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Abstract: In the present article, we study multiplicity of semi-classical solutions of a Yukawa-coupled
massive Dirac-Klein-Gordon system with the general nonlinear self-coupling, which is either subcritical
or critical growth. The number of solutions obtained is described by the ratio of maximum and behavior at
infinity of the potentials. We use the variational method that relies upon a delicate cutting off technique. It
allows us to overcome the lack of convexity of the nonlinearities.
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1 Introduction and main results

In this article, we study the solitary wave solutions of the massive Dirac-Klein-Gordon system involving an
external self-coupling:

3
ihdap + ich Y axdp — me2Bp — ACOPY = g(x, [YDY,
k=1 (1.1)
hz
gaﬁp — WAP + Mc*p = 4rA(x)(By)- P
for (t, x) € R x R3, where c is the speed of light, # is Planck’s constant, A(x) > 0 is the coupling potential, m

is the mass of the electron, and M is the mass of the meson (we use the notation u - v to express the inner
product of u, v € C*). Here ay, &y, a3, and f are 4 x 4 complex Pauli matrices:

I O 0 oy
B (0 _ I)! ak (O_k 0)’ \S ’ ’3’

with
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System (1.1) has been derived as mathematical models of particle physics, especially in nonlinear topics.
This system is inspired by approximate descriptions of the external force involving only functions of fields,
which describes the Dirac and Klein-Gordon equations coupled through the Yukawa interaction between a
Dirac field ) € C* and a scalar field ¢ € R (see [5]). The nonlinear self-coupling g(x, ||)y describes a self-
interaction in Quantum electrodynamics and gives a closer description of many particles found in the real
world, which has been widely considered in the literature (see [23,24,26] etc. and references therein).
There has been many works on the existence of solutions of system (1.1). When there is no external self-
coupling, i.e., g = 0, (1.1) has been studied for a long time and results are available concerning the cauchy
problem (see [6,9,10, 28,32]). In [9], Chadam obtained the first result on the global existence and unique-
ness of solutions of (1.1) (in one space dimension) under suitable assumptions on the initial data. For later
developments, Chadam and Glassey [10] yielded the existence of a global solution in three space dimen-
sions. By using classical Strichartz-type time-space estimates, low regularity solutions of the Dirac-Klein-
Gordon system were obtained by Bournaveas in [6]. With respect to the nonautonomous system (1.1) with
external self-coupling, Ding and Xu [13] were devoted to the existence and concentration phenomenon of
stationary semi-classical solutions for the subcritical nonlinearities. In addition, for the critical nonline-
arities, Ding et al. [16] obtained the same results. Here, stationary solution means a solution of the type

{¢(t, X)=p(x)e @/ feR, @ : R > C*
¢ = p().

As far as the multiplicity of solutions of system (1.1) is concerned, there is a pioneering work by Esteban
et al. (see [21]) in which a multiplicity result is studied by using the variational arguments. We emphasize
that this work was mainly concerned with the autonomous system. Besides, limited work has been done in
the semi-classical approximation. For small %, the solitary waves are referred to as semi-classical states.

Motivated by the works just described above, we are interested in the multiplicity of stationary semi-classical
solutions to system (1.1) with some general subcritical self-coupling nonlinearity f(x, |@|)@ = W()|@|P~2¢,
p € (2, 3) or critical self-coupling nonlinearity f(x, |@|) = Wi(x)|@[P~2¢@ + Wx(x)|p|p. We shall see that one of
the difficulties with nonlinear Dirac-Klein-Gordon system (1.1) is caused by the spectra of Dirac operator which
are unbounded and consist of essential spectra. A further problem is caused by the Klein-Gordon equations. In
[14], Ding and Ruf overcame the first difficulty with nonlinear Maxwell-Dirac system by variational methods for
strongly indefinite problems. However, because the Klein-Gordon equations are also influenced by Planck’s
constant #, the limit equation is different between the Dirac-Klein-Gordon systems and the Maxwell-Dirac
systems. As a result, the method of nonlinear Maxwell-Dirac systems cannot be directly applied to the nonlinear
Dirac-Klein-Gordon systems (1.1). Last but not the least, (1.1) involves several different potentials which bring a
competition between the potentials W(x) and A(x) or between the potentials Wi(x), W>(x) and A(x). This will
affect our important result — the number of solutions to Dirac-Klein-Gordon systems.

(1.2)

For notational convenience, denoted by c =1, € = h, a = (a;, &, a3), and a -V = z,i:lakak, we are con-
cerned with (substitute (1.1) in (1.2)) the following stationary nonlinear Dirac-Klein-Gordon system:

{icea Vo - aBp + wp — AX)PBe = f(x, @),

—-&2A¢p + Mc*p = 4mA(x)(Bp)- @, (1.3)

where a = mc? > 0 and w € R.
Case (A): The subcritical case
First we deal with the subcritical case:
f 1o = WOlelP2g,  p € (2,3).
Setting
K:=max W(x), Ko =limsupW(x), W :={xecR3:W(k) =k},

3
xeR |x]—00

we assume the nonlinear potential satisfies:
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(W) W € CO(R3) with infW > 0 and x, < k.
In addition, setting

A= maxA(x), Ay :=limsupA(x), T :={xeR3:A(x) =4},

xeR? |x]—00

we make the following hypotheses:
(A) A(x) € COYR3) with infA(x) > 0 and Ay, < A.

Theorem 1.1. Assume that w € (-a, a), W nT # &, and (W), (A) are satisfied. Then there is a constant
Ao > 0, such that for any A < Aqg and m € N with

m < m(co) :== min{ —, | — ,
Ao \ Kso

there is e, > O such that (1.3) has at least m pairs of semi-classical solutions (¢,, ¢,) € (Ng=2W4(R3, C*) x C3(R3, R)
provided € < &p,.

Remark 1.1. If additionally VA(x) and VW (x) are bounded, then among the solutions, the ground state (the

least energy solution) denoted by w; satisfies (see [13]):

(i) There is a maximum point x, of |@,| with lim,_,cdist(x,, W N T) = 0 such that the pair (u,, V;), where
ug(x) = @.(ex + x¢) and V; = ¢.(ex + x,), converges in H 1 x H! to a ground state solution of (the limit
equation)

ica -Vu — aPu + wu — AVBu = x|ulP2u
{ B Bu = Klul (1.4)

—AV + Mc?V = 4mA(Bu)- u;

(ii) There exist C;, G, such that |p,(x)| < C; exp(—%lx - xgl).

Moreover, for large c, it is called the nonrelativistic limit problem. With Theorem 1.1 and [18,20], we obtain
the following corollary.

Corollary 1.1. Let v > O, p ¢ [%, g] Assume 0 < —w < mc?, mc? + w — %, as ¢ — 400, w — —oo. Under
the assumption of Theorem 1.1 and Remark 1.1, the ground solution (¢., ¢.) where @. = (uc, ) of equation
(1.4) have the following properties:

(1) uc and ¢, converge in H' to 0;

(2) v converges in H! to a solution of a coupled system of nonlinear Schridinger-type equations

{—Aw + 2wy = 2mk|v|P~2w,

—Av; + 2vv, = 2mk|v|P~2v,,

as ¢ — +co, w — —co, where v = (vi, v;) : R3 — C? is the wave function corresponding to positive energy
values, and v > 0 is a constant.

Remark 1.2. Corollary 1.1 states that the semi-classical limit equation of Dirac-Klein-Gordon systems is the
autonomuous Dirac-Klein-Gordon systems and the nonrelativistic limit equation of the autonomuous Dirac-
Klein-Gordon systems is a coupled system of nonlinear Schrédinger-type equations. However, we do not
know whether the semi-classical limit equation of the nonrelativistic limit equation of Dirac-Klein-Gordon
systems is a coupled system of nonlinear Schrédinger-type equations or not.
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Case (B): The critical case
Next we deal with the critical case:

fO lohe = WiOleP~2e + WaX)lele, p € (2,3).
Denoting, for j =1, 2,
Kj = max Wi(x), Koo = IT)TEEOpVIG(X), W; = {x e R3: Wj(x) = 3},
we assume the nonlinear potentials satisfy:
(W) W; e CONR3) with infW; > 0, ki, < K.
Let S be the best Sobolev constant: S|u|? < |Vul3 for all u € H'(R3, R) and T, be the least energy of the
following subcritical equation:

ia -Vu - aPu - wu = |u|P~?u

(which always exists, see [11]). Assume furthermore that
(V_V)z) There holds

Setting
= 2 )
m(E) = min{i, (i) g (i) }
Aoo Kico Koo

Theorem 1.2. Assume that w € (-a, a), Win W, NT + @&, and (), (VT/;), (V_I/;) are satisfied. Then there is a
constant Ay > 0, such that for any A < Ay, m € N withm < m(3J) there is €, > 0 such that (1.3) has at least m
pairs of semi-classical solutions (@,, ¢,) € [g=2W-4(R3, C*) x C3(R3, R) provided € < &p,.

Remark 1.3. If additionally VA and VW;(j = 1, 2) are bounded, then among the solutions, the ground state

(the least energy solution) denoted by w; satisfies (see [16]):

(i) There is a maximum point x; of |@,| with lim,_,qdist(x;, Wi n ‘W, N T) = 0 such that the pair (u,, V;),
where ug(x) = @.(ex + x,) and V; = ¢.(ex + x,), converges in H 1 x H! to a ground state solution of (the
limit equation)

{ia Vu - aPu + wu - AVBu = 1qjulP~2u + wlulu (L5)

—AV + MV = 47A(Bu)- u;

(ii) There exist C;, G such that |@,(x)| < Cexp (—%lx - xgl).

It is standard that (1.3) is equivalent to, letting (u(x), V(x)) = (¢(ex), ¢p(ex)),

ia -Vu — afu + wu — A (x)VBu = f(ex, [u)u,
—AV + MV = 471 .(x)(Bu)- u,

where A.(x) = A(ex), W.(x) = W(ex). We will in the sequel focus on this equivalent problem. Our proofs are
variational: the semi-classical solutions that are associated with the equivalent problem (1) are obtained as
critical points of an energy functional @.
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Remark 1.4. Every pair of semi-classical solutions above that has different energy by using variational
methods for strongly indefinite problems converge to a ground state solution of the limit equation (1.4) or
(1.5), respectively.

There have been many works on multiplicity of semi-classical states of nonlinear Schrédinger-Poisson
systems arising in nonrelativistic quantum mechanics, see for example [1-3] and their references. Later,
Ding and Ruf [14] studied nonlinear Maxwell-Dirac systems, which obtained the multiplicity of semi-
classical states under the assumptions of subcritical or critical nonlinearities, respectively. Recently,
Ding et al. yielded the multiplicity of semi-classical states for nonlinear Dirac equations of space-dimension
n in [17]. It is worth noting that the limit equation of the nonlinear Maxwell-Dirac systems or Dirac
equations is a single equation. The problems in Dirac-Klein-Gordon systems are difficult because the limit
equation is a system rather than a single equation, which is going to limit the number of solutions. As far as
the authors know, there have been few results on the multiplicity of semiclassical solutions to nonlinear
Dirac-Klein-Gordon systems.

An outline of this article is as follows: In Section 2, we treat the linking argument which gives us a min-
max scheme. In Section 3, we study the limit equation and introduce the cut-off arguments. Finally, in
Section 4, the combination of the results in Sections 2 and 3 proves Theorem 1.1, Corollary 1.1, and
Theorem 1.2.

2 The variational framework

In the absence of nonrelativistic limit, the speed of light ¢ is a constant. Without loss of generality, we
assume ¢ = 1. Our arguments for the problem are variational, so we start from discussing the proper variational
setting. Throughout the article we always let the hypotheses of Theorem 1.1 be satisfied. Since W N T + &,
without loss of generality, we assume that 0 € ‘W N T in the subcritical case and 0 € W; N W, N T in the
critical case.

In the sequel, we denote by ||, the usual L?-norm and by (:,-); the usual Li-inner product. Let
H, =ia-V - aB + w denote the self-adjoint operator on L? = I[*(R3, C*) with domain D(H,) = H'!=
HY(R3, C*). It is well known that o(H,) = 0.(H,) = R\(-a + w, a + w), where ¢(-) and o.(-) denote the
spectrum and the continuous spectrum. For w € (-a, a), the space L? possesses the orthogonal
decomposition:

’=L"el, u=u"+u, (2.1)
so that H,, is positive definite (resp. negative definite) in L* (resp. L°). Let E := D(|H,|>) = H> be equipped
with the inner product

(W, v) = R(|Hy |2, [Hol2v)
and the induced norm |lu|| = (u, v), where |H,| and |H,|>, denote, respectively, the absolute value of H, and
the square root of |H,|. Since o(H,) = R\(-a + w, a + w), one has

(a - |wDuf} < |ul? forall ueeE. (2.2)

Note that this norm is equivalent to the usual H%-norm, hence E embeds continuously into L7 for all
g € [2,3] and compactly into L _ for all g € [1, 3). It is clear that E possesses the following orthogonal
decomposition:

E=E*®E- where E*=EnL*, (2.3)

with respect to both (-,-), and (-, -) inner products. This decomposition induces also a natural decomposition
of L?, hence there is d, > 0 such that
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dplu*|h < [uff forall ueE. (2.4)

Let H(R3, R) be equipped with the equivalent norm
1/2

Vil = lele + Mvidx| , VveHY{(R3R).
[RB
Then (1.5) can be reduced to a single equation with a nonlocal term. Actually, for any v ¢ H'(R3, R),
4njAg(x)(ﬁu)u vdx | < 4mi_[|u|2|v|dx < 4rlu o5Vl < 4TAS 2l s V- 2.5)
R® R>

Hence, there exists a unique V; , € H((R3, R) such that
IVVM Vz+ M-V zdx = 4nf)lg(x)(ﬁu)u - zdx
R3 R3
for all z € HY(R?, R). It follows that V. , satisfies the Schrédinger-type equation
AV + M - Ve = 4mAe(x)(Bu)u
and there holds

_ [(Bu)u](Y) —M |x-y|
Veull) = | A(y)=———+— Ydy.
w0 D_L ) Xyl ¢ y (2.6)

Substituting 1, in (1.5), we are led to the equation
Haut — A0 Ve, Bu = f(ex, u). 2.7)
On E we define the functional
1
O (u) = E(Ilu*ll2 =l |?) - Tp,(w) - Fe(w)
for u = u* + u-, where

0 = L [ v G = 1 [ AN BOIRN BN 57y
[R3

|x -yl

and
[ul
Y(u) = IF(sx, lu)dx where F(x, |u|) = If(x, s)sds.
R? 0

It follows by standard arguments that @, € C*(E, R) and any critical point of @, is a solution of (1).
Before going on we observe the following [13]:

Lemma 2.1. One has: for any u,v € E
(1) For every € > 0, I, is nonnegative and weakly sequentially lower semi-continuous.

@)
, 1 e~VMix-y|
Ly = 5%I_[AE(X)AE(y)W([(Bu)u](X)[(Bu)V](y) + [(BOUI[BuVIC)dydx

- [ A0V - Brvax;

[R3
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3) Ifu, — uinkE, thenTy (uy) — Ty, (up — u) — Ty, (w) and T (un) — T (un — u) — T (W);
(4)

DLWl < S u B, < CA%ull*;
5

IT%, vl < 4nS A fu Blu LIv |, < GUIulPlvI;

T3 Wlv, V1l < GUIulPIvI?,

where here (and below) by C; we denote a generic positive constant.

We will study the multiplicity of critical points of @, via linking arguments. Setting E,, = E~ & H,, for
any finite dimensional subspace H,, ¢ E* with dim H,, = m.

Lemma 2.2. The following conclusions are true:
1o There are r >0 and 1 > 0, both independent of €, such that ®.lg: > 0 and ®¢|s; = T where B/=

B.NEt={ueE":|ul<rtandS  =0B ={uekE": |u| =r};
20 For any finite dimensional subspace H,, c E*, there exist C = Cy,, > 0 and R = R, > r both independent of
&, such that, for all € > 0, max®.(E,,) < C, and ®,(u) < O for all u € E,,\Bg.

Proof. The subcritical case can be checked easily (see [13]). We verify the critical case. Recall that
[ulp < &pllulllfJ for all u € E by Sobolev embedding theorem. 1° follows easily because, for u € E* and
6 > 0 small enough
1
D (u) = —[[ul® - Tp,(u) - F(w)
Wil

- N

[Waloo
3

| Wiloo 1
pl 1| "u”p _ d3|VV2|OO
p 3

32
> ~[lul? - cAful* - ulp - u 3

- N

32
> ~ul? - aA%lul* - lul,

N

with g independent of u and p > 2.
For checking 2°, take a finite dimensional subspace H,, ¢ E*. In virtue of (2.4), foru = u= + u* € E,, =
E- + H, where u* € H,, u” € E-, one obtains

1 1
O.(u) = Ellu*ll2 - Ellu*ll2 - I,(w) - ()

1 1 inf W5

S_u+2__u—2__2u+3
2|| l 2|| [ 3 [utlz
1 1 d; infW.

< St - <P - 2——2cluP,
2 2 3

proving the conclusions. O

In particular, for any e € E*\{0}, setting H, = Re and E, = E~ @ H,, the conclusion 2° holds. Based on

this lemma, for any € > 0, let ¢, denote the minimax level of @, deduced by the linking structure [30]:
c. = inf max®,(u) = inf maxd.(u), 2.8)
ecE*\{0} ucE, ecE*\{0} uck, :

where Ee =E @ R'e.

Recall that a sequence {u,} ¢ E is called to be a (C).-sequence for ® ¢ CY(E,R) if ®(u,) — ¢ and
A + ||un|DD'(u,) — 0. We say that @ satisfies the (C).-condition if any (C).-sequence for @ has a convergent
subsequence. Below we are going to study (C).-sequences for @,.
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Lemma 2.3. For every pair of constants ¢, ¢, > O, there exists a constant A > 0, depending only on ¢, G, A,
such that for any u € E with

D) < and |ul- P W] < o, (2.9)
we have

lJull < A.

Furthermore, A is an increasing function with respect to A> 0.

Proof. Again we only check the critical case because the subcritical case is easier than the critical case and
is similar to [13].

Take u € E such that (2.9) is satisfied. Without loss of generality we may assume that ||u|| > 1. The form
of @, and Lemma 2.1 imply that

q+6>0u) - %@;(u)u

- T u) - (1 - 1) [ wieonrax + 2 [ wieoupds
p 2 o 6 o
> (L= L)intwiup + LLLUTNES
2 p 6
that is,
|u|3 <G and |u|p <G. (2.10)

Vu
Al ul

By [13, Lemma 2.4], we have ‘

< |ulp, p € (2, 3), which, together with the Holder inequality,
6

implies that

‘mj/tg(x)vg,u(ﬂw(w - w)‘ < Aul|: Ve gy ut - u)

(]
Ve,u
Alull

2
<AGlull-fulg-

(2.11)

32
<A ||uI|’

|u|p'|wr - u_lq
6

Letq:slf—fé.Then2<q<3and%+l+ 1. Set

1

q 6
o, if g = p,
2p-q)
§=14q(p-2)
3(q - p)
qG -p)

if g < p,
if g > p,

we deduce that ¢ < 1 and

ul, < luls-Jul, ¢, if 2<q<p,
q < .
uly Juls® if p<q<3.

This, together with Lemma 2.1 and (2.11), implies that
Rt — u)| < ACyul+e. (212)

Then (2.10) and (2.12) imply that



256 —— Yanheng Ding et al. DE GRUYTER

G = LWt — u)

I - THG@ - uw) = R [ W0l P 2utt - w)dx - R | Wateohudu’ - wdx
R? R>
> [ul? - ACillult ¢ - kCF - 1CP.

That is,
lul? < A*Cyllull** + Cs. (2.13)
Therefore, there is A = A(c, 6, A) such that
flull < A.

Moreover, (2.13) implies A is increasing in A (|
Lemma 2.3 has an immediate consequence, which implies the boundedness of a (C).-sequence:

Corollary 2.1. Consider € € (0, 1], and {uf} is the corresponding (C).-sequence for @.. If there exists C > 0O
such that |c.| < C for all €, then we have (up to a subsequence if necessary)

lugll < A,

where A found in Lemma 2.3 depends on A and the pair ¢ = C and ¢, = 1.

Additionally, for later aims we define the operator V : E — H'(R3, R) by V(u) = V. According to [13],
we have the following lemma.

Lemma 2.4,
(1) ¥V maps bounded sets into bounded sets.
(2) V is continuous.

In order to establish our multiplicity results, we recall an abstract critical point theorem, see [7,12]. Let
X, Y be Banach spaces with X being separable and reflexive, and set E = X @ Y. Let S ¢ X* be a countable
dense subset. Let £ be the family of semi-norms on E consisting of all semi-norms

ps:E=XoY >R, psx+y)=I[s(x)|+[yl, seS.

Denote by 75 the topology on E induced by #. Let 7+ be the weak*-topology of E*.
For a functional ® : E - R and numbers a,b € R, we write ®?:={uec E: ®u) <a}, O,:=
{uckE:®du) = a}, and ®° = d, n d. Assume
(@) ® € CY(E,R); D : (E, T») — R is upper semi-continuous, and @' : (®,, Tp) — (E*, T) is contin-
uous for every a € R;
(®,) There exists r > 0 with p := inf®(S,Y) > ®(0) = 0, where S,)Y :={y e Y : |yl = r};
(@s) There exist a finite-dimensional subspace Yy ¢ Y and R > r such that we have for Ey = X x Y, and
Bo={u € Ey : |lull <R}, b = sup®(Ep) < oo and sup®(Ey\By) < inf®(B,Y).
We consider the set M(®¢) of maps g : ®° — E with the properties
(i) g is P-continuous and odd;
(ii) g(®%) c ®“for alla € [p, b];
(iii) Each u € @€ has a £ -open neighborhood O ¢ E such that the set (id — g)(O n ®°) is contained in a
finite-dimensional linear subspace.

The pseudo-index of ®¢ is defined by
Y(c) = min{gen(g(®°) N S;Y) : g € M(P)} € Ng U {oo},

where gen(-) denotes the usual symmetric index. Additionally, set for d > O fixed.
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Mo(@Y) = {g e M(D?) : g is a homeomorphism from ®? to g(D9)}.
Then we define for ¢ € [0, d]
() = min{gen(g(®°) N S,Y) : g € Mo(@}.
Note that, by definition, (c) < y,(c) for all ¢ € [0, d].
Theorem 2.1. [7,12] Let (D,)—(Ds3) be satisfied and assume that @ is even and satisfies the (C).-condition for

c € [p, b]. Then @ has at least n := dim Y, pairs of critical points with critical values given by

¢=inflc>0:yY(c)>ilelp,b], i=1,..,n.

If @ has only finitely many critical points in ®2, then p < q < ¢ <---< ¢y < b.

Remark 2.1. Setting X = E- and Y = E*, it follows from the definition and Lemma 2.2 that the functional
@ = @, is even and satisfies (@) and (®,). In the following, we are focusing on checking the assumption
(®3) and the (C).-condition.

3 Cut-off arguments

We will describe further the minimax value ¢, by using a Mountain-Pass reduction technique, which
depends on the convexity of the nonlinearities for verifying particularly that the second-order derivative
of the functional is negative definite. However, the nonlocal term I';, destroys such a convexity, because its
second-order derivative may take positive values (possibly very large) as well as negative values (possibly
very large). In fact, the nonlocal power is 4 exceeding the growth of the nonlinear frequency term and
dominates the behavior of the functional when |u| is very large. Therefore, we will adopt the cut-off
argument of [13].

Denote T := (A + 1)? and let 7 : [0, co) — [0, 1] be a smooth function withn(¢t) = 1if0 <t < T,n(t) = 0
if t > T+ 1, max|n'(t)| < C; and max|n"(¢)| < G. Without loss of generality, we can assume that n(t) is
nonincreasing. Define

De(u) = %(Ilu*ll2 = 1P = n(lulP) W) - %) = %(IIM*II2 = i) - Faw) - Ew). GB.1)

By definition, ®;|p, = ﬁllBT where Br == {u € E, |u| < T}. Clearly,
0 < F,(w) < T,(w) (3.2)
and

F v = 2" ([l @) u, v) + n(lul>)T) w)v  for u, v € E.

3.1 The limit equation: subcritical case
ForanyO<pu<k,0<A< A, we consider the following constant coefficient system:

{ia -Vu — apu + wu — AVBu = plulP~?u, (3.3)

AV + M - V = 4rA(Bu)u.

As before, we consider the modified functional
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b)) = %(Ilu*ll2 = I IP) = n(ulP)Hw) - Bw)

1
= Lwe - e - @ - 2 j julPdx,
2 p 2

(3.4)

defined for u = u* + u~ € E. Obviously, ¢Mx possesses the linking structure. By Vi We denote the linking
level of ¢, .. Define ¢, : E* — E” by, foru € E*,

b1, (U + 0,(W) = max gy, (u +v)

and I ,(u) = d)/w(u + (). Then I, € C¥E*,R) and u € E* is a critical point of I, if and only if
u + ¢y,(u) is a critical point of ¢Mx' Set My, ={uekE*: I,'Ly(u)u = 0}. We will call (€,,(-), I u(-), M)
the Mountain-Pass reduction of (3.1). It is known that

(@) Liy={ueE: ¢ (u)=0}+@and Ly < Ng2 W%

(i) = inf{cp/\,y(u) :u € Ly,\{0}} = infy,. My, > 0 and is attained;
(iil)) Rypy={ueLyy: d),w(u) =W [UO0)| = |ulo} is compact in H 1" and there exist C, c > 0 such that

[u(x)| < Cexp(—clx|) for all x € R?> and u € Ry .

Lemma 3.1. Let y, denote the least energy of (3.4) with A = As, Y = Keo. For any Aoy <A < A, Koo < M < K,
2 2
there holds m(A, Wy, , < Ya,» Where m(A, ) = min{(%) , (L)’”'z}.

Koo

Proof. Let u be a least energy critical point of

P oo W = %(Ilu*ll2 = 1) = nQlulP) ) - % (W

1 00
= =(lu*|? - llu|?) - Fa.) - P Jlulpdx,
2 p J

R

with the energy y, . For any Ao, < A < A, ko, < i < K, set

v(x) = bu(x) with1>b> max{%o, (Kﬁ)p }

u
Then
Lyl
D (o N
Voo = 2_b2(”V+” = vlI®) - TFAOO(V) - E\Hﬂ”(‘/)
1 i, v 1
> s - i) - T 0 - L )
111
= E[E(IIV*II2 = IVIP) = n(VIPTW) - ‘H<(V)]
> py/\’y.
Here we use the fact that ’L—j\“ <1and b%p < 1. Thus, m@A, Wy, < Yeo- O

3.2 The limit equation: critical case

Forany 0 < A < A,0< ¥ < K, j =1, 2, we consider the following system:
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i -Vu — aPu + wu — AVBu = ,[ulP~?u + plulu, (3.5)
~AV + M - V = 47A(Bu)u. '
As before, we consider the modified functional
1
Hr (W) = E(IIM*II2 - lw?) = n(lulP)Gw) - YW
(3.6)

1
= X - ) - A - 2 j|u|ﬁdx B j|u|3dx,
2 p 2 3 e

where )i’ = (1y5 ). As above, let y, 5» denote the linking level of (j)}l’ﬁ. Define ¢, : E* — E~ by, foru € E*,

P+ & W) = max B +v)

and I z(u) = ¢A’ﬁ(u + €,7(W). Then I 3 € CXE*,R) and u € E* is a critical point of I ;7 7 if and only if
u + € 3(u) is a critical point of 4’;1" Set My =fueE : I _>(u)u = 0}. Write as before £, 3 and R, 3.
One has y, ;v = infigh ;W) : u € L, ﬁ\{O}} = mfugMAJ,\ 7w > 0 and £ € [g=2Wh4.

3
S2
—.

Lemma 3.2. y, -, is attained provided y, ;; <
5 4 6p;

Proof. Let {u,} be a (C).-sequence with ¢ = Yo+ BY the statements in Corollary 2.1, {u,,} is bounded in E. By
Lion’s concentration principle [27], {u,} is either vanishing or nonvanishing.
Assume that {u,} is vanishing. Then |u,|s — O for s € (2, 3), together with Lemma 2.1 implies that

Falun) < S~ uy %, — 0. Thus, one obtains
5

Mg+ 0 = () = St

1 1 1 1
= Falun) + —[(5 - g)y1|un|pdx + J;(E - §)H2|un|3dx

R

j L P + o),

that is, j [u,Pdx = —% + o(1). Similarly, we also have
o) = ¢A,ﬁ'(un)(un up)

P = F )t ) =~ R [ ol 2 = ) = 9% [l - )y
3 3

~ Il = % [ ol at )i + 0(0).
[R3
Thus, jointly with the fact Sz|u |3 < |lul? [8], we have

6)’A e

) luy — ugll + o(1),

_ _1
llun|? < ,uz|un|3|un|3|ur:r - U,z +0(1) < WS leun”(
2

3
which implies y, 6522, a contradiction.
Therefore, {un} is nonvanishing, that is, there existr, § > 0 and x, € R3 such that, setting v,(x) = un(x + x,),
along a subsequence,

j VaPdx > 6.
B,(0)

Without loss of generality, we assume v,, —» v. Then v # 0 and is a solution of (3.5). And so Wi is
attained. |
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p-2
3\ 2
Lemma 3.3. y, ; is attained, provided p;'uf~ < (52 )

61y

Proof. By the reduction process and the minmax scheme, we deduce

-2

2 Vg < Yy = W T
b

3\ 2 =2 3

If i pf 2 < (:2) , then y 2> < P71, < 32 3o Y,z Is attained by Lemma 3.2. O

T 6u;
In the sequel, by J; < Ji, we mean that min{u? — !, u; - p,} > 0 for any vectors 1, = (u/, uj). The

following lemma will be useful to study our problem.

Lemma 3.4.
(1) Letu € Myy be such that I z(u) = Wi and set E, = E- ® R*u. Then

max GrW) = L Q).
Q) If A < Ay, ﬁ; - ﬁ; > 0, then Yauk, < Vg

Proof. To prove (1), we note that u + &,7(w) € E, and

L) = §p z(u + &7 (w)) < max HrzW).
WELy

Moreover, since u € M, z,

max ¢, 7 (W) < max P, (s + & z(su)) < maxl z(su) = I p(w).
weE, s>0 ’ s>0 ’

Therefore, max,,c Eﬂh,ﬁ(w) = Lz(W).
To obtain (2), let u, be a least energy solution of ¢ P and set e = u;. Then

Vi, = Pr(W2) = IVTV?;: b,z (W).
Suppose y; € E, be such that ¢ Al,ﬁ’l(ul) = maXycg,P Al,ﬁ;(w). We deduce that
Vi, = ¢’A2,ﬁ2(u2) 2 ¢A2,ﬁ;(u1) > (]5/11’71(111).

This ends the proof. O

Lemma 3.5. Let y; denote the least energy of (3.5) with A = A, ﬁ = Kz With kg = (Kieo, Kico)- FOr any
Ao <A <A, Koo < W < x5, there holds

2 = 2
m, W)z < Vs  Where m(A, 1) = min{(%) (ﬂ) (ﬁ) }

0o Kico Koo

Proof. Let u be a least energy critical point of
1
P W) = E(IIM*II2 =l 1P) = n(lulP)T @) - He W)

1 o0 (oe)
=L - e - Fo ) - P j|u|de - Hao j luPdx,
2 p 3

R3 R3

with the energy y. For any A, < A < A, ko < U < K, set

v(x) = bu(x) with1>b> max{%, (A)”, ﬁ}
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Then
1
( +112 2) rl(ﬁllvuz)r ( ) ( )
v = |vlF) - ——= - —VY. (v
Vs = 2b2 v = vl i o Y
: (IIVIIZ) 1 K 1k
> e - V1P - TP, @) - e j| P - j| P

> %[%(Ilwll2 ~ VIR = n(VIDL) - ‘I’ﬁ(v)]

S 1
= ﬁy/\,ﬁ.

Here we use the fact that Ao 1, bP 2

3.3 The cut-off functionals

Let A = infA(x), b
ey € Riw

0
Rip

and set

>

c Yip
Ap = 5
Yip»

yOO’
Coo =
Y

Clearly, c; < c; y foralle > 0 and ¢, < ¢ 3

Lemma 3.6. For all £ > 0, maxy.cg, ®:(W) < ¢; 5

Proof. It is clear that ®.(u) < Piv

max ®(w) < max ¢; (W) =
weEe,

weEg,

as claimed.

<1, and = Kzoo < 1. Thus, m(A ﬂ)Y}ly <V

= infW(x), and F = (by, by) with b; = infWj(x). Take

for the subcritical case,

for the critical case,

for the subcritical case,

for the critical case,

for the subcritical case,
for the critical case.

. In addition, one has

- for all u € E, hence, by Lemma 3.4(1)

b(eO) = CA b

— 261

O

Lemma 3.7. There exists & > 0 and Ao > O such that, for any € € (0, &) and A € (0, Ao), if {uf} is a (C)c

sequence of @,, then |luf|| < A + 1, and consequently ®,(uf) =

De(uty).

In particular, replace ®; with qu ;0> we obtain that (;b,1 i Shares the same ground state solution with ¢, ;.

Proof. We repeat the arguments of Lemma 2.3. If |ul? > T + 1, then F; (u) = 0. Thus, as proved in Lemma
2.3, one obtains |ul? < A, a contradiction. We assume that |ul> < T + 1. Then, using Lemma 2.1,

I’ () lulPTy, ()| < A°d" (here and in the following, by d{” we denote positive constants depending

only on A and dﬁ") is increasing with respect to A). Similar to (2.10),
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a+1>d®u) - %Cb;(u)u

=mwm+mﬂwmemwy(l—1)IM@mMMX+1jmwmwwx
p 2 3 6 3
R R

luts,

> -A%dP + (1 - l)infvvl|u|g + InfW,
2 p 6

that is,
lul; <d® and |ul, <dP.

Similarly, we obtain that

o> & - u)
> JulP - XD - PCul*f - wiful} ~ woluf}
> lul? - /Tzd,ﬁl) — R+ - Kl(dA(z))p B Kz(d,§3))3,
That is,
Il < PCyllul+s + 2dL + dP.

By monotonicity of d, we see that, for Ay > 0 being suitably chosen, let A € (0, Ao] then lull < A + % The
proof is complete. O

Based on this lemma, to prove our main results, it suffices to study @, and obtain its critical points with
critical values in [0, ¢; 7]. This will be done via a series of arguments. The first is to introduce the minmax

values of @,. It is easy to verify the following lemma by a similar argument of Lemma 2.2.

Lemma 3.8. @, possesses a linking structure and the constants in Lemma 2.2 are true for ®. In addi-

tion, max, EEOCDE(V) <¢ ib"

Let & denote the minimax level of @, induced by the linking structure defined by (2.8) with @, replaced
by @,. By (3.6) and the forms of the functionals, one sees c, < é&. As before, define h, : E* — E~ by

@ (u + h.(w) = max D(u + v),
veE~

and hy 3 : E* — E~ by
B + by (0) = max gy p(u + v).
The following is known (see [4])
(1) ha‘, h/l,ﬁ € Cl(E+’ E_), hs(o) = 0) h}(,ﬁ(o) = 0;
(2) he, hy are bounded maps;
3) Ifu, — uinE", then
he(uy) — he(uy — u) —» h(w) and h(u,) — h(w)

M) — iz, —w) — bz and  hpW,) — hyz@).

We now define I, : E* — R by L(u) = ®,(u + h(w)), Ly Ef > R by [z = @y 0(u + hyz(w), and
set

Ne={u € E\{O} : Lwu = 0}, Ny ={ucE\{0}: I/{,ﬁ(u)u = 0}. (3.7)
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Clearly,
Ce = inf I(u) < 3.
€= (1) Ab (3.8)
This, jointly with (2.8), implies that there is a sequence {e,} ¢ E*\{0} such that, denoting
Up = e, + hg(ey), ®e(uy) — & and 5;(u,,) — 0 as n — oo. Consequently, by Lemma 3.7 one has
G = ¢, forall € > 0 small.

From now on we will only use c..

Recall that A(ex) — A, W(ex) — x, and (Wi(ex), Wa(ex)) — (i, 1) = XKase—0 uniformly in bounded
sets of x.

By a similar argument to [4,13,15], one has

Lemma 3.9. For any u € E*\{0}, there is a unique t. = t.,(u) > O such that tu € N,. Moreover, {t.(u)}.<; is
bounded, and if along a subsequence t.(u) — to(u), then ||he(tu) — hy z(tow)ll — 0. Ifu € Ny %, thenty = 1.

In addition, we have
Lemma 3.10. lim,_,oC; = V3 -

Proof. First, we show that liminfc, > y; . Arguing indirectly, assume that liminfc, < y; ;. By the definition
of ¢, and (3.8), we can choose an ¢ € N; and 6 > 0 such that max,.. Eejtibe,.(u) <Vix — 6, as g — 0. Clearly,

CTDSI.(u) > 1% for all u € E and € small. Note also that y; 3 < Iy z(e) < maxueEejq,'N) 1%W). Therefore, we
obtain, for all & small,

Viw—62 max @, (W) 2 max¢A7(u) 2 Viws

ueky ueky
a contradiction. O
Next take Ao, < A < A, Koo < U < K, Kieo < Yy < ki and define
M) = min{A, A}, WH(x) = minf, W00}, W) = minfy,, W00}
We consider the truncated energy functional
T = IR - 1P - A - W),
where

I WHOO|ulPdx in the subcritical case
[R3

W =
I Wi20OuPdx + I Wy(ex)|uPdx in the critical case

and T A an(llullz)l" s AA(X) = Mex), WHx) = WH(ex), Wik(x) = WH(ex). As before define correspond-
1ng1yh —E I MR [RNQ1 , M4 and so on.

Lemma 3.11. ¢, is attained for small € > 0.
Proof. Given ¢ > 0, let {u,} ¢ N; be a minimization sequence: I.(u,) — c.. By the Ekeland variational

principle, we can assume that {u,} is in fact a (PS).,-sequence for I, on E*. Then w, = u, + he(uy) is a
(PS),-sequence for ®, on E. It is clear that {w;} is bounded, hence is a (C)c,-sequence. We can assume
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without loss of generality thatw, — w; in E.Ifw; # 0, it is easy to check that ®.(w,) = c;. So we are going
to show that w; # 0 for all small € > 0. Assume by contradiction that there is a sequence & — 0 with w,; = 0,

then w, = u, + hg(u,) — 01in E, u, — 0in L for g € [1, 3), and wy(x) — O a.e. in x € R3. Let t, > O be

loc

such that tu, € N Q"‘ . Since u, € N, it is not difficult to see {t,} is bounded and one may assume t, — t; as
~ A, . ~A,
n — oco. Remark that h, H(tnun) — 0 in E and A, y(t,,un) — 0 in LI for gqe€]l,3).

loc

Wi = toly + ﬁ;’y (tatn) — 0 in LI for g € [1, 3). Set A, = {x € R3: A(ex) > A} is bounded. Thus,

74 - el< | [ [ (deondon - as0ony() L l(")_[(ﬁr”")w" W) o ie-vigyax

R’ R3

II(A Ag]( ))/1 (BWn)Wn](X) (ﬁIWn)Wn () oM Ix- Yidydx
y

_ [(BWn) Wi COL(BWi) W] (J’) _JM |x-
+ j J (-2 o W-yidydx

+ '[_[(M _ Agj(X)Agj(y)) [BW )W 1 (O] (BWn)Wn](Y) —JM |x— yldde

Ix -yl
AE Aé‘
5 1 5
6 3 6
L 12 p .12
<C| | W5 Vg lo] + [Wy|'5
[R3
5 5 5
6 6 6
. 12 .12 .12
<C I|w,,|5 I|w,,|5 +C I|w,,|5 - 0,
A, R? A,
where an(X) = M —\le—y|dy

[R3 | —
Similarly, since set {x € R3 : Wi(ex) > u} is bounded, we have

1 ~ 1 ~
[ Swtompax - [ ~wconilpds = o).
R? P R? P
Therefore, we obtain

~ 21, Y RTI

cg’” <l Hltay) = (Dg].”(Wn)

. 1 ~ 1 ~
= By(in) - 74+ T - [ WEONPx + [ W C0NPdx
R’ P R’ b

< I(up) + 0(1) = &, + o(1).

For the subcritical case, as done in the proof of Lemma 3.10, hmg_mc = Y- Thus, ¥, < V1 . Which

contradicts with  , > Vj .-

For the critical case, note that yA—> < C H< Egl., where ﬁ = (U;, ). Thus, by Lemma 3.10, we have

Vo < Vi %> which contradicts with y, ;> > yA,K. O

We now turn to prove the desired conclusion.
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Lemma 3.12. Let u, = u,” + u, be a (C).-sequence for @, and set v, = u,;" + he(u; )z, = u; — he(u,"). Then
lznll — O and {v,} is also a (C).-sequence for @, that is, {u,'} is a (C).-sequence for I,. Consequently, either
c=0o0rczc.

Proof. It suffices to show that||z,|| — 0. Note that, by Lemma 3.7, one has||u,|| < A + %, hence {u,} is in fact
a bounded (C), sequence for @, : ®.(u,) — ¢ and @ (u,) — 0. Observe that

0 = O (V)zn = —(he(uy), zn) - r;lg(vn)zn - V,(Vn)zn
and

0(1) = Qy(un)zn = —(Uy, 20) - r;lg(un)zn - Vo (un)zn.

Following [13, Remark 3.10], one has

5.0+ )z, 22l < 2 Nl
Thus,
o(1) = lIzal? + (T) (W + 2n) = T (V))zn + (WelVn + 20) — Ve (V))Zn > 12,
which shows ||z,|| — 0. Finally, it follows from (2.8) that if ¢ # O then ¢ > c,. O

We turn to study the (C).-condition of ®.
Lemma 3.13. For all € > 0 small, ®, satisfies the (C). condition for all ¢ < .

Proof. For later aims we set
A°(x) = min{Aq,, A(X)},  W™(x) = min{Ke,, W)}, Wi (x) = min{keo, W)}, j=1,2.

Define

j lng(x)|u|de, in the subcritical case,
p

v =1t 1 1

I —W2COulPdx + j EWz‘?(x)dex, in the critical case,
p

R® R’

1
FO = Zn(lulP)le,
4'1(Ilu|| VY
and
~co 1
o, = E(Ilu*ll2 -l |P?) - F2wW) - Y2(w), (3.9

where A.°(x) = A%(ex),  W(x) = W(ex), WP(x) = Wj°(ex). It is not difficult to verify that 5?0 has the
same properties possessed by @, shown above. In particular, letting ¢ be the linking level of @, , we have
¢ > Ccpnase— 0.

Let {u,} be a (C).-sequence for @, with ¢ < c,,. By virtue of Lemma 3.2, {u,} is bounded and
®.(u,) = De(uy), hence it is a (C).-sequence for @,. We can assume that u, — u. Clearly, ®,(u) = 0. Set
Zn = Uy — u. Note that z, — O0inE,z, > 0in L{_ € [1,3), and z,(x) — O a.e. in x. Using the Brezis-Lieb
lemma [33]:

j|un|‘de - j|zn|qu - j|u|qu,
R3 R3

[R3
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it is easy to check that ®(z,,) — ¢ — @(u) and () (z,) — 0. If ¢ = (u), then z, — 0 and we are done. If
c - O,(u) = ¢°, then ¢ = ¢, + ¢°, a contradiction. |

LetK.:={uckE: 5(5;(u) = 0} be the critical set of @,. By using the same iterative argument of [22] one
obtains easily the following (see [13,16]).

Lemma 3.14. Ifu € K, with|®.(u)| < Cy, then, for any q € [2, +00), |ullyras < Ag where A4 depends only on C;.

4 Proof of main results
4.1 Proof of main results: the subcritical case

Without loss of generality, we may assume that 0 € ‘W n T, hence, A = A(0), k = W(0). Solutions of (2.7) are
critical points of the functional ®.(u) = CDQT”‘(u). For notational convenience we denote @q(u) = ¢ (). We
will utilize Theorem 2.1. Obviously, @, is even, and in virtue of Remark 2.1 the conditions (®,) and (®,) are
satisfied. It remains to verify (®s).

Letu € Rj and let x, € C5°(R*) be such that x,(s) =1ifs <r,x,(s) =0ifs>r + 1, and Xr'(s) < 0. Set
u,(x) = x,(IxDu(x). Recall that |u(x)| < Ce=™! for some C,c > 0 and all x € R?, hence |lu, — ul| - 0 as
r — oo. Then |y - u*| < ||luy — ul| — 0, Do(u,) — Vi, and ®py(u;) — 0, as r — oco. Let hg : E* — E~ be
defined so that ®y(u + ho(u)) = max,g-Po(u + v). Clearly, |lu, — ho(u,")|| — 0, and ||u, — i&|| — 0, where
i, = u; + ho(y,") (see Lemma 3.12). Therefore,

max o’ +v) = Do) = Do) + 0(1) =y, + 0(0), %.1)
v

ase — 0. Observe that since, ase — 0, A, — A and W(ex) — x uniformly in|x| < r + 1 we have that, for any
6 > 0, there are 15 > 0 and &5 > 0 such that

max ®.(w) <y, +6, (4.2)

weE ®Ru,

forallr > rs and € < €.
Let y/=(2j(r+1),0,0), define uj(x)=ulx - y)=ulq -2 +1),%,x%), u;jx)=u(x-y) for

j=0,1,...,m - 1. Setting 1, = 2m — 1)(r + 1), it is clear that supp u,; ¢ B,,(0). Obviously {u,; ;";01 are line-
arly independent. Indeed, if w* = ¥ 'cu,; = 0, denoting w = ¥ \Guy;, one has w = w™ + w* and

w7 = a(w) = Zciza(ug) = a(ur)zcjza
j )

which implies¢; =0, j=0,1,...,m - 1. Now set

En=E ®span{u;:j=0,....m -1} =E @span{u; :j=0, ...,m - 1}.

By virtue of Lemma 3.9, let f,; > 0 be such that tg,,-ug € N;. Observe that

i - ey < =
lim lim h,(tz5u,;) = lim he(tgu,;) = ho(u®) = u; (4.4)
£—-0r—oo -0
lim lirn||hé:(t£rjuy;f - tsrjur;” = limllhs(teju+) - tgu || = 0. (4.5)
£—-0r—oo -0

It is not difficult to check the following:
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m-1 m-1
max O.(w) = d)s[ tey; + hg(tsju,}f)] = dl{ Z Ly + tgju,}] + 0o(1,)

weEy, j=0

j=0

m-1 m-1
=@, teuyg | + 0o(1;) = z D(tguy) + 0(1y)

j=0 j=0
m-1 m-1
= Y Dt + tguy) + o(1y) = Y Oeltgu + he(tgu,)) + o(ly)
j=0 j=0
m-1 m-1
= Y @o(tojity; + ho(tojty)) + 0(Le) = Y. Do(u) + 0(le)
j=0 j=0

mY/T,K + 0(178) ’

—_ 267

where 0(1,) means arbitrary small as r — oo, and o(1,.) means arbitrary small as r is sufficiently large and ¢
is sufficiently small. Now, by assumptions and Lemma 3.1, forany O < 6 < y,, - my; ,, one may chooser > 0
large and then ¢, > 0 small such that, for all € < &p, max,cg, P:(W) < y,, — 6. Now by Theorem 2.1 one

obtains the multiplicity conclusion.

Let £, denote the set of all least energy solutions of ®,. Let g — 0,u; € L;, where £; = L. Then {y} is

bounded. A standard concentration argument (see [27]) shows that there exist a sequence {x} ¢ R? and

constants R > 0, 6 > 0 such that

liminf j luPdx > 6.
j—co

B(x,R)
Set
Vi = (X + Xj)
and denoted by 4;(x) = A(g(x + X)), Wi(x) = W(g(x + x;)), one easily checks that v; solves
Hov; = 800 Vs = W00yl -2y,

with energy

1 _ 1 (=
S0 = S IP = IV71P) = Do) - — [ Weolylpx
p e
- 1 1 Y
-0 = o) =i + (3 - 1) [ At - o,
[R3

Additionally, vy — vin E and vy » v in L}

for g € [1, 3). We now turn to prove that {gx;} is bounded.

Arguing indirectly we assume &j|xj] — oo and obtain a contradiction. Without loss of generality assume
Aex) — Ao, W(gp;)) — W, By the boundedness of VA and VW, one sees that A;(x) — A, W;(x) - W,

uniformly on bounded sets of x. Since for any ¥ € C:°,

0=lim | (Hyy - ACOVe By = W vl dx
—00

[R3

- I(va ~ AoV — WlvlP-2v)Pdx,
[R3

hence v solves
ia Vv — apv + wv — A, V,Bv = W |v[P-2v.

Therefore,
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1 .
Seo(V) = E(IIV*II2 = VIR - [ () - ijlvlpdx 2 Yoo
[R3

It follows from A > A, k > W, one has j ix < Voo- Moreover, by Fatou’s lemma, we have

Vik <Voo S Seo(V) < m Cg; = Y 0
]—)OO

a contradiction. Thus, {gx;} is bounded. And hence, we can assume y; = &x; — J,. Then repeating the proof
of [13] gives the concentration and the exponential decay.
Finally, by Lemma 3.14 we see that the solutions are in (g, W"4.

4.2 Proof of Corollary 1.1

By Theorem 1.1 and Remark 1.1, we obtain the ground solution of Dirac-Klein-Gordon systems which
converges to a ground state solution of the autonomuous Dirac-Klein-Gordon systems equation (1.4) for
every ¢ > 0. Let {c,}, {w,} be two real sequences such that

0 < ¢y —Wy — +00,

0 < —wy < mcl,

2 V
mcy + wy, > —,
m

asn — co. Let{(i,, ¢,)} (Where ), = (U, W) € C*) denote a sequence of solutions for system equation (1.4)
with frequency w, at speed of light ¢,, then according to [20], there exists a mass mg, Ag, such that for
m < mgp, A < Ag, up to a subsequence,

u, - 0, v,—v, in HY(R3 C?,
(,‘bn — 0, in HY(R3 R),

asn — oo, wherev : R3 — C? is a solution for the following coupled system of nonlinear Schrédinger-type
equations

-Av; + 2w = 2mk|v|P~2w,
—Av; + 2vv, = 2mk|v|P2v,.

4.3 Proof of main results: the critical case

Part 1. Multiplicity
Without loss of generality, we may assume that 0 € ‘W;n ‘W, NT, hence, A =A(0), 1 = W, (0),
16 = W5(0). Solutions of (2.7) are critical points of the functional ®.(u) = <D§’7(u). We will utilize Theorem

2.1. Obviously, @, is even, and in virtue of Remark 2.1 the conditions (®;) and (®,) are satisfied. It remains to

verify (@3).

Let u be a critical point @ := (],’)/17, with @o(u) = y; . Define u;, w5, j=0,...,m~1, and set E, as
before.

By virtue of Lemma 3.9, let {.;; > 0 be such that tg,iu,} € N;. Observe that (4.3), (4.4), and (4.5) keep true.
One then checks easily the following
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m-1 m-1
max O.(w) = d)s[ tey; + hg(tsju,}f)] = dl{ Z Ly + tgju,}] + 0o(1,)

weEy, j=0 j=0

m-1 m-1
=@, teuyg | + 0o(1;) = z D(tguy) + 0(1y)

j=0 j=0
-1 m-1
q)é:(teju;]f + tsjur;) +0(1,) = Z CD&:(té:jur;f + he(tsju;]f)) +0(1,)
j=0 j=0
-1 m-1
Z Do(tojity; + ho(tojt;)) + 0(Le) = Y Do(u) + 0(1re)
_ j=0

= mY}I,? + 0(1y),

where 0(1,) means arbitrary small as r — oo, and o(1,.) means arbitrary small as r is sufficiently large and ¢
is sufficiently small. Now, by assumptions and Lemma 3.1, for any 0 < § < yg — my; %, one may choose
r > 0 large and then &, > 0 small such that, for all € < &5, maxycg, Pe(W) < y5 — 6. Now by Theorem 2.1,
one obtains the multiplicity conclusion.
Part 2. Concentration

Let £, denote the set of all least energy solutions of ®;. Let&; — 0, u; € £;, where £; = L. Then {u;} is
bounded. A standard concentration argument (see [27]) shows that there exist a sequence {x;} ¢ R*> and
constant R > 0, 6 > 0 such that

liminf '[ |uj[Pdx > 6.
j—oo

B(x;,R)
Set
Vi = (X + Xj)

and denoted by /T}-(x) = A(g(x + x3)), le(x) = Wi(g(x + X)), W\jz(x) = Wh(gi(x + x;)) one easily checks that v
solves

~1 —~2
Hyv; = K00VsBy = Wi 0OWIP-2y; + W (Olvlv, (4.6)
with energy
1 _ —~ ~2
S09) = UM = I1P) =~ Tao) = [ Weotpex+ [ W70ty
3

= O;(v) = D;(v)
= g

Additionally, vy — v in E and v; —» v in L. for g € [1, 3). We now turn to prove that {gx;} is bounded.
Arguing indirectly we assume e,lx,l — o0 and obtain a contradiction. Without loss of generality assume
}l(e,x,) - Acos I/Vl(ejx,) - Wlm,z W (s,x,) — Whe. By the boundedness of VA and VW, one sees that
A i(X) = Ao, W] (0 = Wi, W; (x) — Wy uniformly on bounded sets of x. Since for any ¢ € C°,

j—oo

~ —~1 —~2 —
= Tim | (Hovj — K00VauBy — W 0OWIP2y; + W 0Olyly)ipdx
|R3

- j(Hmv AWV — WieolVIP2v — Wy )i,

hence v solves

ia-Vv — apv + wv — A V,Bv = Wi |v[P~2v + Wheo|v]v.
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Therefore,

1 .
&ﬁo=5mww—urw»ng)—mijwx—mijwxzk.
R3? R>

It follows from A > A, k > Wy, one has y; , < J,,. Moreover, by Fatou’s lemma, we have
Vik < Voo S Seo(V) < ]_lim Ce; = Vi
—00

a contradiction. Thus, {¢p} is bounded. And hence, we can assume y; = &x; — ). Then v solves
ia-Vv — afv + wv — ALVBv = Wi(p)IvIP~2v + Wa(yp)lvlv. (4.7)
By Lemma 3.10, it is easy to check that lim,_,dist(ey,, W1 n ‘W, N T) = 0.

In order to prove v; — v in E, recall that as the argument shows

tim [ WeomPax = [ WopiPax
j—oo
R3 R?

By the decay of v, using the Brezis-Lieb lemma, one obtains |[v; — v|; — 0. Hence, using the interpolation
inequality and the boundedness of v; in E yields v; — v in L{(R3, C*) for ¢ € (2, 3]. Denote z; = v; — v. The
scalar product of (4.6) with z;" yields

v, ) = o(D).
Similarly, using the decay of v together with the fact that zii — 0in L forq € [1, 3), it follows from (4.7)
that
(v, zf) = o(D).
Thus,
izl = o(D),
and the same arguments show
lizj 1l = o(1),

we then obtain v; — v in E, and the arguments in [13] show thatv; — v in H.
Part 3. Exponential decay
For the later use denote D = ia -V and for u € £, rewrite (2.7) as

Du = aPu - wu + A, (x)Ve ,fu + Wi (0)|u [P~2u + Whe(x)|ulu.
Acting the operator D on the two sides and noting that D? = -A, we obtain

Au = (a + 00V, )u — (w — Wiglu[P=2 — Waelu|)>u — DA(x)Ve, . )Bu — D(Wig|ulP=2 + WheluDu. (4.8)

Now define
X if u+0,
sgnu =1 |ul
0 ifu=0.

By Kato’s inequality [19] there holds
Alu] = R[Au(sgn u)].
Note that
RID(WielulP~? + Waelu)u(sgn u)] = 0.
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Then, we obtain
Alul = (@ + A0 Ve)*lul = (@ = WielulP~2 = Waelul)*[ul — [D(Ae(X) Vel ful- (4.9)
It follows from Hoélder inequality and u € L®(R3, C*) that
[DA(xX)Ve,u)| < C.
So, due to (4.9), there exists a constant M > 0 such that
Alu| = —Mlu|.
It then follows from the sub-solution estimate [25,31] that
ool < Co [ luyldy,

By(x)

where C, is independent of x and €.

To obtain the uniformly decay estimate for the semi-classical states, we first need the following result:

Lemma 4.1. Let v, and V,, be given in the proof of Part 2. Then |v;(x)| and |V, (x)| vanish at infinity uniformly in
£ > 0 small.

Proof. Similar to [13, 16], we can easily prove this lemma. We omit it here. O
And at this point, applying the maximum principle (see [29]), we easily have

Lemma 4.2. Let v, € E be given in the proof of Part 2, then v, exponentially decays at infinity uniformlyine > 0
small. More specifically, there exist C, ¢ > 0 independent of € such that

[v.(x)| < Ce=cl¥,

Consequently, we infer that

[u(x)| < Ce=cxxel,

With the above arguments, we can easily prove Theorem 1.2.
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