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1 Introduction

Let (M, wg) be a compact Kdhler manifold and T be a closed positive current. Assume that (M, T) := 2nq(M) - [T]
is a positive class and w € ¢(M, T). We say that w is a twisted Kahler-Einstein metric if

Ricw=w+T

holds as currents. Twisted Kédhler-Einstein metric can be considered as a generalization of Kdhler-Einstein
metric. The twisted term can be a current in general. If the current is the Dirac measure along a smooth
divisor, the metric is the conic Kihler-Einstein metric. The existence of twisted Kihler-Einstein metric is
proved in [3,8,16]. The metric w is obtained using the variational method, so there is little information of the
metric geometry of w. As a first step, we want to study the smooth approximation of metric w as shown
in [13,14].

We always assume that T is a closed positive current with kit singularities. By choosing a smooth (1,1)-
form 6 in the same cohomological class of T, we obtain

T=0+J/-130y, 1)

where 1 is a quasi-psh function such that e € LP(M, w,) for some p > 1. Then the following holds.

Theorem 1.1. Let w, be a smooth Kiihler metric and w = wy + v—100¢ be a twisted Kiihler-Einstein metric
such that ¢ is bounded. If T is smooth on an open set U, then ¢ is smooth on U. Moreover, if T has analytic
singularity and Aut®(X, T) = 0, there exists a sequence of smooth metric w; with Ricci curvature bounded from
below such that w; converges to w smoothly outside the singularity of T.

The smoothness of w on the regular part of T is proved in Proposition 2.1. This result is essentially
proved in [11] (see also Appendix B in [1]). The existence of smooth approximation is proved in Proposition
3.1 using the perturbation method in [14].
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2 Regularity of twisted Kdhler-Einstein metric
In this section, we prove the smoothness of ¢ in the region where T is smooth.

Proposition 2.1. Let (M, wy) be a compact Kéhler manifold and T be a closed positive current, (M, T) = [wo].
Assume that there exists a twisted Kdhler-Einstein metric w, = wo + ~—1093¢ with bounded potential. If for the
neighborhood U of x € M, T |y is smooth, then w,, is smooth on U.

Since w, is a twisted Kéhler-Einstein metric, it satisfies
Ric(wy) = w, + T. ()
For (M, T) = [wy], there is a smooth function h such that
wo = Ric(wy) + V-130h - 6.
So we obtain
Ric(wy) = Ric(wo) + V-133(h + @ + ),
which is equivalent to
(wo + V-130@)" = e "¢~ ¥ult 3)

by adding a constant to ¢. We only need to prove that ¢ is smooth in the region where  is smooth. First, we
give the CC-estimate. Since e™¥ € L? and ¢ is bounded, we obtain f= e ¥-¢ ¢ LP, so C°-estimate is
obtained by Corollary 6.9 in [9].

Next we show the C?-estimate. By Theorem 9.1 in [6], we know the following:

Theorem 2.2. Let ¢ be a quasi-psh function on compact Kdhler manifold (M, wy) such that for a smooth (1,1)
form 6

J=103¢ > 6.

Then there exists a decreasing sequence ¢, € C*°(M) having the following properties:
(i) There exists a constant C such that

\/—_165¢ >0 - Cwy.
(if) limg_, o, (x) = d(x) for all x € M.

So we have the decreasing sequences of smooth quasi-psh functions {@,}, {1),} converging to @, 1,
respectively. Since ¢ is continuous, {¢,} converge to ¢ in C°-topology. And since

le¥—e¥|<e?, e¥elp,
e ¥ converges to e¥ in L? norm by dominated convergence theorem. By the result of Yau [15], the equation
(wo + -130@)" = eh-% Vel

has smooth solution ¢,.

Proposition 2.3. Assume @, satisfies
(wo + V-130@,)" = e =%V, (4)

then A, = O(e™¥:).

Proof. Write (A, tr) and (A, tr,,) as the Laplace operator and trace with respect to wy, w,, and
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we = Wo + V-1030¢,.
We only need to prove
tr(w;) < Ae Ve
Recall the Laplace inequality for the second-order estimate in [12].

Lemma 2.4. If T and 1’ are two Kdhler forms on a complex manifold, then there exists a constant B > O only
depending on a lower bound for the holomorphic bisectional curvature of T such that

3 !
Ay logtr (1)) > _GRic(™) Btr,(T).
tr(7')
It follows that
Ay, logtr(we) > _rRic(we) _ Btr, (wo).
tr(we)

On the other hand, by applying +/~13dlog to (4), we obtain
~Ric(w,) = —Ric(wp) - V=133(h + @, + ,) > —Awo — V=133, + ¥,),
then

An + M@, +1,)

Ay logtr(w,) > —
w108 (we) tr(w,)

- Bty (wo). 5)

Since i, ¢, are quasi-psh functions, we have

0 < Awo + V-1, + @) < tr, (Awo + V=130, + §.))w,
= An + AW, + §,) < (A try(wo) + Do, + @) tr we

An + A, + @)
tr w,

(6)

=00, + @) 2 - A try (wo).

Actually, constants A for two inequalities can be chosen as the same. Combining (5) and (6), we obtain
Ay (logtr(w;) + P, + @) = -A tr, (wo). @)
We have w, = wo + V~130¢,, hence,
n = tr,(wo) — Ay, @,

We deduce from (7) that

Ay (ogtr(we) + Y, + @, — A1) = tr,(wo) — As. (8)
on M, with constants 4; and A4,. Set

H =logtr(we) + Y, + ¢, - Aig,.
Since w; is smooth on X, H achieves its maximum at some xq belongs to smooth part, and (8) yields
try (wo)(Xo) < A;.

On the other hand, a trivial inequality shows that

!

tr(1') < (T—)n tr(T)" !
T

for any two Kadhler forms 7, ’. Hence,
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logtr(w,) < log(e™"¥%-%) + (n - 1)logtr,,(wo) < A; + Ay(logtry(wo)) - (W, + @),
then

H<supH=H(xp) <A; + A, (logtrwe(wo)) - A, <A
M

on M, which means that
logtr (we) + Y, + @, — A1 @, < Ao.
For ¢ is bounded and ¢, converges in C°-topology, we infer

tr(w;) < A e e, O

Since we have e™"¥:-% — e”"~¥-¢ in LP, it follows that ¢, converges as € — 0 to the solution ¢ of

(wo + N~193p)" = Aeh- V-0,
So we know that ¢ satisfies as well |@ |21 < Ae¥. Thus, for any neighborhood U with  is smooth, we have
lplcrr < C.
By the Evans-Krylov theory, there is some a € (0, 1) such that
lplc2a < C'.
By applying 0, to equation (3), we obtain
a;0;5(9p) + (%) = f,

where f=-09;(h + ) is smooth on U. Through Schauder interior estimate and bootstrap argument, we
obtain the regularity of ¢ on U. Proposition 2.1 is proved.

3 Approximate metrics with uniform Ricci lower bound

In this section, we prove the second part of Theorem 1.1 when ) has analytic singularity, i.e., i is equal to
u + Y. Ifi [ locally, where u is a smooth function and fi(1 < i < m) are some analytic functions. It is easy to

see that (e¥ + 8)~! is a smooth function for any real number § > 0 or positive smooth function 8. So we can
perturb equation (3) by

(wo + V-133¢p)" = Ae"=95(e¥ + Se Kps) 1w )
We will use the variational method to solve (9) as shown in [14].
Proposition 3.1. Assume Aut®(M, T) = 1, and 6 + Kwg > 0. Then there are constants a, b, 6, > 0 depending
on (M, wo, ), such that for § < 8¢ (9) has a smooth solution ws with some A € [a, b], which converges to w,, for

& approaching O outside the singularity of y. Moreover, the Ricci curvature of ws is greater than 1 — K
uniformly.

As shown in [4], define
PSHgu(M, wo) = {@ € PSH(M, wo)|lim | (wo + v-13dmax{p, -jh" = 0},
]—00
p<-j

and the Monge-Ampére energy on PSHg, (M, wo):
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E@@)=——) Igowo Awp,
Vl:O
Set
EM, wo) = {p € PSHpu(M, wo)|E(p) > —oo}
and

EEM, wo) = {p € EM, wy), supp <C and E(p)>-C},
M

which is weakly compact for each C > 0.
Then, we define

Q = {p € EWM, wy)| j hs(e?)w] = jh5<1>w3},

where

hs(x) = Ie”‘(e“’ T 6t
(0]

By Lemma 6.4 of [2], we obtain

Lemma 3.2. The map
E\M, wo) — LM, wo) : ¢ — e*

is continuous. Thus, Q is a closed subset of E(M, wy).

We have the following two functionals on H :

J(p) = I¢wo E(p),

M
F(¢) = ~E(@) - log jhs(e*‘f’)ws‘ -

It is easy to see that

Fs(¢) = ~E(@) + B0), Ex0) = —logjhsa) wy.

For 6 < 1, F5(0) is uniformly bounded by a constant depending on (M, wy, Y, h).
Lemma 3.3. J(¢p) is lower semi-continuous on Q.

Proof. Actually, by Proposition 2.10 in [4], we know that J(¢) is Isc on EXM, wy). Since H is closed subset
of E(M, wy), the lemma is proved. O

Now we prove the proposition. Since Aut®(M, T) = 1, by Theorem 2.18 in [3], we know that Ding
functional

Fo(@) = ~E(p) - log fe-h-¢-¢w3
M
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is coercive, i.e., there are some positive constants A and B, such that
Fo(gp) = A](p) - B.

Clearly, Fs > Fy, so F; is also coercive. Choose a minimizing sequence {(pi} of Fs satisfying:

lim Fs(¢;) = inf F5(¢).
j—o0 PpeQ

For j large sufficiently, we have

(@) < (B + B) < (BO) + B) + 1. (10)
Hence,
| [0t | < u@1+ B! + 1B < A, B, BOY. (1)
M
So we obtain
Isup(g)| < C(A, B, F5(0)). (12)

From (10) and (12), we know that ®; lies in a weakly compact subset 8};(M , wo) of EM, wy). Hence, by

taking a subsequence of {(pi}, we can assume that ¢; converge to a limit ¢, in (M, wy). From Lemma 3.3, we

know that the functional —E(¢) is lower semi-continuous. Thus, F; is lower semi-continuous. It follows that

@5 is a minimizer of F5. As the proof of Theorem 4.1 in [2], we can show that ¢; is a solution of (9) for some A.
Then, we give the estimate of A. By (11), we know that

[l < cca, B, 50, .
M

Hence,

lpilwg
{e# > G} = g < -In G < Julolos < (A, B E0), V)

1nC1 B 1nC1
So we can choose C; > 0, such that
74
e %> Cyp| < —.
fen=cli<
And we also can choose € > 0, such that
v
e¥<el < —.
I{ 3 4
Set
N= {e*‘l’i < Cl} n{e¥ > e},
then
IN| = K.
2

On N, there is a §o(M, wy, P) such that for any 6§ < &y, we have
1<e%<(

and

(e‘/’ + 6e*K‘Pf)*1 > %e*‘/’.
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So we obtain

Ie‘h‘¢6(e¢ + 8e7 XY 1wl > G(M, wo, Y, h).
N

Combining with perturbed equation, we obtain

%4
AN —————.
CZ(M’ Wo, l;b’ h)

On the other hand, we have
e h-9s(e¥ + SeKes)1 < hg(e‘%).

Hence,

Ie""%(e’wb + be Koy 1wl < fhg(e“l’s)wg' = Ihg(l)wg‘.
M M M

So we obtain

p——
|, rsws

Next, we establish the regularity of ;.
Lemma 3.4. For some a € (0, 1), |@5 |c*m,w,) < C, where C depends on (M, wo, ).
Proof. From above, we know that

@5 € LM, wo) < PSHy,

where EL(M, w,) is a weak compact subset. By Proposition 1.4 of [1], there is ¢ > 1 and |e™% |1 is uniformly
bounded by constant C(g). Indeed, the map

& - LI(M, wy) : Q5 — e %
is continuous. Since e™¥ € LP, so
|(e? + 8e7X0s) M |i» < e ¥ |1» < C(M, wo, P, p)-
Then for any pg € (1, p) and some constant independent of § satisfies
le s . e h -(e¢ + 6e‘K‘/’5)‘1 |r#o < C.

By Theorem 2.1 of [10], we have |@; |c2a1,we) < C. O
Proposition 3.5. There exists 6; — 0 such that @, converges to ¢ + c in the CO-topology for some constant c.

Proof. By Lemma 3.4, we can choose a subsequence @,, which converges to a continuous function ¢,,.
Moreover, some A for ¢, satisfy

(wo + V-133¢p)" = Ae"¥=%ow].

Then, through the unique result of Proposition 8.2 of [5], we know that ¢, = ¢ + c. O

Now we show ¢ is a smooth function. We need a special case of Proposition 2.1 in [7]:



8 —— Lize Jin and Feng Wang

Proposition 3.6. Let ¢ be a solution of
wp = eV Vg,
where w, = wo + V-130¢ and * are smooth functions.
Further, we assume that there exists C > 0 such that:
@ lpl < C;

(i) [Y*| < C and V-130¢* > —Cwy;
(iii) Ric(wo) is bounded from below by —C.

Then there exists a constant A > 0 depending only on C, such that

1
Zwo < Wy < Awy.

Choose a sequence of smooth wo — psh functions ¢, which converges to ¢; in C° norm.

Lemma 3.7. If @; is any solution of
(@o + V133" = Ae®DA~" (eV+19; + 6) 1wy,

then for some C = C(M, 6, |@5 |co),
|Ap,| < C.

Proof. First, we observe that for any smooth f > 0,

JT3dlog(f + 8) > —I—“Tadlogf.
(f+6)
Let
u; = log(e¥*¥9 + §).
Then,
_ eV +Kp; _ . eV +K§;
\/—_16611] > m\/—_laa(lp + I((p]) > —m(e + K(UO) > —(9 + Ka)o).

Since 6 is smooth, then
V-10dy; > —Cwo.
Moreover we know wo — psh function ¢, satisfies
V-133(K@)) = ~Kawo.
The right-hand side of (13) can be written as e¥ %, where
V=K@ Y =ui+ @+ h
As mentioned earlier, for some constant C > 0, we have
V=100 = ~Cawo.

Hence, by Proposition 3.6, we have |A(p].| < Cs.

DE GRUYTER

(13)

(14)

O

It follows from the uniqueness theorem for complex Monge-Ampére equations that ¢; converges to

@5 + ¢ for some constant ¢, so we have

|5 et 1, wp) < Coe
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By Evans-Krylov theory, we know that for some a € (0, 1),
|95 lc>ea,w0) < Cs5

where Cs depends on 6. And higher order estimates are obtained by bootstrap. So ¢ is a smooth function.
Now we can calculate the Ricci curvature.

Proposition 3.8. Assume ws is smooth metric that satisfies (9), then
Ric(ws) > (1 - K)ws.
Proof. Write (9) as follows:
(wo + V133" = AeK-Dos~h(eh+Kps + §) 1w
Then the Ric(ws) is equal to
J=1((1 - K)dd¢ps + doh + ddlog(e¥* s + §)) + Ric(wo)

[\

= e +Kps =
(1 - K)v/-13d¢; + m\/jaa(zp + Kgg) + wo + 6
6K < 6
Y 1% s
B 6K 6(Kwo + 0)
VKo L 5 0" biKey . §
1 - K)ws. O

I\

Ws

:a)5

I\

Lemma 3.9. There exists C = C(M, wo, |@slc,» |hlc,) such that

%(1}0 <ws<C- e“l’a)o.

Proof. Since the Ricci curvature of ws is bounded below by (1 — K)ws, by the Chern-Lu inequality, we have
Ay, logtr,wo = (K — 1) — Btr,,wo,
where B is the upper bounded of the bisectional curvature of w,. Then we have
Awﬁ(logtrwswo -(B+ 1)(p5) > tr,wo — n(B - 1) + (K- 1).
So by the maximum principle, we obtain
trywo <n(B-1) - (K-1) <C.

Moreover, combined with (9)

wn
tryWs < trywo - —‘Sn <C-e¥.
Wy

Then, we obtain both the upper and lower bound of ws. O

Now ws is a sequence of smooth metrics such that Ric(ws) > (1 — K)ws and the potential ¢; converges to
¢ in C° norm. By Lemma 3.9, we have a uniform C? estimate of ¢; outside the singularity of ). Together with

the Evans-Krylov theory, we know that ¢; converges to ¢ smoothly in the regular part. The proof of
Proposition 3.1 is complete.
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