constructing a large class of
non-Dini (but almost Dini) domains whose singular sets have infinite � −d 2-measures.
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1 Introduction

We consider the following question, which is inspired by a classical question asked by Bers (see the
Introduction in [9]):

�

( )

{ ( ) ( ) }

=

∩ ∂

≔ ∈ ∩ ∂ ∇ =

u D u
B D

X B D u X

Suppose is a nontrivial harmonic function in a domain , and that 0
on a relatively open set of the boundary 0 . How big can the singular set

0 : 0 be ?
R

R

2 (Q)

When D is aC1,1 domain, Lin proved that � has zero ( )−d 1 -dimensional Hausdorffmeasure, and that � is a
( )−d 2 -dimensional set, see [11, Theorem 2.3]. Adolfsson et al. [2] (see also Kenig and Wang [5] for an
alternative proof) extended the result to convex domains. This was then followed by the works of Adolfsson
and Escauriaza [1] and Kukavica and Nyström [10], who proved (using different methods) the result for
C1-Dini domains (see Definition 2.1). Recently, Tolsa [14] proved that for all C1 domains (or Lipschitz
domains with sufficiently small Lipschitz constant), the set � has zero ( )−d 1 -dimensional Hausdorff
measure.

In a recent work, we proved the following theorem:

Theorem 1.1. [9] Let D be aC1-Dini domain in�d (see Definition 2.1)with ∈ ∂D0 , and let >R 0. Suppose u is a
nontrivial harmonic function in ( )∩D B 0R50 , and that =u 0 on ( )∂ ∩D B 0R50 . Then, the singular set
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�( ) { ( ) ( ) ∣ ( )∣}≔ ∈ ∩ = = ∇u X D B u X u X0 : 0R50

satisfies that �( ) ( )∩u B 0R is ( )−d 2 -rectifiable, and

� �( ( ) ( ))∩ ≤ < +∞
− u B C0 ,d

R
2

where the constant C depends on d, R, and (the upper bound of) the frequency function of u centered at 0 with
radius R50 .

In short, the theorem says that when D is a C1-Dini domain, the singular set at the interior and
boundary, �( ) ( )∩u B 0R , is ( )−d 2 -rectifiable, and its ( )−d 2 -dimensional Hausdorff measure is finite. We
remark that a similar result for convex domains can be found in [12].

It is natural to ask whether such a fine estimate (i.e., � −d 2 estimate) of the singular set can be extended
to more general domains, for example, Lipschitz domains with small constants. In that setting, recall Tolsa
showed that �( ) ∩ ∂u D has surface measure zero in ( )B 0R (see [14]). The answer is no in general because if
the domain is less regular thanC1-Dini, the gradient of harmonic functions that vanish on an open subset of
the boundary may not exist everywhere in that open set, and thus it does not make sense to talk about its
� −d 2-measure. The goal of this article is to provide counterexamples demonstrating that C1-Dini domains
are indeed the optimal class of domains for which Theorem 1.1 holds. More precisely, if D is less regular than
C1-Dini and a harmonic function u vanishes on an open subset of ∂D, we cannot make sense of ∇u at the
boundary in general. However, in the special case when u is a nonnegative harmonic function in D that
vanishes in ( )∂ ∩D B 0R2 with ∈ ∂D0 , by the comparison principle (see Lemma 2.3) u is comparable to the
Green’s function G in ( )∩D B 0R . Hence, for σ-almost every ( )∈ ∂ ∩x D B 0R (where � ∣≔

−

∂σ d
D

1 denotes the
boundary surface measure of D), we have

( ) ( ) ( )∇ ≈ ∂ ≈u x G x ω
σ

xd
d

,n

where ∂ Gn denotes the normal derivative ofG at the boundary and /ω σd d denotes the Poisson kernel of the
harmonic measure ω (whose pole is the same as that of the Green’s function G). Since the upper and lower
densities of the Radon measure ω are defined everywhere (and take values in [ ]+∞0, ), we can use the
following set¹

⎧

⎨
⎩

( ( )) ( ( )) ⎫

⎬
⎭

∈ ∂ = =

→
→

p D ω p
r

ω p
r

: liminf Δ limsup Δ 0
r

r

r

r
0 0

in place of the boundary singular set of u, namely { ( ) }∈ ∂ ∇ =p D u p: 0 . Roughly speaking, we showed that
when the domain D barely fails to be C1-Dini, the � −d 2-measure of the above set could be infinite.

Theorem 1.2. Given a monotone nondecreasing function � �→+ +θ : , which satisfies

( )
( )

∫= = +∞

→ +

∗

θ r and θ r
r

tlim 0 d ,
r 0

0

(1.1)

there exist a C1 function � �→φ : and a C1 domain

� � �{( ) ( )}≔ ∈ × ∈ >D x t x t φ x, : ,

such that the following holds:
• there exists a bounded set �⊂S containing infinitely (countably)many points such that, for each ∈x S0 , the
modulus of continuity of ∇φ at x0, denoted by ( )α r , satisfies



1 Throughout the article, we always use ( )pΔr to denote a surface ball at the boundary, as in

( ) ( )≔ ∂ ∩p D B pΔ .r r
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( ) ( ) ( )≤ ≤θ r α r θ r4 ;

• �( )∈ ⧹φ C S2 ;
• let ω denote the harmonic measure in D, we have that

⎧

⎨
⎩

( ( )) ( ( )) ⎫

⎬
⎭

∈ ∂ = = ⊃

→
→

p D ω p
r

ω p
r

φ: liminf Δ limsup Δ 0 graph ,
r

r

r

r
S

0 0

where { ( ) }≔ ∈φ x φ x x Sgraph , :S .

In particular, the set

⎧

⎨
⎩

( ( )) ( ( )) ⎫

⎬
⎭

∈ ∂ = =

→
→

p D ω p
r

ω p
r

: liminf Δ limsup Δ 0
r

r

r

r
0 0

is infinite.

Remark 1.3.
• We can easily extend the above example of planar domains to domains in �d, by considering the domains

� �≔ × ⊂
−D D˜ d d2 . In this case, the singular set in the boundary of D̃ is equal to �×

−φgraphS
d 2 and has

infinite � −d 2-measure.
• In the proof, we will also show that whenever ≪x 0 and ≫x 0, the function ( )φ x is linear, and thus the
boundary �∂ =D φgraph is flat when we are sufficiently far from the center ( ( ))φ0, 0 . Therefore, it is not

hard to close off D so that it becomes a bounded domain while maintaining that ∂D has C2 regularity
except for points in φgraphS . Thus, the result also holds for bounded domains.

We remark that when D is a C1-Dini domain and the harmonic function u in consideration is nonne-
gative, the Hopf maximum principle implies that

∣ ∣∇ = ∂ ≥ >u u c 0 at the boundary ,ν

where ∂ uν denotes the normal derivative of u with the normal vector ν pointing inward, see [3]. (The Hopf
maximum principle in [3] was proven for solutions to parabolic equations, but by taking a slice at a fixed
positive time, the elliptic analog follows.) In particular, this implies that for C1-Dini domains, the sin-
gular set

⎧

⎨
⎩

( ( )) ( ( )) ⎫

⎬
⎭

∈ ∂ = = = ∅

→
→

p D ω p
r

ω p
r

: liminf Δ limsup Δ 0 .
r

r

r

r
0 0

In a related work [4, Section 9], the author constructed the following example (credited to Tolsa): there
exist Lipschitz domains �⊂D 2 with small constants such that the singular set at the boundary

⎧

⎨
⎩

( ( )) ⎫

⎬
⎭

∈ ∂

→

p D ω p
r

: lim Δ exists and is equal to 0
r

r
0

has Hausdorff dimension as close to 1 as we want. In particular, it indicates that for Lipschitz domains, one
cannot expect a better answer to (Q) than saying that the singular set has zero surface measure. (For
comparison, our examples show that in order to obtain the sharp ( )−d 2 -dimensional estimate for (Q) as
in [9], the assumption ofC1-Dini domains cannot be weakened.) These Lipschitz domains are built by taking
the union of cones with vertices at a fat Cantor set, whose Hausdorff dimension can be chosen sufficiently
close to 1. The purpose of their example is similar to ours, but the constructions are completely different.
Besides, our example of domains is better thanC1-regular, instead of just Lipschitz, but the singular set is 0-
dimensional (albeit infinite) rather than ( )− ε1 -dimensional.
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The proof of Theorem 1.2 is inspired by the work of the first-named author [6]. It was demonstrated
there that one can construct a Lipschitz domain in �2 with prescribed tangent vectors on its boundary such
that its harmonic measure is given by the exponential of the Hilbert transform of that prescribed function,
see, e.g., [6, Lemma 1.11]. This article is organized as follows. We recall some definitions and preliminary
results in Section 2. Then, to fix ideas, we first construct Lipschitz domains with the desired properties in
Section 3. These domains are explicit and not difficult to visualize. In Section 4, we construct the desiredC1

domains for every modulus of continuity θ satisfying (1.1).

2 Preliminaries

Definition 2.1. (Dini domains) Let � �→θ : be a nondecreasing function that satisfies ( ) =→ +θ rlim 0r 0 and

( )
∫ < ∞

∗

θ r
r

.
0

A connected domain D in �d is a Dini domain with parameter θ if for each point ∈ ∂X D0 , there is a
coordinate system �( )= ∈

−X x x x, ,d
d 1, and �∈xd such that ( )=X 0, 00 with respect to this coordinate

system, and there is a ball B centered at X0 and a Lipschitz function � �→
−φ : d 1 verifying the following:

(1) �( )‖∇ ‖ ≤∞ −φ CL 0d 1 for some >C 00 ;

(2) ∣ ( ) ( )∣ (∣ ∣)∇ − ∇ ≤ −φ x φ y θ x y for all �∈
−x y, d 1;

(3) {( ) ( )}∩ = ∈ >D B x x B x φ x, :d d .

The following integral will be used repeatedly in the computation of Hilbert transforms, so we state it as a
lemma here.

Lemma 2.2. Let <a b be two real numbers. Suppose [ ]∉x a b, , we have that

∣ ∣ ∣ ∣∫
−

= − − −

x y
y x a x b1 d log log .

a

b

(2.1)

Proof. When < <x a y, let ≔ − >z y x 0. By a change of variables, we have

( ) ( )∫ ∫
−

= − = − − −

−

−

x y
y

z
z a x b x1 d 1 d log log .

a

b

a x

b x

When > >x b y, let = − >z x y 0. By a change of variables, we have

( ) ( )∫ ∫ ∫
−

= − = = − − −

−

−

−

−

x y
y

z
z

z
z x a x b1 d 1 d 1 d log log .

a

b

x a

x b

x b

x a

□

We recall the following lemmas about positive solutions to elliptic partial differential equations (for a
reference, see [7]).

Lemma 2.3. (Comparison principle) Let D be a Lipschitz domain and ∈ ∂p D, >r 0. Let ≥u v, 0 be two
nontrivial harmonic functions in ( )∩D B pr2 such that = =u v 0 on ( ) ( )≔ ∂ ∩p D B pΔ r r2 2 . Then, for any

( )∈ ∩X D B pr ,

( ( )) ( ) ( ( ))≤ ≤
−C u

v
A p u

v
X C u

v
A p ,r r

1
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where ≥C 1 is a universal constant, and ( )A pr denotes the corkscrew point in ( )∩D B pr , that is to say, there
exists a constant >M 0 only depending on the Lipschitz constant of the domain such that ( ( )) ⊂/B A pr M r

( )∩D B pr .

Lemma 2.4. Let D be a Lipschitz domain in �d. For any ∈X D, let ( )⋅G X, denote the Green’s function for the
Laplacian in D with pole at X, and let ωX denote the corresponding harmonic measure. For any ∈ ∂p D and
>r 0 such that ( )∉X B pr2 , we have that

( ( )) ( ( ))
≈

−

ω p
r

G X A p
r

Δ , ,
X

r
d

r
1

where ≈ means that the two quantities are equivalent modulo two universal constants.

3 Lipschitz domains

Let � �→H : be the Heaviside step function, namely

( )
⎧

⎨
⎩

=

≤

>

H x x
x

0, 0
1, 0.

Let { }xk be a sequence of distinct points in � { }⧹ 0 such that →x 0k . (Then, in particular, { }xk is bounded, say
∣ ∣ ≤x 1k .) Let c be a positive real number and { }ak be a sequence in �+ such that

∑′ ≔ <c c a π
2

.k (3.1)

We define a function � �→f : as follows:

( ) ( )∑= −f x c a H x x .k k

Clearly,

∑‖ ‖ = = ′ <∞f c a c π
2

.L k

Let K be the Hilbert transform operator, modulo a constant, defined as follows:

( ) ( )⎡

⎣⎢
⎤

⎦⎥
∫≔

−

+

→

∣ − ∣≥ ∣ ∣>Kh x
π

h y
χ
x y

χ
y

ylim 1 d ,
ε

x y ε y

0

1 (3.2)

whenever the limit on the right-hand side exists. Here, χE denotes the characteristic function of the set E.
Recall that the Hilbert transform maps �( )∞L functions into functions in the bounded mean oscillations
(BMO) space. Simple computations show that

( ( ))( ) ( ) ∣ ∣⋅− = − = −K H x x KH x x
π

x x1 log ,k k k

and hence, formally, we have

( ) ∣ ∣∑= −Kf x c
π

a x xlog .k k

In fact, by the assumption (3.1), we have that

�( ) ( ) ( )∑ − → ℓ → +∞

≤ℓ

∞c a H x x f x Lin , as .
k

k k

Hence,
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⎜ ⎟( )
⎛

⎝

( )
⎞

⎠

∣ ∣∑ ∑= − = −

ℓ→+∞
≤ℓ

ℓ→+∞
≤ℓ

Kf x K c a H x x c
π

a x xlim lim log ,
k

k k
k

k k (3.3)

where the limit is taken in the BMO space.
The function on the right-hand side of (3.3) is well-defined and continuous in � { }⧹ 0 . In fact, assume

that ≠x 0 and ≠x xk for every k. Since ∣ ∣⋅log is a continuous function in� { }⧹ 0 , it is uniformly continuous on
compact subset of � { }⧹ 0 . Let E be a compact subset of � { }⧹ 0 containing x such that �{ }∩ ∈ = ∅E x k:k .
We have that, for any ∈y E,

∣ ∣ ∣ ∣− → →y x y xlog log , as 0,k k

and the convergence is uniform. In particular, there exists �∈k0 depending on E such that for any ≥k k0

and ∈y E, we have that

∣ ∣ ∣∣ ∣ ∣ ∣∣− ≤ +y x ylog log 1.k

Hence, for any ≥ ℓ ≥m k0, we have

⎜ ⎟∣ ∣
⎛

⎝

⎞

⎠

(∣ ∣ ∣∣ )∑ ∑− ≤ ⋅ + < +∞

=ℓ =ℓ

c
π

a y x c a ylog log 1 .
k

m

k k
k

m

k (3.4)

Therefore,

∣ ∣ ∣ ∣∑ ∑− = −

ℓ→+∞
≤ℓ

c
π

a x x c
π

a x xlog lim logk k
k

k k

is well-defined and continuous in E. Therefore, we have shown that ( )Kf x is well-defined and continuous
on � ({ } { })⧹ ∪x 0k . In addition, we have

∣ ( )∣ (∣ ∣ ) ∣ ∣≤ + ≥Kf x π x x
2

log 1 , whenever 2. (3.5)

Moreover, near each xk, we have

( ) ∣ ∣ ∣ ∣ ∣ ∣ ( )∑= − + − ≕ − +

→+∞
′≤

′≠

′ ′Kf x c
π

a x x c
π

a x x c
π

a x x e xlog lim log log .k k
k k k

k k

k k k k k
0 0

(3.6)

Since ≠′x xk k for every ′ ≠k k, and → ≠′x x0k k, we have that

�{∣ ∣ }≔ − ′ ∈ ′ ≠ >′δ x x k k kinf : and 0.k k k (3.7)

Then, as long as ∣ ∣< − < /x x δ0 2k k ,

⎜ ⎟

∣ ∣ ∣∣ ∣ ∣ ∣∣ ∣ ∣ ∣∣

∣ ∣
∣ ∣

(∣ ∣ )

⎛

⎝
(∣ ∣ )⎞

⎠

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∑ ∑ ∑

∑ ∑

∑ ∑

− = − + −

=

−

+ −

≤ + +

≤
′

+ +

′≠

′ ′

′≠

− ≤

′ ′

′≠

− >

′ ′

′≠

− ≤

′

′ ′≠

− >

′ ′

′≠

− ≤

′

′≠

− >

′

′ ′

′ ′

′ ′

c
π

a x x c
π

a x x c
π

a x x

c
π

a
x x

c
π

a x x

c
π

a
δ

c
π

a x

c
π δ

x

log log log

log 1 log

log 2 log 1

log 2 log 1 .

k k
k k

k k
x x

k k
k k

x x

k k

k k
x x

k
k k k

x x

k k

k k
x x

k
k k k

x x

k

k

1 1

1 1

1 1

k k

k k

k k

In particular, the second term in (3.6), ( )⋅ek , is bounded near xk, and thus

( ) → −∞ →Kf x x xas .k (3.8)

Let ( )V x t, and ( )W x t, be the Poisson integrals of ( )f x and ( )Kf x , respectively, in the upper half plane
�
+

2 . (The Poisson integral of ( )Kf x is well-defined because ( )Kf x has logarithmic growth at infinity
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according to (3.5).) Since ( )f x is continuous and bounded in � ({ } { })⧹ ∪x 0k , by the classical theory² for
every � ({ } { })∈ ⧹ ∪x x 0k , we have that ( ) ( )→V z f x as →z x. Since ( )Kf x is continuous in � ({ } { })⧹ ∪x 0k ,
we also have that ( ) ( )→W z Kf x as →z x for every � ({ } { })∈ ⧹ ∪x x 0k . Moreover, let

( ) ∣ ∣∑≔ −ℓ

≤ℓ

F y c
π

a y xlog ,
k

k k

and recall that →ℓF Kf in �( )BMO and pointwise in � ({ } { })⧹ ∪x 0k . We claim that for any �( ) ∈
+

x t, 2 ,

( ) ( ) ( )= ∗ = ∗

ℓ→+∞

ℓW x t P Kf x P F x, lim ,t t (3.9)

where Pt denotes the Poisson kernel in �
+

2 with ( ) =
+

P ξt π
t

ξ t
1

2 2 . Then, it immediately follows that

( ) ⎛
⎝

∣ ∣⎞
⎠

∣( ) ( )∣∑ ∑= ∗ − = −W x t P c
π

a x x c
π

a x t x, log log , , 0 .t k k k k (3.10)

In the second equality, we use the fact that the Poisson integral of ∣ ∣xlog in �
+

2 is just ∣( )∣x tlog , . To prove the
claim, let

�{∣( ) ( )∣ }≔ − ∈ >δ x t x kinf , , 0 : 0.k0

We let

( ) ( ) ( )
( )

( )
( )

( )

∣ ∣ ∣ ∣

∫ ∫∗ = ∗ + ∗ ≔

− +

+

− +

− ≥ − <

P h x P h x P h x
π

t
x y t

h y y
π

t
x y t

h y y1 d 1 d ,t t t

y x δ y x δ

1 2

2
2 2

2
2 2

0 0

(3.11)

for any allowable function h on �. For the first term, we have

⎜ ⎟

⎜ ⎟

∣ ( ) ( )∣
( )

⎛

⎝

∣ ∣
⎞

⎠

( )
∣ ∣ ∣∣

⎛

⎝

⎞

⎠
( )

⎧

⎨
⎩

(∣ ∣ )
⎫

⎬
⎭

∣ ∣

∣ ∣

∫

∫

∫

∑

∑

∑

∗ − ∗ =

− +

−

≤

− +

−

≤

− +

+

ℓ

− ≥
>ℓ

− ≥
>ℓ

>ℓ

P Kf x P F x
π

t
x y t

c
π

a y x y

π
t

x y t
c
π

a y x y

π
c
π

a t
x y t δ

y y

1 log d

1 log d

1 max log 1 , log 1 d ,

t t

y x δ k
k k

y x δ k
k k

k
k

1 1

2
2 2

2
2 2

2 2
0

0

0

which converges to 0 as ℓ → +∞. However, since ∣ ∣ ≤x 1k and ∣ ∣⋅log is square-integrable near the origin, for
any E that is a neighborhood of the origin, we have by the Minkowski integral inequality that

∣ ∣ ∥ ∣ ∣∥( )

( )

( )∑ ∑ ∑‖ − ‖ = − ≤ − ≲ →ℓ

>ℓ >ℓ >ℓ

Kf F c
π

a y x c
π

a y x c
π

alog log 0,L E
k

k k
L E k

k k L E
k

k2

2

2

as ℓ → +∞. Hence,

⎜ ⎟

⎜ ⎟

∣ ( ) ( )∣
⎛

⎝

⎜
⎜

⎛

⎝ ( )
⎞

⎠

⎞

⎠

⎟
⎟

⎛

⎝

⎞

⎠

( )

∣ ∣

( )

∫( )

( )

∗ − ∗ ≤ ‖ − ‖ ⋅

− +

≤ ‖ − ‖

ℓ ℓ

− ≤

/

/

ℓ

∣ ∣+

∣ ∣+

P Kf x P F x Kf F
π

t
x y t

y

π δ
Kf F

1 d

1 2 ,

t t L B

y x δ

L B

2 2
0

2
2 2

2
1 2

0

1 2

0

x δ

x δ

2
2 0

0

2
2 0

which also converges to 0 as ℓ → +∞. This finishes the proof of the claim (3.9). In particular, (3.10)
implies that



2 See [7, Chapter 1 §2] for example.
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( ) ( )→ −∞W x t x t x, as , converges to ,k

with logarithmic decay.
Let = +z x iy, and we define the function

( ) ( ) ( )≔ − +g z W x y iV x y, , .

One can verify that −W and V satisfy the Cauchy-Riemann equations and thus g is analytic in �
+

2 . Let
( ) ( )≔G z g zexp . Then, G is analytic in �

+

2 and has a nontangential limit toward the boundary for almost
every �∈ ∂

+
x 2 , since G is nontangentially bounded at almost every boundary point.

� ∣ ( )∣ ( ( ))∈ = − ≠
+

z G z W x yFor every , exp , 0,2

� ({ } { }) ∣ ( )∣ ( ( )) ∣ ∣∏∈ ⧹ ∪ = − = −
−x x G x Kf x x xfor every 0 , exp ,k k

ac
π k (3.12)

∣ ( )∣ ∣ ( )∣≈ − → +∞
−z x G z z xas converges to , , 0 ,k k

ac
π k (3.13)

and

∣ ( )∣ ∣ ( )∣= ≤ ‖ ‖ ≤ ′ <∞G z V x y f c πarg ,
2

,L (3.14)

where we used the maximum principle for the Poisson integral.
Let Φ denote the antiderivative of G in �

+

2 . More precisely, for any �∈
+

z 2 , let γz denote any rectifiable
curve from i to z and let

( ) ∫=z GΦ .
γz

This function is well-defined (i.e., independent of the choice of curve) since �
+

2 is simply connected.
Besides, for any �( )= ∈

+
z x t, 2 , by choosing γz to be the line segment connecting i to z, we can easily

show that

∣ ( )∣ ∣ ∣ ( ( )) ∣ ∣ { }∫= − ≤ − ⋅ < +∞
−

′

z z i G γ s s z i tΦ d min , 1 ,z

0

1
c
π

namely �( ) ∈zΦ . Since ∣ ( )∣ ∣ ( )∣′ = ≠z G zΦ 0, Φ is locally a conformal mapping. We claim that Φ is injective.
Assume there are two distinct points �∈

+
z z,1 2

2 such that ( ) ( )=z zΦ Φ1 2 . Let γ0 denote the line segment in �
+

2

connecting z1 to z2. More precisely, we consider the parametrization ( ) ( )= + −γ t z t z z0 1 2 1 with [ ]∈t 0, 1 . We
have that

( ) ( )∫ = − =G z zΦ Φ 0
γ

2 1

0

and

( ) ( ( ))∫ ∫= − ⋅G z z G γ t td .
γ

2 1

0

1

0

0

Hence, it follows that

( ( ))∫ =G γ t td 0.
0

1

0

In particular, the real part of the above integral also vanishes, i.e.,

∣ ( ( ))∣ ( ( ( )))∫ =G γ t G γ t tcos arg d 0.
0

1

0 0 (3.15)
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However, by (3.14), we have that

�( ( )) ≥ ′ > ∈
+

G z c zcos arg cos 0 for all .2

Combined with ( ) ≠G z 0, this is a contradiction with (3.15). Therefore, Φ is injective.
For any �∈ ∂

+
z 2 and ≠ ≠z x z, 0k , by the properties of the Poisson integrals V and W , it is easy to see

that

( ) ∫= -z GΦ is still well defined ,
γz

and moreover, it is independent of the choice of the curve �⊂
+

γz
2 . Next, we show that ( )zΦ is well-defined

as →z xk and →z 0 and is independent of the choice of the curve. For fixed k, let z and ′z be arbitrary
points in � { }⧹

+
02 with ′ ≠ ′z z x, k for any �′ ∈k such that {∣ ( )∣ ∣ ( )∣}≔ − ′ −δ z x z xmax , 0 and , 0k k is suffi-

ciently small. Let γ denote a rectifiable curve in �
+

2 connecting z and ′z such that γ does not intersect the
origin or ′xk for any �′ ∈k . Then, by (3.13),

∣ ( ) ( )∣ ∣ ( ) ( )∣∫ ∫− ′ = ≲ −
−z z G γ t xΦ Φ , 0 .

γ γ

k
ac

π k

Since <ac
π k

1
2 by the assumption (3.1), by carefully choosing the curve γ (e.g., by taking γ to be the union of

an arc on ( )∂B xδ k and a line segment on a ray from xk), we can guarantee that

∣ ( ) ( )∣∫ − → →
−γ t x δ, 0 0 as 0.

γ

k
ac

π k

Therefore, ( )zΦ is continuous and finite as →z xk. To show ( )zΦ is continuous at the origin, let ( )=z x t,0 0

and ( )′ = ′ ′z x t,0 0 be arbitrary points in � { }⧹
+

02 that are sufficiently close to the origin. Let {∣ ∣ ∣ ∣}≔ ′δ z zmax , ,
and clearly ∣ ∣ ∣ ∣′ ′ <x x t t δ, , ,0 0 0 0 . Let { }≔ + ′ +∗t t δ t δmax ,0 0 . Let γ1 denote the vertical line segment between z
and ( )∗x t,0 , γ2 denote the horizontal line segment between ( )∗x t,0 and ( )′

∗x t,0 , and γ3 denote the vertical line
segment between ( )′

∗x t,0 and ′z , each parametrized by unit length. For each { }∈i 1, 2, 3 , we have

∣ ∣ ( ( )) ⎛
⎝

∣ ( )∣⎞
⎠

∣ ( )∣∫ ∫ ∫ ∫ ∫∑ ∏≤ = − = − − = −
−G G W z c

π
a z x z xexp exp log , 0 , 0 .

γ γ γ γ

k k

γ

k
a

i i i i i

c
π k

Since we always have that

∣ ( )∣− ≥z x z, 0 Im ,k

it follows that

∣ ( )∣

∣ ( )∣ ∣ ∣

∫ ∫

∫ ∫

∏

∏

− ≤ ≲ ≲

− ≤ = ′ − ≲

∑
∑

∑

∑ ∑
∑

− −
∗

−
−

−
∗

−

∗

−
−

∗

z x t t δ

z x t x x t δ

, 0 ,

, 0 ,

γ

k
a

t

t

a
c
π a a

γ

k
a

γ

c
π a c

π a a

1 1

0 0
1

c
π k

c
π k k c

π k

c
π k k k c

π k

1 0

2 2

and the same estimate holds for γ3. Therefore,

∣ ( ) ( )∣ ∣ ∣∫ ∫∑− ′ = ≤ ≲
∑

∪ ∪
=

−z z G G δΦ Φ .
γ γ γ i γ

a

1

3
1

i

c
π k

1 2 3
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Hence, ( )zΦ is continuous and finite as →z 0. To sum up, we have shown that Φ has a continuous
extension to �

+

2 . Using the same argument (3.15) as in the interior case, we can show that Φ is also injective
on �

+

2 .
We claim that ( )∞ = ∞Φ . Thus, in particular, the set �( )≔

+
D Φ 2 is unbounded, and �( )∂ = ∂

+
D Φ 2 (the

boundary in �
+

2 , not in the Riemann sphere). Let zj be an arbitrary sequence in �
+

2 such that → ∞zj . Let γj

denote the straight line segment connecting i to zj, namely ( ) ( )= + −γ t i t z ij j for [ ]∈t 0, 1 . Then,

( ) ( ) ( ( ))∫ ∫= = − ⋅z G z i G γ t tΦ d .j

γ

j j

0

1

j

Hence,

( )
( ( )) ∣ ( ( ))∣ ( ( ( ))) ∣ ( ( ))∣∫ ∫ ∫

−

= = ≥ ′⋅

z
z i

G γ t t G γ t G γ t t c G γ t tRe
Φ

Re d cos arg d cos d .j

j
j j j j

0

1

0

1

0

1

Using (3.10) again, we have

∣ ( ( ))∣ ∣ ( ) ( )∣ (∣ ( )∣ ) (∣ ∣ )∫ ∫ ∫∏= − ≥ + ≥ +
− − −

′ ′

G γ t t γ t x t γ t t zd , 0 d 1 d 1 .j j k
a

j j

0

1

0

1

0

1
c
π k

c
π

c
π

Therefore,

∣ ( )∣ ∣ ∣
( )

∣ ∣
( )

∣ ∣= − ⋅

−

≥ − ⋅

−

≳
−

′

z z i
z

z i
z i

z
z i

zΦ
Φ

Re
Φ

,j j
j

j
j

j

j
j

1 c
π (3.16)

for j sufficiently large. In particular, ( ) → ∞zΦ j for any sequence zj in �
+

2 such that → ∞zj .
Since � →

+
DΦ : 2 is a conformal homeomorphism, and Φ is injective on �∂

+

2 with �( )∂ = ∂
+

D Φ 2 , it
follows that D is also simply connected and bounded by a simple curve. By the same argument as in [6,
Theorem 1.1], at every �∈ ∂

+
x 2 where ( )′ xΦ exists and is different from 0, it is a tangent vector to ∂D at the

point ( )≔p xΦ ; and a set �⊂ ∂
+

E 2 has measure zero if and only if ( ) ⊂ ∂E DΦ has surface measure zero. We
remark that because ( )G x is continuous in � ({ } { })⧹ ∪x 0k , the fundamental theorem of calculus states that

( ) ( )′ =x G xΦ there. Moreover, Let �[ ]− + ⊂x a x b,k k be an arbitrary interval containing xk, with a and b
sufficiently small satisfying < < /a b δ0 , 2k (recall the definition of δk in (3.7)). Recall that ∣ ∣∏ −

′≠ ′

− ′x xk k k
ac

π k

is continuous at xk. It follows that by choosing a and b sufficiently small, we can guarantee that

∣ ∣ ∣ ∣ [ ]∏ ∏− > − > ∈ − +

′≠

′

−

′≠

′

−′ ′x x x x x x a x b1
2

0 for every , .
k k

k
a

k k
k k

a
k k

c
π k

c
π k

Hence,

∣ ( )∣ ∣ ( )∣

∣ ∣

∣ ∣ ∣ ∣

∣ ∣ { }

∏

∏

∏

⨏ ′ = ⨏

= ⨏ −

≥ ⨏ − ⋅ −

≳ − ⋅

−

+

−

+

−

+

−

−

+

−

′≠

′

−

′≠

′

− −

′

′

x x G x x

x x x

x x x x x

x x a b

Φ d d

d

d 1
2

1
2

max , .

x a

x b

x a

x b

x a

x b

k
a

x a

x b

k
a

k k
k k

a

k k
k k

a a

k

k

k

k

k

k
c
π k

k

k
c
π k

c
π k

c
π k c

π k

In particular,

∣ ( )∣⨏ ′ → +∞ → +

−

+

x x a bΦ d as , 0 .
x a

x b

k

k

(3.17)
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Let ω denote the harmonic measure in D with pole at infinity and normalized at ( )Φ 0 (for its precise
definition and properties, see [8, Corollary 3.2 and Lemma 3.8]).³ By the conformal invariance of the
Brownian motion, we can find the explicit formula for ω: we have that

( )
∣ ( ( ))∣

( )=

′
−

ω z
z

σ zd 1
Φ Φ

d ,1

where σ denotes the surface measure at the boundary ∂D, namely σ = 1∣∂D . In fact, let �
+

ω 2 denote the
harmonic measure of �

+

2 with pole at infinity and normalized at the origin. Clearly, � =
+

ω xd d2 . For any
∈ ∂z D, let Δ denote a surface ball of D centered at z . Then, for every ∈ ∂z D such that ( ) { } { }∉ ∪

− z xΦ 0k
1 , as

→ zΔ , we have

�

�

( )

( )

( ( ))

∣ ( )∣ ∣ ( )∣ ∣ ( ( ))∣ ∣ ( ( ))∣
( )

( )

( )
∫

∫

∫

=

′

=

′

⟶

′

= >

−

− −

+

−

−

−

ω ω

x x

x

x x z G z
Δ
Δ

Φ Δ

Φ d

d

Φ d
1

Φ Φ
1

Φ
0.1

1

Φ Δ

Φ Δ

Φ Δ
1 1

2

1

1

1

(3.18)

Here, we use the conformal invariance of the harmonic measure and the area formula in the first equality.
On the other hand, when ( )=z xΦ k for some xk, we claim that

�

( )

( )
=

→

ωlim Δ
Δ

0.
zΔ 1

In fact, since Φ is a homeomorphism on �∂
+

2 , ( )−Φ Δ1 is just an interval containing ( ) =− z xΦ k
1 . By (3.17), it

follows that

�

( )

( )

⎛

⎝
⎜ ∣ ( )∣

⎞

⎠
⎟= ⨏ ′ =

→ → +
−

+
−

ω x xlim Δ
Δ

lim Φ d 0.
z a b x a

x b

Δ 1 , 0

1

k

k

In short,

�
�

⎧

⎨
⎩

( )

( )

⎫

⎬
⎭

{ ( )} ({ })∈ ∂ = ⧹ = ∈

→

z D ω z k: lim Δ
Δ

0 Φ 0 Φ : .
z

k
Δ 1

Finally, we remark that given the input ( ) ( )≔f x cH x , where c is a constant with < < /c π0 2 and ( )H x
is the Heaviside step function, our construction produces the following simple Lipschitz domain. Intuitively, it is
clear that the density of the harmonic measure in D is zero only at the vertex.

4 C 1 domains

The following lemma is just a special case of the more general Lemma 4.2 that we need later. But we
introduce and prove this lemma first in order to fix ideas.

Lemma 4.1. There exists a continuous function �( )∈f C such that
(1) f is a monotone nondecreasing function with ≤ ≤f0 1 and �( { })∈ ⧹f C 01 ;
(2) the modulus of continuity of f at the origin, denoted by ( )θ r , satisfies



3 If →U VΦ : is a conformal map between domainsU V, in � , and Bt is a planar Brownian motion starting from ∈x U0 , then
( )BΦ t is a (time-changed) Brownian motion starting from ( ) ∈x VΦ 0 . More precisely ( ) ( )=B BΦ ˜t ζ t where B̃τ is a planar Brownian

motion starting from ( )xΦ 0 , and ( ) ∣ ( )∣∫= ′ζ t B sΦ d
t

s0
2 .
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( )
∫ = +∞

∗

θ r
r

rd ;
0

(3) �( ) ( { })∈ ⧹Kf x C 0 , and ( ) ( )→ = −∞Kf x Kf 0 as →x 0, where K denotes the Hilbert transform operator
as is defined in (3.2).

Proof. Let �( ) → +θ : 0, 1 be defined as ( ) ( )=

−

θ r log r2
1 1

. Clearly, θ is monotone increasing, ( ) =→ +θ rlim 0r 0 ,
and

( )
∫ = +∞

∗

θ r
r

rd .
0

One can check that there exists ( )= ∈ /
−x 2 0, 1 20

1
log2 such that in ( ]x0, 0 , θ is concave and

( ) ⎛
⎝

⎞
⎠

′ =

⋅

>

−

θ x
x x

1
log2

log 1 0 is monotone decreasing .2
2

(4.1)

Let ( )⋅g be a smooth, nondecreasing function defined on [ ]/x , 1 20 such that

( ) ( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( ) ⎛
⎝

⎞
⎠

= = = =

′ + = ′ = ′ − =

g x θ x g θ

g x θ x g

log2, 1
2

1
2

1,

2 log2, 1
2

0,

0 0

0 0
1

log2

and ∣ ( )∣′ ≤ ‖ ′‖ =∞g x g 2 1
log2 for all [ ]∈ /x x , 1 20 . Finally, we define � �→f : as follows:

⎜ ⎟

( )

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

( ) ⎛

⎝ ∣ ∣
⎞

⎠

( )
=

≤

= < ≤

< <

≥

−

f x

x

θ x
x

x x

g x x x

x

0, 0,

log 1 , 0 ,

, 1
2

,

1, 1
2

.

2

1

0

0

It is not hard to see that f satisfies (1) and (2). Next, we analyze ( )Kf x . Recall that the Hilbert transformmaps
bounded continuous functions into functions in the vanishing mean oscillations (VMO) space, so

�( ) ( )∈Kf x VMO .
When <x 0, we have that

( )
( )

⎛
⎝

⎞
⎠

∫⋅ =

−

+ −

/

π Kf x f y
x y

y xd log 1
2

,
0

1 2

(4.2)

and clearly, ( )Kf x is continuous on ( )−∞, 0 . A rough estimate (simply using the monotonicity of ( )⋅f )
provides

( ( )) ( ) ( ) ( ) ( ) ⎛
⎝

⎞
⎠

−∞ < − − + − ≤ ⋅ ≤ − < +∞f x x x f x x π Kf x x1 log log log 1
2

.0 0 0 (4.3)

Moreover, we claim that

( )
∫

−

→ −∞ → −

/

f y
x y

y xd as 0 .
0

1 2

Combined with (4.2), the claim implies that

( ) → −∞ → −Kf x xas 0 .
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In fact, since

( ) ( ) ( )
∫ ∫ ∫

−

= −

−

−

−

/ /

f y
x y

y θ y
y x

y g y
y x

yd d d
x

x0

1 2

0

1 20

0

(4.4)

and the second term is uniformly bounded in x, it suffices to show that

( )
∫

−

→ +∞ → −

θ y
y x

y xd as 0 .
x

0

0

This follows easily from Fatou’s lemma:

( ) ( )
∫ ∫+∞ = ≤

−→ −

θ y
y

y θ y
y x

yd liminf d .
x

x

x

0
0

0

0 0

When < <x x0 0, we have that

( )
⎛

⎝

⎜⎜

( ) ( ) ⎞

⎠

⎟⎟

( )
⎛
⎝

⎞
⎠

∫ ∫ ∫⋅ =

−

+

−

+

−

+ −

→

−

+

π Kf x f y
x y

y f y
x y

y f y
x y

y xlim d d d log 1
2

.
ε

x ε

x ε

x

x
0

0

1
20

0

(4.5)

Note that

⎛

⎝

⎜⎜

( ) ( ) ⎞

⎠

⎟⎟
( ) [ ( )]

( ) ( )
∫ ∫ ∫

−

+

−

= ⋅ − − +

−

−→

−

+

f y
x y

y f y
x y

y f x x x x f y f x
x y

ylim d d log log d ,
ε

x ε

x ε

x x

0
0

0

0

0 0

(4.6)

when the integral on the right-hand side is well-defined. In order to analyze the last term ( ) ( )
∫

−

−

yd
x f y f x

x y0

0
, we

break the integral into two regions [ ]∈y x0, and [ ]∈y x x, 0 . On the one hand, by the mean value theorem
and the monotonicity of ( )′ ⋅f on [ ]x0, 0 , we have

( ) ( )
( ) ( ) ( )

[ ]
∫<

−

−

≤ ′⋅ − = ′ ⋅ −

f y f x
y x

y f x x f x x x0 d sup .
x

x

x x,
0 0

0

0

(4.7)

On the other hand,

( ) ( ) ( ) ( ) ( ) ( )
∫ ∫ ∫<

−

−

=

−

−

+

−

−

/

/

f y f x
y x

y f y f x
y x

y f y f x
y x

y0 d d d .
x x

x

x

0 0

2

2

(4.8)

Since ( )≤ ≤f f x0 0 on [ ]x0, , we can control the first term as follows:

( ) ( ) ( )
( ) ( )∫ ∫ ∫<

−

−

≤

−

≤ ⋅

−

= ⋅

/ / /

f y f x
y x

y f x
x y

y f x
x y

y f x0 d d 1 d log2;
x x x

0

2

0

2

0

0

2

0 (4.9)

again, by the mean value theorem and the monotonicity of ( )′ ⋅f on [ ]x0, 0 , we can control the second term as
follows:

( ) ( )
⎛
⎝

⎞
⎠[ ]

∫ ∫<

−

−

≤ ′ ≤ ′ ⋅

/ /

/

f y f x
y x

y f y f x x0 d sup d
2 2

.
x

x

x

x

x x
2 2

2,
(4.10)

Combining (4.7), (4.8), (4.9), and (4.10), we conclude that
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( ) ( )
( ) ( ) ⎛

⎝
⎞
⎠

( )∫<
−

−

≤ ′ ⋅ − + ′ ⋅ + ⋅

f y f x
y x

y f x x x f x x f x0 d
2 2

log2.
x

0

0 0

0

(4.11)

Finally, combining (4.5), (4.6), and (4.11), we obtain

( ) ( ( )) ( ) ( ) ( ) ( ) ⎛
⎝

⎞
⎠

( )⋅ ≥ − − + − ′ ⋅ − − ′ ⋅ − ⋅ > −∞π Kf x f x x x f x x f x x x f x x f x1 log log
2 2

log20 0 0 (4.12)

and

( ) ( ( )) ⎛
⎝

⎞
⎠

( ( ) ( )) ( ) ( )⋅ ≤ − − + − − + < +∞π Kf x f x x f x f x x x f x x1 log 1
2

log log .0 0 0 (4.13)

We claim that

( ) → −∞ → +Kf x xas 0 .

By (4.5), (4.6) and the dominated convergence theorem (which implies that ( ) ( )
∫ ∫= −→ +

/

−

/

y ylim d dx x
f y
x y x

f y
y0

1 2 1 2

0 0
and is finite), to prove the claim, it suffices to show

( )
( ) ( )

( )
( ) ( )

∫ ∫+

−

−

= − −

−

−

→ −∞f x x f y f x
x y

y f x
x

f y f x
y x

ylog d log 1 d
x x

0 0

0 0

as → +x 0 . This holds because

( ) >f x
x

log 1 0

and

( ) ( ) ( )
∫ ∫

−

−

≥ = +∞

→ +

f y f x
y x

y θ y
y

yliminf d d
x

x x

0
0 0

0 0

by Fatou’s Lemma (since [ ]
( ) ( )

∈ +∞
−

−

0,f y f x
y x for every [ ]∈y x0, 0 ) and the fact that ( ) ( )= =→ f x flim 0 0x 0 .

Finally, we also remark that since we have proven that the right-hand side of (4.6), as a principal value, is
finite, we can formally write

( )
( ) [ ( )]

( ) ( )
∫ ∫

−

≔ ⋅ − − +

−

−

f y
x y

y f x x x x f y f x
x y

yd log log d ,
x x

0

0

0

0 0

(4.14)

which is well-defined for every < <x x0 0 and decays to −∞ as → +x 0 . (Recall that by (4.2) and (4.4), the
decay rate of ( )Kf x as → −x 0 is also given by ( )

∫
−

yd
x f y

x y0

0
.)

When =x x0, we have

( )
⎛

⎝

⎜
⎜

( ) ( ) ⎞

⎠

⎟
⎟

⎛
⎝

⎞
⎠

⎛

⎝

⎜
⎜

( ) ( ) ⎞

⎠

⎟
⎟

( ) ( ) ( ) ( )

⎛
⎝

⎞
⎠

( ) ( ( )) ⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

⋅ =

−

+

−

+ −

=

−

+

−

+

−

−

+

−

−

+ −

= + − − +

−

−

+

−

−

→

−

+

/

→

−

+

/ /

/

π Kf x f y
x y

y f y
x y

y x

f x
x y

y f x
x y

y f y f x
x y

y f y f x
x y

y

x

f x x f x x f y f x
x y

y f y f x
x y

y

lim d d log 1
2

lim d d d d

log 1
2

log 1 log 1
2

d d .

ε

x ε

x ε

ε

x ε

x ε

x

x

x

x

0
0

0
0

1 2

0
0

0
0

0

0

1 2
0

0
0

0

0

1 2
0

0

0

0 0 0 0

0

0

0

1 2
0

0

0

0

0

0

0

0

0

0

(4.15)
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For the last two terms, note that

( ) ( )
⎛
⎝

⎞
⎠

∫<

−

−

≤ ‖ ′‖ −

/

∞

f y f x
y x

y g x0 d 1
2

,
x

1 2
0

0
0

0

( ) ( ) ( )
( )∫ ∫<

−

−

≤

−

= ⋅

/ /

f x f y
x y

y f x
x y

y f x0 d d log2,
x x

0

2
0

0
0

2
0

0
0

0 0

and by the concavity of f on ( )x0, 0 ,

( ) ( )
⎛
⎝

⎞
⎠

∫≤

−

−

≤ ′ ⋅

/

f x f y
x y

y f x x0 d
2 2

.
x

x

2

0

0

0 0

0

0

(4.16)

Therefore,

( ) ( ) ( ( )) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⋅ ≥ + − − − ‖ ′‖ − − ′ ⋅ > −∞∞π Kf x f x x f x x g x f x xlog
2

1 log 1
2

1
2 2 2

,0 0
0

0 0 0
0 0

( ) ( ) ( ( )) ⎛
⎝

⎞
⎠

⋅ ≤ + − − < +∞π Kf x f x x f x xlog 1 log 1
2

.0 0 0 0 0

Moreover, by (4.5), (4.6), and (4.15), we also have

( ) ( )→ → −Kf x Kf x x xas .0 0 (4.17)

When < < /x x 1 20 , we have

( )
( ) ⎛

⎝

⎜
⎜

( ) ( ) ⎞

⎠

⎟
⎟

⎛
⎝

⎞
⎠

( )
( )⎡

⎣
( ) ⎛

⎝
⎞
⎠

⎤

⎦

( ) ( )
⎛
⎝

⎞
⎠

∫ ∫ ∫

∫ ∫

⋅ =

−

+

−

+

−

+ −

=

−

+ − − − +

−

−

+ −

→

−

+

/

/

π Kf x f y
x y

y f y
x y

y f y
x y

y x

f y
x y

y f x x x x f y f x
x y

y x

d lim d d log 1
2

d log log 1
2

d log 1
2

.

x

ε
x

x ε

x ε

x

x

0
0

1 2

0

0

1 2

0

0

0

0

(4.18)

Note that

⎛
⎝

⎞
⎠

( ) ( )
∫−‖ ′‖ ⋅ − ≤

−

−

≤∞

/

g x f y f x
x y

y1
2

d 0
x

0

1 2

0

and

( )
( ) ( )[ ( )]∫ ∫≤

−

≤ ⋅

−

= − −

f y
x y

y f x
x y

y f x x x x0 d 1 d log log .
x x

0

0

0

0 0

0 0

Therefore, we have that

( ) ( ) ( ) ( ( )) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⋅ ≥ − + − − − ‖ ′‖ ⋅ − > −∞∞π Kf x f x x x f x x g xlog 1 log 1
2

1
20 0 (4.19)

and

( ) ( ( ) ( )) ( ) ( ) ( ( )) ⎛
⎝

⎞
⎠

⋅ ≤ − − + + − − < +∞π Kf x f x f x x x f x x f x xlog log 1 log 1
2

.0 0 0 (4.20)

Moreover, by (4.18) and (4.15), we have that

( ) ( )→ → +Kf x Kf x x xas .0 0 (4.21)
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When = /x 1 2, we have

⎛
⎝

⎞
⎠

( ) ⎡

⎣⎢
⎤

⎦⎥

( ) ( ) ( )
⎛
⎝

⎞
⎠

{ }∫ ∫

∫ ∫

⋅ =

/ −

+

/ −

+

=

/ −

+

− /

/ −

+ −

→

/ −

/

∞

> / +

/

π Kf f y
y

y
y

χ
y

y

f y
y

y f y f
y

y x

1
2

lim
1 2

d 1
1 2

1 d

1 2
d 1 2

1 2
d log 1

2
.

ε

ε

y ε

x

x

0
0

1 2

1 2

1 2

0

1 2

0

0

0

(4.22)

Therefore,

⎛
⎝

⎞
⎠

( ( )) ( )−∞ < ≤ ⋅ ≤ − − ⋅ + ⋅ < +∞x π Kf f x f x xlog 1
2

1 log2 log .0 0 0 0 (4.23)

Moreover, by (4.18), (4.22), and the assumption ( ) ( )= / =→ / f x flim 1 2 1x 1 2 , we have that

( ) ⎛
⎝

⎞
⎠

→ → −Kf x Kf x1
2

as 1
2

.

When > /x 1 2,

( )
( )

⎛
⎝

⎞
⎠

∫⋅ =

−

+ −π Kf x f y
x y

y xd log 1
2

.
0

1
2

(4.24)

Hence, we have

⎛
⎝

⎞
⎠

( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

−∞ < − ≤ ⋅ ≤ − − + − = < +∞x π Kf x x x x xlog 1
2

log log 1
2

log 1
2

log . (4.25)

Moreover, since by Lemma 2.2,

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
∫− − − = ⋅

/ −

x x f
y

ylog 1
2

log 1
2

1
2

1
1 2

d ,
x

x

0

0

and by combining (4.22) and (4.24), we show that

( ) ⎛
⎝

⎞
⎠

→ → +Kf x Kf x1
2

as 1
2

. □

Next, for any nondecreasing function θ satisfying (1.1), we construct a continuous function whose
modulus of continuity is given by θ.

Lemma 4.2. Let � �→+ +θ : be a monotone nondecreasing function such that

( )
( )

∫= = +∞

→ +

∗

θ r and θ r
r

tlim 0 d .
r 0

0

Let >x 00 be sufficiently small (depending on θ). There exists �( )∈f C , defined as in (4.30), which satisfies all

the properties in Lemma 4.1, and moreover, the modulus of continuity of f at the origin, denoted by ( )θ r˜ ,
satisfies

( ) ( ) ( )≤ ≤θ r θ r θ r˜ 4 . (4.26)

Proof. Let

( )
( )

∫ ∫=θ r
t

θ s
s

s t˜ 1
log 2

1 d d .
r

r

t

t

2

2 2

(4.27)
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Simple computations show that

( ) ( ) ( ) ( )≤ ≤ =

→ +

θ r θ r θ r θ r˜ 4 , lim ˜ 0,
r 0

(4.28)

and

( )
⎡

⎣

⎢
⎢

( ) ( ) ⎤

⎦

⎥
⎥

( ) ( )
∫ ∫ ∫= ⋅ − =

−
≥

r
θ r

r
θ s

s
s θ s

s
s θ rt θ rt

rt
td

d
˜ 1

log 2
1 d d 1

log 2
2 d 0.

r

r

r

r

2
2

4 2

2
1

2

Let ∗x be the largest real number such that ( ) <θ r˜ 1 for all [ )∈ ∗r x0, . (If ( ) <θ r˜ 1 for all �∈ +r , we simply let
= /∗x 1 2.) Then, for any ≤ /∗r x 4, we have

( ) ∫≤ =

r
θ r

rt
t

r
d
d

˜ 1
log 2

1 d 1
log2

.2
1

2

(4.29)

Let ( )∈ /∗x x0, 40 be sufficiently small such that ( ) < /θ x˜ 1 20 (other than this constraint, we are free to
choose x0 as small as needed). Let g be a smooth, nondecreasing function defined on [ ]∗x x,0 such that

( ) ( ) ( )

( ) ( ) ( )

= =

′ + = ′ − =

∗

∗

g x θ x g x

g x
r

θ x g x

˜ , 1,
d
d

˜ , 0,

0 0

0 0

and ∣ ( )∣′ ≤ ‖ ′‖∞g r g . We define the function � �→f : as follows:

( )

⎧

⎨

⎪

⎩
⎪

( )

( )
=

≤

< ≤

< <

≥

∗

∗

f x

x
θ x x x
g x x x x

x x

0, 0
˜ , 0

,
1,

0

0
(4.30)

Clearly, ( )f x satisfies (1) and (2) of Lemma 4.1, (4.26), and �( ) ( )∈Kf x V MO since f is a bounded continuous
function on � .

In the proof of property (3) in Lemma 4.1, we use the fact that on [ ]x0, 0 , the function f is monotone

nondecreasing, differentiable except at the origin and concave. In the general case, here ( ) ( )=f x θ x˜ may
not be concave in [ ]x0, 0 . However, after going over the estimation of ( )Kf x when < ≤x x0 0, if f is not
assumed to be concave similar estimates hold once we make the following changes: in (4.7) replace ( )′f x by

[ ] ′fsup x x, 0 , in (4.10) replace ( )′ /f x 2 by [ ] ′/ fsup x x2, , replace these terms accordingly in the lower bound (4.12),
and replace ( )′ /f x 20 in (4.16) by [ ] ′/ fsup x x2,0 0 . The rest of the proof is exactly the same as in Lemma 4.1. □

From now on, we always denote the function in Lemma 4.2 (see (4.30)) as ( )⋅H̃ , which will play the
same role as the Heaviside function in Section 3. (In the construction of the function in Lemma 4.2, we
choose >x 00 sufficiently small, depending on θ, so that (4.59) holds.)

As in Section 3, we construct a new function f as follows. Let c be a positive real number, and { }ak be a
sequence in �+ such that

∑′ ≔ <c c a π
2

.k (4.31)

Using the sequence { }≔
−x 2k

k ⁴, we define a function � �→f : as follows:

( ) ( )∑= −f x c a H x x˜ .k k (4.32)



4 In fact, we may take { }xk to be any sequence such that the infinite product
∣ ∣

∏

−x x

1

k
cak

π
is integrable near the origin; otherwise,

we may also appeal to the Helson-Szegö theorem, which implies that ( ( ))−Kf xexp is an A2-weight on � , if ‖ ‖ <∞f π
2 (see [13,

§6.21]). Thus, in particular, ( ( ))−Kf xexp is locally integrable on � for any sequence { }xk as long as (4.31) holds. But, for
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Clearly, �( )∈f C , �( ({ } { }))∈ ⧹ ∪f C x 0k
1 , and

∑‖ ‖ ≤ = ′ <∞f c a c π
2

.L k

Moreover, we can prove the following lemma:

Lemma 4.3. ( )Kf x is well-defined and continuous in � ({ } { })⧹ ∪x 0k . Near each xk, we have that

( ) ( ) ( )∑− − = −

′≠

′ ′Kf x ca KH x x c a KH x x˜ ˜ ,k k
k k

k k (4.33)

where the right-hand side is continuous and bounded (the bound only depends on δk in (4.36)). In particular,

( ) → −∞ →Kf x as x x .k

Proof. Since

�( ) ( ) ( )∑ − →

≤ℓ

∞c a H x x f x L˜ in
k

k k

and �( )∈f Cb , we have that

⎜ ⎟( )
⎛

⎝

( )
⎞

⎠

( )∑ ∑= − = −

ℓ→+∞
≤ℓ

ℓ→+∞
≤ℓ

Kf x K c a H x x c a KH x xlim ˜ lim ˜ ,
k

k k
k

k k (4.34)

where the limit is taken in the BMO space and �( )∈Kf V MO . On � { }⧹ xk , for each k, the function ( )⋅−KH x˜ k is
pointwise defined. We claim that the limit on the right-hand side of (4.34) is well-defined and gives a
continuous function on � ({ } { })⧹ ∪x 0k .

Let � { }∈ ⧹x 0 be an arbitrary point. (If =x xk for any k, we just remove the k-th term and consider the

summation∑
′≠k k, so we also have that ≠x xk for every k. See (4.35).) Recall that KH̃ is a continuous function

in � { }⧹ 0 , it is uniformly continuous on compact subsets of � { }⧹ 0 . Let E be a compact subset of � { }⧹ 0
containing x, such that �{ }∩ ∈ = ∅E x k:k . We have that for any ∈y E,

( ) ( )− → →KH y x KH y x˜ ˜ , as 0,k k

and the convergence is uniform. In particular, there exists �∈k0 depending on E such that for any ≥k k0

and ∈y E, we have that

∣ ( )∣ ∣ ( )∣− ≤ +KH y x KH y˜ ˜ 1.k

Hence, for any ≥ ℓ ≥m k0, we have

⎜ ⎟∣ ( )∣
⎛

⎝

⎞

⎠

(∣ ( )∣ )∑ ∑− ≤ + < +∞

=ℓ =ℓ

c a KH y x c a KH y˜ ˜ 1 .
k

m

k k
k

m

k

Therefore, as an absolutely convergent series of continuous functions,

( ) ( )∑ ∑− = −

ℓ→+∞
≤ℓ

c a KH y x c a KH y x˜ lim ˜k k
k

k k

is well-defined and continuous at x.
Moreover, near each xk, we have

( ) ( ) ( )∑= − + −

ℓ→+∞
′≤ℓ

′≠

′ ′Kf x ca KH x x c a KH x x˜ lim ˜ .k k
k
k k

k k (4.35)



simplicity, we just take =
−x 2k

k and give a self-contained elementary proof. This assumption is only used in the proof of the

claim (4.65).
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Since ≠′x xk k for every ′ ≠k k, we have that

�{∣ ∣ }≔ − ′ ∈ ′ ≠ >′δ x x k k kinf : and 0.k k k (4.36)

Then, as long as ∣ ∣− < /x x δ 2k k , since

∣ ∣ ∣ ∣ ∣ ∣− ≥ − − − > /′ ′x x x x x x δ 2,k k k k k

by the estimates of KH̃ away from the origin in Lemmas 4.1 and 4.2 as well as the assumption (4.31), we can
show that

( ) ( ) ( )∑− − = −

ℓ→+∞
′≤ℓ

′≠

′ ′Kf x ca KH x x c a KH x x˜ lim ˜k k
k
k k

k k

is well-defined and continuous at xk, as an absolutely convergent series of continuous functions. In
particular,

( ) ( )→ − −x x Kf x ca KH x xas , the limit of ˜ exists and is finite .k k k

Therefore, ( ) → −∞Kf x as →x xk for every �∈k . □

Proof of Theorem 1.2. We can construct a Lipschitz domain �( )=
+

D Φ 2 using f and Kf as in Section 3.

(Again because KH̃ has logarithmic growth at infinity, by (4.3), (4.25), and the analogous estimates in
Lemma 4.2, the Poisson integral of Kf is well-defined.) Since �( )∈f Cb , its Poisson integral ( )V z converges
to ( )f x for every �∈ ∂

+
x 2 ; the Poisson integral ( )W z of ( )Kf x converges to ( )Kf x for every � ({ } { })∈ ⧹ ∪x x 0k ,

as in the paragraph after (3.8).
Moreover, we claim that for every �( ) ∈

+
x t, 2 ,

⎜ ⎟( ) ( )
⎛

⎝

( )
⎞

⎠

( )∑ ∑= ∗ = ∗ − = ∗ −

ℓ→+∞
≤ℓ

ℓ→+∞
≤ℓ

W x t P Kf x P c a KH x x c a P KH x x, lim ˜ lim ˜ .t t
k

k k
k

k t k (4.37)

(In the last equality, we simply use the linearity of the Poisson integral operator.) The proof is by studying
the Poisson integral in the regions close to x and away from x, similar to the proof of the analogous claim
(3.9) in Section 3. So we only sketch the key steps here. Let

�{∣( ) ( )∣ }≔ − ∈ >δ x t x kinf , , 0 : 0.k0

For the Poisson integral on the region that is δ2 0-away from x (i.e., the Pt
1 term in (3.11)), we use the lower

and upper bounds of KH̃ proven in Lemma 4.1, the continuity of KH̃ at x0 and 1/2, combined with (4.29), to
obtain that

∣ ( )∣ (∣ ∣ ) ( ) ⎛
⎝

⎞
⎠

≲ + + +

−

+ + + +KH y y
δ x x δ

Kf x Kf˜ log 1 log 1 log 1 log 1 1 1
20

1
2 0 0 0

0

for any �∈y with ∣ ∣ >y δ0. On the other hand, by the estimates (4.3), (4.12), and (4.13), we have that KH̃ is
square-integrable near the origin. This can be used to estimate the Poisson integral on the region that is
δ2 0-close to x (i.e., the Pt

2 term in (3.11)). This finishes the proof of (4.37).
In particular, as = +z x it converges to xk, by Lemma 4.3 and the property of the Poisson integral for

bounded and continuous functions, we have that

( ) ( ( ))− ⋅ ∗ −W x t ca P KH x x, ˜ is continuous and bounded .k t k

Combined with the estimates of KH̃ near the origin (see the estimates (4.2), (4.5), and (4.6), as well as the
definition in (4.14)), we have that

( )
⎛

⎝

⎜⎜

( ) ⎞

⎠

⎟⎟
( )∫+ ⋅ ∗

− ⋅

−W x t ca
π

P θ y
y

y x x x,
˜

d is continuous and bounded near .k
t

x

k k

0

0
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Recall that we have shown that the function ( )
∫↦

−

x yd
x θ y

y x0

˜0
is well-defined as a principal value and con-

tinuous in � { }⧹ 0 (in particular, recall that we have proven its continuity at x0 in the proof of Lemma 4.1). So
in order to estimate the Poisson integral

⎛

⎝

⎜⎜

( ) ⎞

⎠

⎟⎟
( )∫∗

− ⋅

P θ y
y

y x
˜

dt

x

0

0

near the origin, let us focus on ( )
∫

−

yd
x θ y

y x0

˜0
near the origin. When <x 0 (and ∣ ∣ <x ε0 for some sufficiently small

ε0), we have that

( )
∣ ∣ ∣ ∣

∣ ∣
∫ ∫<

−

≤

−

= − + − <

θ y
y x

y
y x

y x x x
x

0
˜

d 1 d log log log 1 .
x x

0 0

0

0 0

(4.38)

When >x 0 (and ∣ ∣ <x ε0), the estimate (4.11) is not enough for our purpose; instead, we claim that

( ) ( )

∣ ∣
∫<

−

−

≤ +

θ y θ x
y x

y C
x

0
˜ ˜

d 1
2

log 1 .
x

0

0

(4.39)

In fact, it easily follows from (4.9), (4.10), and (4.29) that

( ) ( )
∫<

−

−

≤ < +∞

θ y θ x
y x

y C0
˜ ˜

d .
x

0

1 (4.40)

However, if x is sufficiently small, we have <x x2 0, and hence

( ) ( )

( ) ( ) ( ) ( )

( )

( )[ ∣ ∣ ∣ ∣]

∣ ∣

[ ]

∫

∫ ∫

∫ ∫

<

−

−

=

−

−

+

−

−

≤ ′ +

−

≤ + − + −

≤ +

θ y θ x
y x

y

θ y θ x
y x

y θ y θ x
y x

y

θ y θ y
y x

y

C θ x x x x

C
x

0
˜ ˜

d

˜ ˜
d

˜ ˜
d

sup ˜ d
˜

d

˜ log log
1
2

log 1 .

x

x

x

x

x

x

x

x

x x
x

x

2

2
2

,2
2

2 0 0

2

0

0

0
(4.41)

The claim (4.39) then follows by combining (4.40) and (4.41). Since

( )( ∣ ∣ ∣ ∣)
∣ ∣

≤ − − ≤θ x x x x
x

0 ˜ log log 1
2

log 1 ,0

it follows from (4.14) that

( ) ( ) ( )
( )( ∣ ∣ ∣ ∣)

∣ ∣
∫ ∫<

−

=

−

−

+ − − ≤ +

θ y
y x

y θ y θ x
y x

y θ x x x x C
x

0
˜

d
˜ ˜

d ˜ log log log 1 .
x x

0 0

0

0 0

(4.42)

Combining (4.38) and (4.42), we have that

� �⎜ ⎟

⎛

⎝

⎜⎜

( ) ⎞

⎠

⎟⎟
( ) ⎛

⎝ ∣ ∣
⎞

⎠
( )∫≤ ∗

− ⋅

≤ + ∗

⋅
∣⋅∣< ∣⋅∣<P θ y

y
y x C P x0

˜
d log 1 .t ε

x

t ε

0

0

0

0

Note that
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� �

�

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
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Hence, we can use the same argument as in Section 3 to show that, for any ′z z, sufficiently close to xk,
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That is to say, ( )zΦ is continuous at xk.
Next, we show that ( )zΦ is also continuous at the origin. To that end, we need to estimate ( )W x t, near

the origin. Since →x 0k , there exists �∈k0 such that ∣ ∣ < /x ε 2k 0 for every ≥k k0. Then,
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As before,
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The constants in the inequality only depends on ′ = ∑c c ak and the constants C1 and C2 above; in particular,
they are independent of ( )x t, for ( )x t, sufficiently close to the origin. Again we can use the same argument
as in Section 3 to show that, for any ′z z, sufficiently close to the origin,

∣ ( ) ( )∣ ∣ ( )∣ ( ( ))∫ ∫− ′ ≤ = − → ′ →

′ ′

z z G ω W y s z zΦ Φ exp , 0, as , 0.
γ γz z z z, ,

That is to say, ( )zΦ is continuous at the origin. To sum up, � →
+

DΦ : 2 extends continuously to � →
+

D2 .
Moreover, by the same argument as in Section 3, it is a homeomorphism.
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Note that in proving ( )∞ = ∞Φ , we no longer have an explicit formula for ( )Kf x to estimate the growth

of the Poisson integral ( )W z of ( )Kf x at infinity. However, by (4.3) and (4.25), we still have that ( )KH x˜ grows
like ∣ ∣xlog whenever ≪x 0 and ≫ /x 1 2. More precisely, we have that

( ) ( ) ( ) ∣ ∣ ( )= + = +KH x KH x h x
π

x h x˜ 1 log , (4.43)

where ( )h x is a bounded and continuous function away from the origin. Near the origin, ( )h x can be written
as ( ) ( )+ +h x h x0 , with h0 being a continuous and bounded function, and
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Combining the above, we have that
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If ∣ ∣ ≥x ε2 0, we have
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In particular, whenever ∣( )∣ >x t ε, 3 0, there is a uniform lower bound for ( )− ∗P h xt (depending only on ε0).
Combining (4.37) and (4.43), we obtain the following lower bound for �( ) ∈

+
x t, 2 with ∣( )∣ >x t ε, 3 0:
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where the constant depends on the uniform lower bound of ( )− ∗P h xt and ′ = ∑c c ak. Therefore, by the
same argument as in (3.16), we have that ( )∞ = ∞Φ . In particular, �( )∂ = ∂

+
D Φ 2 , where ∂D denotes the

topological boundary of D in �2, not the boundary in the Riemann sphere.
As in Section 3, we know that ( )G x is continuous on � ({ } { })⧹ ∪x 0k , and thus

( ) ( )′ x G xΦ exists and is equal to .

Next, we will show that ( ( ))if xexp is a unit tangent vector field to ∂D at ( )=p xΦ for every �∈x (including
when =x xk and =x 0). Thus, the property � �( ) ( ({ } { }))∈ ∩ ⧹ ∪f C C x 0b k

1 implies that ∂D is C1-regular
everywhere, and it is also C2 regular everywhere except at the countably infinite set �{ ( ) }∈ ∪x kΦ :k
{ ( )}Φ 0 . (At each xk, the modulus of continuity for ( )f x is comparable to ( )⋅θ , which fails the Dini condition.)
Recall that we relabel the function defined in (4.30) of Lemma 4.2 as H̃ . Hence, by the definition of ( )f x via
H̃ in (4.32), it is clear that

( ) = <f x x0 when 0,
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In the above notation, we take the principal branch of the argument function (in fact, the argument of ( )G z
always lies in ( )− / /π π2, 2 , by the bound on‖ ‖ ∞f L ). Recall that Φ extends continuously to the boundary, and
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By (4.33), when ∣ ∣ε is sufficiently small, we have
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(4.45)
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where we denote the real-valued functions
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By the continuity of the functions ( )∑ −
′≠ ′ ′a KH x x˜

k k k k and ( )f x at xk, we have that

( ) ( ) → →ρ τ α τ τ, 0 as 0. (4.46)

We will show that ( ( ))−ca KH xexp ˜k is integrable near the origin⁵, and moreover, as →ε 0 (ε can be
negative),

( ( ))∫ − → +∞
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Once that is proven, by (4.46) and by considering the real and complex parts separately, it follows
easily that
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Therefore, combining (4.45), (4.48), and (4.47), we conclude the proof of (4.44).
We first consider the case when <ε 0. Assume, without loss of generality, that ∣ ∣ < /ε x 20 . By (4.2) and

the definition of ( )H x˜ in (4.30), for <x 0, we have⁶
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Let k N,0 0, and ℓ be the natural numbers such that

≤ < − < ≤ − − < ≤ −
− − + − + − −ℓ+ −ℓx ε x2 2 , 2 2 , and 2 2 .k k N N

0
1 1 10 0 0 0 (4.50)

The assumption that ∣ ∣ ∣ ∣≤ <x ε x0 guarantees that ℓ ≥ >N k0 0. We have⁷



5 The Helson-Szegö theorem implies that the function ( ( ) ( ))+u x Kv xexp is an A2 weight on �, if ∈
∞u v L, and ‖ ‖ < /∞u π 2 (see

[13, §6.21]). In particular, it directly implies that ( ( ))−ca KH xexp ˜k is locally integrable since <cak
π
2 . However, in our case, there

is a more elementary proof of the integrability, which also shows (4.47), we present that elementary argument here to make it

self-contained.
6 Here, we abuse the notation ≈: we write ≈1 to indicate the remainder term is close to some fixed constant, but there is no

constant multiple of the term ( )
∫

−

yd
x θ y

y x0

˜0 (otherwise there would be a constant multiple of ca
π

k in the right-hand side of (4.52)). See
also the lower bounds in (4.55) and (4.61).
7 In fact, to show ( ( ))−ca KH xexp ˜k is integrable on [ ]ε, 0 , it suffices to use the rough estimate ( )

∣ ∣
∫< ≤

−

y0 d log
x θ y

y x x0

˜ 10 (see (4.38)),
and the fact that <a 1c

π k . Considering that
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ℓ ≈ log x
1 and ( ) <θ r˜ 1 (for sufficiently, small r), the estimate in (4.51) is clearly much

more precise. We prove (4.51) here, because it, combined with the lower bound in (4.55), essentially gives us the precise value of
the integral ( )

∫
−

yd
x θ y

y x0

˜0
.
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Hence, (4.49) implies that
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Since < /ca π 2k , we can choose x0 so that for ( )∈β 0, 1 fixed,
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Thus, for every ≥i k0, we have that
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and thus,

( ( )) ( ) ∣ ∣∫ ∑− ≲ −ℓ ⋅ ≲ ≲ < +∞

ℓ=

∞

−ca KH x x β εexp ˜ d exp log2 2 .
ε

k
N

βN β

0

0

0

Examples of non-Dini domains with large singular sets  25



In particular, ( ( ))−ca KH xexp ˜k is integrable on [ ]ε, 0 . On the other hand, as in (4.51), we can also provide a
lower bound:
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Hence,
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as ∣ ∣ →ε 0, it follows that
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This finishes the proof of (4.47) for the case <ε 0.
We next consider the case >ε 0. Assume, without loss of generality, that < < /ε x0 40 . As in the

previous case, let k N,0 0, and ℓ be the natural numbers such that

≤ < ≤ < ≤ <
− − + − − + −ℓ −ℓ+x ε x2 2 , 2 2 , 2 2 .k k N N

0
1 1 10 0 0 0 (4.56)

By (4.5) and (4.6), we have that⁸
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0
(4.57)

By the estimate (4.29) and the monotonicity of ( )⋅θ̃ , we have



8 We remark that in spite of the equality in (4.14), estimating the integral of ( ) ( )−

−

θ y θ x
y x

˜ ˜
is more convenient than estimating

( )
∫

−

yd
x θ y

y x0

˜0
directly, because the latter integral hides some cancellation effect of the integrals before and after x0.
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(4.58)

Note that (4.58) is similar to the estimate in (4.51) (modulo adding a constant). Hence, by a similar argument
to (4.53), we can show that

( ( ))
⎛

⎝
⎜ ( )

⎞

⎠
⎟

⎛

⎝
⎜ ( ) ⎛

⎝
⎞
⎠

⎞

⎠
⎟

∫ ( )∑ ∑

∑ ∑

− ≲

≲ − ℓ −

ℓ=

∞

−ℓ −

=

ℓ

− +

ℓ=

∞

=

ℓ

− +

ca KH x x ca
π

θ

ca
π

θ ca
π

exp ˜ d 2 exp ˜ 2

exp ˜ 2 1 log2 .

ε

k
N

k

i k

i

N

k

i k

i k

0

1 1

1

cak
π

0 0

0 0

As in (4.54), for any ( )∈β 0, 1 fixed, by choosing x0 smaller if necessary, we can guarantee that
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(4.59)
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Therefore, it follows that

( ( )) ⎛

⎝
⎛
⎝

⎞
⎠

⎞

⎠
∣ ∣∫ ∑− ≲ −ℓ ⋅ − ≲ < +∞

ℓ=

∞

′ca KH x x β ca
π

εexp ˜ d exp 1 log2 ,
ε

k
N

k β

0 0

(4.60)

where < ′ <β β0 .
Next, we want to show that
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as → +ε 0 . By (4.56) and the monotonicity of ( )⋅θ̃ , we have
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Since ( )⋅θ̃ is an increasing function, we remark that [ ( ) ( )]∑ −
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0
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Moreover,
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For each >ε 0, we denote the positive-valued function ( )h xε as follows:
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Combining (4.62), (4.63), and (4.64), we conclude that
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To complete the proof that ∂D is C1-regular, we also claim that
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By the definition of Φ, we have
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where ( ) ( ) ( )≔ − →α x f x f 0 0 as ∣ ∣ →x 0. As in (4.48), if ( ( ))−Kf xexp is integrable on [ ]ε0, , then
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Combined with (4.66), this implies (4.65). Hence, it suffices to show that
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For ∣ ∣ ≪x 1, combining the estimates of ( )KH x˜ in (4.2), (4.38) (when <x 0), (4.5), (4.6), and (4.42) (when
>x 0), we have that
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where the constant only depends on the upper bound of ′c . Therefore, to prove (4.67), it suffices to show that
∣ ∣∏ −

−x xk
cak

π is integrable near the origin. The latter is indeed the case when we choose =
−x 2k

k, and we
postpone its proof to the appendix. Therefore, the claim (4.65) is proven.

Finally, let ω denote the harmonic measure of D with pole at infinity. As in Section 3, we have that
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We remark that since ∂D is C1-regular, it is, in particular, Ahlfors regular, i.e., there are uniform constants
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This finishes the proof of Theorem 1.2 for the harmonic measure with pole at infinity.
Let ω (resp. ∞ω ) denote the harmonic measure in D with pole at ∈X D (resp. with pole at∞), and let

( )⋅G X, (resp. ( )∞ ⋅G , ) denote the Green’s function of the Laplacian in D with pole at X (resp. with pole at
∞). By applying the comparison principle in Lemma 2.3 to ( )⋅G X, and ( )∞ ⋅G , , we have that

( ) ( )⋅ ≈ ∞ ⋅G X G, , ,

as long as we are ( )∂ /X Ddist , 2-close to the boundary. By Lemma 2.4, it follows that
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This finishes the proof of Theorem 1.2. □
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Appendix

Lemma A.1. Assume that ∑ < /b 1 2k and =
−x 2k

k. The function
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is integrable near the origin. Moreover,
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It remains to estimate
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Similarly,
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Combining (A1), (A2), and (A3), we obtain
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□
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