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Abstract: We consider the asymptotic behavior of solutions to the Monge-Ampère equations with slow
convergence rate at infinity and fulfill previous results under faster convergence rate by Bao et al. [Monge-
Ampère equation on exterior domains, Calc. Var PDE. 52 (2015), 39–63]. Different from known results, we
obtain the limit of Hessian and/or gradient of solution at infinity relying on the convergence rate. The basic
idea is to use a revised level set method, the spherical harmonic expansion, and the iteration method.
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1 Introduction

We consider convex viscosity solutions to the Monge-Ampère equation:

�( ) ( )=D u f xdet in ,n2 (1)
where D u2 denotes the Hessian matrix of u and �( )∈f Cm n satisfies

∣ ∣ ∣ ( ( ) ( ))∣
∣ ∣

− ∞ < ∞ ∀ = …

→∞

+x D f x f k mlimsup , 0, 1, 2, ,
x

ζ k k (2)

for some ( )∞ >f 0, >ζ 0, and ≥m 2.
Equation (1) with f being a constant origins from two-dimensional minimal surfaces [22], improper

affine geometry [5,32], etc. The importance of f not being identical to a constant is mentioned in the study
by Calabi [5], Trudinger andWang [33], etc. As pointed out in [1,27,31,34], such equations are also related to
the Weyl and Minkovski problems, the Plateau type problems, affine geometry, and the mean curvature
equations of gradient graphs in weighted space.

When ( ) ( )≡ ∞ >f x f 0, the theorem by Jörgens [22] ( =n 2), Calabi [5] ( ≤n 5), and Pogorelov [32]
( ≥n 2) states that any classical convex solution of (1)must be a quadratic polynomial. For =n 2, a classical
solution of (1) is either convex or concave, and thus, the result holds without the convexity assumptions.
For different proofs and extensions, we refer to Cheng and Yau [7], Caffarelli [2], Jost and Xin [23], Fu [13], Li
et al. [25], Warren [35], etc.

When ( ) ( )− ∞f x f have compact support, Caffarelli and Li [4] proved that any convex viscosity solu-
tion must be asymptotic to quadratic polynomial at infinity (with additional ln-term when =n 2). Such
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asymptotic behavior has been refined further with an expansion of error at infinity by Hong [18] (for ∣ ∣ −x n2

order with ≥n 3) and Liu and Bao [28,29] (for higher order with =n 2 and ≥n 3).
When ( ) ( )− ∞f x f vanish at infinity, Bao et al. [1] proved the following asymptotic behavior result,

which is an extension to the previous results by Jörgens [22], Calabi [5], Pogorelov [32], and Caffarelli and
Li [4].

Hereinafter, we let ( )nSym denote the set of symmetric ×n n matrix, xT denote the transpose of vector
�∈x n, and convex viscosity solutions are defined as in [3,4]. We will write ( ) ∣ ∣ ( ∣ ∣)( )=

−φ x O x xlnm
k k1 2 with

�∈ ≥m k k, , 01 2 , if φ satisfies

∣ ( )∣ ∣ ∣ ( ∣ ∣) ∣ ∣( )= → +∞

− −D φ x O x x xln ask k k k1 2

for all ≤ ≤k m0 .

Theorem 1. (Bao et al. [1]) Let �( )∈u C n0 be a convex viscosity solution of (1), where �( )∈f Cm n satisfies (2)
with >ζ 2 and ≥m 3. If ≥n 3, there exist ( )< ∈A n0 Sym satisfying ( )= ∞A fdet , �∈b n and �∈c such that

( ) ⎛
⎝

⎞
⎠

⎧

⎨
⎩

(∣ ∣ )

(∣ ∣ ( ∣ ∣))

{ }

− + ⋅ + =
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=
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−

+

−

u x x Ax b x c
O x if ζ n
O x x if ζ n

1
2

, ,
ln , ,

T m
ζ n

m
n

1
2 min ,

1
2

(3)

as ∣ ∣ → ∞x . If =n 2, there exist A b, , and c as above and
�

( ( ) )∫= −d f x x1 dπ
1

4 2 such that

( ) ⎛
⎝

( )⎞
⎠

∣ ∣( )− + ⋅ + + =
+

−u x x Ax b x c d x Ax O x1
2

lnT T
m

ζ
1

2 ¯ (4)

as ∣ ∣ → ∞x for any { }<ζ ζ¯ min , 3 .

Remark 1. As discussed in Theorem 1.1 of [27], the original statement in Bao et al. [1] dropped the possibility
that when =ζ n in ≥n 3 case, which leads to the difference between (3) and (1.2) in [1]. Furthermore, from
(2.33) in [1], it seems that they also dropped the term of (∣ ∣ )−O x 1 order in spherical harmonic expansion at infinity

in (4), which makes the range of ζ̄ different from the original statement in [1]. See also Theorem 1.1 of [30].

In the previous work by the authors [27,30], when ≥n 3, the requirement ≥m 3 is reduced into ≥m 2,
and when =n 2, the asymptotic behavior (4) is further refined into

( ) ⎛
⎝

( )⎞
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⎧
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⎩

(∣ ∣ )
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ζ
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1
1

(5)

as ∣ ∣ → ∞x . Higher order asymptotic expansions when ζ is larger are also given in [27,30].
As pointed out by Bao et al. [1], by considering radially symmetric solutions, >ζ 2 is optimal such that u

is asymptotic to a quadratic function (with additional ln-term when =n 2) at infinity. See also the example
in Section 2.

We consider under slow convergence speed < ≤ζ0 2 and prove the asymptotic behavior at infinity. The
statement is separated into two parts since the requirement on the regularity of f when ≥n 3 is different
from =n 2 case.

Theorem 2. Let �( )∈u C n0 be a convex viscosity solution of (1), where ≥n 3 and �( )∈f Cm n satisfies (2) for
some < ≤ζ0 2 and ≥m 2. Then there exist ( )< ∈A n0 Sym satisfying ( )= ∞A fdet and �∈b n such that
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(6)

as ∣ ∣ → ∞x .
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Theorem 3. Let �( )∈u C0 2 be a convex viscosity solution of (1), where �( )∈f Cm 2 satisfies (2) for some
< ≤ζ0 2 and ≥m 3. Then there exist ( )< ∈A0 Sym 2 satisfying ( )= ∞A fdet and �∈b 2 such that
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as ∣ ∣ → ∞x .

Remark 2.We also investigate whether the asymptotic behavior results given earlier can be further refined.
The strategy is to prove existence result of entire or exterior solutions with explicit asymptotic behavior at
infinity. For ≠ζ 1, the optimality of (6) and (7) can be verified by radially symmetric solutions, where ( )f x
and ( )u x are as in (9) and (10). For =ζ 1, whether (6) and (7) are optimal remains a problem for now.

When ( )f x are asymptotic to radially symmetric functions other than a positive constant ( )∞f , such as
(∣ ∣) ∣ ∣= >f x x α, 0α

0 , there are existence results of entire or exterior solutions by Ju and Bao [24] and Dai and
Bao [10] and the references therein. For relevant study on existence and asymptotics of radially symmetric
solutions to the Monge-Ampère type equations, we refer to Chen and Jian [6], Cui and Jian [8], Dai [9], Hao
and Dai [16], Dai et al. [11], etc. Especially, when the right-hand side of the Monge-Ampère type equations
involves functions of u, there are Keller-Osserman type results for existence of entire subsolutions [19,20],
Brunn-Minkowski type inequalities [17], and asymptotics for singular Dirichlet problems [37].

The article is organized as follows. In Section 2, we give the asymptotic expansion of radially symmetric
solutions where ∣ ∣= +

−f x1 ζ with < ≤ζ0 2 at infinity. In Section 3, we capture the quadratic term of u given
in Theorems 2 and 3 at infinity, i.e., there exist ( )< ∈A n0 Sym satisfying ( )= ∞A fdet and >C ε, 0
such that

( ) ∣ ∣− ≤

−u x x Ax C x1
2

.T ε2 (8)

In Section 4, we prepare some necessary results on existence of solution to Poisson equations on exterior
domain. In Sections 5 and 6, we prove Theorems 2 and 3, respectively.

2 Radially symmetric examples

Consider positive radially symmetric function �( )∈

∞f C n with

( )
⎧

⎨
⎩

∣ ∣

∣ ∣ ∣ ∣
=

≤ ≤

+ >

−
f x

x
x x

1, 0 1,
1 , 2,ζ (9)

where < ≤ζ0 2. By a direct computation, we have the following radially symmetric solution of (1)

( )
⎛

⎝

⎜⎜
( )

⎞

⎠

⎟⎟
∫ ∫=

−u x n t f t t sd d ,
r s

n

0 0

1n

n

1

1

(10)

where ∣ ∣≔ ≥r x 0. We shall obtain asymptotic expansion at infinity.

Theorem 4. Let ( ) ( )f x u x, be as in (9) and (10). Then for sufficiently large ∣ ∣x , we have the following asymp-
totic expansion at infinity. When < <ζ n0 ,
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Here, the constants, C C C C, , ,0 1 2 3, and C4 are given in the following proof.

Proof. When <ζ n, for all > >r R 2, we have from (10) that
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By a direct computation, we obtain the desired result (11) with
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When =ζ n, since < ≤ζ0 2 and ≥n 2, the only possibility is = =ζ n 2. Thus, for all > >r R 2, we have
from (10) that
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Consequently, we obtain the desired result (12) with
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By the asymptotic expansion results in Theorem 4, we have the following corollary, which proves
Theorems 2 and 3 for radially symmetric cases and shows the optimality of (6) and (7) for ≠ζ 1.
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Corollary 1. Let ( ) ( )f x u x, be as in (9) and (10). When ≥n 3, we have
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for all >r R. The desired estimates in (13) and (14)with <ζ 2 follow immediately, and they are optimal in the
sense that the order −r ζ2 cannot be smaller.

When = <ζ n2 , we have from asymptotic expansion (11) that = >

−

C 0n ζ1
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for all >r R. The desired estimate in (13) with =ζ 2 follows immediately, and it is optimal in the sense that
the order rln cannot be smaller.

When =ζ n, we have from asymptotic expansion (12) that there exist >C R, 0 such that
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for all >r R. The desired estimate in (14) with =ζ 2 follows immediately, and it is optimal in the sense that
the order ( )rln 2 cannot be smaller. □

3 Quadratic term at infinity

In this section, we capture the quadratic term at infinity. Furthermore, by the interior regularity of viscosity
solutions by Caffarelli [2] and Figalli et al. [12] and the extension theorem of convex functions by Min [36],
we may assume without loss of generality that f is strictly positive and u is a classical solution.

Theorem 5. Let �( )∈u C n0 be a convex viscosity solution of (1) with ≥n 2 and �( ) = =u u0 min 0n . Let
�( )< ∈f C0 n0 satisfy
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⎛

⎝

⎜
⎜

( )
⎞

⎠

⎟
⎟

∫ − ≤

−f z z CR1 d
B

n
n

ζ1 1

R

n
1

(15)

for some >C 0 and >ζ 0. Then there exists a linear transform T satisfying =Tdet 1 such that ( ) ( )≔v x u Tx
satisfies

( ) ∣ ∣ ∣ ∣ ∣ ∣− ≤ ∀ ≥

−v x x C x x1
2

, 1ε2 2 (16)

for some >C 0 and
{ }

< <ε0 min , ζ1
10 3 .

Remark 3. If �( )∈f C n0 satisfies

�∣ ( ) ∣ ∣ ∣− ≤ ∀ ∈

− ′f x C x x1 ,ζ n (17)

for some >C 0 and ′ >ζ 0. Then (15) holds with = ′ζ ζ or any < <ζ0 1 when < ′ <ζ0 1 or ′ ≥ζ 1, respec-
tively. In fact, by a direct computation, for all >R 2, there exists >C 0 (which may vary from term to term)
such that

( ) ∣ ( ) ∣

⎧

⎨

⎪

⎩
⎪

( )

∫ ∫− ≤ − ≤

< ′ <

′ =

′ >

− ′

f x x C f x x
CR ζ
C R ζ
C ζ

1 d 1 d
, if 0 1,

ln , if 1,
, if 1.B

n
n

B

n

n ζ

1

1

R R

Theorem 5 has been proved in Theorem 1.2 by Bao et al. [1] when =ζ 1, and it follows similarly from the

proof therein (see also Proposition 3.3 by Caffarelli and Li [4]) by changing the ε from 1
10

into
⎧

⎨
⎩

⎫

⎬
⎭

min ,ζ
3

1
10 .

Theorem 5 proves estimate (8) by a change of variable.

Proof of (8). Let u be as in Theorems 2 and 3. Change of variable by setting

�( )
( ( ))

( ( ) ( ) ( ))≔

∞

− ⋅ − ∀ ∈u x
f

u x Du x u x¯ 1 0 0 , .n
n
1

By a direct computation, ū satisfies equation (1) with f replaced by ( )
( )

( )
≔

∞

f x̄ f x
f . By taking =k 0 in (2), f̄

verifies condition (17) with >ζ 0 given in Theorems 2 and 3. By Theorem 5, there exists a linear transformT
with =Tdet 1 such that ( ) ( )≔

∼u x u Tx¯ satisfies (16). Since T is invertible, we have

( ) ( ) ( ) ( ) ( ) ( ) ∣ ∣ ∣ ∣ ∣ ∣− = − = − ≤ ≤

− −u x x T T x u Tx Tx Tx u y y C y C x¯ 1
2

¯ 1
2

¯ 1
2

T T T ε ε2 2 2

for some >C 0, where ≔y Tx. Then (8) follows immediately by the definition of ū and taking
( ( ))≔ ∞ >A f T T 0Tn

1
. □

4 Preliminary on Poisson equations

In this section, we introduce the existence results for Poisson equation on exterior domain, i.e.,

�= ⧹v g BΔ in .n
1 (18)

Hereinafter, we let ( )B xr denote the ball centered at x with radius r and ( )≔B B 0r r .

Lemma 1. Let �( )∈

∞g C n with ≥n 2 satisfy

Asymptotics to the Monge-Ampère equations with slow convergence rate  7



�∣∣ ( )∣∣ ( )( )⋅ ≤ >

−

−g r c r r for rln 1L
k k

0p n 1 1 2 (19)

for some > > ≥c k k0, 0, 00 1 2 and > ≥p p, 2n
2 . Then there exists a smooth solution v of (18) such that

∣ ( )∣ ∣ ∣ ( ∣ ∣)≤

−v x Cc x xln ,k k
0

2 1 (20)

for some constant C relying only on n k k p, , ,1 2 , and

�

�

�

�

⎧

⎨

⎪
⎪

⎩

⎪
⎪

{ }

{ }

{ }

=

∉ =

+ ∈ ⧹ =

+ = =

− ∉ ∉ ≥

+ − ∈ ∈ ≥

k

k if k and n
k if k and n
k if k and n
k if k n k and n
k if k n or k and n

, , 2,
1, 2 , 2,
2, 2, 2,

, , 1, 2 , 3,
1, 1, 2 , 3.

2 1

2 1

2 1

2 1 1

2 1 1

(21)

Proof. The result on =n 2 can be found in Lemma 2.1 in [30], and the result on ≥n 3 with >k 21 can be
found in Lemma 3.1 in [29]. Hence, we only need to prove for ≥n 3 and < ≤k0 21 case.

Let � −Δ n 1 be the Laplace-Beltrami operator on unit sphere � �⊂

−n n1 and

( )= = − = … = + − …n n k k nΛ 0, Λ 1, Λ 2 , , Λ 2 , ,k0 1 2

be the sequence of eigenvalues of �− −Δ n 1 with eigenfunctions

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
= … … … …Y Y θ Y θ Y θ Y θ Y θ1, , , , , , , , , ,n

k
m

k
1

0
1

1
2

1 1
1 k

i.e.,

� ( ) ( )( ) ( )
− = ∀ = …− Y θ Y θ m mΔ Λ , 1, 2, , .m

k
k m

k
kn 1

The family of eigenfunctions forms a complete standard orthogonal basis of �( )−L n2 1 .
Expand g and the wanted solution v into

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
∑ ∑ ∑ ∑= =

=

+∞

= =

+∞

=

v x a r Y θ g x b r Y θand ,
k m

m

k m m
k

k m

m

k m m
k

0 1
,

0 1
,

k k

(22)

where ∣ ∣
∣ ∣

= =r x θ, x
x and

� �

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
∫ ∫≔ ⋅ ≔ ⋅

− −

a r v rθ Y θ θ b r g rθ Y θ θd , d .k m m
k

k m m
k

, ,
n n1 1

In spherical coordinates,

�= ∂ +

−

∂ + −v v n
r

v
r

vΔ 1 1 Δ ,rr r 2
n 1

and (18) becomes

⎛
⎝

( ) ( ) ( )⎞
⎠

( ) ( ) ( )( ) ( )
∑ ∑ ∑ ∑

″ +

−

′ − =

=

∞

= =

+∞

=

a r n
r

a r
r

a r Y θ b r Y θ1 Λ .
k m

m

k m k m
k

k m m
k

k m

m

k m m
k

0 1
, , 2 ,

0 1
,

k k

By the linearly independence of eigenfunctions, for all �∈k and = …m m1, 2, , k,

( ) ( ) ( ) ( )″ +

−

′ − = >a r n
r

a r
r

a r b r r1 Λ for 1.k m k m
k

k m k m, , 2 , , (23)

By solving the ordinary differential equations, there exist constants ( ) ( )C C,k m k m,
1

,
2 such that for all >r 1,

( ) ( ) ( )( ) ( )
∫ ∫= + −

−

+

−

− − − − − + −a r C r C r
n

r τ b τ τ
n

r τ b τ τ1
2

d 1
2

d .k m k m
k

k m
n k k

r

k
k m

k n

r

k n
k m, ,

1
,
2 2

2

1
,

2

2

1
, (24)

By (19),
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�
∣ ( )∣ ∣∣ ( )∣∣ ( )

( )
∑ ∑ = ⋅ ≤

=

+∞

=

−

−

−
b r g r c ω r rln

k m

m

k m L n

p
p k k

0 1
,

2 2
0
2

2
2 2

k

n2 1 1 2 (25)

for all >r 1. Then

( ) ( )
⎧

⎨
⎩

∈ +∞

≥ < ≤

≥ < ≤

−r b r L k k
k k

2, for 1, if 1 2,
2, if 0 1.

k
k m

1
,

1 1

1
(26)

We choose ( )Ck m,
1 and ( )Ck m,

2 in (24) such that

( ) ( ) ( )∫ ∫≔ −

−

+

−

+∞

− − − + −a r
n

r τ b τ τ
n

r τ b τ τ1
2

d 1
2

dk m
k

r

k
k m

k n

r

k n
k m,

1
,

2

2

1
, (27)

for all k verifying (26) and

( ) ( ) ( )∫ ∫≔ −

−

+

−

− − − + −a r
n

r τ b τ τ
n

r τ b τ τ1
2

d 1
2

dk m
k

r

k
k m

k n

r

k n
k m,

2

1
,

2

2

1
, (28)

for all rest k.
For < <k1 21 case, we may pick �{ ( )}< ≔ε k0 min 1, dist ,1

2 1 such that

⎧

⎨
⎩

− − > −

− − + < − ≥

+ − − − > − ≥

k ε
k k ε k

k n k ε k

3 2 1,
3 2 2 1, for 1,
2 2 2 1 1, for 1.

1

1

1

Then by (25) and Hölder inequality, we have

( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

∫ ∫ ∫

∫

∫ ∫ ∫

∫ ∫

∫ ∫

∫

∫ ∫

∫

∫ ∫

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑ ∑ ∑

+

≤ + +

+

≤ ⋅ +

⋅ +

⋅ +

⋅

≤ +

+

≤ +

≤ ⋅

=

+∞

=

− −

=

+∞

=

+∞

−

=

+∞

=

− − + −

− − −

−

− − − −

−

−

=

+∞

=

+∞

− − +

+∞

−

+

=

+∞

=

− − + − − −

−

−

− − −

−

=

+∞

=

− +

+∞

−

+

=

+∞

=

− − −

−

− − −

=

+∞

=

−

− +

+∞

−

=

+∞

=

+

−

a r a r

τ b τ τ r τ b τ τ r τ b τ τ

r τ b τ τ

τ τ τ τ τ b τ τ
τ

r τ τ τ

τ τ b τ τ
τ

r τ τ τ

τ τ b τ τ
τ

r τ τ τ

τ τ b τ τ
τ

Cr r τ τ b τ τ
τ

C r τ τ τ b τ τ
τ

C r τ τ τ b τ τ
τ

Cr r τ τ b τ τ
τ

Cr r τ τ b τ τ
τ

Cc r r

2 d 2 d 2 d

2 d

2 ln d ln d 2 ln d

ln d 2 ln d

ln d 2 ln d

ln d

ln ln d ln ln d

ln ln d

ln ln d ln ln d

ln .

k m

m

k m

r

n

r

n

k m

m
k

r

k
k m

k m

m
k n

r

k n
k m

r

k ε k

r

k k
ε

n

r

n k ε k

r

k k
ε

k m

m
k

r

k k ε k

r

k k
k m ε

k m

m
k n

r

k n k ε k

r

k k
k m ε

k ε k

r

k k
k m ε

k m

m
k ε k

r

k k
k m ε

k m

m
k ε k

r

k k
k m ε

k ε k

r

k k

k m

m

k m ε
k ε k

r

k k

k m

m

k m ε

k k

0,1
2

1 1
,

2

2

1
0,1

2

2

2

1
0,1

2

1 1

2 1
,

2

1 1

2 2

2

1
,

2

2

3 2 2

2

2 2
0,1
2

1
4 2

2

2 2 1 2

2

2 2
0,1
2

1
1 1

2 3 2 2 2

2 2
,

2
1

1 1

4 2 2

2

2 2 2 1 2

2

2 2
,

2
1

4 2 2

2

2 2
,

2
1

1 1

4 2 2 2 2
,

2
1

1 1

4 2 2

2

2 2
,

2
1

4 2 2

2

2 2

0 1
,

2
1

4 2 2 2 2

0 1
,

2
1

0
2 4 2 2

k

k

k

k

k

k

k

k k

1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2
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For < <k0 11 case, we may pick �{ ( )}< ≔ε k0 min 1, dist ,1
2 1 such that

⎧

⎨
⎩

− − > −

− − + < − ≥

+ − − − > − ≥

k ε
k k ε k

k n k ε k

1 2 1,
3 2 2 1, for 2,
2 2 2 1 1, for 1,

1

1

1

and change a m1, with = …m n1, 2, , into (28). The estimates of ( ) ( )+ ∑ ∑

=

+∞

=

a r a rk m
m

k m0,1
2

1 1 ,
2k follow similarly.

For =k 21 case, we may pick < ≔ε0 1
2 such that

⎧

⎨

⎪

⎩
⎪

− − − > −

− − + < − ≥

+ − − − > − ≥

n k ε
k k ε k

k n k ε k

2 2 1 1,
3 2 2 1, for 1,
2 2 2 1 1, for 1,

1

1

1

and use the following estimates of a0,1
2 .

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

∫ ∫

∫ ∫

∫ ∫

≤ +

≤ ⋅

+ ⋅

≤ ⋅

− −

− −

− − − − −

−

− +

a r τ b τ τ r τ b τ τ

τ τ τ τ τ b τ τ
τ

r τ τ τ τ τ b τ τ
τ

Cc r r

2 d 2 d

2 ln d ln d

2 ln d ln d

ln .

r

n

r

n

r

k

r

k k

n

r

n k ε k

r

k k
ε

k k

0,1
2

2

1
0,1

2

2

2

1
0,1

2

2

1 2

2

2 2
0,1
2

4 2

2

2 2 1 2

2

2 2
0,1
2

1

0
2 4 2 2 2

2 1 2

1 2 1 2

1 2

The rest parts of estimate follow similarly.

For =k 11 case, we may pick < ≔ε0 1
2 such that

⎧

⎨
⎩

− − > −

− − + < − ≥

+ − − − > − ≥

k ε
k k ε k

k n k ε k

3 2 1,
3 2 2 1, for 2,
2 2 2 1 1, for 1,

1

1

1

and we use the following estimates of ∑

=

am
m

m1 1,
21 .

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

∫ ∫

∫ ∫

∫ ∫

∑ ∑ ∑

∑

∑

≤ +

≤

+

≤ ⋅

= = =

−

=

− −

=

− − + − −

−

− +

a r r b τ τ r τ b τ τ

r τ τ τ τ τ b τ τ
τ

r τ τ τ τ τ b τ τ
τ

Cc r r

2 d 2 d

2 ln d ln d

2 ln d ln d

ln .

m

m

m
m

m r

m
m

m
n

r

n
m

m

m r

k

r

k k
m

m

m
n

r

n k ε k

r

k k
m ε

k k

1
1,
2

1

2

2

1,

2

1

2 2

2

1,

2

1

2

2

1 2

2

2 2
1,
2

1

2 2

2

2 2 1 2

2

2 2
1,
2

1

0
2 4 2 2 2

1 1 1

1
2 1 2

1
1 2 1 2

1 2

The rest parts of estimate follow similarly.
Consequently, ( )v r is well defined, is a solution of (18) in distribution sense [15], and satisfies

�
∣∣ ( )∣∣

⎧

⎨
⎩

( ) { }

( ) { }( )
⋅ ≤

⋅ ∉

⋅ ∈

−

− +

−
v r

Cc r r k
Cc r r k

ln , 1, 2 ,
ln , 1, 2 .L

k k

k k
2 0

2 4 2 2
1

0
2 4 2 2 2

1
n2 1

1 2

1 2
(29)

By interior regularity theory of elliptic differential equations, v is smooth [14]. It remains to prove the
pointwise decay rate at infinity.
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For any ≫r 1, we set

( ) ( )≔ ∀ ∈ ⧹ ≕v x v rx x B B D.r 4 1

Then vr satisfies

( ) ( )= ≕v r g rx g x DΔ in .r r
2

By weak Harnack inequality (see, for instance, Theorem 8.17 of [14], see also (2.11) of [15]),

∣ ( )∣ ( ) ( )
∣ ∣

( ) ( )≤ ⋅ ‖ ‖ + ‖ ‖

< <

v x C n p v gsup , .
x

r r L D r L D
2 3

p2

By (29),

�

∣∣ ∣∣ ∣ ( )∣

( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( ) { }

( ) { }

⎧

⎨
⎩

( ) { }

( ) { }

( )

( )

∫

∫

∫

∫

=

= ‖ ‖ ⋅

≤

⋅ ⋅ ∉

⋅ ⋅ ∈

≤

⋅ ∉

⋅ ∈

⧹

− −

− − −

− − + −

−

− +

−

v
r

v x x

r v τθ τ τ

Cc r τ τ τ τ k

Cc r τ τ τ τ k

Cc r r k
Cc r r k

1 d

d

ln d , 1, 2 ,

ln d , 1, 2 ,

ln , 1, 2
ln , 1, 2 .

r L D n
B B

n

r

r

L
n

n

r

r

k k n

n

r

r

k k n

k k

k k

2 2

4

2 1

0
2

4

4 2 2 1
1

0
2

4

4 2 2 2 1
1

0
2 4 2 2

1

0
2 4 2 2 2

1

r r

n

2

4

2 1

1 2

1 2

1 2

1 2

By (19),

∣∣ ∣∣ ∣ ( )∣

( )

( )

( ) ∫

∫

=

≤ ⋅ ⋅

≤ ⋅

⧹

− − −

−

g r
r

g x x

Cc r τ τ τ τ

Cc r r

d

ln d

ln .

r L D
p

p

n
B B

p

p p n

r

r

pk pk n

p p pk pk

2

0
2

4

1

0
2

p

r r4

1 2

1 2

By combining the aforementioned estimates, we have

∣ ( )∣ ∣ ( )∣
⎧

⎨
⎩

( ) ( ) { }

( ) ( ) { }∣ ∣ ∣ ∣

= ≤

+ ∉

+ ∈
< < < <

− −

− + −

v x v x Cc r r Cc r r k
Cc r r Cc r r k

sup sup ln ln , 1, 2 ,
ln ln , 1, 2 ,r x r x

r
k k k k

k k k k2 3 2 3

0
2

0
2

1

0
2 1

0
2

1

1 2 1 2

1 2 1 2

where C relies only on n k k, ,1 2, and p. This finishes the proof of Lemma 1. □

Similar to Lemma 3.2 in [29], by interior estimate, we have the vanishing speed for higher order
derivatives as below.

Lemma 2. Let �( )∈

∞g C n satisfy

( ) ∣ ∣ ( ∣ ∣) ∣ ∣( )= → +∞

−g x O x x as xlnl
k k1 2

for some > ≥k k0, 01 2 , �− ∈l 1 . Then

( ) ∣ ∣ ( ∣ ∣)( )=
+

−v x O x xln ,g l
k k

1
2 1

where vg denotes the solution found in Lemma 1, and k is as in (21).
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5 Proof for n 3≥ case

In this section, we prove Theorem 2. By Theorem 3.1 and Remark 3.3 in [27] (see also Corollary 2.1 in [26] or
Theorem 2.2 in [21]), we have the following result on linear elliptic equations.

Theorem 6. Let v be a classical solution of

�( ) ( )=a x D v f x in ,ij ij
n (30)

that is bounded from at least one side or ∣ ( )∣ (∣ ∣ )=

−Dv x O x 1 as ∣ ∣ → ∞x , where ≥n 3, the coefficients are
uniformly elliptic, satisfying �( )‖ ‖ < ∞aij Cα n for some < <α0 1 and

( ) ( ) (∣ ∣ ) ∣ ∣= ∞ + → ∞

−a x a O x as x ,ij ij
ε (31)

for some >ε 0 and [ ( )] ( )< ∞ ∈a n0 Symij . Hereinafter, [ ]aij denotes the n by n matrix with the i j, -position
being aij. Assume that �( )∈f C n0 satisfies

( ) (∣ ∣ ) ∣ ∣= → ∞

−f x O x as x ,ζ (32)

for some >ζ 2. Then there exists a constant
∞

v such that

( )
⎧

⎨
⎩

(∣ ∣ )

(∣ ∣ ( ∣ ∣))

{ }

= +

≠

=

∞

−

−

v x v
O x ζ n
O x x ζ n

, ,
ln , ,

n ζ

n

2 min ,

2 (33)

as ∣ ∣ → ∞x .

Lemma 3. Let u, f be as in Theorem 2 and A ε, be as in (8). Then there exists >α 0 such that for some >C 0,

�∣∣ ∣∣ ( ) ≤D u CC
2 α n (34)

and

( ) (∣ ∣ ) ∣ ∣− = → ∞
+

−u x x Ax O x as x1
2

.T
m

ε
1

2 (35)

Proof. As proved in Section 3, there exist A ε, such that (8) holds. For sufficiently large ∣ ∣ >x 2, set ∣ ∣≔R x
and

( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣= + ≤u y
R

u x R y y4
4

, 2.R
2

Then by (8), there exists >C 0 uniform to >R 2 such that

( )‖ ‖ ≤u C.R C B0
2

By a direct computation, uR satisfies

( ) ⎛
⎝

⎞
⎠

( )= + ≕D u y f x R y f y Bdet
4

in .R R
2

2 (36)

By taking =k 0, 1 in condition (2), there exists >C 0 uniform to >R 2 such that

∥ ( )∥ ( )− ∞ ≤

−f f CR ,R C B
ζ0

2

and for any < <α0 1 and ∈y y B,1 2 2, ≠y y1 2,

∣ ( ) ( )∣

∣ ∣

∣ ( ) ( )∣

∣ ∣
⎛
⎝

⎞
⎠

−

−

=

−

−

⋅ ≤

−

f y f y
y y

f z f z
z z

R CR
4

,R R
α α

α
ζ1 2

1 2

1 2

1 2

where ( )≔ + ∈ ∣ ∣z x y B xi
R

i4
x
2

for =i 1, 2. By the interior estimates by Caffarelli [2] and Figalli et al. [12], we
have
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∥ ∥ ( ) ( )
≤ ‖ ‖ ≤D u C f CR C B R C B

ρ2 α α1 2
(37)

for some >ρ 1 and >C 0 uniform to >R 2. This yields (34) by a direct computation.
Let

( ) ( ) ( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣≔ − ≔ + ≤v x u x x Ax v y
R

v x R y y1
2

and 4
4

for 2,T
R

2

where ∣ ∣= >R x 2 as mentioned earlier. Then by (8), there exists >C 0 uniform to ∣ ∣ >x 2 such that

∥ ∥ ( ) ≤

−v CR .R C B
ε0

2

Hereinafter, we set ( ) ≔F M Mdet , ( )D F MMij denote the partial derivative of F with respect to Mij position,
and ( )D F MM M,ij kl denote the partial derivative of F with respect to M M,ij kl positions. By applying
Newton–Leibnitz formula between (36) and ( ) ( )= ∞F A f , we have

 ( ) ( ) ( )= − ∞a y D v f y f Bin ,ij ij R R 2 (38)

where ( ) ( ( ))∫= +a y D F A tD v y tdij M R0

1 2
ij . Since F is smooth, by (37), we have >C 1 uniform to >R 2 such that

 ∥ ∥ ( )≤ ≤ ≤

I
C

a CI B a Cin and .ij ij C B1 α
1

By interior Schauder estimates as Theorem 6.2 of [14], we have

∥ ∥ (∥ ∥ ∥ ( )∥ )
⎛
⎝

⎞
⎠

( ) ( )
{ }

≤ + − ∞ ≤

−v C v f f CR .R C B R C B R C B
ε ζmin ,

α
α

2, 1
2

0
1 1 (39)

Higher order derivative estimates follow by further differentiating the equation and interior Schauder
estimates. More rigorously, for any ∈ ∂e B1, by taking partial derivative to ( ( )) ( )+ =F A D v y f yR R

2 , we have

 ( ) ( )=a y D v D f y Bin ,ij ije R e R 2 (40)

where  ( ) ( ( ))= +a y D F A D v yij M R
2

ij . By condition (2),

( ) ( )‖ − ∞ ‖ ≤ ∀ = … −

−f f CR k m, 0, 1, , 1.R C B
ζk α,

1

By (37), since F is smooth and uniformly elliptic, we may apply interior Schauder estimate to (40) and
obtain

( )
{ }

‖ ‖ ≤

−D v CR .e R C B
ε ζmin ,α2, 1

4

By taking partial derivative once again,

 ( ) ( ( )) ( )+ + =a y D v D F A D v y D v D v D f y Bin .ij ijee R M M R ije R kle R ee R,
2

2ij kl

Since F is smooth, condition (2) and the aforementioned estimate provides

∥ ( ( )) ∥ ( )
{ }

− + ≤

−D f D F A D v y D v D v CRee R M M R ije R kle R C B
ε ζ

,
2 min ,

ij kl
α 1

4

for some >C 0 for all >R 2. By taking further derivatives and iterate, for all = … +k m0, 1, , 1, there exists
>C 0 such that

∣ ( )∣ { }
≤

−D v CR0k
R

ε ζmin ,

for all >R 2. From the proof in Theorem 5, we have < <ε ζζ
3 and then (35) follows by scaling back. □

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Applying Newton-Leibnitz formula between equation (1) and ( )= ∞A fdet , we obtain

that ≔ −v u x AxT1
2 satisfies
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( ) ( ) ( ) ( ) ( )∫≔ + ⋅ = − ∞ ≕a x D v D F tD v A t D v f x f f xd .ij ij M ij

0

1

2
ij (41)

For any ∈ ∂e B1, by the concavity of operator F , we act partial derivative De and Dee to equation (1) and
obtain

 ( ) ( ) ( )≔ + =a x D v D F D v A D v D f xij ije M ije e
2

ij (42)

and

 ( ) ( )≥a x D v D f x .ij ijee ee (43)

By (34) and (35) from Lemma 3, we have >C 0 such that

∣ ( ) ( )∣ ∣ ( ) ( )∣
∣ ∣

− + − ≤a x D F A a x D F A C
x

.ij M ij M εij ij

By condition (2), we have (∣ ∣ )=

− −D f O xee
ζ2 as ∣ ∣ → +∞x . By constructing barrier functions (see, for instance,

[21,26]), there exists >C 0 such that for all �∈x n,

( )
⎧

⎨
⎩

∣ ∣

∣ ∣ ( ∣ ∣)

{ }

≤

≠ −

= −

− +

−

D v x
C x ζ n
C x x ζ n

, 2,
ln , 2.ee

n ζ

n

2 min , 2

2

By the arbitrariness of e,

( )( )
⎧

⎨
⎩

∣ ∣

∣ ∣ ( ∣ ∣)

{ }

≤

≠ −

= −

− +

−

λ D v x
C x ζ n
C x x ζ n

, 2,
ln , 2.

n ζ

nmax
2

2 min , 2

2

By condition (2) and the ellipticity of equation (41),

( )( ) ( ) ∣ ( )∣
⎧

⎨
⎩

∣ ∣

∣ ∣ ( ∣ ∣)

{ }

≥ − − ≥

− ≠ −

− = −

− +

−

λ D v x Cλ D v C f x
C x ζ n

C x x ζ n
, 2,

ln , 2.

n ζ

nmin
2

max
2

2 min , 2

2

Hence, there exists >C 0 such that

∣ ( )∣
⎧

⎨
⎩

∣ ∣

∣ ∣ ( ∣ ∣)

{ }

≤

≠ −

= −

− +

−

D v x
C x ζ n
C x x ζ n

, 2,
ln , 2.

n ζ

n
2

2 min , 2

2
(44)

Rewrite (41) into

( ) ( ) ( ( ) ( )) ( ) ( )= + − ≕D F A D v f x D F A a x D v x g x .M ij M ij ijij ij

Let

( ) ( ) ( )[ ]≔ ≔

∼Q D F A v x v Qxand .Mij
1
2 (45)

Since trace is invariant under cyclic permutations, we have

�( ) ( ) ( )͠= ≕

∼v x g Qx g xΔ in .n (46)

If < ≤ζ0 1, then (44) becomes

∣ ( )∣

⎧

⎨

⎪

⎩
⎪

(∣ ∣ )

(∣ ∣ ( ∣ ∣))

=

< <

= ≥

= =

−

−

D v x
O x ζ

ζ n
O x x ζ n

, if 0 1,
or 1 and 4,

ln , if 1 and 3.

ζ

2

1

By a direct computation, it yields
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∣ ( )∣ ∣ ( )∣

⎧

⎨

⎪

⎩
⎪

(∣ ∣ )

(∣ ∣( ∣ ∣))

(∣ ∣( ∣ ∣) )

=

< <

= ≥

= =

∼

−

v x v x
O x ζ
O x x ζ n
O x x ζ n

,
, if 0 1,

ln , if 1 and 4,
ln , if 1 and 3.

ζ
2

2

2

2
2

By letting vR as in the proof of Lemma 3 and applying interior Schauder estimates, we have

⎧

⎨

⎪

⎩
⎪

( )

( )

( )‖ ‖ ≤

< <

= ≥

= =

−

−

−

D v
CR ζ
CR R ζ n
CR R ζ n

, if 0 1,
ln , if 1 and 4,
ln , if 1 and 3,

e R C B

ζ

1

1 2

α2, 1
4

for some >C 0 for all >R 2 and ∈ ∂e B1. By applying higher order derivatives to (40) and iterate, we have
estimates of higher order derivatives and obtain

( ) (∣ ∣ )

⎧

⎨

⎪

⎩
⎪

(∣ ∣ )

(∣ ∣ ( ∣ ∣) )

(∣ ∣ ( ∣ ∣) )

͠ = +

< <

= ≥

= =

−

−

−

−

−

−

−

g x O x
O x ζ
O x x ζ n
O x x ζ n

, if 0 1,
ln if 1 and 4,
ln , if 1 and 3.

m
ζ

m
ζ

m

m

1
2

1
2 2

1
2 4

By Lemmas 1 and 2, there exists a solution ͠vg of (46) on � ⧹Bn
1 with

( )
⎧

⎨
⎩

(∣ ∣ )

(∣ ∣( ∣ ∣))
͠ =

< <

=

∼

−

v x O x ζ
O x x ζ

, if 0 1,
ln , if 1.g

m
ζ

m

2

Since ͠−

∼ ∼v vg is harmonic on � ⧹Bn
1 and (∣ ∣ )͠− =

∼ ∼v v o xg
2 as ∣ ∣ → ∞x , by spherical harmonic decomposition,

we have

(∣ ∣) ∣ ∣− = → +∞

∼ ∼v v O x xasg l

for any �∈l . By rotating back and applying interior Schauder estimates again, we have the desired results.
If < ≤ζ1 2, then (44) implies ∣ ∣ (∣ ∣ )=

−D v O x2 1 as ∣ ∣ → ∞x . Since (∣ ∣ )=
−

− −D f O xe m
ζ

1
1 at infinity and the

coefficients of equation (42) has uniformly bounded Cα norm, by Theorem 6, there exists �∈be such that

( )
⎧

⎨
⎩

(∣ ∣ )

(∣ ∣ ( ∣ ∣))
∣ ∣

{ }

= +

≠ −

= −

→ ∞

− +

−

D v x b
O x ζ n
O x x ζ n

x
, 1,

ln , 1,
as .e e

n ζ

n

2 min , 1

2 (47)

Picking e as n unit coordinate vectors of �n, we found �∈b n from (47) and let

( ) ( ) ( ) ⎛
⎝

⎞
⎠

≔ − ⋅ = − + ⋅w x v x b x u x x Ax b x1
2

.T

By (47), since − ≥n 1 2 and < ≤ζ1 2,

∣ ( )∣ ∣ ∣

⎧

⎨

⎪

⎩
⎪

(∣ ∣ )

(∣ ∣ ( ∣ ∣))

( )= − … − =

< <

= >

= =

−

−

Dw x D v b D v b
O x ζ

ζ n
O x x ζ n

, ,
, if 1 2,

or 2 and 3,
ln , if 2 and 3,

x x n

ζ

1

1

1
n1 (48)

as ∣ ∣ → ∞x . By a direct computation, (48) yields

∣ ( )∣

⎧

⎨

⎪

⎩
⎪

(∣ ∣ )

( ∣ ∣)

(( ∣ ∣) )

=

< <

= >

= =

−

w x
O x ζ
O x ζ n
O x ζ n

, if 1 2,
ln , if 2 and 3,
ln , if 2 and 3,

ζ
1

2

1

1
2

as ∣ ∣ → ∞x . Similar to the proof of Lemma 3, we set

( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣≔ + ≤w y
R

w x R y y4
4

, 2.R
2

Then
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( ) ⎛
⎝

⎞
⎠

( ) ( ( )) ( )= + = + =D w y D w x R y D v y F A D w y f y B
4

and in .R R R R
2 2 2 2

2

For any ∈ ∂e B1, by taking partial derivative to the aforementioned equation, we have

 ( ) ( ) ( )=a y D w y D f y Bin ,ij ije R e R 2

where the coefficients are uniformly (to R) elliptic with uniform Cα-norm in B1. By interior Schauder
estimate and taking further derivatives, there exists >C 0 independent of R such that

∣ ( )∣

⎧

⎨

⎪

⎩
⎪ ( )

≤

< <

= >

= =

−

−

−

D w
CR ζ
CR R ζ n
CR R ζ n

0
, if 1 2,
ln , if 2 and 3,
ln , if 2 and 3,

k
R

ζ

2

2 2

for all = … +k m0, 1, , 1. Similar to the previous case, we set Q as in (45) and ( ) ( )≔

∼v x w Qx . Then by the
aforementioned computation, we have

( ) (∣ ∣ )

⎧

⎨

⎪

⎩
⎪

(∣ ∣ )

(∣ ∣ ( ∣ ∣) )

(∣ ∣ ( ∣ ∣) )

͠ = +

< <

= >

= =

−

−

−

−

−

−

−

g x O x
O x ζ
O x x ζ n
O x x ζ n

, if 1 2,
ln if 2 and 3,
ln , if 2 and 3.

m
ζ

m
ζ

m

m

1
2

1
4 2

1
4 4

By Lemmas 1 and 2, there exists a solution ͠vg of (46) on � ⧹Bn
1 with

( )
⎧

⎨
⎩

(∣ ∣ )

(( ∣ ∣))
͠ =

< <

=

∼

−

v x O x ζ
O x ζ

, if 1 2,
ln , if 2.g

m
ζ

m

2

Since ͠−

∼ ∼v vg is harmonic on � ⧹Bn
1 and (∣ ∣)͠− =

∼ ∼v v o xg as ∣ ∣ → ∞x , by spherical harmonic decomposition,
we have

( ) ∣ ∣− = → +∞

∼ ∼v v O x1 asg l

for any �∈l . By rotating back and applying interior Schauder estimates again, we obtain the results in
< ≤ζ1 2 cases in (6). □

6 Proof for n 2= case

In this section, we prove Theorem 3. In =n 2 case, since Theorem 6 may fail, we apply the iterate method as
in [1,30] etc. For reading simplicity, we introduce the following results.

Lemma 4. Let u f, be as in Theorem 3, A ε, be as in (8) and ≔ −w u x AxT1
2 . Then there exist C α, and ′ >ε 0

such that

∣ ( )∣ ∣ ∣
∣ ( ) ( )∣

∣ ∣
∣ ∣≤

−

−

≤

− − ′

+ +

− − ′−D w x C x and D w x D x
x x

C xk k ε
m m

α
m ε α2

1
1

1
2

1 2
1

1 (49)

for all ∣ ∣ > = … +x k m2, 0, , 1 and ∣ ∣ ( )> ∈
∣ ∣∕

x x B x2, x1 2 2 11 .

Furthermore, we have an iterative structure that if (49) holds for some { }< ′ <ε0 min ,ζ
2

1
2 , then it holds

also for ′ε replaced by ′ε2 with another constant C.

The proof of (49) is omitted here since it is similar to Lemma 2.1 in [1] or Lemma 4.1 in [30], which is
based only on the interior estimates by Caffarelli [2] and Figalli et al. [12] and interior Schauder estimates.
The proof of iterative structure can be found as Lemma 2.2 in [1], which relies on the assumption that ≥m 3
and is different from the higher dimension case.
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Now we are ready to prove Theorem 3 by the iterative structure given earlier.

Proof of Theorem 3. By Lemma 4, there exist α and ′ >ε 0 such that (49) holds.
If < ≤ζ0 1, we let �∈p1 be the positive integer such that

′ < < ′ <

+ε ζ ζ ε ζ2 and 2 2 .p p 11 1

(If necessary, we may choose ′ε smaller to make both inequalities hold.) Let ≔ ′ε ε2 p
1 1 . By applying the

iterative structure in Lemma 4 p1 times, we have

∣ ( )∣ ∣ ∣
∣ ( ) ( )∣

∣ ∣
∣ ∣≤

−

−

≤

− −

+ +

− − −D w x C x D w x D x
x x

C xandk k ε
m m

α
m ε α2

1
1

1
2

1 2
1

11 1 (50)

for all ∣ ∣ > = … +x k m2, 0, , 1 and ∣ ∣ ( )> ∈
∣ ∣/

x x B x2, x1 2 2 11 .
By applying Newton–Leibintz formula between equation (1) and ( ) ( )= ∞F A f , we have

 ( ) ( ) ( ) ( ( ) ( )) ( )= − ∞ + − ∞ ≕D F A D w f x f a x a D w g xM ij ij ij ij 1ij

in �2, where w is defined as in Lemma 4, the coefficients are uniformly elliptic and

 ( ) ( ( )) ( ) ∣ ∣∫ ( )= + = +
−

−a x D F A tD w x t D F A O xdij M M m
ε

0

1

2
1ij ij

1

as ∣ ∣ → ∞x . Let ( )[ ]≔Q D F AMij
1
2 and ( ) ( )͠ ≔w x w Qx . By the invariance of trace under cyclic permutations

again, we have

( ) ( )͠͠ = ≔w g x g QxΔ .1 1 (51)

By the definition of ( )∼a xij , condition (2) on f and (50), we have

( ) (∣ ∣ ) ∣ ∣ (∣ ∣ )͠
( )= + =

−

−

−

−

−g x O x O x O xm
ζ

m
ε

m
ζ

1 1
2

11

as ∣ ∣ → ∞x . By Lemmas 1 and 2, there exists a function ͠ ͠wg1 solving (51) on � ⧹B2
1 such that

( )
⎧

⎨
⎩

(∣ ∣ )

(∣ ∣ ( ∣ ∣))
͠ ͠ =

< <

=

−

−

w x
O x ζ
O x x ζ

, if 0 1,
ln , if 1,g

m
ζ

m
ζ

2

21

as ∣ ∣ → ∞x . Since ͠ ͠ ͠−g wg1 1 is harmonic on � ⧹B2
1 and (∣ ∣ )͠ ͠ ͠− =g w o xg1

2
1 at infinity, by spherical harmonic

decomposition, we have

(∣ ∣) ∣ ∣͠ ͠ ͠− = → ∞g w O x xasg l1 1

for any �∈l . By rotating back and applying interior Schauder estimates as in the proof of Theorem 2, we
finish the proof of < ≤ζ0 1 cases in (7).

If < ≤ζ1 2, we let �∈p2 be the positive integer such that

′ < < ′ <

+ε ε2 1 and 1 2 2.p p 12 2

(If necessary, we may choose ′ε smaller to make both inequalities hold.) Let ≔ ′ε ε2 p
2 2 . By applying the

iterative structure in Lemma 4 p2 times, we have (50) with ε1 replaced by ε2 for all ∣ ∣ > = … +x k m2, 0, , 1
and ∣ ∣ ( )> ∈

∣ ∣∕
x x B x2, x1 2 2 11 .

Similar to the aforementioned strategy, we apply Newton-Leibnitz formula and rotation ( )[ ]≔Q D F AMij
1
2

to obtain (51). By the definition of ( )∼a xij , condition (2) on f and (50), we have

( ) (∣ ∣ ) ∣ ∣ ∣ ∣͠ { }
( ) ( )= + =

−

−

−

−

−g x O x O x O xm
ζ

m
ε

m
ζ ε

1 1
2

1
min ,22 2

as ∣ ∣ → ∞x . By Lemmas 1 and 2, there exists a function ͠ ͠wg1 solving (51) on � ⧹B2
1 such that

( ) ∣ ∣͠ { }
͠ ( )=

−w x O xg m
ζ ε2 min ,2

1
2
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as ∣ ∣ → ∞x . Since ͠ ͠ ͠−w wg1 is harmonic on � ⧹B2
1 and (∣ ∣ )͠ ͠ ͠− =w w o xg

2
1 at infinity, by spherical harmonic

decomposition, we have �∈

∼b 2 such that

( ∣ ∣) ∣ ∣͠ ͠ ͠− = ⋅ + → ∞

∼w w b x O x xln asg l1

for any �∈l . Consequently, by setting

( ) ( )͠ ͠≔ − ⋅

∼w x w x b x,1

we have

( ) ( ∣ ∣) ∣ ∣ ∣ ∣͠ { } { }
( ) ( )= + =

− −w x O x O x O xlnl m
ζ ε

m
ζ ε

1
2 min ,2 2 min ,22 2

as ∣ ∣ → ∞x . From the proof of (46), by a direct computation and interior estimates, we have

( ) (∣ ∣ ) ∣ ∣͠͠ { }
( )= = +

−

−

−w g x O x O xΔ m
ζ

m
ζ ε

1 2 1
2 min ,2 2

in � ⧹B2
1. Since

{ }< ≤ <ζ ζ ε1 2 2 min , 2 ,2

by Lemmas 1 and 2, there exists a function ͠ ͠wg2 solving (51) on � ⧹B2
1 such that

( )
⎧

⎨
⎩

(∣ ∣ )

(( ∣ ∣) )
͠ ͠ =

< <

=

−

w x
O x ζ
O x ζ

, if 1 2,
ln , if 2,g

m
ζ

m

2

22

as ∣ ∣ → ∞x . Since ͠ ͠−w wg1 2 is harmonic on � ⧹B2
1 and (∣ ∣)͠ ͠− =w w o xg1 2 at infinity, by spherical harmonic

decomposition, we have

( ∣ ∣) ∣ ∣͠ ͠− = → ∞w w O x xln asg l1 2

for all �∈l . By rotating back and applying interior Schauder estimates as in the proof of Theorem 2, we
finish the proof of (7). □
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