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Abstract: We make rigorous and old idea of using mean curvature flow to prove a theorem of Richard
Hamilton on the compactness of proper hypersurfaces with pinched, bounded curvature.
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A famous theorem of Myers [18] implies that a complete Riemannian manifold with a uniformly positive
Ricci curvature is necessarily compact. By the Gauss equation, this implies that a properly immersed
hypersurface of Euclidean space n 1� + , n 2≥ , with uniformly positive second fundamental form is compact.

Hamilton obtained a scale-invariant version of this result [10]: a smooth, proper, locally uniformly
convex hypersurface Mn n 1�→

+ , n 2≥ , which is pointwise pinched, i.e.,

κ ακ αfor some 0,n1 ≥ >

where κ κn1 ≤⋯≤ denote the principal curvatures (eigenvalues of the second fundamental form A), is
necessarily compact. Hamilton’s argument exploits the fact that the Gauss map of such a hypersurface is
quasiconformal.

Inspired by Hamilton’s theorem, Ni and Wu [20] (see also [7]) proved an analogous intrinsic pinching
theorem: any smooth, complete Riemannian manifold Mn, n 3≥ , with bounded, non-negative curvature
operator Rm, which is pointwise pinched, i.e.,

ρ αρ αfor some 0,N1 ≥ >

where ρ ρN1 ≤⋯≤ are the eigenvalues of Rm, is either flat or compact. This intrinsic result is proved using
Ricci flow. The main tools in the argument are the improvement-of-pinching theorem of Böhm and Wilking
[4] and a non-existence result for pinched Ricci solitons.

It has long been believed that Hamilton’s theorem can be proved using extrinsic geometric flows such
as the mean curvature flow. The argument, which combines many classical ideas of Hamilton, goes as
follows: suppose, to the contrary, that there exists a non-flat pinched proper hypersurface that is not
compact. Evolve it by curvature. If the evolving hypersurface becomes singular in finite time, then, due
to the uniform pinching, we can blow up, à la Huisken [12], to obtain a shrinking sphere solution, violating
the noncompactness. Otherwise, the flow exists for all time. However, we can blow up at time infinity, à la
Hamilton [11], to obtain a non-flat, pinched (translating or expanding) soliton solution. But these may be
ruled out directly.
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This argument is quite simple and elegant in concept, but will require some deep analytic facts about
mean curvature flow to make rigorous. Unfortunately, as for the result of Ni and Wu, we require
the additional hypothesis of bounded curvature (Hamilton’s argument requires no such hypothesis).
Removing this hypothesis from the analysis of noncompact solutions to mean curvature flow is a deep
issue of independent interest.¹ On the other hand, we only require weak local convexity, and our proof
appears to be generalizable to other settings.

The key novel ingredient we will need is the following localization of Huisken’s umbilic estimate [12, 5.1
Theorem], which is an immediate corollary of the local pinching estimate recently proved in [13].

Proposition 1. (Local umbilic estimate) Every mean curvature flow in n 1� + , which is properly defined and
α-pinched in B T0,L2 [ )× , satisfies

A εH C in B T˚ Θ 0, ,ε L 2∣ ∣ [ )≤ + ×∕
(1)

where Å is the trace-free part of A, HΘ supB B B T0 0,L L L2 2{ } ( )≑ × ∪ ⧹ × , and C C n α ε, ,ε ( )= .

Proof. The claim follows from the m 0= case of [13, Theorem 1] since the integral hypothesis is in this case
superfluous. Indeed, by the pinching hypothesis and the area formula,
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for each t T0,[ )∈ , where K is the Gauss curvature. □

We also require a suitable existence result for a mean curvature flow out of the boundary of a convex
body. This is a straightforward consequence of the following Chou²-Ecker-Huisken-type [9,21] estimate for
radial graphs (see, e.g., [17, Corollary 2.2] for a proof).

Lemma 2. There exists C C n( )= with the following property. Let Ωt t T0,{ } [ )∂ ∈ be a convex solution to mean
curvature flow in n 1� + . If B p Ωr t( ) ⊂ and H rsup ,0 ΘB
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Proposition 3. (Existence) Let Ω n 1�⊂
+ be an (unbounded) convex body with smooth boundary Ω∂

satisfying Asup Ω∣ ∣ < ∞∂ . There exist δ 0> and a family of (unbounded) convex bodies whose boundaries
Ωt t δ0,{ } ( ]∂ ∈ are smooth and evolve by mean curvature, converge locally uniformly to Ω Ω0 ≑ as t 0→ , and

satisfy Asup supt δ0, Ωt∣ ∣[ ] < ∞∈ ∂ .

Proof. We may assume that Ω contains no lines – else it splits as a product of an affine subspace with a
lower dimensional convex body that contains no lines; the solution we seek is then obtained as a product of
an affine subspace with the lower dimensional solution we shall construct. In that case,Ω is either bounded
or, up to a rotation, the graph of a function u D: �→ over some convex domain D 0n� { }⊂ × with compact
sublevel sets u h{ }≤ . When Ω is unbounded, we consider for each height h 0> , the bounded convex body
Ωh defined by intersecting Ω with its reflection about the plane x hn 1{ }=+ (if Ω is bounded, just take Ω Ωh

=

in what follows). Let Bh be the largest ball contained in Ωh and denote by r B:h
n �∂ → the radial graph

height of Ωh
∂ . We now mollify Ωh to obtain, for any sufficiently small ε 0> , a smooth convex body Ωh ε, with



1 Compare the very recent work of Deruelle et al. [1], Lott [16], and Lee and Topping [14,15] on Ricci flow and Daskalopoulos and
Saez [8] and Bourni et al. [6] on mean curvature flow.
2 Formerly published as: K. Tso.
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a corresponding smooth radial graph function r B:h ε
n

, �∂ → (e.g., we could mollify the radial graph
functions rh using, say, the heat kernel on Sn).

For ε sufficiently small, we can evolve rh ε, smoothly by radial graphical mean curvature flow using
parabolic existence theory. Since, by the avoidance principle, the time of existence of the approximating
solutions is bounded from below by the square of their inradius (which is bounded uniformly from below as
ε 0→ and h → ∞), Lemma 2 and the higher-order estimates of Ecker and Huisken [9] yield the claims upon
taking ε 0→ and then h → ∞. □

In order to exploit Proposition 1, we will need two ingredients. First, we need to preserve the initial
pinching condition.

Proposition 4. (Pinching is preserved) Let Mt t δ0,{ } [ ]∈ be a family of convex, locally uniformly convex hyper-
surfaces evolving by mean curvature flow with Asup supt δ M0, t∣ ∣[ ] < ∞∈ . If κ αH1 ≥ on M0, then

κ αH on M for all t δ0, .t1 [ ]≥ ∈

Proof. Since M0 does not contain any lines, we can find p n 1�∈
+ and e Sn

∈ so that β einf , 0X M
X p
X p0 ∣ ∣

≑ >∈

−

−

.
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ψ X X p e, e ,C t1( ) ( )
≑ ⟨ − ⟩

+

where C Asup supt δ M0,
2

t∣ ∣[ ]≑ ∈ , then

ψ β X p ψ C ψand Δ 1 .t∣ ∣ ( ) ( )≥ − ∂ − = +

Fix ε 0> and set S A αHg≑ − . We claim that the tensor

S S εψgε
≑ +

remains non-negative definite on δ0,[ ]. Suppose that this is not the case. Then, since S is positive definite
on M0 and ψ → ∞ as X∣ ∣ → ∞, there must exist t δ0,0 ( ]∈ , X Mt

n
0 0

∈ , andV T MX t
n

0 0 0
∈ such that S 0X t

ε
,( ) > for

each X Mt
n

∈ , t t0, 0[ )∈ , but S V V, 0X t
ε

, 0 00 0 ( )( ) = . Extend V0 locally in space by solving

V 0γ∇ ≡′

along radial gt0-geodesics γ emanating from X0, and then extend the resulting local vector field locally in
the time direction by solving

V 0,t∇ ≡

where t∇ is the time-dependent connection of Andrews and Baker [2]. We find that V X t, 00 0( )∇ = ,
V X t, 0t 0 0( )∇ = , and V X tΔ , 00 0( ) = .

Now, set s X t S V V, ,ε X t
ε

X t X t, , ,( ) ( )( ) ( ) ( )≑ for X t,( ) near X t,0 0( ). We now find at X t,0 0( ) that

s S V V
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which is absurd. Hence, Sε indeed remains positive definite in δ0,[ ]. Now take ε 0→ . □

Second, we need a bound for the curvature at infinity which is uniform in time.

Proposition 5. (Curvature bound at infinity) Let Ωt t R ,0n
1

2
2{ }

⎡⎣ ⎤⎦
∂

∈ −
be a family of convex boundaries evolving by

mean curvature. Suppose that 0 Ω0∈ . Given ε 0> and δ 0> , there exists L < ∞ such that, given any

X M B 0LR0 ( )∈ ⧹ ,
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Proof. It suffices to prove the claimwhen R 1= . So, contrary to the claim, defining P X t B X t r t, ,r r n
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assumes that we can find ε 0> , δ 0> , and a sequence of points X Mj 0∈ such that
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where P X t B X t r t, ,r r n
1

2
2( ) ( ) ⎤⎦(≑ × − .

Point selection yields a sequence of points Y s,j j( ) with the following properties:

(1) Y s P X, , 0j j jδ
H Xj2 ,0

( ) ( )
( )

∈ (and hence Y s ε,κ
H j j

1 ( ) > ).
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Indeed, if the choice Y s X, , 0j j j( ) ( )= satisfies (3), then we take Y s X, , 0j j j( ) ( )= . If not, choose
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, continuing in this way we find, after some finite number of steps k, a point

Y s X t, ,j j j
k

j
k( ) ( )≑ satisfying (1), (2), and (3).

Now, translate Y s,j j( ) to the spacetime origin and rescale by λ H Y s,j j j( )≑ to obtain a sequence of

rescaled flows Mt
j

t λ s ,0j j n
2 1

2
{ } ( ( ) ]∈ − +

defined by M λ M Yt
j

j λ t s jj j
2( )≑ −

+
− . Passing to a subsequence, the final time-

slices M j
0 converge locally uniformly in the Hausdorff topology to a convex hypersurface M Ω0 0= ∂

∞ ∞.
We claim that M0

∞ splits off a line. To see this, consider the segments iℓ joiningY Ωj sj∈ ∂ to 0 Ω Ωs0 j∈ ⊂ .

Passing to a subsequence, these segments converge to a ray, ℓ, emanating from 0. Observe that Ω0ℓ ⊂ for all
j. Indeed, if this were not the case, then we could find a point p Ω0∈ ℓ ∩ ∂ . But then, since Ω 1 2ℓ ∩ ∂ = ∅− ∕ ,
the tangent hyperplane to Ωt∂ parallel toT Ωp 0∂ must travel an infinite distance in finite time, contradicting

the uniform curvature bound. Now, consider the segment iℓ′ obtained from iℓ by reflection across the
hyperplane orthogonal to ℓ and through Yj. Since Ωsj is convex, the triangle bounded by iℓ , iℓ′, and ℓ lies

in Ωsj for all j. The claim follows, since the angle between iℓ and iℓ′ goes to π as i → ∞ and λ δ 0i ≥ > .

Since (after passing to a subsequence) the convergence is smooth in Pδ
8
, we find that H 1= , κ 01 = , and

εκ
H

1
≥ at the spacetime origin, which is absurd. □

Finally, we rule out pinched expanding or translating solutions.

Proposition 6. (No pinched solitons) There exist no locally uniformly convex pinched mean curvature flow
translators or expanders.

Proof. We proceed as in [5,19]. First, let Mn n 1�⊂
+ , n 2≥ , be a locally uniformly convex, pinched mean

curvature flow translator. Then, M satisfies
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H e ν,= −⟨ ⟩

for some e 0n 1� { }∈ ⧹
+ . Observe that the vector field V e≑

⊤ satisfies

L V H 0( ) + ∇ = (2)
and

V HL,∇ = (3)

where L denotes the Weingarten map (see, e.g., Lemma 13.32 in the book of Chow et al. [3]).
By Proposition 5, H attains its maximum at some point o M∈ . Since A 0> , (2) implies that o is a zero of

V . We claim that V vanishes nowhere else. To see this, fix X M o{ }∈ ⧹ and let γ d X M: 0,[ ( )] → be any
minimizing unit speed geodesic joining o to X , where d denotes the intrinsic distance to o. Observe that

V γ d X
s

V γ γ s V γ s, d
d

, d , d .X

d X d X

γ

0 0

( ( ))

( ) ( )

∫ ∫⟨ ′ ⟩ = ⟨ ∘ ′⟩ = ⟨∇ ′⟩′
(4)

This is positive (and hence V 0X ≠ ) since, by (3), V∇ is positive definite. In fact, since V H12 2∣ ∣ = − and
A αHg≥ for some α 0> , we obtain (we will use this in a moment)

V α H s αd α V s1 d d .
d d

0

2

0

2∣ ∣ ∣ ∣∫ ∫≥ ≥ = − (5)

It follows that M o{ }⧹ is foliated by integral curves σ M: 0,( )∞ → ofV with σ s o( ) → as s 0→ . Let σ be
such a curve. By (2) and the pinching hypothesis,

s
H σ H

H
A V V

H
α Vd

d
log , .V 2( )

( )
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∇

= ≥ (6)

Combining (5) and (6) yields

H H o e .αd1( )≤
−

Since M is convex and non-flat, it follows from the Ecker–Huisken interior estimates that λM converges
as λ 0→ locally uniformly in C 0n 1�( { })⧹

∞ + to a non-planar convex cone. But this violates pinching.
Now, let Mn n 1�⊂

+ , n 2≥ , be a locally uniformly convex, pinchedmean curvature flow expander. Then,
M satisfies

H X ν1
2

, .= − ⟨ ⟩

Observe that the vector field V X1
2≑

⊤ satisfies (2) and

V HL I1
2

∇ = + (7)

(see, e.g., [3, Lemma 10.14]).
By Proposition 5, H attains its maximum at some point o M∈ . Since A 0> , (2) implies that o is a zero of

V , arguing as in (4), we find that V vanishes nowhere else. In fact, we obtain

V α d
2

∣ ∣ ≥ (8)

for some α 0> . On the other hand,

s
d σ V σ d σ Vd

d
, .∣ ∣∘ = ⟨ ∘ ∇ ∘ ⟩ ≤ (9)

Since (2) holds, (6) also holds (withV X1
2=

⊤) on an expander. Combining (6), (8), and (9), we conclude that

H H o e .dα
4

2
( )≤

−

The claim now follows as before. □
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Putting these ingredients together yields the result.

Theorem 7. (Hamilton [10]) Every pinched, convex hypersurface with bounded curvature in n 1� + , n 2≥ , is
either a hyperplane or compact.

Proof. So let M Ω n 1�= ∂ ⊂
+ , n 2≥ , be a convex hypersurface with bounded curvature, which is α-pinched

for some α 0> .
By Proposition 3, we obtain a family Mt t T0,{ } [ )∈ of convex boundaries M Ωt t= ∂ with M M0 = , which

evolve by mean curvature and satisfy Asup supt σ M0, t∣ ∣[ ] < ∞∈ for all σ T0,[ )∈ and either T = ∞ or

Alimsup sup .
t T Mt

∣ ∣ = ∞

→

By Proposition 4, Mt is α-pinched for each t T0,( )∈ . By applying the strong maximum principle to the
evolution equation for H (see, e.g., [3, Equation (6.18)]), we may assume that H 0> on Mt for all t T0,( )∈ .

Case 1: T < ∞. Since Proposition 5 implies that

A t Tlimsup 0 for all 0, ,
X

X t,
2∣ ∣ ( )

∣ ∣
( ) ≤ ∈

→∞

(10)

the local umbilic estimate (Proposition 1) yields

A εH C n α ε˚ , , Θ∣ ∣ ( )≤ + (11)

for every ε 0> , where HΘ supM0≑ < ∞.
Since A 0X t,∣ ∣( ) → as X∣ ∣ → ∞, we can find a sequence of times t Tj → and points X Mj tj∈ such that

λ H X t H, max max 0.j j j
t t M0, j t

( )
[ ]

≑ = >

∈

Translating X t,j j( ) to the spacetime origin and rescaling by λj yield a sequence of mean curvature flows
Mt

j
t λ t ,0j j

2{ } ( ]∈ −
defined by M λ M Xt

j
j λ t t jj j

2( )≑ −
+

− . Since H Hmax 1 0, 0Mt
j ( )≤ = and λj → ∞ as j → ∞, a sub-

sequence of the rescaled flows converges locally uniformly in C , 0n 1�( ( ])× −∞
∞ + to an ancient flow

Mt t ,0{ } ( ]
∞

∈ −∞ . By (11), this limit is umbilic, and hence a shrinking sphere. So M is compact.
Case 2: T = ∞. Suppose first that the flow is type-III, i.e., t HΛ sup maxt M0, t( )≑ < ∞∈ ∞ . Given a

sequence of times t 0j > with tj → ∞, consider the rescaled flow Mt
j

t λ t ,j j
2{ } ( )∈ − ∞

defined by M λ Mt
j

j λ t tj j
2≑

+
− ,

where λj t
1

j
≑ . Since λ t 1j j

2
≡ and

H t λ H λ t t
t

, , Λ
1

,j j j j
1 2( ) ( )⋅ = ⋅ + ≤

+

− −

we obtain a subsequential limit defined for t 1,( )∈ − ∞ . Furthermore,

t H t t H t t
λ

H t
λ

1 , lim 1 , lim 1 , 1 .
j

j
j j j

2 2( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟+ ⋅ = + ⋅ =

+

⋅

+

∞

→∞ →∞

By the differential Harnack inequality and the type-III hypothesis, the limit on the right exists (and is
positive) independently of t . Thus, by the rigidity case of the differential Harnack inequality, the limit is a
nontrivial expander, which violates Proposition 6.

So, suppose that the flow is type-IIb, i.e., t Hsup maxt M0, t( ) = ∞∈ ∞ . For each j, choose x t,j j( ) such that

t j t H x t t j t H t, max ,j j j j
M j

2
0,

2( ) ( ) ( ) ( )
[ ]

− = − ⋅

×

and set λ H x t,j j j( )≑ . The corresponding rescaled flows satisfy

H t
α

t α
ω

ω t
,j j

j

j

j

j
( )⋅ ≤

−

− −
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for all t α ω,j j( )∈ , where α λ tj j j
2

≑ − and ω λ j tj j j
2( )≑ − . Since

ω α
tH1 1

2
max ,

j j M j1 1 0, 2
2

[ ]−

≥
− −

× ∕

we find that αj → −∞ and ωj → ∞, and hence obtain an eternal limit flow Mt t ,{ } ( )∈ −∞ ∞ . Since Hmax is
attained at the spacetime origin (where it is positive), the differential Harnack inequality implies that
Mt t ,{ } ( )∈ −∞ ∞ evolves by translation. This violates Proposition 6. □
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