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1 Introduction

In the last years, there has been quite an interest in the theory involving Stieltjes derivatives. An approach
has been introduced recently by Lépez Pouso and Rodriguez [13] who focus their attention on the definition
and meaning of Stieltjes derivatives instead of what has been done previously from the works of Kurzweil
[7] who deal with associated integral problems involving Stieltjes measures; see also [17]. Stieltjes differ-
ential equations have the important advantage of providing a unified framework to differential equations,
discrete equations, dynamic equations on time scales, and differential equations with impulses at fixed
times, as shown in [13]. They are particularly useful for modeling evolution processes in which sudden
changes and stationary periods occur, see [4,10].

Let g : R — R be monotone, nondecreasing, and left-continuous everywhere. In this article, we con-
sider problems of a first-order Stieltjes differential equation of the form:

xé(t) = f(t, x(t)) for g-almostevery t € [0, T], x € B, (1.1

where xé denotes the Stieltjes derivative of x with respect to g, and B denotes the periodic boundary value
or the initial value conditions:

x(0) = x(T); (1.2)
x(0) = xo. (1.3)

The case where g(t) =t corresponds to a classical first-order differential equation in which the use of
notions of lower and upper solutions has a long history. It has been applied to periodic boundary value
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problems by Mawhin [15] when f is continuous and by Nkashama [18] when f is Carathéodory. Some
authors have generalized the notions of upper and lower solutions. It is the case, for example, in [9], where
the functions considered are not absolutely continuous or have discontinuities.

There are very few results in the literature on periodic boundary value problems for Stieltjes differential
equations. To our knowledge, Satco and Smyrlis [19] were the first to obtain an existence result for the
problem

xg(t) + b(t)x(t) = f(t, x(t)) te[0,T]; x(0)=x(T).

They considered maps f, which are Mg-integrably bounded, where y, is the measure associated to g. In
[14,20], they extended their results to Stieltjes differential inclusions.

The notions of lower and upper solutions were generalized by Monteiro and Slavik [16] to initial value
problems of measure differential equations of the form

t
X(E) = xo + J.f(s, x($))dp,
0

Then, they were extended to systems of measure differential equations in [12]. Lépez Pouso and Marquez
Albés [10] used the method of lower and upper solutions to establish an existence result for Stieltjes
differential equations with an initial value condition. They also considered functional Stieltjes differential
equations and problems with nonlinear boundary conditions. To establish the existence of a solution lying
between a lower and an upper solution, the following monotonicity condition was imposed in [10,12,16]:

x— x+ f(t,x)(g(t*) - g(t)) isnondecreasingon [a(t), B(t)] (1.4)

for every t € [0, T) in the set of discontinuity points of g, where a and f3, are respectively, lower and upper
solutions of the problem.

Even for the classical problem with g(t) = t, there are very few results in the literature establishing the
existence of several solutions to first-order differential equations. Ambrosetti-Prodi type results have been
obtained by Mawhin [15] and Nkashama [18] for periodic boundary value problems. A multiplicity result
has also been obtained for systems of first-order differential inclusions in [5] and for equations with non-
linear differential operators in [2].

In this article, we present existence results for (1.1) based on the fixed-point index theory, see [6]. In addition,
we establish multiplicity results for this problem, which are, as far as we know, the first in the literature. To this
aim, we introduce the notions of strict upper and lower solutions of (1.1). It should be noted that no monotonicity
condition such as (1.4) is imposed, and the map f does not need to be p,-integrably bounded.

Our work is organized as follows. Section 2 contains definitions and preliminary results. Existence and
multiplicity results are obtained for the periodic boundary value problem in Section 3 and for the initial
value problem in Section 4.

Finally, in Section 5, we present an application of our existence result for (1.1) with a periodic boundary
condition to model a population persistence problem. The use of a Stieltjes differential equation allows us to
take into account different phenomena involving discontinuities in the model such as extreme events, fish
seeding, or new plantations. It also allows us to consider certain periods when the population size remains
stable. This could be the case of a population with dormant states or periods during which no variation can
be observed, for example, during winter. Then, at the end of these periods, sudden variations in the
population size may occur (deaths, hatchings, etc.).

2 Preliminaries

Throughout this article, given a regulated functionu : [a, b] — R, for every t € [a, b), the symbol u(t*) will
be used to denote
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u(t*) = lim u(s).
s—t*
Let us consider a function g : R — R continuous from the left and nondecreasing. To recall the definition of
the Stieltjes derivative with respect to g [13], we need to define the sets:

C; ={s €R : g isconstanton (s - &, s + €) for some & > 0},
and
Dy ={teR :g(t) — g(t) > O}.

The function g generates a unique Lebesgue-Stieltjes measure denoted by Mgt Mg — [0, oo], where M, is
a o-algebra of subsets of the reals containing all Borel sets, and satisfying

yg([a, b)) = g(b) - g(a), Va,beR, a<hbh.

The measure y, shares many properties with the Lebesgue measure. However, one main difference is that,
for any ¢t € D,

u (it} = ,ug( N [t, £+ l)) - lim yg([t, ¢+ l)) - lim g(t N l) _o(t) = g(t*) - g() > O,
n=1 n n—+oo n n—+co n
By using a similar argument, one can prove that the set C; has zero g-measure, see [13]. Furthermore, this
implies that it is convenient to disregard the points of C, while defining the g-derivative.
Given a real-valued function f, the g-derivative of f with respect to g at a point ¢, € R\ C; is defined by

Loy i JO — f()
fe(to) = tlgg 20— 80’ if to ¢ D,,
fo(to) = lim SO iy ¢ Dg.

t-t5 g(t) - g(to)”

We say that f is g-differentiable at ¢, provided that fé(to) exists, and f is g-differentiable in a set A ¢ R,
when f is g-differentiable at every ¢, € A\ Cg.

2.1 g-Continuity
We introduce the g-topology on R.

Definition 2.1. A set U c R is g-open if, for every ty € U, there exists r > 0 such that
{teR:[g(t) - gto)l <r}cU.

Observe that if t € D, (t - 8, t] is g-open.

Definition 2.2. A function f : [a, b] — R is g-continuous at t, if, for every € > 0, there exists § > 0 such that
tela,bl, 8(t)-g(to)l <b=|f(t) - f(to)l <e&.

The maps that are g-continuous have nice properties.

Proposition 2.3. If f : [a, b] — R is g-continuous on [a, b], then the following statements hold:
(1) f is left-continuous at every ty € (a, b].

(2) If g is continuous at ty € [a, b), then so is f.

(3) If g is constant on some [c, d] C [a, b], then so is f.



DE GRUYTER Multiplicity results for Stieltjes differential equations =—— 687

We denote by Cq([a, b]) the set of g-continuous functions on the interval [a, b], and BC,([a, b]) the
subset of g-continuous functions that are also bounded on [a, b], endowed with the supremum norm
Ixlo = sup |x(¢)|, forall x € BCq([a, b]).
tela,b]
Notice that BC,([a, b]) is a Banach space (see [4, Theorem 3.4]). According to the previous proposition,
Cg([a, b]) and BCg([a, b]) coincide if g is continuous. However, in the case where g is discontinuous, the
two sets are different in general, as shown in [4, Example 3.3].

2.2 g-Absolute continuity

Definition 2.4. A map F : [a, b] — R is g-absolutely continuous, if, for every € > 0, there exists § > 0 such
that, for any family {(a;, b;)}=" of pairwise disjoint open subintervals of [a, b],

Y8(b) - gla) < 8= Y |F(b) - Fa)| < e.

i=1 i=1

We denote by ACg([a, b]) the set of g-absolutely continuous functions on the interval [a, b].

In what follows, ng([a, b)) denotes the set of Lebesgue-Stieltjes integrable functions with respect to p,.
We state the fundamental theorem of calculus for the Lebesgue-Stieltjes integral obtained by Lépez and
Rodriguez, see [13, Theorem 5.4].

Theorem 2.5. (Fundamental Theorem of Calculus for the Lebesgue-Stieltjes integral) Let F : [a, b] — R.
The following statements are equivalent:
(1) F is g-absolutely continuous;
(2) F fulfills the following properties:
i) Fé(t) exists g-almost everywhere on [a, b),
(ii) Fz € Ly([a, b)),
(iii) for everyt € [a, b],

F(t) = F(a) + I Fy(s)dp,.

[a,t)

Remark 2.6. If F : [a, b] — R is g-absolutely continuous and ¢t € D, N [a, b), then yg({t}) =gt)-gt)>0
and

F(t") - F(¢) = jFé(s)dug = Fy(t)(g(t*) - g() = Fy(Op it}
{t}
Consequently, g-absolutely continuous functions need not be continuous at the points of Dg.

Even though g-absolutely continuous functions may be discontinuous, it has to be g-continuous, [13,
Proposition 5.3].

Proposition 2.7. If F : [a, b] — R is g-absolutely continuous, then it has bounded variation, and it is
g-continuous.

The following theorem combines the results in [13, Theorem 2.4 and Proposition 5.2] to stress the
g-differentiability of Lebesgue-Stieltjes integrals g-almost everywhere.
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Theorem 2.8. Assume that f : [a, b) — R is g-integrable on|[a, b) and consider its Lebesgue-Stieltjes integral
FO = [ fs)du, for all t < [a, b,
[a,0)
Then there is a g-measurable set N C [a, b] such that yg(N ) =0 and
Fg(t) =f(t) for all t € [a, b]\N.
Moreover, F is g-absolutely continuous in [a, b].

The following proposition provides sufficient conditions to ensure the relative compactness of a set in
BCq([a, b]). The reader is referred to [4, Proposition 5.6] for the proof.

Proposition 2.9. Let A c ACg([a, b]) be such that {F(a) : F € A} is bounded. Assume that there exists a
function h € L([a, b)) such that

|Fé’,(t)| < h(t) for g-almost all t € [a, b), for all F € A.

Then, A is relatively compact in BCg([a, b]).

2.3 g-Carathéodory function
Now, we recall a definition analogous to the classical notion of Carathéodory functions.

Definition 2.10. (g-Carathéodory function) A function f: [a, b] x R — R is g-Carathéodory, if it satisfies
the following conditions:
(i) for every x € R, t — f(t, x) is g-measurable;
(ii) for g-almost all t € [a, b], x — f(t, x) is continuous on R;
(iii) Vr > 0,3 hy € Li([a, b)) such that

If(t, x)| < h(t), forg-almostall t € [a,b), forall xe R, suchthat |x|]<T.

It is well known in the classical case that the composition f(-,x(-)) is measurable when f is a
Carathéodory function and x is continuous. The following lemma states that an analogous result holds
for g-Carathéodory functions [4, Lemma 7.2].

Lemma 2.11. Let f: [a, b] x R - R be a g-Carathéodory function, then, for every x € BCq(la, b]), the
map f(,X()) € ng([a’ b))-

The following lemma states that a completely continuous operator can be associated to a g-Carathéodory
function.

Lemma 2.12. Let f: [a, b] x R — R be a g-Carathéodory function. Then the operator N; : 8Cq([a, b]) —
BCy([a, b]) defined by

NpGx)(E) = j £(s, x())dy,
[a,t)

is continuous and completely continuous.
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Proof. Since f is a g-Carathéodory function, Ny is well defined. We prove that N; : 8C,([a, b]) — BCq([a, b]) is
continuous.

Let {x,} be a sequence converging to x € 8C,([a, b]), then {x,} is bounded in BC¢([a, b]) by some R > 0.
Since f(t, -) is continuous for g-almost all t € [a, b],

f(t, x,(t)) — f(t,x(t)) forg-almostall t € [a, b].
By Definition 2.10 (iii), there exists hg € L([a, b)) such that
If(t, x,(t))] < hg(t) for g-almostall t € [a, b).
The Lebesgue’s dominated convergence theorem implies that
| £ xatsnamg = [ £es. xtsnang.
[a,) la,t)

Hence, Nf is continuous.
Now, we fix R > 0. There exists hy € Lg([a, b)) such that, for all x € BCy([a, b]) n B(0, R),

If(t, x(t))| < hg(t) for g-almostall ¢t € [a, b).

It follows from Lemma 2.11, Theorem 2.8, and Proposition 2.9 that N;(B(0, R)) is relatively compact. Thus, Ny
is completely continuous. O

2.4 Comparison principle

The following result is a comparison principle relying on the g-derivatives. It will play a key role to ensure a
priori bounds of solutions.

Lemma 2.13. (Comparison principle) Let u, v € AC,([0, T]) be such that
0] ué(t) < vg’,(t) g-almost everywhere on {t € [0, T] : v(t*) < u(t*)}.
(@) u(0) — v(0) < u(T) — v(T) or u(0) < v(0).

Then u(t) < v(t) for allt € [0, T], or there exists c > O such that u(t) = v(t) + c forallt € [0, T].
Proof. Assume that {t € [0, T] : v(t) < u(t)} + @.
Observe that if t € D, and v(t*) < u(t*), then by Condition (i),
u(t) - v(t) = u(t) - ug(Out}) — v(t*) + vg(Op({t}) = u(t*) - v(t*) > 0. (2.1)
Let

c = sup (u(t) — v(t)) > 0.
te[0,T]

By (2.1), and since the function u — v is left-continuous,
A={re[0,T]:u(t) -v(r)=c} + @.
Case 1: If A = [0, T], then
u(t) —v(t)=c forall te[0,T]. (2.2)

Observe that this case cannot hold if v(0) > u(0).
Case 2: If A # [0, T], we choose t; € A n (0, T] as follows:

teAif0¢A, and {=T if 0 € A. (2.3)
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Indeed, in this last case, u(0) — v(0) < u(T) - v(T) is satisfied in Condition (ii), and {0, T} c A.
Since u - v is left continuous, there exists 6 > 0 such that

u(t) - v(t) > % forall ¢ [t - 6, &]. 2.4)
Let us define
to = inf{s el0,4]l:u-v= % on s, tl]},

which is such that 0 < ¢, < t; by (2.4). Moreover, one has that

ut) - v(tt) = % >0 forall ¢t e [ty t),

and
Wt,) - v(t) = j v(s)du, > f wy(s)dp, = u(t) - u(t) forall ¢ e [to, 1),
[t,t) [t,t)
by Condition (i). Therefore,
c=u(t) —v(t) <su(t) - v(t) forall te [ty t).

Hence, [to, ;] ¢ A.Ifty > 0, this contradicts that t, is the infimum, since u - v is left continuous and by (2.1).
Otherwise, t; = 0, and by (2.3), t; = T. This contradicts that A + [0, T].

From both cases, we conclude that u(t) < v(t) for all t € [0, T] or there exists ¢ > 0 such that
v(t) = u(t) + c for every t € [0, T]. O

In the following example, Condition (i) of Lemma 2.13 is not satisfied at ¢t = 1. Thus, neither alternative
holds.

Example 2.14. Let us consider the function g(t) = t fort < 1and g(t) = t + 1fort > 1. Also, we consider the
functions: u, v : [0, 2] —» R defined by

_jo tef0,1], e telo,1],
u(t)_{z teq,z, nd V(t)_{l te,?2.

They are such that u(t) < v(t) on [0,1], and u(t) > v(t) on (1,2]. Observe that ué(l) > vé(l), while
u(1t) > v(h).

2.5 Lower and upper solutions

We start by defining a solution of (1.1).

Definition 2.15. A function x : [0, T] — R is a solution of (1.1), if it is g-absolutely continuous on [0, T,
x € B and

xg(t) = f(t, x(t)) for g-almostall t € [0, T].

The notions of lower and upper solutions were extended to Stieltjes differential equations.

Definition 2.16. A g-absolutely continuous function a : [0, T] — R is a lower solution of (1.1), if
i) aé(t) < f(t, a(t)) for g-almost allt € [0, T];
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(i) a(0) < a(T), if B refers to the periodic boundary condition (1.2), or a(0) < xq, if B refers to the initial
value condition (1.3).

A g-absolutely continuous function § : [0, T] — R is an upper solution of (1.1), if it satisfies (i) and (ii) with
the reversed inequalities.

To establish existence and multiplicity results, we introduce notions of strict lower and upper solutions
of a Stieltjes differential equation with the boundary condition 5.

Definition 2.17.
(1) A g-absolutely continuous function a : [0, T] — R is a strict lower solution of (1.1), if,
(i) for any ¢, € (0, T]\C,, there exist € > 0 and N, a g-neighborhood of ¢, such that

aé(t) < f(t,x) for g-almostall t € Ny, Vx € [a(t), a(t) + €];

(i) a(0) < a(T), if B refers to the periodic boundary condition (1.2), or a(0) < xo, if B refers to the
initial value condition (1.3).
(2) A g-absolutely continuous function 8 : [0, T] — R is a strict upper solution of (1.1), if,
(i) for any ¢ty € (0, T]\C,, there exist € > 0 and Ny, a g-neighborhood of ¢, such that

ﬁ;(t) > f(t,x) for g-almostall t € Ny, Vx € [B(t) — &, B(D)];

(ii) B(0) > B(T), if B refers to the periodic boundary condition (1.2), or S(0) > xo, if B refers to the
initial value condition (1.3).

3 Existence and multiplicity results: the periodic problem

3.1 Existence result

In this subsection, we establish an existence result for the Stieltjes differential equation with a periodic
boundary condition (1.1), (1.2).
In what follows, we will make the following assumptions:
(Hp) f:[0,T] xR — R is a g-Carathéodory function.
(L-Ug) There existsa, f € ACg([a, b]), respectively, lower and upper solutions of (1.1) such that a(t) < ()
forallt € [0, T].

Later, the assumptions (L-U ) will be replaced by (L-Uy) if 8 denotes the periodic boundary condition
(1.2), and by (L-U ;) if B denotes the initial value condition (1.3).

For the classical problem with g(t) = t and f a Carathéodory function, the existence of ordered upper
and lower solutions is sufficient to ensure the existence of a solution [18]. However, as soon as the problem
presents some discontinuities, additional conditions are required at these discontinuity points. In addition
to (L-U ), we will assume that

(Dg,p) a(t) < x + f(t, x)yg({t}) < B(t) for every t € Dg and x € [a(t), B(t)].

Now, we state the main result of this subsection, where the existence of a solution of problem (1.1), (1.2)
is established.

Theorem 3.1. Assume that (Hy), (L-Uyp), and (Dgp) are satisfied. Then, problem (1.1), (1.2) has a solution
X € AC,([0, T]) such that a(t) < x(t) < B(t) for every t € [0, T].
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To prove the previous theorem, we introduce some notations. Let us consider the following family of

problems defined for A € [0, 1]:

k-A

xg(t) = Af (¢, x(¢)) + m

j F (s, x(sNdpgs x(0) = x(D),

where k > 0 is chosen such that
k+2g(0)+0 VAe][0,1],
and f : [0, T] xR — R is given by

[, B) — Mp(H)(x - B(t)) if x > B(b),
ft,x) =4t x if a(t) <x < B(t),
ft, a(t)) + me()(x — a(t))  if x < a(t);

with my, Mg € Ll ¢([0, T)) chosen such that
m,(t) < min{0, f(¢, a(t))} and Mp(t) > max{0, f(¢t, B(t))}, if t ¢ Dg,

and, if t € Dg,

Mp(t) = max{O, min{ (¢, B(t)), ({t})}}

my(t) = mln{o max{f(t a(t)), ({t})}}

Let us denote

1
Tp=4t € Dy : Mg(t) = ——¢,
! {E £ &850 yg<{t}>}

1
Ta= D : my
{t € :my(t) = ({t})}

Observe that

card(fr,;)=j X jf(t BeNdu, < [ IFCE BeDldy < co.

frﬁ [0,T)

Similarly, card(7,) < oo.
Now, we consider the operator H : [0, 1] x BC,([0, T]) — BCq([0, T]) defined by

k + Ag(t)
g(T) - g(0)

where Ny is the operator defined in Lemma 2.12 and associated to f.
We first establish the existence of a solution to (3.1,).

HA, x)(t) = x(0) - NF(x)(T) + ANF(x)(t), Vte [0, T],

(3.1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Proposition 3.2. Assume that (Hy), (L-U p), and (D, g) hold. Then, there exists R > max{|lallo, |Bllo} such that

index(H(A, ), U) = -1 for every A € [0, 1],

where U = {x € BCg([0, T]) : lIxllo < R}.
In particular, problem (3.1,) has at least one solution for every A € [0, 1].

Proof. By Lemma 2.12, the operator H is continuous and completely continuous.
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Let us fix A € [0,1]. We claim that the fixed points of H(A, -) are solutions of (3.1,). Indeed, if
x = H(A, x), then, for all t € [0, T],

X =x© + A [ Fes, xonap, - % j F (5. x(s)d. 68)
[0,0)
Taking the g-derivatives of both sides, we obtain
50 = I (6x(0) - NI D). 59)
Moreover, for t = 0 in (3.8), we obtain
x(0) = x(0) - % N7(x)(T).
By (3.2), k + Ag(0) # 0, and this permits to deduce that
Ny(x)(T) = 0. (3.10)
On the other hand, taking t = T in (3.8), we have
(1) = x(0) 4 ANFCO(T) - — RN o),
Combining this equality with (3.10) ensures that
x(0) = x(T). (3.11)
Also, from (3.9) and (3.10), we deduce that
500 = W (6 x(0) = AF (6 X0) + — =N, 612
Hence, x is a solution of (3.1,).
Let R > 0 be such that
R>1+ tES[lE)l}f;]{maX{ﬁ(t), —a(t)}}. (3.13)
By using Lemma 2.13, we show that
Ixlo < R, forany solution of (3.1y). (3.14)

To do so, let us prove that xé(t) < 0 for g-almost every t € {t € [0, T] : x(t*) > R} by considering the
following two cases.

Case 1: For g-almost every t € {t € [0, T]\Dg : x(t*) > R}, it follows from (L-U ), (3.3), (3.4), and (3.13),
that x(t) = x(t*) > R and

Xg(£) = A(f(t, B®)) = Mg(O)(x () = B(D))) < ALf(t, B(®)) — Mp(D)) < O. 3.15)

Case 2: For every t € {t € [0, T) N Dg : x(t*) > R}, we distinguish three subcases.
Subcase 1: If x(f) € [a(t), B(t)], then by (D, ) and the fact that § is an upper solution of (1.1), (1.2),
one has

(3.16)

X(0) = M(t,x(0) < A(M]

)

Subcase 2: If x(t) > (t), it results from (L-Uy), (3.3), and (3.5) that
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xg(t) = A(f(t, B(t)) — Mp(t)(x(t) — B(1)))
Af(t, B6) if f(t, B(®)) <0,
A(f(t, B@) - f(& BOYx(@®) - B@)))  if f(&, B(D)) € 0,—|,
= L)
1 1
A f(t, ) - ——(x(t) - B(t if f(t, B(t ,
(f( B®) yg({t})(X() B( ))) if f(t, p(®)) > )
0 if f(¢, () <0,
ACf(E, B + B(E) - x(©))) if f(¢, B®) € |0, L
(L)
and x(t) =1+ B(t),
<9 L[ B - B(O) . 1
A 2 (e, B))(x(t) - B(t f f(t, B(t 0, ——
( () ft, BNx() - B( ))) if f(¢, B(t) 6( yg({t})]
and x(t) € (B(®), 1 + (1)),
B — x(t) . 1
| [ f f(t, B(t ,
( () ) RO > @
0 if f(¢, ) <0,
1
0 if f(t, 0,
if f(t, B(®)) 6[ Hg({t})]
and x(t) = 1 + B(t),
< B +1-x(t) . 1
| ———— f f(t, B(t 0, ——
( (1)) ) I P e ( ug({m]
and x(t) € (B(t), 1 + B(t)),
Bt - x(t) ) 1
Al ———= f f(t, B(t .
( (6D ) PO S @
Consequently,
/ ABE) +1 - x(@®)
Xg(t) < maX{O, W}. (3.17)
Subcase 3: If x(t) < a(t), then by (L-Up), (D,p), and (3.3), it yields
xg(t) = A(f(t, a(t)) + ma(t)(x(t) - a(t)))
M (t, a(t)) if f(¢, a(t)) = 0,
A a(®) + f(@, a@)(@) - a(®))) i f(E, at) € Lo,
= u({tD)
1 _
A ft, a(t)) - ——x(@) - a(t if £(t, a(t ,
f(t, a®) yg({t})(X() a( ))) if f(t, at)) < PR
B - al®) )
Al —— f f(t, a(t)) = 0,
G ) e aw) >
Bt - a(t) ) -1
<A B 1 f(t, a®))(x(t) — a(t ff(t, a(t ——,0],
< () + f(t, al®)(x(t) - a( ))] if f(t, a(t)) € [Hg({t}) )
B*) — x(t) . -1
el T f f(t, a(t s
e ) TGO < G
0 if f(t, a(t)) = 0,
1 . -1
< Bt - x|, A[yg({t}) +f(t, a(t))](X(t) —at)) i f(t, ) € [W 0}
B ({tH
0 if £(t, a(t)) < —2

RN
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Consequently,

/ B — x(®)
SN ————=| 3.18
Xg(£) < [ (6D ) (3.18)

To conclude Case 2, it follows from (3.16), (3.17), and (3.18) that

AB(EY) +1 - x(©)
) '

Xg(t) < max{O,

Since x(t*) > R, (3.13) implies that

X(t) - x(®) ) +1-x(®)
K ({t3) Ko ({t})

>

Xg(t) =

The two previous inequalities permit to deduce that
xy(t) <0 for g-almostevery t € {t € [0, T) N Dy : x(t*) > R} (3.19)

Hence, combining (3.15) and (3.19) implies that
xé(t) <0 g-almost everywhere on {t € [0, T] : x(t*) > R}. (3.20)

It follows from Lemma 2.13, that x(t) < R for every t € [0, T] or there exists ¢ > O such that x(t) = R + c.
In this last case, x(t*) = x(t) = R + ¢ and, by (3.20), xé(t) < 0 g-almost everywhere on [0, T]. This
inequality combined with (3.10) and (3.12) implies that for A € [0, 1]

0=N7eD) = A [ Tt x)dy,
[0,T)

- | Fexomwgr | Fexod,

[0,T)NDg [0,T)\ Dg

- j Xy(©)du, + A j £(¢, () — Mp(t)(x(t) — B(6))dp

[0,T)NDg [0,T)\ Dg

= | xodu A R BE) - MO + c - Bo,

[0,T)ND, [0,T)\Dg

< I Xg(O)dpg + A I f(t, B©) - Mp(t)dp, < O.

[0,T)NDyg [0,T)\ Dg

This is a contradiction. We obtain also a contradiction for A = 0, since we deduce that 0 = Ny(x)(T) < 0.
Therefore, x(t) < R for every t € [0, T].

By using an analogous argument, we can show that x(t) > -R for all t € [0, T].

Now, we fix R > R such that

B(t)

card (TpR > i FOGBO) + 2
! ® (3.21)
d(T)R > - t, a(t 20y,
card (7,) ij( 0 + 5oy
where 7 and 7, are defined in (3.6). We denote
U ={x € BC,([0, T]) : lIxllo < R}. (3.22)

It follows from (3.14) that H(A, -) has no fixed point on dU for all A € [0, 1]. Thus, by using the homotopy
property of the fixed point index (see [6]),
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index(H(A, -), U) = index(H(O, ), U), VAe][O,1].

Observe that, for every x € 8C,([0, T]),
k ~
7‘{(0, X)(t) = X(O) - me(X)(T) Vt € [0, T]

Let us consider the following one-dimensional subspace of 8C,([0, T]),

Xg = {u € BC,([0, T]) : u(t) = u(0) Vtel0,T]}

DE GRUYTER

(3.23)

Notice that, o(U n XR), the boundary of U n Xi in X is {-R, R}, where R are the constant maps such that

+R(t) = R for every t € [0, T]. One has

HO,R)=R - m _[ f(t, Rydy,
R m I (ft BO) — My(OR ~ BE))dpg
e L f (f(t B®) = My(O)(R — B(E))dn
g(T) - g(0) .
[0,T)\ T

k
k. B) - R - B(t) |dn,.
g(T)—g(O)i(f(t B(©) ({t})< A ))) My
B

since Mg(t) = ]/yg({t}) for t € 7 by (3.6). Moreover, (3.4) and (3.5) ensure that
Mﬂ(t) = maX{O, f(ta ﬂ(t))} oan\Tﬂ’
Mp(t) > max{0, f(t, B(t))} g-almost everywhere on [0, T)\D,.

So, since R > R, by (3.13) and (3.21), one has

k
HOR)=R ot | s - mo® - peni,

[0,T)\Tp

< - R - B(O)d
e (O)jo‘( B®) ({})< BONdy,

k
T o t, B(t)) — Ms(t))d
8(T) - g(0) I (f (& BO) ~ Mp())du,

[0,T)\Tp

card(TpR — J (f(t, Bty + PO )dyg
T

k
+ —
g(T) - g(0)

> R.

)

Similarly, one has H(0, -R) < —R.
By the contraction property of the fixed point index,

index(H(O, -), U) = index(H(O, -)|x,, (U N X)) = -1.
Combining this with (3.23), we deduce that
index(H(A, ), U) = -1, VA e€|[0,1].

Therefore, for all A € [0, 1], H(A, -) has a fixed point, and hence, (3.1,) has a solution.

Now, we can prove the main result of this subsection.
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Proof of Theorem 3.1. Let x be a solution of (3.1,) for A = 1 ensured by Proposition 3.2. It remains to show
that a(t) < x(t) < B(t) for all ¢ € [0, T].
Observe that

xg(8) = f(t, B@®)) = Mp(O(X(®) ~ B)) < f(t, BD)) < By ()
g-a.e.on {t € [0, T]\D, : B(t) < x(t)} = {t € [0, T]\Dg : B(t*) < x(t*)}.

On the other hand, for t € Dg such that x(t*) > B(t*), one has
Xg(6) = f (&, B(©)) — Mp(O(xX(®) = BO)) < f(t, W) < By () if x(&) > B(D),

while if x(¢) < B(t), by (Dy,p),

Xt = | ft, x(6) if a(t) < x(t),
7 £ a®) + ma(X(@®) - a)) if x(1) < a(b),
f(t, x(t)) if a(t) < x(t),
f(t, a(t)) if x(t) < a(t) and f(t, a(t)) = 0,

={ f(¢t, a(t)) + f(¢t, a(t)(x(t) — a(t)) if x(t) < a(t) and f(¢, a(t)) € [ E{lt})’ 0),

ft, a(t)) - e })(x(t) - a(t)) if x(t) < a(t) and f(t, a(t)) < ——— ({t})
’ B(t*) - x(t)
K ({t)
0 if a(t) < x(t),
% if X(t) < a(t) and f(t, a(t)) > 0,

i ( D) + f(t, a(t)))(x(t) - a(t)) if x(t) < a(t) and f(t, a(t)) € [ E{lt})’ O),

0 if x(t) < a(t) and f(¢t, a(t)) < ——

({t DY

B - xt)
RCG)

This is a contradiction, since,

X() = x() | ) - x(O)

(F) =
W0== @ )

Thus,
xé(t) < Bg’.(t) g-almost everywhere on {t € [0, T] : x(t*) > B(t*)}.

It follows from Lemma 2.13 that x(t) < B(¢t) for every t € [0, T].

Similarly, one can show that x(t) > a(t) for every t € [0, T].

Finally, from the two previous inequalities, (3.3) and (3.10), and since x is a solution of (3.1) for A = 1,
one has that x(0) = x(T) and

k-1
8(T) - g(0)

Thus, x is a solution of (1.1), (1.2). O

xé’,(t) = /If(t, x(t)) + Nr(x)(T) = f(t, x(t)) for g-almostevery t < [0, T].



698 —— Lamiae Maia et al. DE GRUYTER

Example 3.3. Let us consider the function g : R — R defined by g(t) = ¢ for t < 1, and
gt)=t+n Vite(n,n+1], vneN={1,2..1}

The function g is left-continuous and nondecreasing. Also Dy = N and p,({t}) = 1 for all ¢ € Ds.
Let T > 1, and consider the periodic problem

xé(t) = f(t,x(t)) for g-almostall t € [0, T], x(0)=x(T), (3.24)

where f: [0, T] x R - R given by

1., 1,
£t x) = 2x 2x+2 if t € [0, T) N Dg, (3.25)

-3 -x+1 otherwise.

The map f is g-Carathéodory. Moreover, the constant maps a = 0 and S = 1, are respectively, lower and
upper solutions of (3.24). Indeed,

1 .
al(t)=0 < f(t, a(t)) = {2 if t € [0, T) N Dy,
1

otherwise,

1 if t € [0, T) N Dg,
t otherwise.

Bi()=0 > f(t, () = {:

Moreover, (D,,p) is satisfied since

a(t*) =0 < he(x) <1=p(t*) forevery te Dsn[0,T) and x € [a(t), B(D)],

where

hG0) = X + F(t, Oyt = %xz Cx+ %

Indeed, h; is decreasing on [0, 1]; thus, h([0, 1]) = [0, 12].
Finally, it follows from Theorem 3.1 that problem (3.24) has at least one solution.

3.2 Multiplicity result

In this subsection, we will establish a multiplicity result for problem (1.1), (1.2).
We will look for solutions strictly lying between pairs of well-ordered strict lower and upper solutions
(a, B). To this aim, the condition (D, ) will have to be replaced by a stronger one:

(Z)f,,,ﬁ) a(t™) < x + f(t, x)yg({t}) < B(t*) for every t € D and x € [a(t), B(t)].
The following lemma gives conditions to ensure that the solution of (1.1) lies strictly between a and S.

Lemma 3.4. Assume (Hy). Let a, B € ACg([0, T]) be, respectively, strict lower and upper solutions of (1.1) with
a(t) < B(t) for every t € [0, T]. Assume also that (Di,ﬁ) is satisfied, and x € AC,([0, T]) is a solution of (1.1)
such that a(t) < x(t) < B(t) for allt € [0, T]. Then there exists € > O such that

alt) + E<x(t) <Bt) - & Vtelo,T].

Proof. First, observe that if x(t*) = a(t*) for some ¢ € Dg, then, by (D p),
a(t?) = x(t) = x(t) + xg(Op At} = x() + f(t, x(Op (At} > a(th).

This is a contradiction. Thus,
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x(t*) > a(t*) Vt e Dq. (3.26)
Assume that
A={te|0,T]:al)=x(t)}+ a.
We claim that
0¢A. (3.27)
Indeed, by Definition 2.17, if 8 denotes (1.3), then (3.27) is immediate. Otherwise, if B denotes (1.2), then
x(0) — a(0) > x(T) — a(T) = 0. (3.28)
Let t; = infA € [0, T]. It follows from (3.26) and (3.28) that t; € A n (0, T]. Thus,
x(t) = a(t;y) and x(t) > a(t) Vte][O,t). (3.29)
By the definition of strict lower solution, there exist € > 0 and N, a g-neighborhood of ¢; such that
aé’,(t) <f(t,y) for g-almostevery t € Ny, andall y € [a(t), a(t) + €].

Since x is left-continuous, there exists ty € (0, t;) such that x(t) € (a(t), a(t) + €] for all t € [to, t;). Hence,

a(®) - alto) > x(®) - x(t0) = [ (00,
[to,t1)
- | e xenay,
[to,t1)
> f a(t)dy, = a(ty)  atto).
[to,t1)
This is a contradiction. Therefore, A = &, and hence, a(t) < x(t) for all t € [0, T].
This last inequality combined with (3.26) permits to deduce that there exists € > 0 such that
x(t) = a(t) + Eforallt e [0, T].
Similarly, one can show that x(t) < f(t) — € for all ¢ € [0, T]. O

Theorem 3.5. Assume that (Hy) holds. Assume also there exist a;, ay, and B, B, € ACg([0, T]), respectively,
strict lower and upper solutions of (1.1), (1.2) such that

() ai(t) < By(t) < By(t) and ay(t) < ax(t) < B,(¢) for allt € [0, T];

(i) {t [0, T]:Bi(t) < m(t)} + T
(iti) (Dgp,)s (Dap), and (Dy,p,) are satisfied.
Then the periodic boundary value problem (1.1), (1.2) has at least three solutions xo, X, X, € ACg([0, T])
such that

fori=1,2, aft) <x(t) <p(t) Vvtel0,T],
and

a(t) < xo(t) < By(t) Vte[0,T] and {te[0,T]:B,(t) < xo(t) < ax(t)} + 3.

Proof. Let H,, H;, and H, be the operators defined in (3.7) and associated to the pairs of lower and upper
solutions (ay, 8,), (a1, B,), and (ay, B,) respectively. We consider the open sets of BC,([0, T]), Uo, U1, and
U5, defined in (3.22) and associated to H, H;, and H, respectively. Proposition 3.2 implies that, for A = 1,

index (H(1, ), U;) = -1, fori=0,1,2.

Following the proof of Theorem 3.1, every fixed point x of Hj(1, -) is a solution of problem (1.1), (1.2) such
that, for all t € [0, T],
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ay(t) < x(t) < By(1) if i =1,2.

Since m, @y, and B, B, are, respectively, strict lower and upper solutions of problem (1.1), (1.2), the
assumptions, Lemmas 3.4, and (3.30) imply that, for every x = H;(1, x),

if i=0, and a;(t) < x(t) < B(t) (3.30)

Je>0 suchthat x(t) e [(t) + & B,(t) —€] ifi=0,
and x(f) € [ai(t) + & B(t) — €] if i =1, 2.
So, Hi(1, -) has no fixed points in U;\V;, fori = 0, 1, 2, where V; are the open sets given by
Vo ={x € BC,([0, T]) : 3 > 0 suchthat ay(t) + € < x(t) < B,(t) — € Vte[0,T]}
and, fori=1,2,
V; = {x € BCe([0, T]) : Je > 0 suchthat a;(f) + e < x(t) < Bi(t) —¢ Vvt e [0, T]}
The excision property of the fixed point index yields

index(H1, ), V) =-1, fori=0,1,2. (3.31)
From Conditions (i) and (ii), we deduce that

VUV, YV, (V()\((vl U (Vz) + .

So,
Hil,x) =Hy(1,x), V¥xeV, i=1,2.
Consequently, combining this with (3.31) and using the additivity property of the fixed point index, one has
index (Ho(1, ), Vo\ (V1 U V) = index(Ho(1, ), Vo) — index(Ho(1, -), V) — index(H(1, -), V») = 1.
Thus, problem (1.1), (1.2) has at least three solutions xq, X;, and x, such that
Xo € Vo\ (V1 U V2),

xeV, xeV,. O

Example 3.6. Let us consider the function g : R — R defined by g(¢) =t fort < 1,and g(t) =t + 1fort > 1.
Let T > 1 and consider the following problems:

xé(t) = f(t,x(t)) for g-almost all t € [0, T], x(0) = x(T), (3.32)
where f: [0, T] x R —» R given by
—%x3—x2+% if t =1,
flt,x) =
otherwise.

3 cos(3x + 7)

Observe that f is g-Carathéodory. We define a;, ay, f;, B, : [0, T] — R by

-2 if t € [0, 1], 1 if t € [0, 1],
ay(t) = t) =
(0 -2+ 1 otherwise, ) -1- 1 otherwise,
10 10
and
. 4 .
0  iftelo,1], 3 dftefo,
a(t) = t) =
(D=1 1 otherwise, B 3 ,
10 B otherwise.

We show that &y, a,, and f3,, B, are, respectively, strict lower and upper solutions of (3.32) with € = 1/100.
Foreveryt e {1} =[0,T) n Dy and x € R,
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g(l, X) = —zx2 -2 = —x(zx + 2).
ox 2 2
Thus, f(1, -) is increasing on [-4/3, 0] and decreasing on (-oco0, -4/3] U [0, +co) (Figure 1).
Therefore,

fa,0)=fa,a;(1) + €) Vx € [a;(1), a;(1) + €], fori=1,2,
fL,) < fQA, B(D) Vx e [B(D) - ¢, B (D],
FA, )< fQA,B(1) - &) Vxe[B,(D) - & B,(D].

By simple computations, one can show that

fA @) + &) > al(1) = %, for i=1,2,

, 1
f(l, B](l)) < Blg(l) = _E,

' 1
FL B - )< B =~
For every t € [0, T]\D, and x € R (Figure 2),
%(t, x) = -sin(3x + 7).
ox

Since
(0, m) for x e [(t), ay(t) + €],
3x + 7 € {(2m, 3m) for x e [ay(t), ax(t) + €] U [B,(E) — &, B, ()],
(m, 2m) for x € [B,(t) — &, By(D)],
f(t, -) is decreasing on[a(t), a(t) + €] U [ax(t), ax(t) + €] U [B,(t) — &, B,(£)] and increasing, on[B,(t) — &, B,()].
SO9
ft,x)= f(t,a(t) + €) Vx e [a(t), a;(t) + €], fori=1,2,
f(ta X) < f(ta ﬁ1(t)) VX € [B1(t) - & ﬁ](t)]’
f, )< f(t, By(t) —€) Vx € [By(t) — €, By(D)].

By computations, one can show that

0.5 1

0.0 1

f(1, x)

—1.0 1

—1.5

-2.0 T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5

Figure 1: f(1, -) on [-2, 4/5].
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f(t, ai(t) + &) > aigt) = 0, fori=1,2,
f(t, ()< B0 = 0,
ft, By(t) - €) < ﬁz;(t) =0.
We conclude that a, @y, and B, B, are, respectively, strict lower and upper solutions of (3.32) with

€ = 1/100.
Observe that

a(t) < Bi(6) < ax(t) < By(t) forall te(0,T].
We need to show that (Dg 3), (Dg,p,), and (Dg p ) are satisfied. For every t € {1} = [0, T) n Dy,

we consider (Figure 3)

hi:x - x + f(10p,({1}) = x - %x3 x4 %

Observe that h'(x) = —%xz — 2x + 1and h, is increasing on [z;, z,], and decreasing on[-2, z1] U [z, 4/5], with

2+ 10 _2-410

zZ=-"—7"—", z=
! 3 2 3

Also, it is easy to verify that
hl(Zl) < hl(—Z) < hl(—l) < h1(4/5) < hl(O) < hl(Zz).
Thus, by simple computations, we obtain
1
(1) =-2+ 0 ° hi(z1) < li(x)  Vx € [-2, 4/5] = [a(D), B,(D)],
(1) =0 < m(4/5) < (x) Vx € [0, 4/5] = [ax(1), B,(D],

and
B(1) =1~ % > (-1 >l Vx e [-2,-1] = [a(D), BD)],
B,(1%) =§ > h(z) > () Vx € [-2, 4/5] = [a(D), By(D)].

Hence, (D3, 5); (Da,p,), and (Dg, g ) hold.

It follows from Theorem 3.5 that problem (3.32) has at least three solutions.

0.5 1

0.0 1

—0.5 1

fit, x)

-1.01

—1.5 1

-2.0 T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5

Figure 2: f(t, -) on[-2, 4/5] for t € [0, T]\D,.
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4 Existence and multiplicity results: the initial value problem

In this section, we establish analogous existence and multiplicity results to those obtained in Section 3, but,
in this case, 8 denotes the initial condition (1.3).

We assume that (H), (L-U ;), and (D,,p) hold.

To establish the existence of a solution to (1.1), (1.3), we consider the family of problems defined for
Ae0,1]:

xé(t) = Af(t, x(t)) for g-almostall t € [0, T], x(0)=x0¢€R, (4.1y)

where f is the function defined in (3.3). Let ¥ : [0, 1] x BC([0, T]) — BC,([0, T]) be the operator defined
by
7:(/1) X)(t) = Xo t+ /‘NF(X)(t)’ Vt € [O) T]) (4.2)

where N7 is the operator defined in Lemma 2.12 and associated to f.

Proposition 4.1. Assume that (Hy), (L-U 1), and (Dq,p) hold. Then, there exists R > max{lalo, |Blo} such that
index(¥(A, -), U) =1 for every A € [0, 1],

where U = {x € BC,([0, T]) : lxllo < R}. In particular, problem (4.1)) has at least one solution for every
A e [0,1].

Proof. Arguing as in the proof of Proposition 3.2 and using Lemma 2.12, we deduce that the operator ¥ is
continuous and completely continuous. Moreover, the fixed points of (A, -) are solutions of (4.1;).
We fix R > 0 such that

R 1 t s = t il
>1+ tsgg]{maX{B( ), —a(t)}} (4.3)
and we denote
U = {x € BCL[0, T] : lIxllo < R} (4.4)

Lemma 2.13 and an argument analogous to the proof of Proposition 3.2 imply that (A, -) has no fixed
point on o for all A € [0, 1].

Observe that (0, x) = xo € U for all x € U . Thus, from the normalization property of the fixed point
index, we obtain that

0.5 1

0.0 1

—0.5

hi(x)

—1.0

—1.5

-2.0 T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5

Figure 3: h; on [-2, 4/5].
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index (#(0, -), U) = 1. (4.5)
The homotopy property of the fixed point index implies that
index(¥(4, ), U) = index(¥(0, -), U), VA€ [0,1]. (4.6)
Combining this with (4.5), we conclude that
index(F(A, -), U) =1, VAe]O0,1].

Therefore, for all A € [0, 1], F(A, -) has a fixed-point, and hence, (4.1;) has a solution. O

Arguing as in the proof of Theorem 3.1, we establish the existence of a solution for the initial value
problem (1.1), (1.3).

Theorem 4.2. Assume that (Hy), (L-U ), and (Dq,p) hold. Then, the initial value problem (1.1), (1.3) has a
solution x € AC([0, T]) such that a(t) < x(t) < (t) for every t € [0, T].

Remark 4.3. Let us consider the problem in Example 3.3, with an initial value instead:
xé(t) = f(t,x(t)) for g-almostall t € [0, T], x(0)=0, (4.7)

where f: [0, T] x R — R is given in (3.25). It can be shown that @ = 0 and S =1 are, respectively, lower
and upper solutions of (4.7). Also, (D,,p) is satisfied. Therefore, Theorem 4.2 ensures the existence of x a
solution to (4.7) such that x(t) € [0, 1] for every t € [0, T].

However, it is worth mentioning that, as shown in Example 3.3, the monotonicity condition introduced
by [16],

(Gr) Vt € [0, T) n Dg, the mapping

x € [a(t), B(t)] — x + f(¢, XU, ({t}) is nondecreasing,

does not hold. Thus, the existence of a solution cannot be deduced from [10, Theorem 2.5].

Following an approach analogous to the one used in Section 3.2, given two pairs of strict lower and
upper solutions, one can show that the initial value problem has at least three solutions.

Theorem 4.4. Assume that (Hy) holds and that there exist a;, ay, and f;, B, € AC,([0, T]), respectively, strict
lower and upper solutions of (1.1), (1.3) such that
(1) a(t) < By(t) < By(t) and a(t) < ax(t) < B,(t) for allt € [0, T];
(i) {t € [0, T]: By(t) < ()} # 5
(iti) (Dap) (Dayp,)s and (Dg, p ) are satisfied.

Then, the initial value problem (1.1), (1.3) has at least three solutions x;, X, and, x; € AC,([0, T]) such that
fori=1,2, at) <x(t) <pt) Vtel0,T],

and
a(t) <) <B,(t) Vtel0,T] and {te[0,T]:B,(t) <x(t) < a(t) + D.

5 Application to a population model with an extreme event

In dynamics of populations, the persistence of a species is an important issue. For this reason, many models
with periodic boundary conditions have been considered to conclude the persistence of a popula-
tion [1,8,21].
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With climate change, in addition to the effect of pollution [3], we can observe that extreme events are
much more frequent than they were a few years ago. Therefore, it is realistic to consider models in which at
least one such event occurs every year. Hence, the modeling of such events implies the presence of
discontinuities.

In addition, in some models, it is appropriate to consider that the population size does not change
during a certain period of time. This period may be followed by a sudden variation. This may be the case, for
example, if there is a period of dormancy or if it is not possible to observe the population change during
winter or during travel between two patches.

Impulsive differential equations and the theory of dynamic equations on time scales have been used to
treat problems with discontinuities, see [1,8,21]. However, the Stieltjes differential equations are even more
useful to model these different situations occurring in the dynamics of a population. Indeed, the derivator g
may also take into account variations corresponding to different periods of the year. In particular, the
periods when the variations of the population size are likely to be more important correspond to those
where the slope of g is greater.

In the following example, we consider a population (fish, trees, perennials, etc.) during its life cycle. We
assume that the population enters a predictive dormancy phase during the last month of autumn, before the
onset of adverse conditions of winter. When winter arrives, the species enters the strict dormancy stage as a
defensive mechanism against the adverse conditions of this season. At the end of this phase, for t = 2, a
number of dead individuals are observed, and the species re-establishes relatively slow growth. At the
beginning of spring, conditions become more suitable, and the growth increases. One month later, for t = 4,
new individuals are added (fish seedings, new plantations, etc.). During the summer, the natural growth of
the species is reduced in favor of the harvest. One month before the end of summer, for t = 8, we assume
that an extreme event occurs that reduces the population and influences the natural growth thereafter.
During the first 2 months of autumn, the natural growth stops, but the harvest continues till dormancy is
triggered 1 month before winter. If we denote x(t) the size of the population at time ¢, then the dynamics of
this population can be modeled by the Stieltjes differential equation:

xé(t) = f(t, x(t)) for g-almostevery t € [0, 12], (5.1)

where f: [0, 12] x R — R is defined by

12

101

g(t)
(o))

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4: Graph of the derivator g.
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% if tel0,2]U(1,12],
X .
B if te(2,6]\{4},
1 if t= 45
f(t’ X) = £ — 3)(2 if te (6, 8)’ (5'2)
3 3
- if =8,
2
2, .
—x if te (8, 11]

To ensure the persistence of the population, we look for a solution satisfying the periodic condition:
x(0) = x(12). (5.3)
Moreover, in our model, we take into account that the variation is smaller in autumn, at the end of

winter, and at the end of spring. Therefore, we consider the following derivator g : R — R that includes the
discontinuities and the stability period mentioned earlier (Figure 4):

0 if te[o0,?2],
¢ 2
1+2(5—1) if te (4],
t if te(4,8],
g(t)y=4t+1 if te(8,9], (5.4)
C11\2
1- (%) if te(9,11],
1 if te (11,12],
1in + g(t - 12n) if t-12n€[0,12),n € Z\{0}.

We notice that

D= J{2+12n,4 + 12n, 8 + 12n},
nezZ

Co= |J (12n,2 + 12n) U (11 + 12n, 12 + 12n).

nez

In what follows, we show that problem (5.1), (5.3) has a solution. Clearly, the function f defined in (5.2)
is g-Carathéodory. Now, we consider a, 8 : [0, 12] — R defined by (Figure 5)

a(t) =0 Vte[0,12],

and
1 if te|0,?2],
(t - 1)?2 if te(2,4],
2 + t2 if te(4,6],

6+16(8 —t) if te(6,8],

B =13310 - t)

2

(t - 11)2
8

1, if te(11,12].

if te(8,9],

1+

if te(9,11],

Observe that a, B € AC([0, 12]), a(t) < B(t) for every t € [0, 12]. In addition, aé(t) =0 for every
t € [0,12)\Cg, and
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0 if t=2,
2t -2 .
VY if te(2,4),
9 if t =4,
2t if te(4,6),
Be(6) = 1-16 if ¢t € (6,8),
-3 if t =8,
=3 if tes,9),
2
-1 if te(9,11).
2

One has

0 if tel[2,4) uU@4,11),

a(0) =0 =a(12) and ay(t) =0 <f(t,0) = {1 Fiod

The function f verifies

B0) =1 = p(12),

and
fre=2  B@=0 > @)= L2,
. _ B (-1
for te@4), BO=—"—7 2> ft, 1) = DT
for t=4,  BW=9 > f(4p@)=1,
' t2+2
for te(4,6), Bi(t)=2 > B0 = —
for te(6,8), BB=-16 > 6%2(6)2
— — _ 2
o Fee Bty = E 166 - 0) 32(6 +16(8 - )*
for t =8, By(® = -3 > f(8,B(8)) = @ =-3,
) -3 =2B(t*  -3(10 - t)?
for te(8,9), K=" = fltpw)= "1 = ==
fon o -1 =262 -2( . (¢t - 112
for (e @1, fO=" > fpen= L ?(1 R T) .
35 A
30 A
25 A
T 20
15 4
10 A
5.
0

Figure 5: Graph of 8.
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Therefore, a and B are, respectively, lower and upper solutions of (5.1), (5.3).
We claim that Condition (D,,p) is satisfied. Indeed, for t € Dg n [0, 12] = {2, 4, 8} and x € [a(t), B(t)],

? lf t:2,

at) =0 <x+ f(t, Op({tH =x+ f(t, ) ={1+x  if t=4,
z if t = 8.
2

Also,

for t=2 BRH=1> g vx € [a(2), BQ)] = [0, 1],
+ X, Vx € [a(4), B(H)] =[0,9],

Vx € [a(8), B(8)] = [0, 6].

3
for t=4 P4 =18>1
for t=8 ﬁ(8+)=3>§,

It follows from Theorem 3.1 that there exists x € AC,([0,12]) a solution of (5.1), (5.3) such that
a(t) < x(t) < B(t) for all ¢ € [0, 12].

6 Comments and discussion

We have shown that problem (5.1), (5.3) admits at least one positive periodic solution x defined on [0, 12].
To ensure the persistence of the species, we must verify that this solution is positive for all t. The following
study will allow us to do so and to give the shape of the trajectory. By means of the resolution approach
described in [11], we show that solutions of problem (5.1), (5.3) have the form

r

2 L ole-5@
3

(X(4) + 1)es8DO-8¢)

if ¢t eJ0,2],
if te(2,4],

if te (4, 6],

X(t) = - ! if ¢ € (6, 8], (5.5
24 (; _ z)eag(s)—g(t»
x(6)
1 .
5 > " if t e (8,11],
x® T g(g(t) -8(8")
r if te(11,12],

2.00 A
1.75 A
1.50 A
1.25 A
= 1.00 A
0.75 A
0.50 A

0.25 4

0.00 T T T T T T T T T T T

Figure 6: Graph of x.
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for some r € R. To determine r € R, notice first that since 11 ¢ D,, we must have x(11) = r, i.e.,

1

=r
2 2 (5.6)
® " 3D - g(8)
By using (5.5), x(8) can be written in terms of r. Consequently, (5.6) yields
1
§e%(i - e*%)r2 +2 8 vei-2ei-&Ch_1-0. (5.7)
3 \3 3 3

Equation (5.7) has only one positive root r,. So, x given in (5.5) with r = r, is the unique positive periodic
solution of (5.1), (5.3), and it lies between a and f.

Figure 6 shows the solution x. We observe that the dynamics of this population during 1 year are
properly modeled as mentioned in the beginning of this section. Notice that this solution takes into account
the dormancy periods in autumn and winter, the sudden jumps that occur for t = 2, t = 4, and t = 8. Also,
the model takes into consideration the change of the growth rate and the harvest activity, described by
different slops of g. Finally, the persistence of this species is concluded.

Remark 5.1. In (5.2), the parameters can be described as follows:
-1/3: is related to the number of dead individuals observed at the end of the strict dormancy synchronized
with adverse conditions of winter;
1/4: is the growth rate during spring;
1: is a constant representing the number of individuals added due to fish seedings or new plantations...;
1/3: is the growth rate during summer before the occurrence of the extreme event;
-2/3: is the harvest rate implying that the harvest activity plan reduces the population proportionally to the
competitive term x?;
-1/2: is a constant indicating the effect of the extreme event on the population.

The problem with other parameters could have been studied.
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