
Research Article
Special Issue: Geometric PDEs and Applications

Julius Baldauf* and Tristan Ozuch

The spinorial energy for asymptotically
Euclidean Ricci flow

https://doi.org/10.1515/ans-2022-0045
received June 18, 2022; accepted December 13, 2022

Abstract: This article introduces a functional generalizing Perelman’s weighted Hilbert-Einstein action and
the Dirichlet energy for spinors. It is well defined on a wide class of noncompact manifolds; on asympto-
tically Euclidean manifolds, the functional is shown to admit a unique critical point, which is necessarily of
min-max type, and the Ricci flow is its gradient flow. The proof is based on variational formulas for
weighted spinorial functionals, valid on all spin manifolds with boundary.
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1 Introduction

Spinors are vectors in a complex vector space canonically associated with Euclidean space. They were first
discovered by Élie Cartan a century ago [11], and soon thereafter, Dirac [18] used them to model the
behavior of electrons and other elementary particles. Spinors have since then been used fruitfully in
mathematics to understand the geometry and topology of static manifolds [4,19,31,32]. This article intro-
duces spin geometry into the Ricci flow [20] by showing that it is the gradient flow of a natural spinorial
functional on asymptotically Euclidean (AE) manifolds.

The gradient flow formulation established here is the analog of Perelman’s entropy monotonicity on
closed manifolds [27]. Perelman showed that the Ricci flow on closed manifolds is the gradient flow of the

λ-entropy, which is proportional to the first eigenvalue of the Schrödinger operator − + RΔ 1
4 acting on

functions. Due to Kato’s inequality and the Lichnerowicz formula, the λ-entropy is bounded above by the

first eigenvalue of the square of the Dirac operator = − +D RΔ2 1
4 acting on spinors. This bound suggests a

link between Perelman’s λ-entropy and the Dirac operator.
The link is provided by the weighted Dirac operator [5], which is the natural generalization of the

Atiyah-Singer Dirac operator for a weighted spin manifold ( )−M g, , en f . It is defined as follows:

( )= − ∇ ⋅D D f1
2

,f (1.1)

where ∇f acts by Clifford multiplication, and D denotes the standard (unweighted) Dirac operator. First
introduced by Perelman [27], the weighted Dirac operator is self-adjoint with respect to the weighted
measure − Ve df , is unitarily equivalent to the standard Dirac operator, and satisfies the weighted Lichner-
owicz formula (2.21) involving Perelman’s weighted scalar curvature
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∣ ∣= + − ∇R R f f2Δ .f
2 (1.2)

On a weighted, AE, spin manifold, the weighted Dirac operator allows for the generalization of a Witten
spinor: a weighted Witten spinor is a spinor lying in the kernel of the weighted Dirac operator and which is
asymptotic to a constant spinor of unit norm. The weighted Dirichlet energy of a weighted Witten spinor
plays the role of Perelman’s λ-entropy for closed manifolds because the Ricci flow is the gradient flow of this
weighted Dirichlet energy for a certain weight [5]. Here, it is shown that the coupled elliptic system
consisting of the weighted scalar-flat equation and the weighted Witten spinor equation has a natural
variational interpretation.

On an AE, spin manifold ( )M g,n , the energy functional Eg depending on a spinor ψ, asymptotic to a
constant spinor of norm 1, and a weight function f , asymptotic to 0 at infinity, is defined by

E ( ) ( ∣ ∣ (∣ ∣ ))
∫

= ∇ + −

−ψ f ψ R ψ V, 4 1 e d .g

M

f
f

g
2 2 (1.3)

This energy generalizes various well-known functionals, including Perelman’s weighted Hilbert-Einstein
action, the “spinorial energy” [1], and the weighted Dirichlet energy of the spinor; see Section 4.1. For
suitable choices of the spinor and weight, the value of the energy (1.3) equals the difference between the
Arnowitt-Deser-Misner (ADM) mass and the Hilbert-Einstein action, also known as the Regge-Teitelboim
Hamiltonian, or the difference between the weighted ADM mass and Perelman’s weighted Hilbert-Einstein
action [5,16,17]. The energy functional introduced here thus provides a unified treatment of many important
functionals in geometric analysis and physics.

The following theorem characterizes the critical points of the energy (1.3).

Theorem 1.1. (Critical points) On every spin, AE manifold with nonnegative scalar curvature, the functionalEg
admits a unique critical point ( )ψ f,g g . This critical point satisfies the elliptic equations:

= =R and D ψ0 0,f f gg g (1.4)

so ψg is an fg-weighted Witten spinor. Moreover, ( )ψ f,g g is a min-max critical point,

E E( ) ( )=ψ f ψ f, max min , .g g g
f ψ

g (1.5)

Given this theorem, ( )κ g is defined to be the energy of the unique critical point ( )ψ f,g g of Eg,

E( ) ( ) ∣ ∣
∫

= = ∇

−κ g ψ f ψ Vmax min , e d .
f ψ

g

M

g
f2 g (1.6)

The main theorem of this article concerns the time derivative of ( ( ))κ g t along a Ricci flow ( )∂ = −g g2Rict .
Because the metric along a Ricci flow is changing in time, the spin bundle is also changing, though the spin
bundles at different times are isomorphic. A standard method for dealing with this subtlety is to consider
the spacetime cylinder ×M I , equipped with a certain cylindrical metric. The spin bundle of the cylinder
can then be related to the spin bundles along the Ricci flow. With this identification of the spin bundles
understood, the main theorem of this article shows that the energy κ is the analog of Perelman’s λ-entropy,
in the sense that the Ricci flow is its gradient flow.

Theorem 1.2. (Monotonicity) On every spin, AE Ricci flow with nonnegative scalar curvature, there exists at
each time a unique min-max critical point ( )ψ f, of Eg and

( ) ∣ ∣ ∣ ∣
∫ ∫

′ = ∇ = − +

− −κ t
t

ψ V Vd
d

e d 1
2

Ric Hess e d .
M

f

M

f
f2 2 (1.7)

In particular, the Ricci flow is the ( )−L Ve df2 -gradient flow of κ, the weighted Dirichlet energy of ψ.
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Note that the right-hand side of the monotonicity formula (1.7) is independent of the spinor. This fact
may be interpreted as a parabolic analog of Witten’s formula, which expresses the ADM mass in terms of a
“test spinor,” even though the ADMmass may be defined without reference to any spinor. The reason is that
if the spinor solves (1.4), then its weighted Dirichlet energy equals a boundary term at infinity, which is
independent of the spinor by the boundary conditions. The monotonicity formula (1.7) is proven here via
the first variation of the weighted Dirichlet energy for spinors. While monotonicity was recently proven in
[5] via an indirect argument relying on the results of Deruelle and Ozuch [16], the proof given here is
independent of said results.

The weighted variational formulas derived here are also of independent interest. For example, they
imply that the ADM mass of a spin, AE manifold with nonnegative scalar curvature is constant along the
Ricci flow. Constancy of the ADM mass along the Ricci flow was previously proven by different means
[15,23]. Here, a proof is given using Witten’s formula for the mass.

Theorem 1.3. (Constancy of mass) The ADM mass is constant along every spin, AE Ricci flow with nonne-
gative scalar curvature.

Furthermore, the weighted variational formulas derived here generalize those from the unweighted
case, which have recently received much attention: the gradient flow of the (unweighted) Dirichlet energy
for spinors, introduced by Ammann et al. [1], is equivalent to a modified Ricci flow coupled to a spinor
evolving parabolically in time [21] (see also [2,10,14,28]). In addition, the weighted variational formulas
derived here are valid on all manifolds with boundary; the techniques developed here are thus expected to
extend to other geometries adapted to spin methods, such as asymptotically locally Euclidean, asympto-
tically hyperbolic [30], and ALF manifolds [25]. However, the positive mass theorem is more subtle on these
spaces.

This article is organized as follows: Sections 2.1 and 2.2 give the necessary background on spin geo-
metry on evolving manifolds and on the weighted Dirac operator. Section 3 derives variational formulas for
natural weighted, spinorial quantities. Section 4 applies said formulas to prove the monotonicity theorems.
Appendix A.1 proves the existence and regularity of time derivatives of weighted Witten spinors, and
Appendix A.2 presents useful weighted integration by parts formulas.

2 Spinors on evolving manifolds

2.1 Spin geometry of generalized cylinders

The spin bundle, and hence the Dirac operator, depends on a choice of the Riemannian metric. For two
choices of Riemannian metrics, the spin bundles are isomorphic, though in general not canonically so.
Given a 1-parameter family of Riemannian metrics, there does exist a natural identification of the spin
bundles at different times, obtained via the generalized cylinder construction of [7, Sections 3–5]. This
section recalls the generalized cylinder construction and the associated variational formulas, which are
applied in the later sections to the special context of Ricci flows. The notation established here is used in the
remainder of this article.

Let M be a smooth n-manifold admitting a spin structure, and let ( )
∈

gt t I be a 1-parameter family of
Riemannian metrics on M whose time derivative is denoted:

∂ =g ġ .t (2.1)

Corresponding to this 1-parameter family, the generalized cylinder is defined by

≔ ×M I M¯ , (2.2)
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equipped with the Riemannian metric

≔ +g t g¯ d .t
2 (2.3)

For ∈t I , abbreviate the Riemannianmanifold ( )M g, t by Mt, and sometimes simply by M when the choice of
t is clear from the context. Connections associated with ( )M g¯ , ¯ are denoted ∇, while those associated with
( )M g,t t are denoted∇

gt, or simply∇ when the choice of t is clear from the context. The vector field ∂t on M̄ is
normal to Mt and has unit ḡ-length. Moreover, its integral curves are geodesics, i.e.,

∇ ∂ =

∂

0.tt (2.4)

Let W denote the Weingarten tensor with respect to the embedding ⊂M M̄t . This tensor is defined by the
condition that the Levi-Civita connections of M̄ and Mare related by

( )∇ = ∇ + ⟨ ⟩∂Y Y W X Y, ,X X t (2.5)

for all vector fields X Y, on M . From the Koszul formula for the Levi-Civita connection, it follows that

( ) ( )⟨ ⟩ = −W X Y g X Y, 1
2

˙ , . (2.6)

Therefore, the Levi-Civita connections of M̄ and M are related by

( )∇ = ∇ − ∂Y Y g X Y1
2

˙ , ,X X t (2.7)

for all vector fields X Y, on M . Moreover, computation of the Christoffel symbols of ḡ with respect to a local
orthonormal frame ( )…e e, , n1 of the metric gt implies that for any vector field X on M ,

( )
∑

∇ = ∂ +

∂

=

X X g X e e1
2

˙ , .t
i

n

i i
1

t (2.8)

Since M̄ is homotopy equivalent to M , spin structures on M̄ are in bijection with those on M . A spin
structure on M̄ can be restricted to a spin structure on =M Mt in the following way. Let ( ) ( )→P M P MΘ : ¯ ¯Spin SO

be a spin structure on M̄ . Embed the bundle of oriented orthonormal frames of M , ( )P MSO , into the bundle of
space and time-oriented orthonormal frames of M̄ restricted to M , ( )∣P M̄ MSO , by the map ( )… ↦ι e e: , , n1

( )∂ …e e, , ,t n1 . Then ( ) ( ( ( )))≔

−P M ι P MΘSpin
1

SO defines a spin structure on M . Conversely, given a spin structure

on M , it can be pulled back to M̄ yielding a �( )
+GL n˜ , -principal bundle on M̄ . Enlarging the structure group via

the embedding � �( ) ( )↪ +

+ +GL n GL n˜ , ˜ 1, covering the standard embedding

� �( ) ( )
( )

↪ + ↦

+ +GL n GL n a a, 1, 1 0
0 , (2.9)

yields the spin structure on M̄ , which restricts to the given spin structure on M [7, Sections 3–5]. This article
always implicitly assumes this identification of spin structures on M and M̄ .

Clifford multiplication on M̄ is denoted by “•”, while Clifford multiplication on Mt is denoted by “⋅”.
Recall that, as Hermitian vector bundles over Mt, there is an isometry of the complex spin bundles

∣ =M MΣ ¯ ΣM tt when n is even, while ∣ =

+M MΣ ¯ ΣM tt when n is odd. In both cases, the Clifford multiplications
are related by

⋅ = ∂X ψ X ψ• • .t (2.10)

When n is odd, MΣ t is henceforth identified with ∣+MΣ ¯ Mt, so that (2.10) holds.
Let ⟨⋅ ⋅⟩, be the spin metric on MΣ ¯ , that is, the unique Hermitian metric on MΣ ¯ for which Clifford

multiplication by unit vectors is unitary. This metric is compatible with the spin connection in the sense
that

⟨ ⟩ = ⟨∇ ⟩ + ⟨ ∇ ⟩X φ ψ φ ψ φ ψ, , ,X X (2.11)

holds for all vector fields X on M̄ . Combining equations (2.6) and (2.10)with the local expression of the spin
connection
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∑

∇ = ∂ +

=

ψ ψ e e ψ1
4

Γ̄ • •i i
j k

n

ij
k

j k
, 0

(2.12)

in an orthonormal frame ( )…e e, , n0 ofTM̄ , with = ∂e t0 , implies the following relationship between the spin
connections of M̄ and M: for any vector field X on M ,

( )
∑

∇ = ∇ + ⋅

=

ψ ψ g X e e ψ1
4

˙ , .X X
i

n

i i
1

(2.13)

2.2 Weighted Dirac operator

The remainder of this article employs tools from the theory of spin geometry of weighted manifolds,
developed in [5, Section 1]. For the convenience of the reader and to establish the notation for what is to
come, the relevant facts are reviewed here.

A weighted spin manifold is a spin manifold ( )M g,n equipped with a function �→f M: defining the
weighted measure − Ve df . The weighted Dirac operator ( ) ( )→D M M: Γ Σ Γ Σf of a weighted spin manifold is
defined as follows:

( )= − ∇ ⋅D D f1
2

,f (2.14)

where = ⋅∇D ei i is the standard Dirac operator, namely, the composition of the spin covariant derivative ∇

with Clifford multiplication. (Throughout this article, 1-forms and vector fields on time slices Mt will often
be identified via the metric gt without explicit mention.) The weighted Dirac operator is the Dirac operator
associated with the modified spin connection ( ) ( )∇ → ⊗

∗M T M M: Γ Σ Γ Σf , defined by

( )∇ = ∇ − ∇ψ ψ f ψ1
2

.X
f

X X (2.15)

The modified spin connection ∇

f is notmetric compatible with the standard metric [9, Prop. 2.5] on the spin
bundle, ⟨⋅ ⋅⟩, ; however, it is compatible with the modified metric ⟨⋅ ⋅⟩ ≔ ⟨⋅ ⋅⟩

−, , ef
f , that is,

( )⟨ ⟩ = ⟨∇ ⟩ + ⟨ ∇ ⟩

− − −X ψ φ ψ φ ψ φ, e , e , e ,f
X
f f

X
f f (2.16)

for all vector fields X and spinors ψ φ, . Moreover, since Clifford multiplication is parallel with respect to the
standard spin connection, it is also parallel with respect to ∇

f . This means that

( ) ( )∇ ⋅ = ⋅∇ + ∇ ⋅Y ψ Y ψ Y ψ,X
f

X
f

X (2.17)

for all vector fields X Y, and spinors ψ.
The weighted Dirac operator satisfies the following weighted integration by parts formula on closed

manifolds

∫ ∫

⟨ ⟩ = ⟨ ⟩

− −ψ D φ V D ψ φ V, e d , e d ,
M

f
f

M

f
f (2.18)

and hence is self-adjoint on the weighted space ( )=

−L L Ve df
f2 2 . Furthermore, Df satisfies a weighted

Lichnerowicz formula, which was observed by Perelman [27, Rem. 1.3]. To state it, let

= − ∇

∇

Δ Δf f (2.19)

be the weighted Laplacian acting on spinors and let

∣ ∣= + − ∇R R f f2Δf
2 (2.20)

be Perelman’s weighted scalar curvature (or P-scalar curvature). Then the square of the weighted Dirac
operator Df satisfies
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= − +D RΔ 1
4

.f f f
2 (2.21)

Furthermore, the weighted (Bakry-Émery) Ricci curvature = +Ric Ric Hessf f is proportional to the com-
mutator of Df and ∇: in a local orthonormal frame …e e, , n1 of TM , which is covariantly constant at some
point, the following weighted Ricci identity holds

[ ] ( )∇ = ⋅D ψ e ψ, 1
2

Ric .f i f i (2.22)

Finally, the weighted Dirac operator is unitarily equivalent to the standard Dirac operator. Indeed, a routine
calculation shows that for every spinor ψ,

( )=

/ − /D ψ D ψe e ,f
f f2 2 (2.23)

and the map →L Lf
2 2 defined by ↦

/ψ ψe f 2 is unitary. The reader is referred to [5, Section 1] for proofs of
the aforementioned statements and other fundamental properties of weighted spin manifolds.

3 Variational formulas

The purpose of this section is to compute the variations of spinorial quantities that are used in the proof of
the monotonicity theorems. These variational formulas hold on general manifolds with boundary. Since the
spin bundle varies with the metric, the variational formulas derived here are to be understood within the
framework of the generalized cylinder construction of Section 2.1. Throughout this section, ( )M g f, ,n is a
compact, weighted spin manifold, ψ is a spinor on M , and

= ∂ = ∂ = ∇g g f f ψ ψ˙ , ˙ , ˙ ,t t t (3.1)

denote variations of g f, and ψ.
The variation of the gradient of a spinor involves two important tensors, which are defined as follows.

For any spinor ψ on M , the real symmetric 2-tensor ⟨∇ ⊗ ∇ ⟩ψ ψ is defined by

( )⟨∇ ⊗ ∇ ⟩ = ⟨∇ ∇ ⟩ψ ψ X Y ψ ψ, Re , .X Y (3.2)

The symmetry of ⟨∇ ⊗ ∇ ⟩ψ ψ is a consequence of the fact that the spin metric is Hermitian. Further, the real
3-tensor Tψ on M is defined by

( ) ( ) ( )= (⟨ ∧ ⋅ ∇ ⟩ + ⟨ ∧ ⋅ ∇ ⟩)T X Y Z X Y ψ ψ X Z ψ ψ, , 1
2

Re , , .ψ Z Y (3.3)

By construction Tψ is symmetric in the second and third components; that is,

( ) ( )=T X Y Z T X Z Y, , , , .ψ ψ (3.4)

Consequently, the 2-tensor ( ) ( )( )= ∇ ⋅ ⋅T T ediv , ,ψ k ψ k is symmetric. Also, for later use, note that the formula
∧ = ⋅ + ⟨ ⟩X Y X Y X Y, and anti-Hermiticity of Clifford multiplication implies that

( ) ( )∣ ∣= ⟨ ⋅ ⋅∇ + ⋅∇ ⟩ − ⟨ ⟩ + ⟨ ⟩T X Y Z X ψ Y ψ Z ψ X Y Z X Z Y ψ, , 1
2

Re , 1
4

, , .ψ Z Y
2 (3.5)

A derivation of the following variational formula can be found in [1] or [28, p. 65].

Proposition 3.1. (Variation of ∣ ∣∇ψ 2) The squared norm of the gradient of a spinor evolves by

∣ ∣∂ ∇ = −⟨ ⟨∇ ⊗ ∇ ⟩⟩ + ⟨∇ ⟩ + ⟨∇ ∇ ⟩ψ g ψ ψ g T ψ ψ˙ , 1
2

˙ , 2Re ˙ , .t ψ
2 (3.6)

The previous proposition shows that the variation of the squared norm of the gradient of a spinor
depends on the term ⟨∇ ⟩g T˙ , ψ , which, upon integration by parts, can be written as the inner product of ġ
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with the weighted divergence ( )Tdivf ψ . As shown below, the weighted divergence of Tψ depends on the Lie
derivative of the metric with respect to the vector field Vψ f, , defined by

= ⟨ ⋅ ⟩V ψ e D ψ eRe , .ψ f i f i, (3.7)

Lemma 3.2. The Lie derivative of the metric in the direction of Vψ f, is given as follows:

L ( ) ( )
( )

= ⟨ ⋅∇ + ⋅∇ ⟩ − ⟨ ⋅∇ + ⋅∇ ⟩g X Y ψ X D ψ Y D ψ D ψ X ψ Y ψ, Re , , .V Y f X f f Y Xψ f, (3.8)

Proof. Choose a local orthonormal frame …e e, , n1 of TM for which ∇ =e 0i at a point p. At p,

L
( )

= ∇ + ∇

= (⟨∇ ⋅ ⟩ + ⟨ ⋅∇ ⟩ + ⟨∇ ⋅ ⟩ + ⟨ ⋅∇ ⟩)

= (⟨ ⋅∇ + ⋅∇ ⟩ − ⟨ ⋅∇ + ⋅∇ ⟩)

g V V
ψ e D ψ ψ e D ψ ψ e D ψ ψ e D ψ

ψ e D ψ e D ψ D ψ e ψ e ψ
Re , , , ,
Re , , .

V ij i j j i

i j f j i f j i f i j f

i j f j i f f i j j i

ψ f,

(3.9)

□

The next lemma is crucial for applications to the Ricci flow, because it shows that the weighted

divergence ( )Tdivf ψ , appearing in the variation of the weighted Dirichlet energy ∣ ∣
∫

∇

−ψ e
M

f2 , is closely related

to the weighted Ricci curvature Ricf .

Lemma 3.3. The 2-tensor ( )Tdivf ψ satisfies

L

( )( ) ( )∣ ∣ ( )= − + − ⟨∇ ∇ ⟩

+ ⟨ ⋅∇ + ⋅∇ ⟩ +

∣ ∣

T X Y X Y ψ X Y ψ ψ

D ψ X ψ Y ψ g

div , 1
2

Ric , 1
2

Hess , 2 ,

Re , 1
2

.

f ψ f ψ X Y

f Y X V

2

ψ f

2

,

(3.10)

Proof. For this proof, write T for Tψ to simplify notation. In an orthonormal frame, Definition (3.5) of T
implies that

( )∣ ∣= ⟨ ⋅ ⋅∇ + ⋅∇ ⟩ − +T e ψ e ψ e ψ δ e δ e ψ1
2

Re , 1
4

.ijk i j k k j ij k ik j
2 (3.11)

Fix a point ∈p M , and choose a local orthonormal frame of TM with ∇ =e 0i at p. Then, at p,

( )

( ( ))

( ( ))

(

( ))

= ∇

= ⟨ ⋅∇ + ⋅∇ ⟩ + ⟨ ⋅ ⋅∇∇ + ⋅∇∇ ⟩ −

= ⟨ ⋅∇ + ⋅∇ ⟩ − ⟨ ⋅ ⋅∇∇ + ⋅ ⋅∇∇ ⟩ −

= ⟨ ⋅∇ + ⋅∇ ⟩ + ⟨ ⋅ ∇ + ⋅ ∇ ⟩

+ ⟨ ∇ ∇ + ∇ ∇ ⟩ −

∣ ∣

∣ ∣

∣ ∣

T T

Dψ e ψ e ψ e ψ e ψ e ψ e e

Dψ e ψ e ψ ψ e e ψ e e ψ e e

Dψ e ψ e ψ ψ e D ψ e D ψ

ψ ψ ψ e e

div
1
2

Re , , Hess ,

1
2

Re , , Hess ,

1
2

Re , ,

2 , Hess , .

jk i ijk

j k k j i j i k k i j ψ j k

j k k j i j i k i k i j ψ j k

j k k j j k k j

j k k j ψ j k

2

2

2

(3.12)

Recall that ( ) ( ) ( )= − ∇ ⋅ ⋅T T T fdiv div , ,f . Then note that (3.5) implies

( ) ( ) (( ) ( ) )∣ ∣

⎛
⎝

( ) ( ) ( ) ⎞
⎠

(( ) ( ) )∣ ∣

⎛
⎝

( ) ( ) ( ) ⎞
⎠

∇ = ⟨ ∇ ⋅ ⋅∇ + ⋅∇ ⟩ − ∇ + ∇

= ⟨ ∇ ⋅ ⋅∇ + ⋅∇ ⟩ − ⟨ ∇ ⋅ ⋅∇ + ∇ ⋅ ⋅∇ ⟩

− ∇ + ∇

= ⟨ ∇ ⋅ ⋅∇ + ⋅∇ ⟩ + ⟨ ⋅ ∇ ⋅∇ + ⋅ ∇ ⋅∇ ⟩

T f e e f ψ e ψ e ψ f e f e ψ

f ψ e ψ e ψ ψ f e ψ f e ψ

f e f e ψ

f ψ e ψ e ψ ψ e f ψ e f ψ

, , 1
2

Re , 1
4

.

1
2

Re 1
2

, 1
2

,

1
4

.

1
2

Re 1
2

, 1
2

, .

j k j k k j j k k j

j k k j j k k j

j k k j

j k k j j k k j

2

2
(3.13)

Combining the last equation with the one for ( )Tdiv jk above and using the definition of the weighted Dirac
operator implies

The spinorial energy for asymptotically Euclidean Ricci flow  7



( ) (

( ))

= ⟨ ⋅∇ + ⋅∇ ⟩ + ⟨ ⋅ ∇ + ⋅ ∇ ⟩

+ ⟨ ∇ ∇ + ∇ ∇ ⟩ −

∣ ∣

T D ψ e ψ e ψ ψ e D ψ e D ψ

ψ ψ ψ e e

div 1
2

Re , ,

2 , Hess , .

f jk f j k k j j f k k f j

j k k j ψ j k2

(3.14)

When the weighted Ricci identity (2.22) is applied to the second term in the aforementioned equation, and
the third term is rewritten using the symmetry of the Hessian,

( ) ( )= ⟨ ∇ ∇ ⟩ + ⟨∇ ∇ ⟩

∣ ∣

e e ψ ψ ψ ψHess , 2Re , , ,ψ j k j k j k2 (3.15)
and the symmetry of ⟨⋅ ⋅⟩Re , , it follows that

( ) ( ( )

( ) ( ))

(

( ) ∣ ∣ ( ))

= ⟨ ⋅∇ + ⋅∇ ⟩ + ⟨ ⋅∇ + ⋅∇ ⟩ + ⟨ ⋅ ⋅

+ ⋅ ⋅ ⟩− ⟨∇ ∇ ⟩ +

= ⟨ ⋅∇ + ⋅∇ ⟩ + ⟨ ⋅∇ + ⋅∇ ⟩

− − ⟨∇ ∇ ⟩ +

∣ ∣

∣ ∣

T D ψ e ψ e ψ ψ e D ψ e D ψ ψ e e ψ

e e ψ ψ ψ e e

D ψ e ψ e ψ ψ e D ψ e D ψ

ψ ψ ψ e e

div 1
2

Re , , 1
2

, Ric

Ric 4 , Hess , .
1
2

Re , ,

Ric 4 , Hess , .

f jk f j k k j j k f k j f f kl j l

f jl k l j k ψ j k

f j k k j j k f k j f

f jk j k ψ j k
2

2

2

(3.16)

Using Lemma 3.2, the aforementioned second term can be rewritten in terms of the first and L gVψ f, , as
claimed. □

Proposition 3.4. The variation of the weighted spinorial Dirichlet energy is

∣ ∣ ⎛

⎝
⎛
⎝

( ) ⎞
⎠

∣ ∣ ( ) ⎞

⎠

⎛
⎝

( ) ⎞
⎠

∫ ∫

∫

∇ = − ∇ − ⟨ ⟩ − + ⟨∇ ⊗ ∇ ⟩

+ ⟨ ⋅ ⟩ + ⟨ ∇ ⟩

− −

∂

−

t
ψ V g f ψ ψ ψ g T ψ ψ V

g T ν ψ ψ dA

d
d

e d 1
2

tr ˙ ˙ 2Re ˙ , Δ ˙ , 1
2

div e d

1
2

˙ , , 2Re ˙ , e .

M

f

M

f f ψ
f

M

ψ ν
f

2 2

(3.17)

Proof. The proof consists of computing the derivative

(∣ ∣ ) (∣ ∣ ) ∣ ∣ ( )∂ ∇ = ∂ ∇ + ∇ ∂

− − −ψ V ψ V ψ Ve d e d e d .t
f

t
f

t
f2 2 2 (3.18)

The second term depends on the variation of the weighted measure. Recall the variational formula
( ) ( )∂ =V g Vd tr ˙ dt

1
2 , which follows from Jacobi’s formula: ( ) ( ) ( )=

−A A Adet det trt
A
t

d
d

1 d
d for any invertible

square matrix A. Hence,

( ) ⎛
⎝

( ) ⎞
⎠

∂ = −

− −V g f Ve d 1
2

tr ˙ ˙ e d .t
f f (3.19)

The variation of ∣ ∣∇ψ 2 was computed in Proposition 3.1:

∣ ∣∂ ∇ = −⟨ ⟨∇ ⊗ ∇ ⟩⟩ + ⟨∇ ⟩ + ⟨∇ ∇ ⟩ψ g ψ ψ g T ψ ψ˙ , 1
2

˙ , 2Re ˙ , .t ψ
2 (3.20)

The proposition now follows from the weighted divergence theorem; see Appendix A.2. □

The derivatives in the variational formula to follow are arranged for ease of reference in the proofs of
the monotonicity formulas in Section 4.

Proposition 3.5. The following variational formula holds:

∣ ∣ ( ∣ ∣ ( )∣ ∣

⎛
⎝

( ) ⎞
⎠

( ∣ ∣ )⎞

⎠

⎛

⎝
⎛
⎝

( ) ⎞
⎠

∣ ∣ ∣ ∣ ⎛
⎝

( ) ⎞
⎠

⎞

⎠

∫ ∫

∫

= −⟨ ⟩ + + ⟨ ⟩

+ − ⟨ ⟩ − ∇

+ − ∇ − ∇ −

−

−

∂

−

t
R ψ V g ψ g ψ ψ R ψ

g f D ψ ψ ψ V

g f ψ ψ g f A

d
d

e d ˙ , Ric div ˙ 2Re ˙ ,

4 1
2

tr ˙ ˙ Re , e d

2 1
2

tr ˙ ˙ 1
2

tr ˙ ˙ e d .

M

f
f

M

f f f

f
f

M

ν ν
f

2 2 2 2

2 2

2 2

(3.21)
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Proof. Recall the variational formulas (see [12, Ch. 2], for example)

( ) ( )∂ = − − ⟨ ⟩R g g gdiv ˙ Δtr ˙ ˙ , Rict
2 (3.22)

( ) ( )∂ =V g Vd 1
2

tr ˙ dt (3.23)

( ) ( )∂ = − − ∇ ∇ − ⟨ ⟩f f g g f gΔ Δ ˙ div ˙ 1
2

tr ˙ , ˙ , Hesst f (3.24)

∣ ∣∂ ∇ = ⟨∇ ∇ ⟩ − ⟨ ∇ ⊗ ∇ ⟩f f f g f f2 ˙ , ˙ , .t
2 (3.25)

Rewriting div in terms of divf and combining the aforementioned equations imply

( ) ⎛
⎝

( ) ⎞
⎠

∂ = − − − ⟨ ⟩R g g f gdiv ˙ 2Δ 1
2

tr ˙ ˙ ˙ , Rict f f f f
2 (3.26)

∣ ∣∂ = ⟨ ⟩ψ ψ ψ2Re ˙ ,t
2 (3.27)

( ) ⎛
⎝

( ) ⎞
⎠

∂ = −

− −V g f Ve d 1
2

tr ˙ ˙ e d .t
f f (3.28)

Combined, these imply

( ∣ ∣ ) ⎛

⎝
( ) ⎛

⎝
( ) ⎞

⎠
⎞

⎠
∣ ∣

⎛

⎝
⎛
⎝

( ) ⎞
⎠

∣ ∣ ⎞

⎠

∂ = − − − ⟨ ⟩

+ ⟨ ⟩ + −

− −

−

R ψ V g g f g ψ V

ψ R ψ g f R ψ V

e d div ˙ 2Δ 1
2

tr ˙ ˙ ˙ , Ric e d

2Re ˙ , 1
2

tr ˙ ˙ e d .

t f
f

f f f
f

f f
f

2 2 2

2
(3.29)

Integration by parts implies

∣ ∣ ( ∣ ∣ ( )∣ ∣

⎛
⎝

( ) ⎞
⎠

( ∣ ∣ ∣ ∣ )⎞

⎠

⎛

⎝
⎛
⎝

( ) ⎞
⎠

∣ ∣ ∣ ∣ ⎛
⎝

( ) ⎞
⎠

⎞

⎠

( ∣ ∣ ( )∣ ∣

⎛
⎝

( ) ⎞
⎠

( ∣ ∣ )⎞

⎠

⎛

⎝
⎛
⎝

( ) ⎞
⎠

∣ ∣ ∣ ∣ ⎛
⎝

( ) ⎞
⎠

⎞

⎠

∫ ∫

∫

∫

∫

= −⟨ ⟩ + + ⟨ ⟩

+ − −

+ − ∇ − ∇ −

= −⟨ ⟩ + + ⟨ ⟩

+ − ⟨ ⟩ − ∇

+ − ∇ − ∇ −

−

−

∂

−

−

∂

−

t
R ψ V g ψ g ψ ψ R ψ

g f R ψ ψ V

g f ψ ψ g f A

g ψ g ψ ψ R ψ

g f D ψ ψ ψ V

g f ψ ψ g f A

d
d

e d ˙ , Ric div ˙ 2Re ˙ ,

1
2

tr ˙ ˙ 2Δ e d

2 1
2

tr ˙ ˙ 1
2

tr ˙ ˙ e d

˙ , Ric div ˙ 2Re ˙ ,

4 1
2

tr ˙ ˙ Re , e d

2 1
2

tr ˙ ˙ 1
2

tr ˙ ˙ e d ,

M

f
f

M

f f f

f f
f

M

ν ν
f

M

f f f

f
f

M

ν ν
f

2 2 2 2

2 2

2 2

2 2 2

2 2

2 2

(3.30)

where the last equality has used the weighted Bochner formula:

∣ ∣ ∣ ∣ ∣ ∣= − ⟨ ⟩ + + ∇ψ D ψ ψ R ψ ψΔ 2Re , 1
2

2 ,f f f
2 2 2 2 (3.31)

which follows easily from the weighted Lichnerowicz formula (2.21). □

Corollary 3.6. The following variational formula holds:
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( ∣ ∣ ∣ ∣ ) ⎛

⎝
⎛
⎝

( ) ⎞
⎠

( ) ∣ ∣ ( )∣ ∣ )

⎛

⎝
( ) ⎛

⎝
( ) ⎞

⎠
∣ ∣

∣ ∣ ⎛
⎝

( ) ⎞
⎠

⎞

⎠

∫ ∫

∫

∇ + = − ⟨ ⟩ + ⟨ ⟩

− ⟨ + ⟨∇ ⊗ ∇ ⟩ + ⟩ +

+ ⟨ ⋅ ⟩ + ⟨ ∇ ⟩ + − ∇

− ∇ −

−

−

∂

−

t
ψ R ψ V g f D ψ ψ ψ D ψ

g T ψ ψ ψ g ψ V

g T ν ψ ψ g f ψ

ψ g f A

d
d

4 e d 1
2

tr ˙ ˙ 4Re , 8Re ˙ ,

˙ , 2div 4 Ric div ˙ e d

2 ˙ , , 8Re ˙ , 2 1
2

tr ˙ ˙

2 1
2

tr ˙ ˙ e d .

M

f
f

M

f f

f ψ f f
f

M

ψ ν ν

ν
f

2 2 2 2

2 2 2

2

2

(3.32)

In particular, if =D ψ 0f , then

⎟

( ∣ ∣ ∣ ∣ ) ⎛

⎝
( ) ⎛

⎝
( ) ⎞

⎠
∣ ∣

( ) ∣ ∣ ∣ ∣ ( ) ⎛
⎝

( ) ⎞
⎠

⎞

⎠

∫ ∫

∇ + = ⟨ ⋅ ⟩ + ⟨ ∇ ⟩ + − ∇

− ⟨ ⋅ ∇ ⟩ + − ∇ −

−

∂

−

t
ψ R ψ V g T ν ψ ψ g f ψ

g ν ψ ψ g g f ν A

d
d

4 e d 2 ˙ , , 8Re ˙ , 2 1
2

tr ˙ ˙

˙ , , div ˙ 2 1
2

tr ˙ ˙ , e d .

M

f
f

M

ψ ν ν

f
f

2 2 2

2 2

(3.33)

Proof. The first part of the corollary is immediate from the combination of Propositions 3.4 and 3.5. To prove
the second part, note that if =D ψ 0f , then Lemma 3.3 implies that

( ) ∣ ∣+ ⟨∇ ⊗ ∇ ⟩ + =

∣ ∣

T ψ ψ ψ2div 4 Ric Hess .f ψ f ψ
2 2 (3.34)

Furthermore, the weighted divergence theorem (see Appendix A.2), applied twice, implies

( )∣ ∣ ( ( ) ∣ ∣ ( ) ∣ ∣ )
∫ ∫ ∫

= ⟨ ⟩ + ⟨ ⟩ − ⟨ ⋅ ∇ ⟩

−

∣ ∣

−

∂

−g ψ V g V g ν ψ g ν ψ Adiv ˙ e d ˙ , Hess e d div ˙ , ˙ , , e d .
M

f
f

M

ψ
f

M

f
f2 2 2 22 (3.35)

The first part of the corollary combined with the latter two formulas implies the second part of the corollary.
In particular, the

∣ ∣

Hess ψ 2 terms coming from ( )Tdivf ψ (the variation of ∣ ∣∇ψ 2) and from ( )gdiv ˙f
2 (the variation

of Rf ) cancel. □

For later use, the formula for the variation of the Dirac operator is given below. A derivation of this
formula can be found in [7, Thm. 5.1], for example.

Lemma 3.7. (Variation of Dirac operator) The Dirac operator evolves by

( ) ( ( ) ( ))∇ = − ⋅∇ + ∇ − ⋅

∂

Dψ Dψ g e ψ g g ψ˙ 1
2

˙ 1
4

tr ˙ div ˙ .i it (3.36)

4 The energy functional

This section applies the variational formulas derived in Section 3 to the special case of AE manifolds to
prove existence and uniqueness of critical points of the energy (Theorem 1.1), and the monotonicity
theorem (Theorem 1.2).

A Riemannian spin manifold ( )M g,n is called AE of order τ if there exists a compact subset ⊂K M , a
radius >ρ 0, and a diffeomorphism � ( )⧹ → ⧹Φ M K B: 0n

ρ , with respect to which, for all �∈k ,

( ) ( )= + ∂ =

− − −g δ O r g O r, ,ij ij
τ k

ij
τ k (4.1)

for any partial derivative of order k as → ∞r , where ∣ ∣=r Φ is the Euclidean distance function. The set ⧹M K
is called the end of M . (The results of this section extend in a straightforward manner to AE manifolds with
multiple ends, though they are not pursued here.) The AE structure Φ defines a trivialization of the spin
bundle at infinity. A spinor ψ defined on the end of M is called constant (with respect to the asymptotic
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coordinates) if ( )=

− ∗ψ Φ ψ1
0, for some constant spinor ψ0 on �n. In what follows, denote by ( )= ⊂

−S r ρ Mρ
1

the coordinate sphere of radius ρ.
The appropriate analytic tools for studying AEmanifolds are the weighted Hölder spaces ( )C Mβ

k α, , whose

precise definitions are stated in Appendix A. These spaces share many of the global elliptic regularity
results that hold for the usual Hölder spaces on compact manifolds. The index β is important because it

denotes the order of growth: functions in ( )C Mβ
k α, grow at most like r β. In particular, if the metric g is AE of

order τ on �=M n, then in the AE coordinate system, −g δ lies in ( )
−

C Mτ
k α, for all �∈k and the scalar

curvature of g lies in ( )
− −

C Mτ
k α

2
, for all �∈k .

4.1 Critical points

Let ( )M g,n be a spin, AE manifold of order >

−τ n 2
2 . Fix a smooth spinor ψ0, which is constant at infinity

with respect to the AE coordinate system and with ∣ ∣ →ψ 10 at infinity. Define the energy functional

E ( ) ( ∣ ∣ (∣ ∣ ))
∫

= ∇ + −

−ψ f ψ R ψ V, 4 1 e d ,g

M

f
f

g
2 2 (4.2)

on the space of spinors ψ such that ( )− ∈

−

ψ ψ C Mτ
α

0
2, and the space of functions ( )∈

−

f C Mτ
α2, . (These

boundary conditions extend in a straightforward manner to other noncompact geometries.)
The energy generalizes various well-known functionals. If the spinor is zero, the energy equals minus

Perelman’s weighted Hilbert-Einstein action; if the spinor has a unit norm and the weight is zero, the energy
is the “spinorial energy” introduced for closed manifolds in [1]; if the weighted scalar curvature vanishes, then
the energy equals the weighted Dirichlet energy of the spinor. Furthermore, if the weight is zero, spinors
minimizing (1.3) are precisely the Witten spinors, and the value of the energy equals the difference between
the ADMmass and the Hilbert-Einstein action, also known as the Regge-Teitelboim Hamiltonian; for general f ,
the spinors minimizing (1.3) are precisely the weighted Witten spinors, and the value of the energy equals the
difference between the weighted ADM mass and Perelman’s weighted Hilbert-Einstein action [5,16,17].

Proposition 4.1. (Variation of E) The variation of Eg in the directions ( )∈

−

ψ f C M˙ , ˙ τ
α2, is given as follows:

E ( ) ( )
∫

= ( − ⟨ ⟩ + ⟨ ⟩)

−

t
ψ f f R D ψ ψ ψ D ψ Vd

d
, ˙ 4Re , 8Re ˙ , e d .g

M

f f f
f2 2 (4.3)

In particular, the pair ( )ψ f, is critical for Eg if and only if

= =R and D ψ0 0.f f (4.4)

Proof. Using (3.32), it remains to compute the variation of
∫

−R Ve d
M f

f with respect to ḟ . This is achieved via
(3.26): when =ġ 0, it follows that

( ) ( )∂ = −

− −R f f Re 2Δ ˙ ˙ e .t f
f

f f
f (4.5)

Hence, the weighted divergence theorem implies

( )
∫ ∫ ∫ ∫

= − = − + ∇

− − −

→∞

−

t
R V f f R V f R V f Ad

d
e d 2Δ ˙ ˙ e d ˙ e d lim 2 ˙ e d .

M

f
f

M

f f
f

M

f
f

ρ
S

ν
f

ρ

(4.6)

Combined with the =ġ 0 version of (3.32), it follows that

E ( ) ( )

∣ ∣ (∣ ∣ )

( )

( )

∫

∫

= − ⟨ ⟩ + ⟨ ⟩

+ ⟨ ∇ ⟩ − ∇ + − ∇

−

→∞

−

t
ψ f f R D ψ ψ ψ D ψ V

ψ ψ f ψ ψ f A

d
d

, ˙ 4Re , 8Re ˙ , e d

lim 8Re ˙ , 2 ˙ 2 1 ˙ e d .

g

M

f f f
f

ρ
S

ν ν ν
f

2 2

2 2

ρ

(4.7)
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Since ψ̇, ḟ , and ∣ ∣ −ψ 12 all lie in
−

C τ
α2, , the boundary terms vanish when >

−τ n 2
2 .

It follows immediately from (4.3) and the fundamental lemma of the calculus of variations that the pair
( )ψ f, is critical for Eg if and only if =D ψ 0f

2 and =R 0f . It therefore remains to show that if =D ψ 0f
2 and

=R 0f , then in fact =D ψ 0f . If =D ψ 0f
2 , then the spinor ≔φ D ψf lies in

− −

C τ
α

1
1, and satisfies =D φ 0f .

Applying the weighted Lichnerowicz formula with the assumption =R 0f and integrating by parts (the
boundary term vanishes because ( )> − /τ n 2 2) imply

∣ ∣
∫ ∫ ∫

= ⟨ ⟩ = − ⟨ ⟩ = ∇

− − −D φ φ V φ φ V φ V0 , e d Δ , e d e d .
M

f
f

g

M

f
f

g

M

f
g

2 2

Hence, ∇ =φ 0, so ∣ ∣φ 2 is a constant, which must be zero since φ vanishes at infinity. Thus, =D ψ 0f . □

Theorem 4.2. (Existence and uniqueness of critical points; Theorem 1.1 restated). If ( )M g,n has nonnegative
scalar curvature, there exists a unique critical point ( )ψ f,g g of Eg such that −ψ ψg 0 and fg lie in ( )

−

C Mτ
α2, .

Moreover, ( )ψ f,g g is a min-max critical point,

E E( ) ( )=ψ f ψ f, max min , ,g g g
f ψ

g (4.8)

where the min-max is taken over all ψ such that ( )− ∈

−

ψ ψ C Mτ
α

0
2, and all ( )∈

−

f C Mτ
α2, .

Proof. The proof proceeds in two steps. Step 1 shows that given any ∈

−

f C τ
α2, , there exists a unique

Df -harmonic spinor ψf , which is asymptotic to ψ0 and that ψf globally minimizes E ( )⋅ f,g over all spinors

asymptotic to ψ0. Step 2 shows that there exists a unique ∈

−

f Cg τ
α2, , which solves =R 0fg and that fg globally

maximizes E ( )ψ f,g f over all ∈

−

f C τ
α2, , with ψf given by Step 1. The pair

( )
ψ f,f gg

is then the desired critical

point of Eg.

Claim 1: Given any ∈

−

f C τ
α2, , there exists a unique Df -harmonic spinor ψf with − ∈

−

ψ ψ Cf τ
α

0
2, , and ψf

globally minimizes E ( )⋅ f,g over all spinors asymptotic to ψ0 in
−

C τ
α2, .

Proof of Claim 1. By the proof of Witten’s positive mass theorem, there exists a unique smooth spinor ψ
on M such that − ∈

−

ψ ψ C τ
α

0
2, and =Dψ 0. Choose any ∈

−

f C τ
α2, . Then by the unitary equivalence (2.23), the

spinor =

/ψ ψef
f 2 solves =D ψ 0f f .

It remains to show that ψf minimizes E ( )⋅ f,g . This is achieved by showing that

E E( ) ( )+ ≥ψ φ f ψ f, , ,g f g f (4.9)

for all spinors ∈

−

φ C τ
α2, . If φ is such a spinor, integration by parts (the boundary term vanishes due to the AE

decay conditions), the weighted Lichnerowicz formula (2.21), and the assumption =D ψ 0f f imply

E E( ) ( ) ⎛
⎝

∣ ( )∣ ∣ ∣ ⎞
⎠

⎛
⎝

∣ ∣ ∣ ∣ ⎞
⎠

⎛
⎝

∣ ∣ ∣ ∣ ⎞
⎠

⎛
⎝

∣ ∣ ∣ ∣ ⎞
⎠

⎛
⎝

∣ ∣ ∣ ∣ ⎞
⎠

∫

∫

∫

∫

∫

+ − = ∇ + + +

− ∇ +

= ∇ + ⟨∇ ∇ ⟩ + + ⟨ ⟩

= ∇ + + ⟨ ⟩

= ∇ +

−

−

−

−

−

ψ φ f ψ f ψ φ R ψ φ V

ψ R ψ V

φ ψ φ R φ R ψ φ V

φ R φ D ψ φ V

φ R φ V

, , 4 1
4

e d

4 1
4

e d

4 2Re , 1
4

1
2

Re , e d

4 1
4

2Re , e d

4 1
4

e d .

g f g f

M

f f f
f

M

f f f
f

M

f f f f
f

M

f f f
f

M

f
f

2 2

2 2

2 2

2 2 2

2 2

(4.10)

Below it is shown that the last integral is nonnegative; when ≥R 0f , this immediate. By using the defini-
tions of the weighted Laplacian (2.19) and the weighted scalar curvature (2.20), Rf is written as follows:
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∣ ∣= + + ∇R R f f2Δ .f f
2 (4.11)

Then integrating (4.10) by parts (the boundary term vanishes due to the AE decay conditions) imply

E E( ) ( ) ⎛
⎝

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ⎞
⎠

∫

+ − = ∇ + − ⟨∇ ∇ ⟩ + ∇

−ψ φ f ψ f φ R φ f φ f φ V, , 4 1
4

1
2

, 1
4

e d .g f g f

M

f2 2 2 2 2 (4.12)

The Cauchy-Schwarz inequality combined with Kato’s inequality and the Peter-Paul inequality ≤ +ab a bε
ε1

2
2

2
2

implies, for all >ε 0,

∣ ∣ ∣ ∣∣ ∣∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣− ⟨∇ ∇ ⟩ ≥ − ∇ ∇ ≥ − ∇ − ∇f φ f φ φ
ε

f φ ε φ1
2

, 1
2 2

.2 2 2 2 (4.13)

Applied with =ε 2, this implies

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣∇ + − ⟨∇ ∇ ⟩ + ∇ ≥ ≥φ R φ f φ f φ R φ1
4

1
2

, 1
4

1
4

0.2 2 2 2 2 2 (4.14)

This shows that the integrand in (4.12) is nonnegative, proving (4.9), and hence Claim 1.
Claim 2: There exists a unique ∈

−

f Cg τ
α2, , which solves =R 0fg and fg globally maximizes E ( )ψ f,g f over

all ∈

−

f C τ
α2, , with ψf given by Claim 1.

Proof of Claim 2. Theorem 2.17 of [5] proves that there exists a unique ∈

−

f Cg τ
α2, solving =R 0f . It remains

to show that fg maximizes E ( )ψ f,g f over all ∈

−

f C τ
α2, , with ψf given by Claim 1. This is achieved by showing

that, for any function, ∈

−

h C τ
α2, on M ,

E E
( ) ( )

+ ≤

+

ψ f h ψ f, , .g f h g g f gg g
(4.15)

The density of ( )∞C Mc in ( )
−

C Mτ
α2, then concludes the proof. For ease of notation, let =f fg for the remainder

of this proof.
Let ψ be the unique Witten spinor asymptotic to ψ0; that is, solving =Dψ 0 and − ∈

−

ψ ψ C τ
α

0
2, . By the

unitary equivalence (2.23), =

/ψ ψef
f 2 and =

+

/ψ ψef h
h

f
2 . Since =R 0f , the definition of weighted scalar

curvature (2.20) implies

∣ ∣ ∣ ∣= + − ∇ = − ∇

+

R R h h h h2Δ 2Δ .f h f f f
2 2 (4.16)

Using this, combined with the fact that =

+

/ψ ψef h
h

f
2 , implies

E ( ) ( ∣ ∣ (∣ ∣ ))

( ∣ ∣ ( ∣ ∣ )(∣ ∣ ))

∣ ∣ ∣ ∣ ∣ ∣ ( )∣ ∣ ( ) ∣ ∣ ∣ ∣

∣ ∣

(

)

∫

∫

∫

+ = ∇ + −

= ∇ + − ∇ −

= ∇ + ∇ + ⟨∇ ⟩ + − − ∇

+ ∇

+ +

+

+

− −

/ / − −

∇

−

− −

ψ f h ψ R ψ V

ψ h h ψ V

ψ h ψ ψ ψ h ψ h h ψ

h V

, 4 1 e d

4 e 2Δ e 1 e d

4 4Re , 2Δ 2 Δ e

e e d .

g f h

M

f h f h f h
f h

M

h
f f

h
f

f h

M

f f h f f f f f
h

f

h f

2 2

2 2 2 2 2

2 2 2 2 2 2

2

(4.17)

Integrating the hΔf terms by parts with respect to the measure − Ve df (the boundary terms vanish by the AE
decay conditions) implies

E

E

( ) ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

( ) ∣ ∣

( )

( )

∫

∫

∫

+ = ∇ + ⟨∇ ⟩ − ⟨∇ ⟩ + ⟨∇ ∇ ⟩ + ∇

= ∇ − ∇

= − ∇

+

∇ ∇

− − −

− −

− −

ψ f h ψ ψ ψ ψ ψ h h V

ψ h V

ψ f h V

, 4 4Re , 4Re , 2 , e e e d

4 e e d

, e d .

g f h

M

f h f f h f f
h h f

M

f
h f

g f

M

f h

2 2

2 2

2

(4.18)
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Since the last term on the right-hand side of the aforementioned equation is nonpositive, this proves (4.15),
and hence Claim 2. □

4.2 Ricci flow monotonicity

An asymptotically Euclidean Ricci flow is defined to be a Ricci flow starting at an AE manifold. The AE
conditions are preserved along such a Ricci flow (with the same coordinate system) [23, Thm. 2.2]. In this

section, ( )
∈

M g,n
t t I denotes a spin, AE Ricci flow of order >

−τ n 2
2 whose scalar curvature is nonnegative. The

preservation of nonnegative scalar along the Ricci flow follows from the maximum principle; see [12,
Section 3.3], for example.

With Theorem 4.2 in hand, define ( )κ t to be the energy of the unique min-max critical point of E ( )g t ,

E( ) ( )( )=κ t ψ fmax min , .
f ψ

g t (4.19)

This may be seen as an analog of Perelman’s λ-entropy for closed manifolds. The main theorem of this
section concerns the time derivative of ( ( ))κ g t along a Ricci flow ( )∂ = −g g2Rict . Because the monotonicity
theorem applies to the unmodified Ricci flow ∂ = −g 2Rict , the proof uses the following L2-orthogonality
lemma.

Lemma 4.3. If ( )M g,n is an AE manifold of order >

−τ n 2
2 and ( )∈

−

f C Mτ
α2, satisfies =R 0f , then

∫

⟨ ⟩ =

− VHess , Ric e d 0.
M

f f
f (4.20)

Proof. The weighted Bianchi identity ( )− =R gdiv Ric 0f f f
1
2 , which holds for all weighted manifolds, com-

bined with the assumption =R 0f imply that ( ) =div Ric 0f f . Hence, the weighted divergence theorem

(Appendix A.2) and the fact that L =

∇

g Hessf f
1
2 imply

L ( )
∫ ∫ ∫

⟨ ⟩ = ⟨ ⟩ = ∇

−

∇

−

→∞

−V g V f ν AHess , Ric e d 1
2

, Ric e d lim Ric , e d .
M

f f
f

M

f f
f

ρ
S

f
f

ρ

(4.21)

Since the metric g is AE of order τ and ∈

−

f C τ
α2, , the term ( )∇f νRic ,f decays like − −r τ2 3. On the other hand, the

area of Sρ is of order −ρn 1. The assumption >

−τ n 2
2 therefore implies that the aforementioned boundary term

vanishes. □

Proof of Theorem 1.2. The existence and uniqueness of f and ψ is the content of Theorem 4.2. Appendix
A.1 proves the existence and regularity of their time derivatives. The variational formula (3.33) implies

⎟

∣ ∣ ⎛

⎝
( ) ⎛

⎝
( ) ⎞

⎠
∣ ∣

( ) ∣ ∣ ∣ ∣ ( ) ⎛
⎝

( ) ⎞
⎠

⎞

⎠

∫ ∫

∇ = ⟨ ⋅ ⟩ + ⟨ ∇ ⟩ + − ∇

− ⟨ ⋅ ∇ ⟩ + − ∇ −

−

→∞

−

t
ψ V g T ν ψ ψ g f ψ

g ν ψ ψ g g f ν A

d
d

e d lim 1
4

2 ˙ , , 8Re ˙ , 2 1
2

tr ˙ ˙

˙ , , div ˙ 2 1
2

tr ˙ ˙ , e d .

M

f
ρ

S

ψ ν ν

f
f

2 2

2 2

ρ (4.22)

The first four boundary integrals vanish in the limit → ∞ρ . Indeed, since ( )− ∈

−

ψ ψ C Mτ
α

0
2, and ∣ ∣ →ψ 1 at

infinity, ( )∇ =

− −ψ O r τ 1 and ( ) ( )⋅ =

− −T ν O r,ψ
τ 1 . Moreover, since g is asymptotically flat of order τ and

( )∈

−

f C Mτ
α2, , ( )= − +ġ 2 Ric Hessf is ( )− −O r τ 2 . Finally, by Proposition A.4, ḟ and ψ̇ are ( )−O r τ . This shows

that the first four terms in the aforementioned integrand all decay of order at least − −r τ2 1; since >

−τ n 2
2 and

since the area of Sρ is of order −ρn 1, said four terms all vanish in the limit → ∞ρ . Hence, only the last term
in the integrand above contributes to the limit.

Since ∣ ∣ →ψ 1 uniformly at infinity, the previous equation reduces to
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∣ ∣ ( ) ⎛
⎝

( ) ⎞
⎠

∫ ∫

∇ = − ∇ −

−

→∞

−

t
ψ V g g f ν Ad

d
e d lim 1

4
div ˙ 2 1

2
tr ˙ ˙ , e d .

M

f
ρ

S

f
f2

ρ

(4.23)

Let ⊂M Mρ be the compact set bounded by the sphere Sρ. Applying the weighted divergence theorem
(Appendix A.2) to the right-hand side of the aforementioned equation and differentiating the equation

=R 0f in time implies by (3.26) that

∣ ∣ ⎛

⎝
( ) ⎛

⎝
( ) ⎞

⎠
⎞

⎠
∫ ∫

∫

∇ = − −

= ⟨ ⟩

−

→∞

−

→∞

−

t
ψ V g g f V

g V

d
d

e d lim 1
4

div ˙ 2Δ 1
2

tr ˙ ˙ e d

lim 1
4

˙ , Ric e d .

M

f
ρ

M

f f
f

ρ
M

f
f

2 2

ρ

ρ

(4.24)

By Lemma 4.3 and the fact that = −ġ 2Ric, the last equation implies

∣ ∣ ∣ ∣
∫ ∫

∇ = −

− −

t
ψ V Vd

d
e d 1

2
Ric e d .

M

f

M

f
f2 2 (4.25)

□

Remark 4.4. In contrast to Perelman’s monotonicity for closed manifolds, which is proved by letting the
weight f evolve parabolically backward in time, the monotonicity formula (1.7) uses the fact that f and ψ
solve the elliptic equations =R 0f and =D ψ 0f at each time; their time derivatives contribute only as
boundary terms, which vanish due to the AE decay conditions.

In addition, Perelman’s entropy is monotone increasing, while the energy considered here is monotone
decreasing. This results from the fact that the two functionals have opposite signs.

4.3 Constancy of ADM mass

The ADM mass [3] of an AE manifold ( )M g,n is defined (up to a constant depending on dimension) by

m( ) ( )
∫

= ∂ − ∂ ∂ ⌟

→∞

g g g Vlim d .
ρ

S

i ij j ii j g

ρ

(4.26)

The definition of mass involves a choice of AE coordinates; however, Bartnik [6] showed that if
( )> − /τ n 2 2 and the scalar curvature is integrable, then the mass is finite and independent of the choice

of AE coordinates. If ≤n 7 or ( )M g,n admits a spin structure, then the assumptions ≥R 0, ( )∈R L M g,1 , and
>

−τ n 2
2 , imply that m( )g is nonnegative and is zero if and only if ( )M g,n is isometric to �( )g,n

euc , by the
positive mass theorem [29,31].

Witten argued that for any constant spinor ψ0 on the end of M with ∣ ∣ →ψ 10 at infinity, there exists a

harmonic spinor ψ on M ; which is asymptotic to ψ0, in the sense that ( )− ∈

−

ψ ψ C Mτ
α

0
2, . Such a spinor ψ is

called a Witten spinor because the ADM mass of ( )M g,n is given by

m( ) ⎛
⎝

∣ ∣ ∣ ∣ ⎞
⎠

∫

= ∇ +g ψ R ψ V4 1
4

d ,
M

g
2 2 (4.27)

which is called Witten’s formula for the mass. A rigorous proof of the existence of Witten spinors is given by
Parker and Taubes [26] and Lee and Parker [22]; their proofs were generalized to weighted AE manifolds
in [5].

Proof of Theorem 1.3. Let ψ be a Witten spinor, so =Dψ 0. The variational formula (3.33) applied with

= =f ḟ 0 reduces to
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( ∣ ∣ ∣ ∣ )

( ( ) ( ) ∣ ∣ ( ) ∣ ∣

∣ ∣ ( ) ( ) )

∫

∫

∇ +

= ⟨ ⋅ ⟩ + ⟨ ∇ ⟩ + ∇ − ⟨ ⋅ ∇ ⟩

+ ⟨ − ∇ ⟩

→∞

t
ψ R ψ V

g T ν ψ ψ g ψ g ν ψ

ψ g g ν A

d
d

4 d

lim 2 ˙ , , 8Re ˙ , tr ˙ ˙ , ,

div ˙ tr ˙ , d .

M

ρ
S

ψ ν ν

2 2

2 2

2

ρ

(4.28)

Using Proposition A.3, the first four boundary integrals vanish in the limit → ∞ρ due to the asymptotic
decay of these terms, as in the proof of the monotonicity theorem, Theorem 1.2. Hence, only the last term in
the aforementioned integrand contributes to the limit.

The Bianchi identity ( ) = ∇Rdiv Ric 1
2 applied to the previous equation yields

( ∣ ∣ ∣ ∣ ) ∣ ∣ ( )
∫ ∫

∇ + = ∇

→∞t
ψ R ψ V ψ R Ad

d
4 d lim d .

M
ρ

S

ν
2 2 2

ρ

(4.29)

The latter boundary term vanishes since ∣ ∣ →ψ 1 uniformly at infinity and by [24, Lem. 11],

∣ ∣
∫

∇ =

→∞

R Alim d 0.
ρ

Sρ

(4.30)
□

Remark 4.5. The result of the aforementioned calculation agrees with that of [23, p. 1843], where it was
shown by different means that under the Ricci flow ∂ = −g 2Rict , the ADM mass evolves by

m( ) ( )
∫

= ∇ =

→∞t
g R Ad

d
lim d 0.t ρ

S

ν

ρ

(4.31)
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Appendix

A.1 Time derivatives of weighted Witten spinors

The purpose of this appendix is to prove the existence and regularity of time derivatives of weighted Witten
spinors along the Ricci flow. The argument is based on the existence theorem for ordinary differential
equations (ODEs) in Banach spaces.

On an AE spin manifold ( )M g,n , the asymptotic coordinates define a positive function r, which equals
the Euclidean distance to the origin on the end of M , and which can be extended to a smooth function

which is bounded below by 1 on all of M . Using r, the weightedCk space ( )C Mβ
k is defined for �∈β as the set

of Ck functions u on M for which the norm

∣ ∣
∑

‖ ‖ = ∇

=

− +u r usupC
i

k

M

β i i

0
β
k

is finite. The weighted Hölder space ( )C Mβ
k α, is defined for ( )∈α 0, 1 as the set of ( )∈u C Mβ

k for which the norm

( { ( ) ( )})
∣ ( ) ( )∣

( )
‖ ‖ = ‖ ‖ +

∇ − ∇

− + +u u r x r y u x u y
d x y

sup min ,
,C C

x y

β k α
k k

α
,β

k α
β
k,

is finite. These definitions of weighted Hölder spaces coincide with those of [22, Section 9]. In particular, the
index β denotes the order of growth: functions in ( )C Mβ

k α, grow at most like r β. Note that the definitions of
the weighted function spaces depend on the “distance function” r and thereby on the choice of asymptotic
coordinates. However, it is easy to see that r is uniformly equivalent to the geodesic distance from an
arbitrary fixed point in M as → ∞r ; hence, all choices of r define equivalent norms. For the remainder of
this appendix, fix ( )∈α 0, 1 .

Lemma A.1. If ( )M g f, ,n is a weighted, AE manifold of order
( )

∈ −

−τ n, 2n 2
2 and ( )∈

−

f C Mτ
α2, satisfies

≥R 0f , then

( ) ( )→

−
− −

D C M C M:f τ
α

τ
α2,

1
1,

is an isomorphism.

Proof. To show injectivity, suppose that ( )∈

−

ψ C Mτ
α2, satisfies =D ψ 0f . The weighted Lichnerowicz formula

and integration by parts imply

⎛
⎝

∣ ∣ ⎞
⎠

⎛
⎝

∣ ∣ ∣ ∣ ⎞
⎠

∫ ∫ ∫

= ⟨ ⟩ = −⟨ ⟩ + = ∇ +

− − −D ψ ψ V ψ ψ R ψ V ψ R ψ V0 , e d Δ , 1
4

e d 1
4

e d ,
M

f
f

g

M

f f
f

g

M

f
f

g
2 2 2 2

because the boundary term vanishes if >

−τ n 2
2 . Since ≥R 0f , this shows that∇ =ψ 0, so ∣ ∣∇ =ψ 02 . Thus, ∣ ∣ψ

is a constant, which is zero since ψ vanishes at infinity. This proves Df is injective.
To show surjectivity, let ( )∈

− −

ξ C Mτ
α

1
1, . Since ( ) ( )→

−
− −

D C M C M:f τ
α

τ
α2 2,

2
0, is an isomorphism under the stated

assumptions [5, Lem. A.3], there exists ( )∈

−

ψ C Mτ
α2, such that =D ψ D ξf f

2 . Then the spinor = −φ D ψ ξf satisfies

=D φ 0f , lies in ( )
− −

C Mτ
α

1
1, , and is smooth due to elliptic regularity. Hence, integration by parts as mentioned

earlier implies =φ 0. Thus, =D ψ ξf , showing that Df is surjective. □

For the remainder of this appendix, let ( ( ))
∈

M g t,n
t I be an AE Ricci flow satisfying

≥

−

< < −R n τ n0 and 2
2

2. (A1)

On such an AE Ricci flow, the “distance function” r on M is defined independently of time, since the AE
condition is preserved by the Ricci flow (with the same AE coordinates). Moreover, since the metrics ( )g t , for
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∈t I , are uniformly equivalent by the AE condition, the ( )C Mβ
k α, weighted Hölder norm, defined with respect

to ( )g t , is equivalent, for all small ∈t I , to the norm defined with respect to ( )g 0 . This identification of the
weighted Hölder spaces at different times along a Ricci flow is used implicitly in what follows.

Lemma A.2. (Time derivative of f ) For all small times along the Ricci flow, the elliptic equation =R 0f with

( )∈

−

f C Mτ
α2, admits a family of solutions, which is C1 in time, and whose time derivative ḟ lies in ( )

−

C Mτ
α2, .

Proof. The following argument proves the Lemma assuming a suitable solution of =R 0f exists at the initial
time; existence of such a solution at the initial time follows from Theorem 4.2.

Define the time-dependent, linear operator

( ) ( ) ( ) ( )→ = − +

−
− −

L C M C M L v v R v: , 4Δ .t τ
α

τ
α

t g t g t
2,

2
0,

When the choice of t is clear from the context, Lt is written as L to simplify notation. The elliptic equation
=R 0f with ∈

−

f C τ
α2, can then be reformulated as follows:

( )= − = − ∈

− /

−

Lv R v C Mfor e 1 .f
τ
α2 2, (A2)

The proof of the lemma is based on the existence of solutions to ordinary differential equations in the
Banach space ( )

−

C Mτ
α2, . If v solves (A2) along the Ricci flow and v isC1 in time, taking time derivatives of (A2)

implies

+ = −Lv Lv R˙ ˙ ˙ . (A3)

The evolution equation for scalar curvature (3.26) along the Ricci flow implies ∣ ∣= +R R˙ Δ 2 Ric 2. Above, the
operator ( ) ( )→

−
− −

L C M C M˙ : τ
α

τ
α2,

2
0, is the variation of Lt along the Ricci flow, and is given by

( ∣ ∣ )= − ⟨ ⟩ + +Lv R v˙ 8 Ric, Hess Δ 2 Ric ,v
2 (A4)

the geometric quantities on the right above naturally being evaluated at time t; this formula follows from
the variations of the Laplacian and scalar curvature along the Ricci flow [12, Lem. 2.30]. Further, Li [23]
showed that if ( ) − ∈

−

g δ C0ij ij τ
k , then ( ) − ∈

−

−g t δ Cij ij τ
k 2 for ≥t 0. In particular, since ( )g 0 satisfies (4.1) for all

k, it follows that (A3) and (A4) indeed are well defined in
− −

C τ
α

2
0, .

Equation (A3) can be inverted to obtain an ODE for the time derivative,

= − −

− −v L Lv L R˙ ˙ ˙ ,1 1 (A5)

because the operator Lt is an isomorphism for each time. Indeed, a simple integration by parts argument
using nonnegativity of ∈

− −

R C τ
α

2
0, and the decay conditions implies injectivity of L; surjectivity then follows

from [22, Thm. 9.2(d)], since < −τ n 2.
Let ( ) ( )∈

−

f C M0 τ
α2, solve =R 0f at the initial time and define ( ) ( )

= −

− /v 0 e 1f 0 2 , so that ( ) ( )= −L v R0 g0 0

by (A2). To prove the Lemma, it suffices to show that the aforementioned ODE in ( )
−

C Mτ
α2, admits a solution

on some time interval [ ]ε0, ; indeed, if this is the case, then the fundamental theorem of calculus and (A3)
imply that if ( )v t is defined by

( ) ( ) ( )
∫

= +v t v v s s0 ˙ d ,
t

0

(A6)

then ( )v t is C1 in time and satisfies ( ) ( )( ) ( )+ = + =L v t R L v R0 0t g t g0 0 . Hence, if ( )v 0 solves (A2), then
( ) ( ( ))≔ − +f t v t2 log 1 solves =R 0f on this time interval. Note that by continuity, if ( )+ v1 0 is strictly

positive, then ( )+ v t1 remains strictly positive for small time, so ( )f t is well defined.
By the contraction mapping theorem, the existence for solutions of the ODE (A5) in ( )

−

C Mτ
α2, are

guaranteed [13, Thm. 9.4] on a time interval [ ]ε0, , as long as the time-dependent vector field

[ ] ( ) ( ) ( )× → = − −

− −

− −X ε C M C M X t v L L v L R: 0, , , ˙ ˙τ
α

τ
α

t t t
2, 2, 1 1 (A7)
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defined by the ODE is locally Lipschitz in the second variable and ε is chosen small enough (depending on
the Lipschitz constant). The vector field X is indeed locally Lipschitz, since

( ) ( ) ( )
[ ]

‖ − ‖ = ‖ − ‖ ≤ ‖ ‖ ‖ − ‖

−

∈

−

− − −

X t v X t v L L v v L L v v, , ˙ sup ˙ .C t t C
s ε

s s C1 2
1

1 2
0,

1
op 1 2τ

α
τ
α

τ
α2, 2, 2, (A8)

The Lipschitz constant L of the vector field X , given by

[ ]

= ‖ ‖

∈

−L L Lsup ˙ ,
s ε

s s
0,

1
op (A9)

is finite because the time interval [ ]ε0, is compact, the operator Lt varies smoothly along the Ricci flow, and
the curvature and its derivatives are uniformly bounded along the flow by [23], and hence, L̇s is also
bounded from (A4). □

Recall that the spin bundle depends on the Riemannian metric, though the spin bundles for different
metrics are always isomorphic. In contrast to the generalized cylinder construction of Section 2.1, the
existence and regularity of time derivatives of Witten spinors along an AE Ricci flow ( ( ))

∈

M g t,n
t I are proven

here using the time-dependent isometries [8] of the spin bundles

( ) ( )→M MΣ : Σ Σ .t g t g 0

This allows for a convenient ODE formulation for a Witten spinor along the Ricci flow.
Since the AE coordinates are preserved along the flow, the notion of a spinor that is “constant” at

infinity is defined independently of time. For the remainder of this appendix, fix a smooth spinor ψ0 in the
( )g 0 -spin bundle, which is constant at infinity and of norm 1. Further, in the following two propositions, the

Hölder space ( )C Mβ
k α, denotes the space of sections of the ( )g 0 -spin bundle decaying suitably.

Proposition A.3. (Time derivative of Witten spinor) For all small times along the Ricci flow, the elliptic
equation =Dψ 0 with ( )− ∈

−

ψ ψ C Mτ
α

0
2, admits a family of solutions, which is C1 in time, and the time

derivative ψ̇ lies in ( )
−

C Mτ
α2, .

Proof. The argument below proves the proposition assuming a Witten spinor exists at the initial time;
existence at the initial time follows from Witten’s proof of the positive mass theorem [22, 26].

Define the time-dependent, linear operator

( ) ( )→ =

−
− −

−P C M C M P ψ D ψ: , Σ Σ .t τ
α

τ
α

t t t t
2,

1
1, 1

When the choice of t is clear from the context, Pt is written as P to simplify notation. Note that ψ satisfies
=P ψ 0t and − ∈

−

ψ ψ C τ
α

0
2, if and only if − ψΣt

1 is a Witten spinor for the metric ( )g t . The elliptic equation
=Pψ 0 with − ∈

−

ψ ψ C τ
α

0
2, can be reformulated as follows:

( )= − = − ∈

−

Pξ Pψ ξ ψ ψ C Mfor .τ
α

0 0
2, (A10)

The proof of the proposition is based on the existence of solutions to ordinary differential equations in
the Banach space ( )

−

C Mτ
α2, . If ξ solves (A10) along the Ricci flow and ξ isC1 in time, taking time derivatives of

(A10) and using that ψ0 is time independent imply

+ = −Pξ Pξ Pψ˙ ˙ ˙ .0 (A11)

The evolution equation for the Dirac operator (3.7) along the Ricci flow implies that the operator
( ) ( )→

−
− −

P C M C M˙ : τ
α

τ
α2,

1
1, , the variation of Pt along the Ricci flow, is given by

( ( ) ( ) )= ⋅∇ − ∇ ⋅

−Pξ e R ξ˙ Σ Ric 1
4

Σ ,t i i t
1 (A12)

the curvatures and Clifford multiplication on the right above naturally being evaluated at time t . Further, Li
[23] showed that if ( ) − ∈

−

g δ C0ij ij τ
k , then ( ) − ∈

−

−g t δ Cij ij τ
k 2 for ≥t 0. In particular, if the metric ( )g 0 is

initially smooth, then (A11) and (A12) indeed are well defined in
− −

C τ
α

1
1, .
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Equation (A11) can be inverted to obtain an ODE for the time derivative,

( )= − +

−ξ P P ξ ψ˙ ˙ ,1
0 (A13)

because the operator Pt is an isomorphism for each time by Lemma A.1.
Let ( )ψ 0 be a ( )g 0 Witten spinor asymptotic to ψ0 and define ( ) ( )= −ξ ψ ψ0 0 0, so that ( ) = −P ξ P ψ00 0 0

by (A10). To prove the lemma, it suffices to show that the aforementioned ODE in ( )
−

C Mτ
α2, admits a solution

on some time interval [ ]ε0, ; indeed, if this is the case, then the fundamental theorem of calculus and (A11)
imply that if ( )ξ t is defined by

( ) ( ) ( )
∫

= +ξ t ξ ξ s s0 ˙ d ,
t

0

(A14)

then ( )ξ t is C1 in time and satisfies ( ) ( )+ = + =P ξ t P ψ P ξ P ψ0 0t t 0 0 0 0 . Hence, if ( )ξ 0 solves (A10), then
( ) ( )≔ +ψ t ξ t ψ0 is a ( )g t Witten spinor.

The existence of a solution to the ODE (A13) follows by reasoning as in the proof of Lemma A.2: for small
>ε 0, apply the contraction mapping theorem to the vector field

[ ] ( ) ( ) ( ) ( )× → = − +

− −

−Y ε C M C M Y t ξ P P ξ ψ: 0, , , ˙ ,τ
α

τ
α

t t
2, 2, 1

0 (A15)

which is locally Lipschitz with Lipschitz constant

[ ]

= ‖ ‖

∈

−K P Psup ˙ .
s ε

s s
0,

1
op (A16)

□

Proposition A.4. (Time derivative of weighted Witten spinor). Under the hypothesis of Theorem 1.2, the time

derivatives of f and ψ satisfy ( )∈

−

f C M˙ τ
α2, and ( )∈

−

ψ C M˙ τ
α2, .

Proof. Because the scalar curvature is nonnegative, Witten’s proof of the positive mass theorem implies the
existence of an (unweighted) Witten spinor φ. By the unitary equivalence 2.23 between the Dirac and

weighted Dirac operators, =

− /ψ φe f 2 is the weighted Witten spinor, and by Lemma A.2 and Proposition

A.3, the time derivative of − / φe f 2 exists and lies in
−

C τ
α2, . □

A.2 Weighted integration by parts formulas

Let ( )M g f, ,n be a weighted Riemannian manifold with boundary ∂M , whose outward unit normal is
denoted ν. The weighted divergence of a tensor T is defined as follows:

( ) ( ) ( )= − ∇ ⋅T T T fdiv div , .f

The same definition applies when T takes values in an auxiliary vector bundle equipped with a metric and
compatible connection, like the spin bundle.

The divergence theorem ( )
∫ ∫

= ⟨ ⟩

∂

X V X ν Adiv d , d
M M

, along with the definition of the weighted diver-
gence, implies the weighted divergence theorem

( )
∫ ∫

= ⟨ ⟩

−

∂

−X V X ν Adiv e d , e d .
M

f
f

M

f

Applied to the vector field uX , for any function u on M , the weighted divergence theorem implies

( )
∫ ∫ ∫

= − ⟨∇ ⟩ + ⟨ ⟩

− −

∂

−u X V u X V u X ν Adiv e d , e d , e d .
M

f
f

M

f

M

f
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Since the weighted Laplacian is defined as = ∘ ∇Δ divf f , the aforementioned formula implies

( ( ) ) ( ( ) )
∫ ∫

− = ∇ − ∇

−

∂

−u v u v V u v u v AΔ Δ e d e d .
M

f f
f

M

ν ν
f

The aforementioned discussion generalizes in a straightforward manner to higher-rank tensors: for any
vector bundle valued k-tensor T and ( )−k 1 -tensor S, the weighted divergence theorem is

( ) ( )
∫ ∫ ∫

⟨ ⟩ = − ⟨ ∇ ⟩ + ⟨ ⋅ ⟩

− −

∂

−T S V T S V T ν S Adiv , e d , e d , , e d .
M

f
f

M

f

M

f

This follows from Stokes theorem applied to the ( )−n 1 -form ( )=α ι VdX g , where X is the vector field
( )= ⟨ ⋅ ⟩

−X T e S e, , ei
f

i; indeed, with these choices, it follows that

( ) ( ( ) )= = ⟨ ⟩ + ⟨ ∇ ⟩

−α X V T S T S Vd div d div , , e d .f
f

For a symmetric 2-tensor T on M , the weighted divergence theorem simplifies: symmetry of T and the
definition of the Lie derivative of the metric implies, for every vector field X on M ,

L( ) ( )
∫ ∫ ∫

⟨ ⟩ = − ⟨ ⟩ +

− −

∂

−T X V T g V T X ν Adiv , e d 1
2

, e d , e d .
M

f
f

M

X
f

M

f
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