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Abstract: This article studies point concentration phenomena of nonlinear Schrédinger equations with
magnetic potentials and constant electric potentials. The existing results show that a common magnetic
field has no effect on the locations of point concentrations, as long as the electric potential is not a constant.
This article finds out the role of the magnetic fields in the locations of point concentrations when the electric
potential is a constant.
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1 Introduction

The magnetic Schrédinger equation in RV is given by

. 0 .
lsa_lf = (ieV + AP + QOO — | P, (1)
where € > 0 is a small parameter,1 < p < xt; if N>3, p>1if N=2andi is the imaginary unit. Here the

function i is complex-valued. The vector A = (4;, 4, ...,Ay) : R¥Y — RY denotes the magnetic potential

and Q : R¥ — R represents the electric potential. The magnetic Laplacian (ieV + A)? is defined by
(ieV + A% = -2 + 2ieA -VY + |APY + ieyV- A.
The vector A models the presence in some quantum model of the magnetic field B, which is given by

61A2 - azAl, for N = 2,
B = { curlA, for N = 3,
(a]'Ak - 6kA,~)NxN, for N > 3.

For the discussion of this operator, one may refer to [16].

Equation (1) arises in various physical contexts such as Bose-Einstein condensates and nonlinear optics
[17]; or plasma physics where one can simulate the interaction effect among many particles by introducing
some nonlinear terms, see [19].

* Corresponding author: Chunyi Zhao, School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal
University, 200241, Shanghai, China, e-mail: cyzhao@math.ecnu.edu.cn

Liping Wang: School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, 200241,
Shanghai, China

a Open Access. © 2022 Liping Wang and Chunyi Zhao, published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.


https://doi.org/10.1515/ans-2022-0026
mailto:cyzhao@math.ecnu.edu.cn

DE GRUYTER Concentrations for nonlinear magnetic Schrodinger equations = 575

From now on we consider standing wave solutions to problem (1), namely (t, x) = e“‘f*lfu(x) for some
complex-valued function u(x). Substituting this ansatz into problem (1), u(x) should satisfy the following
nonlinear magnetic Schrodinger equation:

(ieV + A)%u + V(X)u - |ulP'lu=0 in RV, )
where V(x) = Q(x) + A. The potential V(x) is then usually assumed to be smooth and satisfy

ian V(x) > 0.
R

Concerning nonlinear Schrodinger equations with the magnetic field, the pioneer work is by Esteban-Lions
[11], in which they prove the existence of standing waves to (1) by a constrained minimization approach,
in the case V(x) = 1 and for special classes of magnetic fields. For more results, one can refer to [1,13,14]
and references therein. On the other hand, problem (2) seems to be a very interesting problem since
the correspondence’s principle establishes that classical mechanics is, roughly speaking, contained in
quantum mechanics. The mathematical transition from quantum mechanics to classical mechanics can
be formally described by letting the Planck constant € — 0, and thus the existence of solutions for € small
has physical interest. Standing waves for € small are usually referred to as semi-classical bound states, see
e.g., [13]. In the linear case, Helffer et al. [14] studied the asymptotic behavior of the eigenfunctions of the
Schrédinger operators with magnetic fields in the semiclassical limit.

Concentrations play an important role in the study of problem (2). When A = 0, the pioneer work of
concentrations to problem (2) in one dimension was carried out by Floer and Weistein [12]. They proved that
if the electric potential V(x) has a non-degenerate critical point, then u(x) concentrates near this critical
point as € — 0. This kind of solution with point concentrations is sometimes called peak solutions. After
that, there are too many peak solution results for nonlinear Schrédinger problems to give a full reference
list here.

The first concentration result for nonlinear magnetic Schrédinger equation (2) is given by Kurata [15].
Under some assumptions linking the magnetic field and electric potential, he showed that least energy
solutions exist for every small € and they exhibit peak concentrations at a global minimum point of V.
Moreover, Kurata [15] mentioned that the magnetic potential A only contributes the phase factor of least
energy solutions. Next, previous studies [4,7] proved that peak concentrations may also occur at any non-
degenerate critical point, not necessarily a minimum of V, as € — 0 by a reduction method. Cingolani and
Secchi [8] again show that there exist peak solutions concentrating at topologically nontrivial critical points
of V by a penalization procedure. In the aforementioned papers, the presence of a magnetic field produce a
phase in the complex wave, but does not influence the location of peaks. Later Cingolani et al. [6] used a
variational approach and proved the existence of a multi-peak solution without any non-degenerate con-
dition. But the locations of peaks are still near local minimum points of V. For more related results see [5,20]
and references therein.

It is interesting to ask whether the magnetic field affects the locations of concentrations. Secchi and
Squassina in [18] show that the magnetic potential A might perhaps affect the locations of concentration
points for the three-dimensional magnetic Schrédinger equation. Nevertheless, in the particular but impor-
tant case of power-type nonlinearities just as our case, they emphasize that the locations of peaks are
independent of A. DiCosmo and Van Schaftingen in [10] then consider a strong magnetic field case
A = 0(¢72), where the interaction between the magnetic field and the electric field is thus comparable. In
this case, they obtain solutions concentrating around global or local minima of a limit energy that depends
on the electric potential and the magnetic field. However, their limit energy does not show the effect of
magnetic fields explicitly. Later Bonheure et al. [2] proved the existence of semiclassical cylindrically
symmetric solutions to three-dimensional problem (2) whose moduli concentrates around a circle, which
is driven by the magnetic and electric potentials. Their result shows that the magnetic field really influences
the locations of concentrations if it occurs around a locus. Actually, this is a high-dimensional concentra-
tion phenomenon, not a peak concentration. See also [21] for a curve concentration phenomenon under a
weak magnetic potential without symmetric conditions.
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Thus, a nature question arises that whether a common, neither weak nor strong, magnetic potential A
influences the locations of peak concentrations to the nonlinear magnetic Schrodinger problem. What role
does A play in this kind of concentration? To this aim, we assume the electric potential V to be a constant,
otherwise A has no effect on the locations of peaks due to the aforementioned works [4,6,7,15].

Recently, Bonheure et al. [3] considers the ground state solution of magnetic Schrodinger equations
with a constant electric potential and no Planck constant €. Based on the assumption of a weak constant
magnetic field, they show that the ground state solution is unique up to magnetic translations and rota-
tions. Furthermore, the energy expansion of the ground state solution is also given in [3] as the constant
magnetic field B is small enough.

In this article, we study the following nonlinear magnetic Schrédinger equation:

(ieV + A(X)2u + u — [ulP"'u =0 in RV, 3)

Here p > 11is Sobolev subcritical, and A = (4, ...,Ay): R¥ — RY is assumed in W>*(R¥, RN) and smooth
everywhere for simplicity. To state our main result, we introduce the Frobenius norm of a matrix
M = (Mg

i=1j=1

1 >
IMIl = (ZZlmi,-lz] :
And denote by w(y) = w(ly|) the unique radial real-valued solution of
Aw-w+wP=0 inRYN, w(0) = maxw >0, w(+c0) = 0. (4)
R
Now our main results are the following.

Theorem 1.1. Assume that the Frobenius norm |B|r of the magnetic field B admits K local maximum
(minimum) points {B,}X_, (which may be degenerate) and K disjoint, closed and bounded regions {Q}X _,
of RY such that

B(B)lr = max |B|r > max |B]F. ("B(Pm)"F = min [|Bllr < min ”B”F-)-
Qp 3 Q, 3

Then there exists an €y > 0, such that for every O < € < &g, problem (3) admits a solution u, with the form

S X = Gl X\ |eiog+ie 'A@E)-x 2
ux) = ) w—" +£‘Pm; eion DX 4 O(e2),

m=1

for some (0f, ...,08) € [0, 2m]K, (¢ € Qu. The definition of ¥y, is given in (9).

For general critical points, i.e., not local extremum points, we also have the following result.

Theorem 1.2. Assume that p > % and P, P, ..., Py, K > 1 are all non-degenerate critical points of | B|%. Then
there exists an g9 > 0 such that for any 0 < € < &g, problem (3) admits a solution u, with the form

X |X_(rf|| X 's'_lA£< 2
Ux) = Y [w| — | + eyl = | [elomtiEAG) X 4 O(e?),
o € €
for some (of, ...,0%) € [0, 21X and {¢ = B, + o(1). The definition of W, is given in (9).

Remark 1.3. Theorems 1.1 and 1.2 clearly show the effect of the magnetic vector A, or precisely the magnetic

field B, in driving the locations of peak concentrations if the electric potential is constant. This is a new
phenomenon.
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Remark 1.4. Theorem 1.1 holds for any subcritical p > 1. And Theorem 1.2 holds only for the subcritical
p> % The reason is that the critical point of the function deduced by the energy functional is the local
extremum point in Theorem 1.1, which may be obtained by direct comparison. While in Theorem 1.2,
Py, P,,..., Py may not be extremum points any more. Thus, we have to study the derivatives of the energy
functional. Naturally, the corresponding estimates should have higher accuracy for which the better reg-
ularity of the nonlinear term |u|?~lu is required.

From the point view of physics, the magnetic field B is essential, not the particular choice of magnetic
potential A. At the same time, there is a gauge invariance for the magnetic Laplacian correspondingly, that
is, the magnetic field B is invariant under the transform of the potential A — A + Vf. Also, it is easy to see
that the energy of problem (3) is unchanged under the gauge invariance, with which our result coincides
(see Proposition 4.3).

The proofs of main theorems are based on the reduction method. When the electric potential V(x) has
some non-degeneracy, we just need to make an approximation from the limit equation, which is enough to
deduce the roles of function V(x). But in order to see the roles of magnetic vector potential A in our case, we
need an approximation up to order € of problem (3), i.e., a second approximation have to be done. Finally,
we mention that the solutions given in both Theorems 1.1 and 1.2 show simple peak concentrations. In the
forthcoming article, we will deal with multi-bump solutions for constant electric potential.

The article is organized as follows. In Section 2, the ansatz and the estimate of the error are given. The
corresponding nonlinear problem is solved in Section 3. In Section 4, the original problem is reduced to the
finite dimension problem using variational reduction process and the expansion of the energy functional is
shown. Finally, Theorems 1.1 and 1.2 are proved in Section 5.

Notations.

1. Constant § = min{p - 1, 1}.

2. The real part of z € C will be denoted by Rez.

3. The complex conjugate of z € C will be denoted by Zz.

4. C denotes a generic positive constant, which may be different from lines to lines.
lo(e) |
" =0.

&

5. Landau symbol O(¢) is a generic function such that |0O(¢)| < Ce and o(¢) means that lim._,

2 Ansatz

In this section, we present the approximation of the problem and give the corresponding error estimate.
Recall in [15] that the problem

AW — W + WP =0, W e H'(RY, C),

possesses a unique ground state solution w(y) = w(y)el’, V ¢ < [0, 271] where w(y) is the radial solution of
problem (4). Thus, by the gauge invariance,

x -4l

&

U(X) = W( )eio'+i£1A(()-x, Vo € [O, 27.[],

is also the ground state solution to the constant magnetic potential problem
eV + A(())2U + U - |UP'U =0, U eH\(RN,0).
In the frame of large variable y = x /¢, the original problem (3) is equivalent to
(V + A(ey)?u + u - |ulP'lu=0 in RV, (5)
Therefore, the function

U(y) = w(ly - {'Delora@©y, ¢ = (e,
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formally approximates the solution at least near y = {’. Now it is time to give the first approximation
K
W) = Y Un(y),  Un(y) = w(ly = §,Deloni4éwy, g, € [0, 271, (6)
m=1

where { € Q,;, m=1,2,..., K. Denote

p = min dist(Q; Q;) > 0
1<i#j<K

and take a positive number § such that § < %p. Let R (y) be the error caused by the first approximation W,
which is

R(y) = (iV + A(ey))?W + W — |W|P-1W.

1661
It is checked that for [y - {/| < % Uyl < |Ule” 5 ,m=2,3,...,K and

R =R(y) + 0 wily - g max U 4wy - ¢ max 5"
=R(y) + ow(ly - &) + wPi(ly - {)es,
where
R(y)=(@V + Aey))?U; + Uy — |U; P10y = (iV + A(ey))?U; - (iV + AUy

= 2i(A(ey) - A((D)-VU; + ie(Ve- AUy + (|A(ey)P? - AP

= 2i(A(ey) - A [Vw(ly - ¢) + iAG)w(ly — ¢[D]el? Ay + ig(V,- A)U;
+ (|A(ey)P? - JAGPw(ly — §eloriacy

= [-2A({)-(A(ey) - A(G)) + (|Aley)P - |AGMIU; + i[2(A(ey) - AG)-Vw(ly - D)
+ e(Ver Aw(ly — ¢/D]eior 1Ay

= (|ACey) — AN w(ly — DelrA&) Y + i[2(A(ey) - AGD)-Vw(ly - 1)
+ &(Ve- Aw(ly — §D]eln+iAd)y,

@)

As usual one writes { = (¢’ ., ¢, ...,{. ). Direct calculation shows that

N
|A(ey) - AP = Z(Ai(ey) - A())?
11:\11 82 ,
(€VAi((1)'(y -3¢+ ?(y = VA - ¢ + OElly - ¢ |3))

i=1

N N
= g2 Z 0;Ai (¢ArAI(§)(Y; - ({,,-)(yk - {1,,1() + & Z 9jAi (¢ Ai(C)(Y; — Cll,]-)(yk - C{,k)(ye

i,j,k=1 i,j,k,e=1
=4+ 0ty - ).

Similarly, it is verified that
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N
(Aey) - A Vw(ly = ¢ = Y (Aiey) — A¢))dw(ly - ¢

i=1

N 2 N
=& Y JAY; - S awdly - ¢ + % > %A, - S = ¢ awdy = ¢

i,j=1 i,j,k=1

3 N
£ Y a0~ G0k~ S0k~ ¢ DdwCly ~ &l

bk t=1
+ 0"y = ¢ 1*1vw(ly - &DD.
As for the term V,- A(ey)w(ly - {]]), we expand it similarly to
Ve ACey)w(ly = §D = Vi AW (ly = &) + V(i A)ED-(y = §Owly = ¢
+ %sz(y = {5 V2V AXG(y - §Owdly = §ID + OE?ly = §Pwlly - ¢[1)

N
= V- AGw(ly = ¢ + & Y 9450 - ¢ wdly - ¢

i,j=1

2 N
FE Y A0 - § 0 - Gy - D + 0Ely - CPwdly — ).

i,j,k=1

Therefore, in the region |y — (1’ | < %, we obtain that

N
R(y)eioriaoy = i 2 3 30 - & Ddwlly - ) + Ver AWy - &)

ij=1
N
+ &2 Y JALDNRA)Y; - $I = ¢owdly = ¢
k=1
] N N
+ &) A - &AW = &y - & + €% > A, - Gowdy = ¢
i,j,k=1 i,j=1

N
+ & Z a}Al((l)aklAl((])(yl - (1’,]')()/]( - (lr’k)(ye - (II,Q)W(U’ - ({D

ik, e=1
PR
+ ?i Y i QD - (1,,j)()/k = §1 00, = ¢ Pawdly - ¢
Lk e=1
e, ¥
+ ?i Z 9jiAi (C(Y; - ({,,-)()’k - ({,k)W(D’ -¢Dh
ij,k=1

+ 0"y = & Ilw(ly = &DD + 10y = & 111vw(ly = &DI + &*ly = & Plwdly - §DD.

Note that the imaginary part of R(y)e =A@y is O(g). It is of less accuracy for later application. Complying
with the guideline that the better approximation, the more possibility to obtain a solution, we should
improve the accuracy of the approximation. To this purpose, we find that the real-valued function

Wi(y) = %(J’i = & D5 = ¢ pwly = ¢DG # ) is the solution to
—AV i + W5 - WPy - DW= -2y - (1/,]-)aiW(|)’ -4 = -2y - (1/,i)ajW(|y - ¢D.
Besides, ¥, #(y) = %(yi - ¢ ?w(ly - 1) satisfies the equation
=AW i+ Wi — WPy = §DWi = 20y — ¢ Doaw(ly — §{D) — wlly = ¢D.

Then obviously the function
N N o N o o
W(y) =i Z QA ((WLi(y) + ZaiAi((l)‘I’l,ii(Y) elot Ay = Z A (W, i(y) [eln Ay = i (y)elniAG)y

i,j=1 i=1 i,j=1
i#j
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satisfies

@1V + A((l))z\yl + ¥ - (p - DIUGP3Re(TW)U; - |U))P1Y,

N
- il—z ¥ B, - ¢y - &) - Ve AWy - ¢/ [erAG,

i,j=1

since Re(T;¥,) = 0. Moreover, the same computation may also be carried out in the region |y - (,;J < % for
m = 2,..., K. The ultimate approximation is then selected as

W(y) = W(y) + e¥(y), (8)
where ¥(y) = Y5 _ ¥,(y). Here
N
Wn(y) = { > aiAi((m)‘Pm,ij()’)]ei"'"”"wm)‘y = i), (y)eiom+iAln)y )
=1
and

Ti¥) = S04 = G )05 = GWly = G-

Now the approximation W is good enough to help us find a solution. Precisely, our aim is to find a solution with
the form W(y) + ¢(y) of problem (3), where ¢ is a small perturbation and satisfies the equation

Lp = (iV + Aey)’dp + ¢ — (p —~ DIWP3Re(WH)YW — [W|P~1¢ = —R(y) + N(¢). (10)
Here R(y) denotes the error caused by ‘W, which is

R(y) = (iV + A(ey))*W + W — [ W|P-1W,

and the nonlinear term

N@) = |W + ¢ (W + @) — IWPTW — (p - DIWP3Re(WHW — [ WP~ .
Obviously, with the notation 8 = min{p - 1, 1},

IN(¢)| < Clop|'-.

To solve problem (10), it is important to estimate the error R(y).

Proposition 2.1. We have that
IR < Ce?

and
19¢ Rz < Ce?, 195, Rl < Ce?, ¥m=1,....,K, k=1,...,N.
Proof. First, we consider the domain |y — (r'n < %, without loss of generality, say m = 1. Then

R(Y)=R(y) + €[(V + A(ey)?¥ + ¥ — (p - DIW[P3Re(W)W — |W|P-1¥]
—[|W + e¥]PL(W + e¥) — [W|PIW - e(p — 1)|W|P~3 Re(WE)W — | W[P-1¥]

N
=R(y) - €| 2 Y AW - ¢ paw(ly = &) + (Ve A)Gw(ly - ({I)]ei"”m“l”

ij=1

K K
+ €[(iV + A(ey))?W; — (iV + A({)?W] + €| iV + A(ey)? ) W + ). ‘Ifm]

m=2 m=2

-F z_—lfzwfw)wﬂuy - ey — P Sy )Wy ~ ey
+ 0y - ¢ Blwrdly = &) + e Fwlly = &) + e fwp(ly - ¢)D).

Obviously, we have that
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N N
PPy - D = w2y - {D Y FACDPLH(Y) D Ak W ie(y)

1)1 k,e=1

= _Wp(ly (1') z aA (Cl)a(’,Ak((l)(yl (1 1)()’, - Cll,j)(yk - Cll’k)(ye - (1’,3)

i,j,k,0=1

and

K K
(V + A@Ey)? Y Y + ) ¥

m=2 m=2

K
= O( 2 wlly - (,’,,I)] = ofew(ly - ).

m=2
Moreover, it is checked as in (7) that
(V + A(ey)™Wh - (iV + AW = 2i(A(ey) — A(QD)- VY + ie(Ve- Aley))Ws + (IA(ey)P ~ |ACQIW
= —[2(A(ey) - AG)-Vipy + (V- Aley))pleto A& Y 1 i|A(ey) (11)
— A({)PypelortiA)y,
Let us estimate them one by one in (11) for y # (l’ . Note that

N
(ACey) - AQD) Vi, = Y (Ak(ey) = Ar(§D)d,

k=1

N 2y N
=& ) VA - {Dda, + % Y = EEV2AG)(y = §Ddp, + Oy - ¢ PIVi))
k=1

N N
=& ) (D - (ll,e)[ Y AU

k,e=1 ij=1

N
Z 0jA;i(¢)0k Wy,

i,j=1

2 N
£ Y WG~ GO0~ 6 + 0Ny - ¢ Pwlly - §1)-

k,e,s=1

It is easy to see that (6 is the Kronecker symbol) for y + (l’,

1 ! ! ’ ’ ' ' Wl(ly - ({l)
ak"Pl,ij()/) = 5 (511(()’, - (1,)‘) + 6jk(yi - (1’1'))W(|y - (1|) + (yl - Cl,i)(yj - (1,1')()/k - GJ)W B
Thus, we conclude that
N
(Aey) - AG) V=2 Y AAEIDALG) + A1 - &0k - ¢ wily - &1
j.k,e=1
u ! i ! ! I( - ,)
g Y A ERAGI; ~ 6005~ 60~ G0k - cu)%
i,j,k,=1 1
N
Y A + A4 — ()0~ G0~ Gowly - &) (12)
jik,2,s=1
2 N
¥ % kz AusA A — I~ Sk = &0~ ¢L)
i,j,k,e,s=1
- f{,s)w + 0y - ¢ Pwly - ¢[1))-

I - ({I

Also, it can be obtained that



582 — Liping Wang and Chunyi Zhao DE GRUYTER

N
(- Ay, = %(vx- A Y A~ ¢~ & owlly - &

i,j=1

N
* § 2 BAGADG; — G0~ &0k G owdly = §D

i,j,k,2=1
+ 0y — ¢ I*wly - ¢D)

and
|Aey) - AP, = Oy - ¢ [*w(ly - ¢).
Now (11) can be expanded as

(iV + Aey))™¥1 - (iV + AW

N
= —& ) QAGI[AG) + WA - ¢ = & Jwly — ¢eloriaby

jikt=1
N li !
- € Z a’éAk((l)aiAi((l)(yi - (1',1)()’, - ({J)(yk - (1/,]()()/(3 - ({,e)vv(ly—,(ll)eigﬁm((l)‘y
i,j,k, =1 ly - (1|
N
- g(Vx' AGY) Y A — & ) - G wdly = giheloriat)y
ij=1
2 N
- £ Y eG4k () + RAEDIY; - G0 = 6 0% = & Jwlly = {Deiorriacoy
j.k,e,s=1
2 N hy — !
S A0 - 0~ C I~ L0 - £~ &) 4D i
2 i ikes=1 ly - ¢l
, N
- % Y QAAG); - & D - &AWk = ¢ owly = ¢ihelor iy
ijkt=1

+ [0y - ¢ P + Ely - ¢ 1Y) +10(2ly - ¢ Dw(ly - §/Delortiac)y,
Therefore, we have, in |y — (r'nl < %, that
R(y)e om= 4Gy .= Ry 1(y) + iRm2(Y),

where
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N
Rua(¥) =€ Y QAiGI0A(G); = & DV = G owlly = ¢

i,j,k=1
N
- €2 ) QA(§I0AK(G,) + A ()] - G = S owly = D
j,k,e=1
N 12 _ !
Ce S AGIAC0 - )0~ IOk~ C )0k - ) onl)
ijloe=1 ly -l
2 N
= S AGD) Y A0~ )0 G wlly = G
i,j=1
_(p_l)gz s A. o o _ _ ! ) !
B S B BAI — $ )~ S ) = IOk = o WPl = C)
8 ke (13)
N
v e Y BAGAGY; — OV — S )0k — S owlly - 1)
i,j,k,=1
3 N
- % Y BesAr(§ 04k (G,) + A1 - GO = 6 D0 = S owly = &)
j,k,e,s=1
3 N ! _ !
S AMIOAC— £~ C 0 D0k~ € 0 — £ ) )
2 iK1 ! ly = ¢l

3 N
=5 Y AGAA)0; ~ )0 )0k = Wl = G

i,j,k,e=1

+ 0y = ¢ I + &4y = ¢ Powlly = ¢D + O ly = ¢ PwP(ly - )

and

N N
Rno(0) =€ ) 9Ai(§,)(; - G )V = G dw(ly = ¢ 1) + € > A - Cupw(ly = ¢

i,j,k=1 i,j=1
+ 0@y - ¢ 1" + &y = ¢ Pwlly = ¢ + 0y = ¢ BwP(ly = ¢ -
Hence, we obtain the estimate

[R(y)IPdy < Ce?.
(8]

3 M=

lp

m‘“

As for the domain |y — (r'nl > %, vm =1, 2,..., K, using the asymptotic behavior of w(|y — (,’nl), it is easy to
see that

IR(y)Pdy < Ce .
R¥\ U B s ()
m=1 & m

The result for R(y) is concluded.
As for the estimates of ag" kR and 9d,, R, one may check it similarly. O

3 The linear problem and the nonlinear problem

This section is devoted to the invertibility of the linear operator L in order to solve problem (10):

Lp = (iV + Ae))’¢ + ¢ = (p - DIWPZRe(WHW — [W[P~'p = -R(y) + N().
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Let H be the Hilbert space as the closure of C§°(RY, C) under the scalar product
(u,v) = Re I (iVu + Ay W) AV + Ay )W) + uv.
IRN

The norm deduced by the above scalar product is equivalent to the usual norm of HY(RY, C) due to the
boundness of |A(x)|, see [7]. In|y — (r’nl < %, the operator L formally looks like
(V + AP + ¢ — (p = DIUn/P>Re(Un)Unn — [Unl”~' &,
which is not invertible. Precisely, the null space of this limit operator is
Spang{Zm,0, Zm,15 ---»ZmN}>
where

!
a(m,i

The symbol spang means the linear combinations on real numbers, see for instance [7,8]. Therefore,
we study the following linear problem with h € LARY, C)

Zm,o = iw(ly - {/)elont 46wy = iU, and Zpy; = 1<i<N.

N K
Ld) =h+ Z Z Cm,iXmZm,i;

i=0m=1 (14)
Re JXmZm,i¢=0) i=o0,1,..,N, m=1,..,K,
[RN

where x,, (¥) = x(ly - (r'nl) is a smooth cut-off function on the large ball BR({r’n), satisfying y(s) = 1for|s| < R
and x(s) =0 for|s| > R + 1.
Next, we prove the following invertibility proposition, which is the main result in this section.

Proposition 3.1. The linear problem (14) admits a unique solution (¢, ¢y,;) = (T(h), ¢mi), i=0,1,..., N,
m =1,..., K satisfying

Il = ITMy2 < Clhlz,  leml < Clihll2.

Before giving the proof, it is necessary to obtain an a priori estimate.

Lemma 3.2. If (¢, cm,;) is a solution of problem (14), then
lplzz < Clihll2,  |cmil < Clhll2.

Proof. The proof is very standard and we here prove it briefly for the completion. First, we test the equation
(14) by Z,j,1 < € <K, 0 < j < N and obtain that

i=0m=1

N K
(L, Z,)) = Re f hZ,; + Ce,j.[ Zu + O(e-?z 3 |cm,i|). (15)
RV RN

Note that

Re J (Y + Aey))pTV 7 AEY))Z,, = Re J(iv + A€y)) 2,0 + AP

N N

R R

- Re j(iv + A Zo 0V + AP + 0@l
[RN
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and
| w25 < cum.
[RN

Thus, it holds from (15) and the equation of Z,; that
cej = O(el bl + A2 1)

Next we will prove |||z < C|h|;2 by contradiction. Suppose that for some sequence {g,}, there always
exist {¢p,} and {h,} such that

¢zt =1 and |hllz = o(1) as & — O.
Testing (14) against 1,,¢(¢ € C°(RY, €)) where n,,(y) = 1inly - {| < % and n,(y) =0 inly - {| > Z—i,

one can obtain that

Re j iV + A@E)$, 0V + Ay, + Re f b, P — (b - 1) Re f (WP~ (Re(W e, )y Wi, @
RN RN

[RN

i=0

N
-Re J‘ |(W |p71¢nr1m(’7 = Re J‘hﬂnm(ﬁ + Zcm,iRe J‘XmZm,i(ﬁ’
RY RY RY

Note that¢p, — ¢ in Hj,.(RY, C) up to a subsequence. Thus, dominated convergence theorem tells us that

Re I(iV + A(C )GV + A(G,)p + Re _[¢¢’ -(p-DRe I |Unl?P =3 (Re(Un))Un® — Re
RY RY

[RN

j |Unl?' 6 = 0.

R

This means that ¢ is a solution of
(V + A’ P + ¢ — (p = DIUnP> Re(Unp)Up — Un?'p = 0 in RV

Then one obtains that ¢p = 0 from the orthogonal conditions, which further implies that
¢,—> 0 aeinBr({), VR>0, m=12,..,K. (17)

On the other hand, note that

[ 167+ AP + [ 16,8 - 0 - [1WPoReWg)2 - [1WP 19, =Re [ Fus, = o). (g5
RN RY RY RN RN
From (17) and the exponential decay of |U,|, we obviously have

K
j|W|H|¢n|2 -y j U115, 2 + j W1, P + Oe) = 0(e®) + o(D).

|RN m=1 BR((,,H) [RN\ U£=1BR((Y,,,)

So is j |'W [P3(Re(W¢,))? , which toobtainher with (18) shows that
RN

j 1§, = 0(e® + o) and j GV + AGey)p, |2 = 0(e™®) + o(D).
RN RN

Finally, it is derived that
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0(e™®) + o(1) = j GV + Aley),
[RN

:j|v¢n|2 + j Ae)PIg, I + 2Re j iA(e) V,0,

RY RY R

2% J:V|V¢n|2 - J;|A(gny)|2|¢n|2 — %"(pn”m +0E™® + 0(1),
R R

since A(x) is bounded. This leads to a contradiction to ||¢,[;» = 1. Hence,
ol < Clihll2.

Finally, the regularity theory gives |||z < C||h]l;2. O

Proof of Proposition 3.1. Denote the Hilbert space

H ={¢ € H(RY)| Re me¢Zm,i =0, i=0,...,.N, m=1, ...,K
N

R

with the equivalent inner product introduced at the beginning of this section. Problem (14) expressed in
weak form is equivalent to finding a ¢ € H, such that

(¢,v) - Re J [(p - DIW|P3Re(WP)W + |WIP~1¢]V = Re Ih\?, Vv e H.
RY RY

Then, from Riesz representation theorem equation (14) is equivalent to
¢ - T(p)=h, inH,

where T is a compact operator on /. Based on Proposition 3.1, Fredholm alternative tells us the unique
existence of ¢. And cp,; can be given by ¢ using integration. Their estimates were given in the aforemen-
tioned proposition. O

Also for ¢ = T(h), it is important for later purposes to understand the differentiability of the operator T
with respect to { 1’ and 0;, j = 1,..., K. Recall that ¢ satisfies the equation

N K
Lp = (iV + AEy)’p + ¢ — (p - DIWIPRe(WHW — [ WP =h + Y Y CmiXynZom,i

i=0m=1

Thus, fork=1,..., N,
L(3g,9) = GV + Ae))*(3,9) + 3,9 — (0 - DIWPRe(Woy )W — ['W[P-13 b

N K N
=0(IWIP21gllog W) + Y 6.0 (2.0 + 2, . (3¢, Emi XomZm.iv
i=0 m=1i=0
Moreover, the derivative of the orthogonal condition is

Re JXmZm’i(a(},k¢) =0, form#j,
N

R

Re J‘X]Z]’l(a(l/k(l)) = —Re Ia(;k()(]Z,I)(l)
RY RY

Setp = a(]_"k(ﬁ + Zfiobjk,iszj,i and
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b = Re [ g, (009 /| [ x1.
RY RY

Note that |by.i| < Cll¢l;2 < Clhll;2. Then ¢ satisfies all the orthogonal conditions in (14), and direct compu-
tations show that

N N K N
Lo = Y bl (Z,) + O(IWIP21l1g, W) + ¥ 6.:9¢, (%20 + 2. Y. (3¢ Cm i XonZom.i
i=0 i=0 m=1i=0

With Lemma 3.2 in hand,
N N
lple < € Y IbiLOGZi)liz + CHIWIP2 9dg Wiz + € Y llG.dgy, (2.2 < Clihlzz.
i=0 i=0
Therefore, we conclude that
_ N
19y T(Wllgz = 10y, Sl < @l + Y I ix;Z; il < Cllhllz2.
i=0
The same process may be carried out for d,¢. Based on the above discussion, the following proposition
holds obviously.
Proposition 3.3. For the unique solution ¢ = T (h) in Proposition 3.1, it holds that

19, Tl < CllRll2, 196, T(MWIlg2 < Clkl2,  ¥m=1,...,K, i=1,...,N.

Now we can deal with the following nonlinear problem:

N K

Lp = -R(y) + N(P) + Y. Y Cm,iXmZmis

i=0m=1

(19)
Re IXmZm,@ =0, i=0,..,.Nm=1,...,K.
[RN

Proposition 3.4. The nonlinear problem (19) admits a unique solution ¢ satisfying
gl = O(e?).
Moreover, (0, §') — ¢ is of class C' for o = (oy, ...,0¢), §' = ({], ...,{}), and

0 Pl = 0?®) and 9,9l = 0(€®), vm=1,..K,i=1,...,N.

Proof. Recall that § = min{p — 1, 1}. The proof is based on the contraction mapping theorem. First, for a
large enough number y, > 0, we set

S ={¢p € HllPl < ye}-
In terms of the operator T defined in Proposition 3.1, the nonlinear problem (19) is transferred to solving
¢ = T(-R(y) + N(¢)) = A(P),

which means to find a fixed point of the operator A.
First, the operator A is from S to itself. In fact,

AP = IT(-R(y) + Nl < CIROz2 + CIN(@)lp2 < Ce2 + Cllgpllf < yee?.
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Next the operator A is a contraction mapping, since

I1A(p) - A@D Iz = IT(N(p,) - N(@ )z < CIN(¢y) - N(@,)l2
< CUIByE. + DNy — bl

Thus, A has a unique fixed point in S, which is the unique solution of problem (19).
Next we come to 9y ¢ and d,,¢. The C Lregularity in (r'n and o,, is guaranteed by the implicit function

theorem. One may refer to the proof of Lemma 4.1 in [7]. In order to estimate the differentiability, we follow
the procedure in [9]. It is easy to see

9 ¢ =3 T(-R(y) + N(@)) + T(-9¢ R(y) + 3yt N(9)). (20)
Note that [3; N(¢)| = O(|¢ |ﬁ|6¢;ﬂ‘iwl + | |ﬁ|a¢,;1,i¢|). So we obtain
19 N(P)llp> < C||¢||€Iz + CII¢IIfIz 10 Pllrs2.
Thus, (20) and Proposition 3.3 lead to

19 Bllsz < CIRWIz + CIN@)lzz + Cldg, Rl + Cldg. N(@)lyz < Ce.

The estimate for [|0,,¢lzz may be obtained by the same process. O

4 Variational reduction

According to the above discussion, the remaining thing is to let ¢,,; = O in the nonlinear problem (19) in
order to make ‘W + ¢ be a solution of the original problem. It can be done by the variational reduction
process.

Note the energy functional of problem (5) is

EQ) = 1 '[ [iVu + A(ey)uldy + 1 J lul? - o f [u|P*t.
2 2 p+1
RY RY RY

Define
F(0,{') = E(W + ¢)(0,{"),

then the existence of critical points to E(u) may be reduced to find critical points of the finite dimensional
function F(a, {’).

Proposition 4.1. If (0, {') is a critical point of F(a, {'), then cy,; = 0 for all m, i.

Proof. 1t is easy to see that

YA 4
<‘m,i <‘m,i

3, F(0,8) =g ECW + ) = E(W + ¢>l w3 ]

N K
= | oU, ¥, ]
= Z ZRE J-Ce,iXKZU[ a('m + ‘ga(/m + a;/b :| = Cm,i IXm|Zm,i |2 + 0(1).
j m,i m,i m,i RY

Similarly, it is also true that

3, F (@, ") = Cmo j XonlZmo? + 0(D).
[RN
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Thus, cm,; = 0 if (0, {') is a critical point of F since the coefficient matrix of cy,; is diagonal dominant. O
Next we should calculate F(@, {') in view of Proposition 4.1.

Proposition 4.2. It holds that
F(0,{") = E(W) + O("),
and foranym=1,...,K,i=1,..., N,
o F(0,§") = oy E(W) + 0(e**%), 094,F(0,{") = 35, E(W) + 0(e*%).

Proof. Direct computation leads to

F(o, (’)=§ f V(W + d) + AEy)(W + PP + % j W+ P - ﬁ j W + ¢ P!
RN RN RV

—E(W) + Re I(iv + A(ey))WEV + AP + Re I”Wq_b
RY RY

+1f|iV¢+A(sy)¢|2+1j|¢|2—#j|(W+¢'|P+l+ L II’WI””-
2 2 p+1 p+1
RN RN RN RN

Using equation (10) of ¢p and definitions of R(y), N(¢) below it, we obtain from integration by parts that

F(0,{') = E(W) + % j Re((R(y) + N(d))p) - j [Lrw b P - 1w Pty piRe(W)
. . p+1 p+1
R R

- pT‘lrw P-3(Re(W@))? - %IW P11 |2].

Then the proposition follows from Propositions 2.1 and 3.4 easily. By the computation in Proposition 3.4, it
is easy to check that

3, F(@,§") = 3y E(W) + O(IgpI'*#).

So is 9,,F(0, ). O

Since E(‘W) is the main part of F(a, {’), it is important to obtain the expression of E(‘W). Elegant
computation shows the following proposition.

Proposition 4.3. It holds that for € small enough,

K N
E(W) = AoK + Boe2 Y Y (0iAi(¢,,) — dAi(G,)? + O(e*).

m=1i,j=1
Furthermore, the remainder term O(e*) also holds for the derivatives in {', . Here Ay = 2(':—111) N JWPH(lyDdy

and By = %I[R Ny12w2(|y|)dy are both universal positive constants.

Proof. It is easy to see that
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E(W) =+ Juvw + Ay WP + 1 J|W|2 L I|w|p+1
2 . 2 p+1 .
R R

- 1Re JR(y)W
1 _
:1 I [ ~R(y)W 1) ]+ Re _[ [ER(y)(W
Bs (48] RM\Uj1B 5 (48] (21)
+ b - 1 |(W|p+1]
2(p+1)

S J‘ Rm,1 Rm,» p-1 (p - De?
=y [2=w(ly = §D + =29, (1) + ————|Up [P*! + 22— | Uy [P [% IP]
=W 2 2 2Ap + 1) 4

+ 0(e"),

where i, , ¥, are given in (9), and Ry 1, Rm,> are defined in Proposition 2.1. First, by the oddness of the terms
in order &3 in (13), it can be obtained that

Rowlly - €= 3 840 | 0= Gty - 6o

Bs () bhk=1 @
VE

%
- & Z 0eAi (G)[0jAk(G) + %Aj(()] _[ 05 = SO0 = S Wy = &)

Jok =1 B G

e Y WO | 0= 600 = G0k = 5000k - 630

i,j,k,¢

Bo‘ 5 (¢
MEC i AT —(D——(vx AG) Y, A | 0600wty - b
ly = ¢l =1 Bs (G}
LoD S A0 [ O L0~ G0k~ )0k Ly

i,j,k,e B,s_((,%)
VE

(Iy = &) + O(e™.

Since integration by parts gives

jyyykyewayn |('|y Dy - 1 = [opcaany
[RN

1 1 1
=2 [ s - 3 [ edumwiand - 5 [ simywrn.

one obtains that

kz azAk(cm)aA(mj(y, 60,00 = 60 )0k = 1000 - 61,0ty - 6
i,j,k,¢=1 m

N
- 4B, Z [0:4i(,)0;A;($,) + (0;Ai(8,))? + 3iA;i(¢,)04:(E,)].

i,j=1

It may be checked that
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Ry ,
j “w(ly - )

55 G
N N N
= 23082{2 Z ©Ai(¢))* -2 z 0;A;(§,)(0;Ai(¢,) + 0iA4;(¢,)) + Z [0:4i($,)9;4;(¢,,,)
i,j=1 i,j=1 i,j=1 (22)
y | -2
+ (0Ai(¢,))? + 0:4({,)94i(¢,)] — (ZaiAi(Cm)) ST Z 0jA;(¢,)0:Ak((,)
i-1 ij,k,e=1
O 600 G0 G- G WY = G + OE).
B )
Also,
1 N
| e S W (AW NG N IR SR A PR D (S A T ()
Bs () Bikt=1 Bs ()
JE JE
+ O(e’g)
and

Ry 29y, = O(&7)

Bs (§)
Je
by the oddness. Obviously, one has

| 1w = Jweraynay + ofe).
N

Bs (§,) R

P
Sl

Note that in (22) the term containing wP*! is canceled with pT’lsz I |Up|P~1 [ ¥nl?. So we conclude, from (21), that

K N RY
E(W) = AoK + 2¢’B, Z Z [(0;4i(5,))? — 9;Ai($,)4i((,)] + O(e™)
m=1i,j=1

K N
=AoK + 2By ). Y (9Ai(§,) — 9:4i((,))? + O(e™).

m=1i,j=1

The last equality is due to the symmetry of indexesi and j. The remainder O(¢*) also holds for the derivatives
of E(‘W) in (@, {’) from directly checking the expressions of Ry, ; and Ry, ; in the proof of Proposition 2.1. O

5 Proof of the main theorems
This section devotes to the proof of main theorems.
Proof of Theorem 1.1. Propositions 4.2 and 4.3 mean

K
F(0,{") = AoK + Bog? ) IB()IIF + O(e*).

m=1
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We shall show that F has a critical point under the assumption. Note that for any fixed {’, F(ao, {’)
is periodic in @ € [0, 27]X. So there always exists a 6({’) such that 3,F(¢({"), {’) = 0. Next consider
the configuration set 2" = Q} x Q) x---x Qp, of §' = ({}, {), ...,¢) ), where Q) = £71Q,,. Obviously,

K
maxF(@(¢"), §') = AoK + Bog? ) IB(BIE + O(e").

m=1
On the other hand, for any {’ on the boundary dQ/, i.e., at least (l’ € 0Q} without loss of generality, then
||B((1)||% < |B(P)|% - 8, for some fixed small §, > 0. Thus, one finds that

K
F(0($", {Nlgcan < Aok + Bog? Y IBB)IIF + Boc2(IB(P)IE - 80) + O(e).
m=2
Therefore, maxq/F(6({’), {') > maxyo F(6({’), {’). It implies that F(o, {’) admits a critical point.
The same procedure can be carried out for the case of K local minimum points. Theorem 1.1 concludes
from Proposition 4.1. O

Proof of Theorem 1.2. From Propositions 4.2 and 4.3, we see that
Ve F(0, ") = Boe?Vy (IB(G)IE) + O(e*%#) = Boe®V; (IB(G,)IE) + O(e2+%).

Assume m = 1 for simplicity. Choose {; = P, + €%, where 0 < a < 28 — 1. Here the assumption p > % is used
to let B = min{p - 1, 1} > 1/2. Then it is equivalent to find a || < 1 such that

0 = V5 (IB(GDIF) + 0¥ = Ve (IB(PYIE) + eV (IBPDIE)- & + O(€2§,) + O(e*7).

Thus, the nondegeneracy of the critical point P;, together with the Brouwer fixed point theorem, leads to the
existence of ¢, and also |&;| = o(1). Finally, the existence of critical point ¢ is guaranteed by the periodicity
just like in the proof of Theorem 1.1. The proof is complete. O
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