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Abstract: In this article, we study the Musielak-Orlicz-Gauss image problem based on the Gauss curvature
flow in Li et al. We deal with some cases in which there is no uniform estimate for the Gauss curvature flow.
By the use of the topological method in Guang et al., a special initial condition is chosen such that the Gauss
curvature flow converges to a solution of the Musielak-Orlicz-Gauss image problem.

Keywords: Gauss curvature flow, Monge-Ampère equation, Musielak-Orlicz-Gauss image problem, topolo-
gical method

MSC 2020: 35J20, 35K96, 52A30

1 Introduction and overview of the main results

In this article, we continue our study of the Musielak-Orlicz-Gauss image problem [25], which is equivalent
to finding solution u : 0,n� [ )→ ∞ to the following Monge-Ampère equation:

u u u G u u ξ p ξ u uI f x ψ u x x, det , , ,z λ
n2 2 2 2 2n

2 �( ∣ ∣ ) ( ∣ ∣ ) ( ) ( ) ( ) ( )+ ∇ + ∇ ∇ + = ∈
− (1.1)

where G : 0, n� �( )∞ × → , G G z ξ,z z ( )= ∂ , pλ and f are given functions.
The Brunn-Minkowski theory is the core of convex geometry and strongly influences in fully nonlinear

partial differential equations. The Minkowski-type problems are an important part of the theory. The past
few years have witnessed the great progress in the Minkowski-type problems, including the Lp Minkowski
problem [27], the Orlicz-Minkowski problem [17], the dual Minkowski [18], the Lp dual Minkowski [29], and
the dual Orlicz-Minkowski problems [11]. These Minkowski problems have been extensively studied, see,
e.g., [1,3,6,7,9,10,12,16,20,22,26,32].

Recently, the Musielak-Orlicz function [15,30] was introduced into the Minkowski-type problem. The
Musielak-Orlicz-Gauss problem, which aims to characterize the Musielak-Orlicz-Gauss image measure

C Ω,Θ( )͠
⋅ for convex body Ω in n 1� + , was posed in [21]. It naturally leads to a new generation of the

Brunn-Minkowski theory, namely the Musielak-Orlicz-Brunn-Minkowski theory of convex bodies.
Let � be the set of all convex bodies in n 1� + containing the origin, and 0� �⊆ be the set of all convex

bodies with the origin in their interiors. Let � be the set of all Musielak-Orlicz functionG : 0, n� �( )∞ × →

such that both G and G z ξ G z ξ, ,z z( ) ( )= ∂ are continuous on 0, n�( )∞ × . Let G λΘ , Ψ,( )= be a given triple
such thatG , Ψ� �∈ ∈ , and λ be a nonzero finite Borel measure on n� . The Musielak-Orlicz-Gauss problem
asks (see [21]): under what conditions on the tripleΘ and a nonzero finite Borel measure μ on n� do there exist
a Ω 0�∈ and a constant τ �∈ such that
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μ τ Cd d Ω, ?Θ( )͠
= ⋅ (1.2)

Assume that λ is a nonzero finite Borel measure on n� and λ ξ p ξ ξd dλ( ) ( )= with the function p : 0,λ
n� ( )→ ∞

being continuous. When the pregiven measure μ has a density f with respect to ξd , (1.2) reduces to solving the
following Monge-Ampère-type equation on n� :

u u u G u u ξ p ξ u uI γf x ψ u x, det , ,z λ
2 2 2 2 2n

2( ∣ ∣ ) ( ∣ ∣ ) ( ) ( ) ( ) ( )+ ∇ + ∇ ∇ + =
− (1.3)

where ∇ and 2
∇ are the gradient and Hessian operators with respect to an orthonormal frame on n� , γ 0> is

a constant, I is the identity matrix, and ξ α xΩu
( )=

∗ where αΩu
∗ is the reverse radial Gauss map of Ωu – the

convex body whose support function is u x( ) for x n�∈ .
Let I� and d� be the subclasses of � defined by

G G G z ξ
G G G z ξ

: , 0 on 0, ,
: , 0 on 0, .

I z z
n

d z z
n

�

�

� �

� �

{ ( ) ( ) }

{ ( ) ( ) }

= ∈ = ∂ > ∞ ×

= ∈ = ∂ < ∞ ×

The existence of solutions to the Musielak-Orlicz-Gauss image problem (1.3) was established:
(i) by [21] under the condition G d�∈ and Ψ I d� �∈ ∪ ;
(ii) by [25] under the condition G I�∈ and Ψ I�∈ .

In [25], the authors attacked the problem by studying the following parabolic flow (1.4) with any given
initial data 0� (a smooth, closed, uniformly convex hypersurface in n 1� + enclosing the origin),

t
X x t f ν ψ u x r G r ξ p ξ K η t u ν

X x X x

, , , ,

, 0 ,

n
z λ

1 1

0

⎧

⎨
⎩

( ) ( ( ) ( ) ( ) ( ) ( ) )

( ) ( )

∂

∂

= − +

=

− −

(1.4)

where X t, : n n 1� �( )⋅ →
+ is the embedding that parameterizes a family of convex hypersurfaces t� (in

particular, X0 is the parametrization of 0� ), K and ν denote the Gauss curvature and the unit outer normal
of t� at X x t,( ), ξ α xΩt

( )=
∗ , ψ : 0, 0,n�( ) ( )∞ × → ∞ is defined as

ψ z x z z x, Ψ ,z( ) ( )= − (1.5)

and

η t
fψ u x x

rG r ξ p ξ ξ

, d

, d
.

z λ

n

n

�

�

( )
( )

( ) ( )

∫

∫

= (1.6)

In this article, we study the Musielak-Orlicz-Gauss image problem (1.3) for the case G I�∈ and Ψ d�∈ . The
main difficulties are to obtain the uniform estimates for the flow (1.4), namely the control of the shape of

t� . To handle this, we use the topological method developed in [13] to find a special initial condition such
that the evolving hypersurfaces t� satisfy

B B0 Ω 0 ,r t R( ) ( )⊂ ⊂ (1.7)

for some uniform constants R r 0≥ > independent of t, where Ωt is the convex body circumscribed by t� .
Our C0 estimates (1.7) also need the following constraints on the functions G and Ψ:
• Condition (A): G z ξ,( ) is a positive and continuous function defined in 0, n�( )+∞ × such that

G z ξlim , 0z 0 ( ) =
→

and

G t ξ α tmin ,
ξ

z
n ε

n�
( ) ≥ ⋅

∈

+

for some positive constants α and ε when t is sufficiently large.
• Condition (B): z xΨ ,( ) and ψ z x,( ) defined by (1.5) are positive and continuous functions defined in

0, n�( )+∞ × such that z xlim Ψ , 0z ( ) =
→+∞

, and

ψ t x β tmin ,
x

n ε1
n�

( ) ≥ ⋅

∈

− − −
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for some positive constants β and ε when t is sufficiently small.

The main result of this article is the following theorem.

Theorem 1.1. Let f p C, λ
n1,1 �( )∈ be positive functions satisfying c f p c, λ0

1
0≤ ≤

− for some constant c 10 > .
Suppose that G C 0,z

n1,1 �(( ) )∈ ∞ × , CΨ 0,z
n1,1 �(( ) )∈ ∞ × , and G I�∈ satisfying Condition A( ) and Ψ d�∈

satisfying Condition B( ). Then there is a uniformly convex and C α3, -smooth positive solution to (1.3),
where α 0, 1( )∈ .

We will show that (1.4) is a gradient flow to the following functional:

f u x x VΩ Ψ , d Ω ,G λ t,
n

�

�( ) ( ) ( )͠
∫= + (1.8)

where V ΩG λ, ( )͠ is the general dual volume of Ω 0�∈ with respect to λ defined by

V G r ξ ξ λ ξΩ , d .G λ, Ω
n

�

( ) ( ( ) ) ( )͠
∫= (1.9)

Under conditions (A) and (B), we find that the functional Ω�( ) becomes large if either the volume of Ω is
sufficiently large or small, or the shape ofΩt is quite bad (see Proposition 3.1). This property is used to select
the initial hypersurface by the topological argument of [13] for which theC0 estimate (1.7) is valid. Once (1.7)
is proved, we are able to show that flow (1.4) exists for all time. This together with the monotonicity of (1.8)
implies that the flow (1.4) converges to a solution of (1.3).

We remark that in [13] the authors introduced their topological argument to resolve the Lp Minkowski
problem with super-critical exponents p n 1< − − . Before that the problems in the sub-critical case
p n 1> − − have been extensively studied [2,4,6–9,16,19,26,28,31], while the super-critical case remains
widely open. Their approach was also applied to the Lp dual Minkowski problem [14]. In this article, we
further adopt the topological method of [13] to attack the Musielak-Orlicz-Gauss image problem.

This article is organized as follows. In Section 2, some properties of convex hypersurfaces are pre-
sented, and we show the preservation ofVG λ, ( )͠

⋅ along the flows (see Lemma 2.1) and the strict monotonicity
of functionals (1.8) (see Lemma 2.2). In particular, we show a priori estimates and the long time existence of
the flows (1.4) (see Theorems 2.3 and 2.4). Section 3 is dedicated to the proofs of Theorem 1.1. The functional

Ω�( ) will be very large if either the volume of Ω is sufficiently large or small, or the eccentricity of Ω is
sufficiently large. We prove that the flow converges to a solution of (1.3) by using the topological method.

2 Preliminary and a priori estimates

For Ω 0�∈ , define its radial function r : 0,n
Ω � ( )→ ∞ and support function u : 0,n

Ω � ( )→ ∞ , respec-
tively, by

r x a ax u x x y y xmax : Ω and max , , Ω , ,n
Ω Ω� �( ) { } ( ) { }= ∈ ∈ = ⟨ ⟩ ∈ ∈ (2.1)

where x y,⟨ ⟩ denotes the inner product in n 1� + .
The polar dual convex body Ω∗ of Ω:

y y z zΩ : , 1, Ω .n 1�{ }= ∈ ⟨ ⟩ ≤ ∀ ∈
∗ +

The Gauss map of Ω∂ , denoted by ν : Ω n
Ω �∂ → , is defined as follows: for y Ω∈ ∂ ,

ν y x x y u x: , .n
Ω Ω�( ) { ( )}= ∈ ⟨ ⟩ =

Let ν : Ωn
Ω

1 � → ∂
− be the reverse Gauss map such that
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ν x y x y u x xΩ : , , .n
Ω

1
Ω �( ) { ( )}= ∈ ∂ ⟨ ⟩ = ∈

−

Denote by α : n n
Ω � �→ the radial Gauss image of Ω. That is,

α ξ x x ν r ξ ξ ξ: , .n n
Ω Ω Ω� �( ) { ( ( ) )}= ∈ ∈ ∈

Define α : n n
Ω � �→
∗ , the reverse radial Gauss image of Ω is as follows: for any Borel set E n�⊆ ,

α E ξ r ξ ξ ν E: .n
Ω Ω Ω

1�( ) { ( ) ( )}= ∈ ∈
∗ − (2.2)

We often omit the subscript Ω in rΩ, uΩ, νΩ, νΩ
1− , αΩ, and αΩ

∗ if no confusion occurs.
Let � be a smooth, closed, uniformly convex hypersurface in n 1� + , enclosing the origin. The para-

metrization of � is given by the inverse Gauss map X : n n 1� ��→ ⊆
+ . It follows from (2.1) and (2.2) that

X x r α x α x u x x X xand , ,( ) ( ( )) ( ) ( ) ( )= = ⟨ ⟩
∗ ∗ (2.3)

where u is the support function of (the convex body circumscribed by) � . It is well known that the Gauss
curvature of � is

K
u uI
1

det
,2( )

=

∇ +

(2.4)

and the principal curvature radii of � are the eigenvalues of the matrix b u uδ .ij ij ij= ∇ + Moreover, the
following hold, see e.g. [24],

rξ ux u r u u u r
r r

, , and .2 2
2

2 2
∣ ∣

∣ ∣
= + ∇ = + ∇ =

+ ∇

(2.5)

Let u t,( )⋅ and r t,( )⋅ be the support and radial functions of t� . Recall that (see, e.g., [5, Lemma 2.1])
r ξ t

r
u x t

u
, , .t t( ) ( )∂

=

∂ (2.6)

By (2.3) and (2.4), the flow equation (1.4) for t� can be reformulated by its support function u x t,( ) as
follows:

u x t f x ψ u x r G r ξ p ξ K η t u
u u

, , , ,
,0 .

t
n

z λ
1 1

0

⎧

⎨
⎩

( ) ( ) ( ) ( ) ( ) ( )

( )

∂ = − +

⋅ =

− −

(2.7)

It is well known that J ξ( ), the determinant of the Jacobian of the radial Gauss image x α ξΩ( )= for Ω 0�∈ ,
satisfies (see, e.g., [24])

J ξ r ξ K r ξ ξ
u α ξ

.
n
Ω

1
Ω

Ω Ω
( )

( ) ( ( ) )

( ( ))
=

+

(2.8)

It is clear that both (1.4) and (2.7) are parabolic Monge-Ampére types, their solutions exist for a short time.
Therefore, the flow (1.4), as well as (2.7), have short-time solutions. Let X t,( )⋅ be a smooth solution to the
flow (1.4) with t T0,[ )∈ for some constant T 0> . We now show that VG λ, ( )͠

⋅ remains unchanged along the
flow (1.4).

Lemma 2.1. Let G I�∈ and Ψ d�∈ . Let X t,( )⋅ be a smooth solution to the flow (1.4) with t T0,[ )∈ , and
X t,t

n�� ( )= be a smooth, closed, and uniformly convex hypersurface. Suppose that the origin lies in the
interior of the convex body Ωt enclosed by t� for all t T0,[ )∈ . Then, for any t T0,[ )∈ , one has

V VΩ Ω .G λ t G λ, , 0( ) ( )͠ ͠
= (2.9)

Proof. It follows from (2.8) that, by letting x α ξΩ( )= ,

fψ u x x f ψ u x
u

r K ξ, d , d .n 1

n n
� �

( )
( )

∫ ∫=
+
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This, together with (1.6), (2.6), and (2.8), yields that

t
G r ξ p ξ ξ G r ξ p ξ r ξ

G r ξ p ξ f ψ u
u

r G r ξ p K rη t ξ

f ψ u x
u

r K ξ η t rG r ξ p ξ ξ

f ψ u x
u

r K ξ fψ u x x

d
d

, d , d

, , d

, d , d

, d , d 0.

λ z λ t

z λ
n

z λ

n
z λ

n

1 1 1

1

1

n n

n

n n

n n

� �

�

� �

� �

⎜ ⎟

( ) ( ) ( ) ( )

( ) ( )⎛

⎝

( )
( ) ( )⎞

⎠

( )
( ) ( ) ( )

( )
( )

∫ ∫

∫

∫ ∫

∫ ∫

=

= − +

= − +

= − + =

+ − −

+

+

In conclusion, VG λ, ( )͠
⋅ remains unchanged along the flow (1.4), and in particular, (2.9) holds for any

t T0,[ )∈ . □

Recall that Ψ 0z < , the function ψ zΨz= − in (1.5). The lemma below shows that the functional u�( ) is
monotone along with the flow (1.4).

Lemma 2.2. LetG I�∈ and Ψ d�∈ . Let X t,( )⋅ , t� , and Ωt be as in Lemma 2.1. Then the functional � defined

in (1.8) is nondecreasing along the flow (1.4). That is, 0u t
t

d ,
d

�( ( ))
≥

⋅ , with equality if and only if t� satisfies the

elliptic equation (1.3).

Proof. Let u t,( )⋅ be the support function of t� .

u t
t

f ψ u x r G r ξ p ξ u K x
fψ u x x

rG r ξ p ξ ξ
d ,

d
, , d

, d

, d
0.n

z λ
z λ

2 2 1 1 1

2

n

n

n�

�

�

�( ( ))
( ) ( ) ( )

( )

( ) ( )

( )
∫

∫

∫

⋅

= − ≥
− − −

Clearly, equality holds here if and only if equality holds for the Hölder inequality, namely, there exists a
constant c t 0( ) > such that

f ψ u x
u

r G r ξ p ξ u uI c t, , det .n
z λ

1 1 2 1( )
( ) ( )( ( )) ( )∇ + =

− − − (2.10)

Moreover, it can be proved by (1.6) and (2.10) that c t η t( ) ( )= as follows:

η t
fψ u x x

rG r ξ p ξ ξ
c t

r G r ξ p ξ uK x

rG r ξ p ξ ξ
c t

, d

, d

, d

, d
.

z λ

n
z λ

z λ

1
n

n

n

n

�

�

�

�

( )
( )

( ) ( )
( )

( ) ( )

( ) ( )
( )

∫

∫

∫

∫

= = =

− −

This concludes the proof. □

Theorem 2.3. Suppose that f , pλ,Gz, and Ψz are both positive andC1,1-smooth. Let u t,( )⋅ be a positive, smooth,
and uniformly convex solution to flow (2.7), t T0,[ )∈ . Assume that

C u x t C1 ,0 0( )/ ≤ ≤ (2.11)

for all x t T, 0,n�( ) [ )∈ × . Then

C I u uI x t CI x t T, , , 0, ,n1 2 �( )( ) ( ) [ )≤ ∇ + ≤ ∀ ∈ ×
− (2.12)

where C is a positive constant depending only on n C, 0, f C n1,1 �∣∣ ∣∣ ( ), pλ C n1,1 �∣∣ ∣∣ ( ), ψ C 0, n1,1 �∣∣ ∣∣ (( ) )∞ ×
, Gz C 0, n1,1 �∣∣ ∣∣ (( ) )∞ ×

,
and the initial hypersurface, but is independent of T.

Proof. It follows from (2.5) that

u x t r x t u x t Cmax , max , max , .
x x x

0n n n� � �
∣ ( )∣ ( ) ( )∇ ≤ = ≤

∈ ∈ ∈

(2.13)
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It is direct to yield the bound of η defined by (1.6):
C η t C t T1 , 0, ,1 1( ) [ )/ ≤ ≤ ∀ ∈ (2.14)

where the constant C 0> (abuse of notations) depends only on f p G, , , Ψλ , and Ω0 but is independent
of t T0,[ )∈ .

In [25], we obtained the priori estimates for a more general equation of the form

u
t

x t x u u u uI uη t T, Φ , , det on 0, .n2 1 �( ) ( )( ( )) ( ) [ )
∂

∂

= − ∇ ∇ + + ×
− (2.15)

It follows from (2.11), (2.13), and (2.14) that (2.12) holds. This is a direct consequence of Lemmas 5.1 and 5.2
in [25] by letting

x u u f x ψ u x u u p ux u
u u

G u u ux u
u u

Φ , , , , . □λ z
2 2 1

2 2
1 2 2

2 2

n
2( ) ( ) ( )( ∣ ∣ )

⎛

⎝
⎜

∣ ∣

⎞

⎠
⎟

⎛

⎝
⎜ ∣ ∣

∣ ∣

⎞

⎠
⎟∇ = + ∇

+ ∇

+ ∇

+ ∇

+ ∇

+ ∇

− −

In view of (2.12), the flow (2.7) is uniformly parabolic and then u Ct L T0,n�∣ ∣ ( [ ))∂ ≤
×

∞ (abuse of notationC).
It follows from the results of Krylov and Safonov [23] that the Hölder continuity estimates for u2

∇ and ut∂ can
be obtained. Hence, the standard theory of the linear uniformly parabolic equations can be used to obtain
the higher-order derivative estimates, which further implies the long time existence of a positive, smooth,
and uniformly convex solution to the flow (2.7). Moreover, we have the following theorem.

Theorem 2.4. Assume the conditions in Theorem 2.3. Let Tmax be the maximal time such that the solution
u t,( )⋅ exists on T0, max[ ). Then Tmax = ∞ and u satisfies

C u x t C all x t1 , for , 0, ,n�( ) ( ) [ )/ ≤ ≤ ∈ × ∞ (2.16)

C η t C for all t1 0, ,∣ ( )∣ [ )/ ≤ ≤ ∈ ∞ (2.17)

u uI C on1 0, ,ε
n2 � [ )∇ + ≥ / × ∞ (2.18)

u C ,C k l0, ,x t
k l n
,
, �∣ ∣ ( [ )) ≤

× ∞ (2.19)

where C and Ck l, are constants depending on ε G f p, , Ψ, , λ, and Ω0.

3 Proof of Theorem 1.1

3.1 An estimate for the functional (1.8)

For any convex body Ω in n 1� + , let E Ω( ) denote John’s minimum ellipsoid of Ω. We have

n
E E1

1
Ω Ω Ω .( ) ( )

+

⊂ ⊂

Let a a aΩ Ω Ωn1 2 1( ) ( ) ( )≤ ≤…≤
+

be the lengths of semi-axes of E Ω( ). Denote e e a
aΩ
n 1

1
� = =

+ the eccentricity of
Ω� ≔ ∂ . We show an estimate for the functional (1.8) as follows.

Proposition 3.1. Let G and Ψ satisfy conditions stated in Theorem 1.1. Suppose that f , pλ satisfy
c f p c, λ0

1
0≤ ≤

− for some constant c 10 > . For any given constant A B 01�( ( ))> , if one of the quantities eΩ,
Vol Ω( ), Vol Ω 1[ ( )]− , and Odist , Ω 1[ ( )]∂

− is sufficiently large, then AΩ�( ) > .

Proof. We divide the proof into three steps.
Step 1: If e eΩ ≥ for a large constant e 1> , we have AΩ�( ) > .
By a proper rotation of coordinates, we assume that E E Ω( )= is given by
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E ζ z z
a

: 1 ,E
n

i

n
i

i

1

1

1 2

2�
⎧

⎨
⎩

⎫

⎬
⎭

∑− = ∈ ≤
+

=

+

(3.1)

where ζ ζ ζ, ,E n1 1( )= …
+

is the center of E, and a an1 1≤…≤
+
.

First, we construct inequalities about the quantity f u x xΨ , dn�
( )∫ . Let x n

0 �∈ be the point such that

u x u dmin0 n�( ) = = , where u is the support function of Ω and d Odist , Ω( )= ∂ . We choose i
#
and switch ei#

and ei−
#
if necessary such that

x e x e i nmax : 1 1 .i i0 0{∣ ∣ }⋅ = ⋅ ≤ ≤ +
#

This implies that x e ci n0 ⋅ ≥
#

, where cn denotes a constant which depends only on n but may change from
line by line.

Let w x u x u x( ) ( ) ( )= + − , x n�∈ , be the width of Ω in x. Since E EΩ Ω Ωn
1

1 ( ) ( )⊂ ⊂
+

, we have

d w c amin n in
�

≤ ≤
#

and

a
n

w e a i n2
1

2 , 1, , 1.i
i i( )

+

≤ ≤ ∀ = … +

By switching ei and ei− if necessary, we assume that u e c ai n i( ) ≤ for all i n1, , 1= … + .
Now we consider the cone � in n 1� + with the vertex p r x x0 0 0( )=

∗ and the base

O r e econvex hull of , Ω ,k k k i� { ( ) }≕ ⊂
∗

≠

∗

#

where r∗ is the radial function of the polar dual body Ω∗ of Ω.
We consider the following subset of � :

υ υ r x x e:
2

.i i
0

0� �
⎧

⎨
⎩

( ) ⎫

⎬
⎭

′ = ∈ ≥ ⋅
#

∗

#

Recall that r u1= /
∗ . Hence, we have

r x
u x d

r e c
a

k1 1 and , for all 1.k
n

k
0

0
( )

( )
( )= = ≥ ≥

∗ ∗ (3.2)

By using (1.5) and (3.2), we obtain that

f u x x C r x x

C z x
z

τ τ x

C ψ υ υ υ
υ

υ υ

C ψ υ υ υ
υ

υ υ

C ψ υ υ υ υ υ

C ψ z x d

C ψ z x d c
d

C ψ z x d a a

C ψ z x d a

Ψ , d Ψ 1 , d

Ψ , 1 d d

1 ,
1

d

1 ,
1

d

1 , d

min , Vol

min , Vol

min ,

min , ,

r x

n

n

n

z x d d c
n

z x d d c
n n

z x d d c
n

i
i

n

i

z x d d c
n

i

n

i

0

0

0

2

0

Ω

2

0
2

0
1

0
, ,2

1

0
, ,2

1

0
, ,2 1

1 1

0
, ,2

1

1

1 1

n n

n

n n

n n

n n

n n

� �

�

�

�

�

�

�

�

�

�

( ) ( )

( )
( )

( ∣ ∣ ∣ ∣)

∣ ∣
∣ ∣

( ∣ ∣ ∣ ∣)

∣ ∣
∣ ∣

( ∣ ∣ ∣ ∣)∣ ∣

( ) ( )

( ) ( )

( )
⎡

⎣
⎢

⎤

⎦
⎥

( )
⎡

⎣
⎢

⎤

⎦
⎥

( )

( ) [ ]

( ) [ ]

( ) [ ]

( ) [ ]

∫ ∫

∫ ∫

∫

∫

∫

∏

∏

≥ /

≥

∂

∂

⋅ − /

≥

/ /

/

≥

/ /

/

≥ / /

≥ ⋅ ′

≥ ⋅

≥ ⋅ ⋅

≥ ⋅

∗

− −

− −

′

− −

∈ / ×

+

∈ / ×

+

∈ / ×

=

+
−

∈ / ×

+

=

+
−

∗

∗

#

(3.3)
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where C0 denotes a constant which depends only on n but may change from line by line.

Next, we construct inequalities about the general volumeV ΩG λ, ( )͠ . Recall that (3.1), ζ ζ ζ, ,E n1 1( )= …
+

. We

can further assume that ζ 0n 1 ≥
+

. Since E Ωn
1

1 ⊂
+

, we have

u e ζ
n

a1
1

.n n n1 1 1( ) ≥ +

+

+
+

+
(3.4)

Hence, there exists a point p Ω0 ∈ such that

p e u e ζ
n

a1
1

.n n n n0 1 1 1 1( )⋅ = ≥ +

+

+ +
+

+
(3.5)

Consider the hyperplane L which is orthogonal to en 1+
and passes through ζE:

L υ υ ζ e: 0 .n
E n

1
1�{ ( ) }= ∈ − ⋅ =

+

+

Let P L En
1

1= ∩
+

be the intersection of L with the ellipsoid En
1

1+

, andV be the cone in n 1� + with base P and
the vertex p0. Clearly V Ω⊂ . Let us consider the following subset of V :

V υ V υ ζ p e ζ: 1
2

.n n n n1 1 0 1 1( ){ }′ = ∈ − ≥ ⋅ −
+

+
+

+

This together with (3.4) implies that

υ a
n

υ V
2 1

, .n 1
∣ ∣

( )
≥

+

∀ ∈ ′
+ (3.6)

It is easy to see that

V c a aVol ¯ ,n n
i

n

i1
1

( ) ∏′ ≥
+

=

(3.7)

for some positive constant c̄n which depends only on n. Since Ω contains the origin and EΩ ⊂ , we have

υ c a υ¯ , Ω.n n 1∣ ∣ ≤ ∀ ∈
+

(3.8)

Combining (3.6), (3.7), and (3.8), we can obtain that

V G r ξ ξ p ξ ξ

C G r ξ ξ ξ

C G z ξ
z

z ξ

C G υ υ υ υ υ

C G υ υ υ υ υ

C G z ξ a V

C G z ξ a a a

C G z ξ a a

Ω , d

¯ , d

¯ , d d

¯ , d

¯ , d

¯ min , Vol

¯ min ,

¯ min , ,

G λ λ

r ξ

z
n

V

z
n

z ξ a
n a

z n
n

z ξ a
n a

z n
n

n
i

n

i

z ξ a
n a

z n
n

i

n

i

, Ω

0 Ω

0

0

0

Ω

0

0
, 2 1 ,

1

0
, 2 1 ,

1 1
1

0
, 2 1 ,

1
1

1

n

n

n

n
n n

n
n n

n
n n

1
1

1
1

1
1

�

�

�

�

�

�

( ) ( ( ) ) ( )

( ( ) )

( )

(∣ ∣ ∣ ∣)∣ ∣

(∣ ∣ ∣ ∣)∣ ∣

( ) ( )

( )

( )

͠

( )

( ) ⎡
⎣ ( )

⎤
⎦

( ) ⎡
⎣ ( )

⎤
⎦

( ) ⎡
⎣ ( )

⎤
⎦

∫

∫

∫ ∫

∫

∫

∏

∏

=

≥

≥

∂

∂

≥ /

≥ /

≥ ⋅ ⋅ ′

≥ ⋅ ⋅

≥ ⋅

−

′

−

∈

+

×

+

−

∈

+

×

+

−

+

=

∈

+

×

+

− +

=

+

+

+

+

+

+

(3.9)
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where C̄0 denotes a constant which depends only on n but may change from line by line.
From (3.3) and (3.9), there exists a positive constant C depending only on f , g , C0, and C̄0 such that

C ψ z x d G z ξ aΩ min , min , .
z x d d c

n

z ξ a
n a

z n
n2

, ,2
1

, 2 1 ,
1

n n n
n n1

1
�

�

�[ ( )] ( ) ( )
( ) [ ]

( ) ⎡
⎣ ( )

⎤
⎦

≥ ⋅ ⋅

∈ / ×

+

∈

+

×

+

−

+

+

(3.10)

Recall that the functions G t x,( ) and t xΨ ,( ) satisfy the conditions (A) and (B), respectively, we con-
clude that:

When t is sufficiently large, G t x α tmin ,x z
n εn� ( ) ≥ ⋅

∈

+ for some positive constants α and ε, then there
exists a large positive constant M such that

G t x α t t Mmin , , as .
x

z
n ε

n�
( ) ≥ ⋅ ≥

∈

+ (3.11)

When t is sufficiently small, ψ t x β tmin ,x
n ε1n� ( ) ≥ ⋅

∈

− − − for some positive constants β and ε, then there
exists a small positive constant δ such that

ψ t x β t t δmin , , as .
x

n ε1
n�

( ) ≥ ⋅ ≤

∈

− − − (3.12)

Since V VΩ ΩG λ t G λ, , 0( ) ( )͠ ͠
= , G z x, 0z( ) > on 0, n�( )∞ × . It is easy to obtain that

d c C a
n

C2 and
2 1

,n
n

1
1

2
( )

/ ≤

+

≥
+ (3.13)

for some positive constants C1 and C2 depending only on the initial hypersurface Ω0∂ .
Combining (3.11), (3.12), and (3.13), inequality (3.10) is mainly discussed in the following two cases.
Case 1: C δ1 < for the constant δ in (3.12) and the constant C1 in (3.13). In this case, by (3.13), we have

d c C δ2 n 1/ ≤ < , and then either M Ca
n2 1 2

n 1
( )

≥ ≥
+

+ or C Mmax ,a
n2 1 2

n 1 { }
( )

≥
+

+ for the constant M in (3.11) and the

constant C2 in (3.13).
If d c C δ2 n 1/ ≤ < and M Ca

n2 1 2
n 1

( )
≥ ≥

+

+ , by (3.12), (3.10) becomes

C ψ z x d G z ξ a

Cβd d G z ξ a

C a
e

G z ξ a

C M
e

M

min , min ,

ˆ min ,

ˆ min ,

ˆ ,

z x d d c
n

z ξ a
n a

z n
n

n ε n
z ξ C n M

z n
n

n
ε

z ξ C n M
z n

n

ε
n

2
, ,2

1
, 2 1 ,

1

1 1
, ,2 1

1

1

Ω , ,2 1
1

Ω

n n n
n n

n

n

1
1

2

2

� �

�

�

�

⎜ ⎟

⎜ ⎟

( ) ( )

( )

⎛

⎝

⎞

⎠
( )

⎛

⎝

⎞

⎠

( ) [ ] ( ) [
( )

]

( ) [ ( ) ]

( ) [ ( ) ]

≥ ⋅ ⋅ ⋅

≥ ⋅ ⋅

≥ ⋅ ⋅

≥

∈ / ×

+

∈

+

×

+

−

− − − +

∈ + ×

+

−

+

−

∈ + ×

+

−

−

−

+

+

(3.14)

where Ĉ denotes a constant but may change from line by line. Since ea
d

a
a Ω

n n1 1

1
≥ =

+ + is sufficiently large,
(3.14) implies that AΩ�( ) ≥ .

If d c C δ2 n 1/ ≤ < and C Mmax ,a
n2 1 2

n 1 { }
( )

≥
+

+ , by (3.11) and (3.12), (3.10) becomes

C ψ z x d G z ξ a

Cβd d αa a

C a
e

a

Ce

min , min ,

¯

¯

¯ ,

z x d d c
n

z ξ a
n a

z n
n

n ε n
n
n ε

n
n

n
ε

n
ε

ε

2
, ,2

1
, 2 1 ,

1

1 1
1 1

1

Ω
1

Ω

n n n
n n1

1� �

�

⎜ ⎟

( ) ( )

⎛

⎝

⎞

⎠

( ) [ ] ( ) [
( )

]

≥ ⋅ ⋅ ⋅

≥ ⋅ ⋅

≥

≥

∈ / ×

+

∈

+

×

+

−

− − − +

+

+

+

−

+

−

+

+

+

(3.15)

where C̄ denotes a constant but may change from line by line. Since eΩ is sufficiently large, (3.15) implies
that AΩ�( ) ≥ .

Case 2: C δ1 ≥ for the constant δ in (3.12) and the constant C1 in (3.13). In this case, by (3.13), we have
either δ d c C2 n 1≤ / ≤ or d c δ2 n/ < , and Ca

n2 1 2
n 1

( )
≥

+

+ . We will discuss this case as follows.
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If δ d c C2 n 1≤ / ≤ , since ea
d

a
a Ω

n n1 1

1
≥ =

+ + is sufficiently large, hence C Mmax ,a
n2 1 2

n 1 { }
( )

≥
+

+ . By (3.11), (3.10)
becomes

C ψ z x d G z ξ a

C ψ z x d αa a

C d e d
C δ e

min , min ,

min ,

,

z x d d c
n

z ξ a
n a

z n
n

z x δc C
n

n
n ε

n
n

n ε

n ε ε

2
, ,2

1
, 2 1 ,

1

, 2,
1

1 1

1
Ω

1
Ω

n n n
n n

n n

1
1

1

� �

�

� ( ) ( )

( )

( )

͠

͠

͠

( ) [ ] ( ) [
( )

]

( ) [ ]

≥ ⋅ ⋅ ⋅

≥ ⋅

≥ ⋅ ⋅

≥ ⋅ ⋅

∈ / ×

+

∈

+

×

+

−

∈ / ×

+

+

+

+

−

+

+ +

+

+

(3.16)

where C͠ denotes a constant but may change from line by line. Since eΩ is sufficiently large, (3.16) implies
that AΩ�( ) ≥ .

If d c δn/ < , A2� ≥ can be obtained by using the same argument in Case 1.
Step 2: If either vVol Ω 0( ) ≤ and vVol Ω 0

1( ) ≥
− for a small constant v0, then AΩ�( ) > .

u f u x x C a x C C a
a

xΨ , d min Ψ , min Ψ 1

Vol Ω
,f

x
n f

x n n
1

1

1
1

1

1

n
n n

�
� �

�( ) ( ) ( )
⎛

⎝

⎜
⎛

⎝
⎜

[ ( )]

⎞

⎠
⎟

⎞

⎠

⎟∫≥ ≥ ≥

∈

+

∈
+

+

−

(3.17)

and

u G r ξ p ξ ξ C G d ξ C G C d
a

ξ, d min , min Vol Ω , .λ p
ξ

p
ξ n 1n

λ n λ n
n

1
1

�
� �

� ⎜ ⎟( ) ( ) ( ) ( ) ⎛

⎝
[ ( )] ⎞

⎠
∫≥ ≥ ≥

∈ ∈
+

+ (3.18)

Recall that G is increasing in its first variable, and Ψ is decreasing in its first variable. If either d an 1/
+

or
a an1 1/

+
is sufficiently close to 0, then AΩ�( ) > by the argument in Step 1. Hence, we assume that d an 1/

+
or

a an1 1/
+

are away from 0. By (3.17) and (3.18), if either Vol Ω 1[ ( )]− or Vol Ω( ) is large, then AΩ�( ) > .
Step 3: If O ddist , Ω 0( )∂ ≤ for a small constant d 00 > , then AΩ�( ) > .

Assume that a C dj A≤ for all j n1 1≤ ≤ + for someC 1A ≥ . Otherwise, a
d

j is sufficiently large for some j, so
then a

d
n 1+ is sufficiently large. By the argument in Step 1, we have AΩ�( ) > .

Under the above assumption, if d is sufficiently small, then Vol Ω( ) becomes very small. By the argu-
ment in Step 2, we have AΩ�( ) > .

This completes the proof. □

Remark 3.1. Let t� , t T0, max[ )∈ , be a solution to the flow (1.4). By Proposition 3.1, if At� �( ) < for a
constant A independent of t, then there exist positive constants e v d, ,0 0 0 depending on A, but independent
of t, such that

e e v v B, Vol Ω , and 0 Ω ,t d t0 0 0
1

t 0� ( ) ( )≤ ≤ ≤ ⊂
− (3.19)

where Ωt is the convex body enclosed by t� . Note that (3.19) implies (2.11). Hence, the a priori estimate
(2.12) holds, and the long-time existence of solution can be obtained by Theorem 2.4. Therefore, all we need
is to establish the condition At� �( ) < for some constant A.

3.2 A modified flow of (1.4)

We introduce a modified flow of (1.4) such that for any initial condition, the solution exists for all time t 0≥ .
It is more convenient to work with a flow that exists for all t 0≥ . Let us fix a constant

A
n

x f G ξ p2 max Ψ 1
2 1

, max 2, .
x

L
x

λ L0 n
n

n
n1 1

�
�

�
�⎜ ⎟⎜ ⎟

⎛

⎝

⎛

⎝ ( )
⎞

⎠
∣∣ ∣∣ ( )∣∣ ∣∣ ⎞

⎠
( ) ( )=

+

+

∈ ∈

(3.20)

If the minimum ellipsoid of Ω is B 01( ), then B B0 Ω 0n
1

1 1 1( ) ( )⊂ ⊂
+

and hence
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AΩ 1
2

.0�( ) ≤ (3.21)

Denote by Cl �( ) the convex body enclosed by � . For a closed, smooth, and uniformly convex hypersurface
� such that Ω Cl0 0� �( )= ∈ , we define a family of hypersurfaces t�̄� ( ) with initial hypersurface � as
follows:
• If t A0� ��( ( )) < for all time t 0≥ , let t t�̄ �� �( ) ( )= for all time t 0≥ , where t�� ( ) is the solution
to (1.4).

• If A0� �( ) < , and t A0� ��( ( )) < , and t� ��( ( )) reaches A0 at the first time t 00 > , we define

t t t t
t t t

¯ , if 0 ,
, if .

0

0 0
�

�

�
�

�

�

( )
⎧

⎨
⎩

( )

( )
=

≤ <

≥

• If A0� �( ) ≥ , we let t�̄ �� ( ) ≡ for all t 0≥ . That is, the solution is stationary.

For convenience, we call t�̄� ( ) a modified flow of (1.4). Moreover, we have the following properties.

(a) t�̄� ( ) is defined for all time t 0≥ , and by Lemma 2.2, t¯� ��( ( )) is nondecreasing. In particular, we

have t A¯ max ,0� � � ��( ( )) { ( )}≤ , t 0∀ ≥ .
(b) If either Odist , �( ) is very small, or Vol Ω0( ) is sufficiently large or small, or eΩ0 is sufficiently large, by

Proposition 3.1, we have t�̄ �� ( ) ≡ , t 0∀ ≥ .

3.3 Homology of a class of ellipsoids

Here we recall the homology of a class of ellipsoids IA introduced in [13], such that an ellipsoid E with
E A0�( ) < is contained in I� . By Proposition 3.1, we have

Corollary 3.2. For the constant A0 given by (3.20), there exist sufficiently small constants d̄ and v̄, and
sufficiently large constant ē, such that for any Ω 0�∈ ,
(i) If O ddist , Ω ¯( )∂ ≤ , then AΩ 0�( ) > .
(ii) If e ēΩ ≥ , then AΩ 0�( ) > .
(iii) If vVol Ω ¯( ) ≤ or n vVol Ω 1 1 ¯n 1 1( ) ( )≥ / +

+ − , then AΩ 0�( ) > .

Let � be the metric space consisting of nonempty, compact, and convex sets in n 1� + , equipped with the
Hausdorff distance. Denote by ¯ 0� the closure of 0� in � .

Fix the constants d v e¯, ¯, ¯ in Corollary 3.2. Let IA be the set of ellipsoids E ¯ 0�∈ such that v E v¯ Vol 1 ¯( )≤ ≤ / ,
and e ēE ≤ . Denote byA the following subset of IA

E E ω e e O: Vol , and either ¯ or dist , Ω 0 .I n EA A{ ( ) ( ) }= ∈ = = ∂ =

Here, ω B 0n 1∣ ( )∣= is the volume of B 01( ), and eE is the eccentricity of E.
We also denote by IE the set of ellipsoids in IA centered at the origin, and byE the set of ellipsoids inA

centered at the origin. These sets are all metric spaces by equipping the Hausdorff distance.
It was proved in [13] that IE is contractible and so the homology H 0k IE( ) = for all k 1≥ . Moreover, IA is

homeomorphic to B 0I 1E ( )× . Hence, IA is contractible and the homology

H k0 for all 1.k IA( ) = ≥ (3.22)

Denote

E E v E v e e O E: either Vol ¯, or Vol 1 ¯, or ¯, or .I EA	 { ( ) ( ) }= ∈ = = / = ∈ ∂ (3.23)

It is the boundary of IA if we regard IA as a set in the topological space of all ellipsoids. Moreover, there is a
retraction Ψ from B\I 1A { } to 	 . Namely, BΨ : \I 1A 	{ } → is continuous and idΨ 	∣ = . The following two
theorems were also proved in [13].

Convex hypersurfaces with prescribed Musielak-Orlicz-Gauss image measure  11



Proposition 3.3. We have the following results.
(i) H Hk k1 A	( ) ( )=

+
for all k 1≥ .

(ii) There is a long exact sequence

H H H H Hk k
n

k k
n

k1 A E E A� �( ) ( ) ( ) ( ) ( )⋯→ → × → ⊕ → →⋯
+

Proposition 3.4. Let n n n 1
2

( )
=

∗

+ . The homology group Hn n 1 E �( ) =
+ −

∗ .

3.4 Selection of a good initial condition

In this subsection, we use Propositions 3.3 and 3.4 to select a special initial condition in I such that the
solution to the Gauss curvature flow (1.4) satisfies the uniform estimate. The idea is similar to that in [13].
For any ellipsoid � such that Cl IA�( ) ∈ , let t�̄� ( ) be the solution to the modified flow. We have the
following properties:
(1) If Cl �( ) is close to 	 in Hausdorff distance or in 	 , we have 0A� �( ) ≥ and so t N�̄� ( ) ≡ for all t (see

Corollary 3.2).
(2) If Cl �( ) is close to B 01( ) in Hausdorff distance, then A0� �( ) < .

(3) By our definition of the modified flow, t A¯ max ,0� � � ��( ( )) { ( )}< for all t, then by Remark 3.1, if

M t¯
� ( ) is not identical to ¯ 0� �� ( ) = , then

e e v t v B t t¯, ¯ Vol ¯ 1 ¯, and 0 Cl ¯ , 0.t d¯ ¯� �� � ��
( ( )) ( ) ( ( ))( ) ≤ ≤ ≤ / ⊂ ∀ ≥ (3.24)

Lemma 3.5. For every t 0> , there exists t� �= with Cl IA�( ) ∈ , such that the minimum ellipsoid of t�̄� ( )

is unit ball B 01( ).

Proof. Suppose by contradiction that there exists t 0′ > such that, for any Ω IA∈ , E t B 01� ( ) ( )′ ≠ , where
Ω� = ∂ and E t� ( )′ is the minimum ellipsoid of t tΩ Cl �̄� �( ) ( ( ))′ ≔ ′ .

By Corollary 3.2, E t IA� ( )′ ∈ . Hence, we can define a continuous map T : IA 	→ by

E t B E tΩ \ Ψ ,I I 1A A 	� �( ) { } ( ( ))∈ ↦ ′ ∈ ↦ ′ ∈

where Ψ is the retraction after (3.23), and B B 01 1( )= for short. Note that when Ω 	∈ , we have AΩ 0�( ) ≥

and thus E t E 0 Ω� �( ) ( )′ = = . This implies thatT id	 	∣ = . Hence,T is a retraction from IA to 	 , and so there
is an injection from H 	( )

∗
to H IA( )

∗
. By (3.22), we then have

H k0 for all 1.k 	( ) = ≥

It follows from Proposition 3.3 (ii) that

H H H kfor all 1.k
n

k k
nE E� �( ) ( ) ( )× = ⊕ ≥

Computing the left-hand side by the Künneth formula and using the fact Hk
n� �( ) = if k 0= or k n= , and

H 0k
n�( ) = otherwise, we further obtain

H H H H .k k n k k
nE E E �( ) ( ) ( ) ( )⊕ = ⊕

−

However, this contradicts Proposition 3.4 by taking k n n2 1= + −
∗ in the above. □

In the following, we prove the convergence of the flow (1.4) with a specially chosen initial condition.
Take a sequence tk → ∞ and let k tk� �= be the initial data from Lemma 3.5. By our choice of A0 (see (3.20)
and (3.21)), Lemma 3.5 implies that
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t A¯ 1
2

.k 0k� � � ( )( ) ≤ (3.25)

Hence, by the monotonicity of the functional � , we have

t t t t¯ , .kk k� �� �( ) ( )= ∀ ≤

Since Cl k IA�( ) ∈ and B 0 Cld k¯ �( ) ( )⊂ , by Blaschke’s selection theorem, there is a subsequence of k�

which converges in Hausdorff distance to a limit �
∗
such that Cl IA�( ) ∈

∗
and B Cld̄ �( )⊂

∗
.

Next we show that the flow (1.4) starting from �
∗
satisfies t A0� � � ( )( ) <

∗

for all t .

Lemma 3.6. For any t 0≥ , we have

t A¯ 3
4

.0� � � ( )( ) ≤
∗

Hence,

t t t¯ , 0.� �� �( ) ( )= ∀ >
∗ ∗

Proof. For any given t 0> , since k� �→
∗
and tk → ∞, when k is sufficiently large such that t tk > , we have

t t A¯ 1
4

.0k� � � �� �( ) ( )( ) ( )− ≤
∗

By the monotonicity of the functional �

t t¯ .kk k� � � �� �( ) ( )( ) ( )≤

Combining the aforementioned two inequalities with (3.25), we obtain that

t t t t

t t t

A A A

¯ ¯

¯

1
4

1
2

3
4

. □

k

0 0 0

k K

k K

� � � � � � � �

� � � � � �

� � � �

� � �

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

= − +

≤ − +

≤ + =

∗ ∗

∗

3.5 Convergence of the flow and existence of solutions to (1.3)

Let t tΩ Cl �� �( ) ( )( )=
∗ ∗

and u t,( )⋅ be its support function. By Lemma 3.6, t� � ( )
∗

satisfies (3.24). Hence,

d u x t C x t¯ , , , 0, ,n�( ) ( ) [ )≤ ≤ ∀ ∈ × ∞

whereC n vω d1 ¯ ¯n
n

1( ) ( )= + /
−

. Hence, condition (2.11) holds, and we obtain the existence of solutions to (1.3)
as follows.

Proof of Theorem 1.1. Denote t t� � �( ) ( )=
∗

and t t� � �( ) ( ( ))= . By Lemmas 2.2 and 3.6,

t A t tand 0, 0.0� �( ) ( )< ′ ≥ ∀ ≥

Therefore,

t t T Ad limsup 0 .
T

0

0� � �( ) ( ) ( )∫ ′ ≤ − ≤

∞

→∞

This implies that there exists a sequence ti → ∞ such that
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t f ψ u x r G r ξ p ξ u K x
fψ u x x

rG r ξ p ξ ξ
, , d

, d

, d
0.i

n
z λ

z λ
t t

2 2 1 1 1

2

n

n

n

i
�

�

�

� ( ) ( ) ( ) ( )

( )

( ) ( )

( )
∫

∫

∫

′ = − →
− − −

=

Passing to a subsequence, we obtain by the priori estimates that u t u, i( )⋅ →
∞

in C α n3, �( )-topology and u
∞

solves (1.3), where

γ
η t

r ξ G r ξ ξ p ξ ξ

f x ψ u x x
lim 1 , d

, dt i

z λ

i

n

n

�

�
( )

( ) ( ( ) ) ( )

( ) ( )

∫

∫

= =

→∞

∞ ∞

∞

with r rΩ=
∞

∞

the radial function of the convex body Ω 0�∈
∞

whose support function is u
∞
. □
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