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Abstract: In the present article, we study multiplicity of semi-classical solutions of a Yukawa-coupled
massive Dirac-Klein-Gordon system with the general nonlinear self-coupling, which is either subcritical
or critical growth. The number of solutions obtained is described by the ratio of maximum and behavior at
infinity of the potentials. We use the variational method that relies upon a delicate cutting off technique. It
allows us to overcome the lack of convexity of the nonlinearities.
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1 Introduction and main results

In this article, we study the solitary wave solutions of the massive Dirac-Klein-Gordon system involving an
external self-coupling:
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for � �( ) ∈ ×t x, 3, where c is the speed of light, ℏ is Planck’s constant, ( ) >λ x 0 is the coupling potential,m
is the mass of the electron, and M is the mass of the meson (we use the notation ⋅u v to express the inner
product of �∈u v, 4). Here α α α, ,1 2 3, and β are ×4 4 complex Pauli matrices:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=
−

= =β I
I α σ

σ k0
0 , 0

0 , 1, 2, 3,k
k

k

with

⎛
⎝

⎞
⎠( ) ( )= =
−

=
−

σ σ i
i

σ0 1
1 0 , 0

0
, 1 0

0 1 .1 2 3

Yanheng Ding: School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, MOE, Beijing Normal
University, 100875 Beijing, China
Yuanyang Yu: School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, MOE, Beijing Normal
University, 100875 Beijing, China; Department of Mathematics, Tsinghua University, 100084 Beijing, China



* Corresponding author: Xiaojing Dong, School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems,
MOE, Beijing Normal University, 100875 Beijing, China; Institute of Mathematics, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, 100190 Beijing, China, e-mail: dongxjmath@amss.ac.cn

Advanced Nonlinear Studies 2022; 22: 248–272

Open Access. © 2022 Yanheng Ding et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 International License.

https://doi.org/10.1515/ans-2022-0011
mailto:dongxjmath@amss.ac.cn


System (1.1) has been derived as mathematical models of particle physics, especially in nonlinear topics.
This system is inspired by approximate descriptions of the external force involving only functions of fields,
which describes the Dirac and Klein-Gordon equations coupled through the Yukawa interaction between a
Dirac field �∈ψ 4 and a scalar field �∈ϕ (see [5]). The nonlinear self-coupling ( ∣ ∣)g x ψ ψ, describes a self-
interaction in Quantum electrodynamics and gives a closer description of many particles found in the real
world, which has been widely considered in the literature (see [23,24,26] etc. and references therein).

There has been many works on the existence of solutions of system (1.1). When there is no external self-
coupling, i.e., ≡g 0, (1.1) has been studied for a long time and results are available concerning the cauchy
problem (see [6,9,10, 28,32]). In [9], Chadam obtained the first result on the global existence and unique-
ness of solutions of (1.1) (in one space dimension) under suitable assumptions on the initial data. For later
developments, Chadam and Glassey [10] yielded the existence of a global solution in three space dimen-
sions. By using classical Strichartz-type time-space estimates, low regularity solutions of the Dirac-Klein-
Gordon system were obtained by Bournaveas in [6]. With respect to the nonautonomous system (1.1) with
external self-coupling, Ding and Xu [13] were devoted to the existence and concentration phenomenon of
stationary semi-classical solutions for the subcritical nonlinearities. In addition, for the critical nonline-
arities, Ding et al. [16] obtained the same results. Here, stationary solution means a solution of the type
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As far as the multiplicity of solutions of system (1.1) is concerned, there is a pioneering work by Esteban
et al. (see [21]) in which a multiplicity result is studied by using the variational arguments. We emphasize
that this work was mainly concerned with the autonomous system. Besides, limited work has been done in
the semi-classical approximation. For small ℏ, the solitary waves are referred to as semi-classical states.

Motivated by the works just described above, we are interested in the multiplicity of stationary semi-classical
solutions to system (1.1) with some general subcritical self-coupling nonlinearity ( ∣ ∣) ( )∣ ∣= −f x φ φ W x φ φ, p 2 ,

( )∈p 2, 3 or critical self-coupling nonlinearity ( ∣ ∣) ( )∣ ∣ ( )∣ ∣= +−f x φ W x φ φ W x φ φ, p
1

2
2 . We shall see that one of

the difficulties with nonlinear Dirac-Klein-Gordon system (1.1) is caused by the spectra of Dirac operator which
are unbounded and consist of essential spectra. A further problem is caused by the Klein-Gordon equations. In
[14], Ding and Ruf overcame the first difficulty with nonlinear Maxwell-Dirac system by variational methods for
strongly indefinite problems. However, because the Klein-Gordon equations are also influenced by Planck’s
constant ℏ, the limit equation is different between the Dirac-Klein-Gordon systems and the Maxwell-Dirac
systems. As a result, the method of nonlinear Maxwell-Dirac systems cannot be directly applied to the nonlinear
Dirac-Klein-Gordon systems (1.1). Last but not the least, (1.1) involves several different potentials which bring a
competition between the potentials ( )W x and ( )λ x or between the potentials ( ) ( )W x W x,1 2 and ( )λ x . This will
affect our important result – the number of solutions to Dirac-Klein-Gordon systems.

For notational convenience, denoted by =c 1, = ℏε , ( )=α α α α, ,1 2 3 , and ⋅∇ = ∑ ∂=α αk k k1
3 , we are con-

cerned with (substitute (1.1) in (1.2)) the following stationary nonlinear Dirac-Klein-Gordon system:
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where = >a mc 02 and �∈ω .

Case (A): The subcritical case
First we deal with the subcritical case:

( ∣ ∣) ( )∣ ∣ ( )= ∈−f x φ φ W x φ φ p, , 2, 3 .p 2
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we assume the nonlinear potential satisfies:
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(W ) �( )∈W C0,1 3 with >Winf 0 and <∞κ κ.
In addition, setting
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we make the following hypotheses:
(λ) �( ) ( )∈λ x C0,1 3 with ( ) >λ xinf 0 and <∞λ λ̄.

Theorem 1.1. Assume that ( )∈ −ω a a, , � ∩ ≠ ∅Γ , and ( ) ( )W λ, are satisfied. Then there is a constant
>λ 00 , such that for any ≤λ λ¯ 0 and �∈m with
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provided ≤ε εm.

Remark 1.1. If additionally ( )∇λ x and ( )∇W x are bounded, then among the solutions, the ground state (the
least energy solution) denoted by wε satisfies (see [13]):
(i) There is a maximum point xε of ∣ ∣φε with �( )∩ =→ xlim dist , Γ 0ε ε0 such that the pair ( )u V,ε ε , where

( ) ( )≔ +u x φ εx xε ε ε and ( )≔ +V ϕ εx xε ε ε , converges in ×H H1 1 to a ground state solution of (the limit
equation)
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(ii) There exist C C,1 2 such that ∣ ( )∣ ∣ ∣( )≤ − −φ x C x xexpε
C
ε ε1
2 .

Moreover, for large c, it is called the nonrelativistic limit problem. With Theorem 1.1 and [18,20], we obtain
the following corollary.

Corollary 1.1. Let ⎡⎣ ⎤⎦> ∈ν p0, ,12
5

8
3 . Assume < − < + →ω mc mc ω0 , ν

m
2 2 , as → +∞ → −∞c ω, . Under

the assumption of Theorem 1.1 and Remark 1.1, the ground solution ( )φ ϕ,c c where ( )=φ u v,c c c of equation
(1.4) have the following properties:
(1) uc and ϕc converge in H 1 to 0;

(2) vc converges in H 1 to a solution of a coupled system of nonlinear Schrödinger-type equations
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as → +∞ → −∞c ω, , where � �( )= →v v v, :1 2
3 2 is the wave function corresponding to positive energy

values, and >ν 0 is a constant.

Remark 1.2. Corollary 1.1 states that the semi-classical limit equation of Dirac-Klein-Gordon systems is the
autonomuous Dirac-Klein-Gordon systems and the nonrelativistic limit equation of the autonomuous Dirac-
Klein-Gordon systems is a coupled system of nonlinear Schrödinger-type equations. However, we do not
know whether the semi-classical limit equation of the nonrelativistic limit equation of Dirac-Klein-Gordon
systems is a coupled system of nonlinear Schrödinger-type equations or not.
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Case (B): The critical case
Next we deal with the critical case:

( ∣ ∣) ( )∣ ∣ ( )∣ ∣ ( )= + ∈−f x φ φ W x φ φ W x φ φ p, , 2, 3 .p
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following subcritical equation:
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Theorem 1.2. Assume that ( )∈ −ω a a, , � �∩ ∩ ≠ ∅Γ1 2 , and ( ) ( ) ( )
→ →

λ W W, ,1 2 are satisfied. Then there is a

constant >λ 00 , such that for any ≤λ λ¯ 0, �∈m with ( )≤ ∞→m m there is >ε 0m such that (1.3) has at least m
pairs of semi-classical solutions � � � �( ) ( ) ( )∈ ⋂ ×≥φ ϕ W C, , ,ε ε q

q
2

1, 3 4 2 3 provided ≤ε ε .m

Remark 1.3. If additionally ∇λ and ( )∇ =W j 1, 2j are bounded, then among the solutions, the ground state
(the least energy solution) denoted by wε satisfies (see [16]):
(i) There is a maximum point xε of ∣ ∣φε with � �( )∩ ∩ =→ xlim dist , Γ 0ε ε0 1 2 such that the pair ( )u V,ε ε ,

where ( ) ( )≔ +u x φ εx xε ε ε and ( )≔ +V ϕ εx xε ε ε , converges in ×H H1 1 to a ground state solution of (the
limit equation)
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(ii) There exist C C,1 2 such that ∣ ( )∣ ∣ ∣( )≤ − −φ x C x xexpε
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It is standard that (1.3) is equivalent to, letting ( ( ) ( )) ( ( ) ( ))=u x V x φ εx ϕ εx, , ,
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where ( ) ( )=λ x λ εxε , ( ) ( )=W x W εxε . We will in the sequel focus on this equivalent problem. Our proofs are
variational: the semi-classical solutions that are associated with the equivalent problem (1) are obtained as
critical points of an energy functional Φε.
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Remark 1.4. Every pair of semi-classical solutions above that has different energy by using variational
methods for strongly indefinite problems converge to a ground state solution of the limit equation (1.4) or
(1.5), respectively.

There have been many works on multiplicity of semi-classical states of nonlinear Schrödinger-Poisson
systems arising in nonrelativistic quantum mechanics, see for example [1–3] and their references. Later,
Ding and Ruf [14] studied nonlinear Maxwell-Dirac systems, which obtained the multiplicity of semi-
classical states under the assumptions of subcritical or critical nonlinearities, respectively. Recently,
Ding et al. yielded the multiplicity of semi-classical states for nonlinear Dirac equations of space-dimension
n in [17]. It is worth noting that the limit equation of the nonlinear Maxwell-Dirac systems or Dirac
equations is a single equation. The problems in Dirac-Klein-Gordon systems are difficult because the limit
equation is a system rather than a single equation, which is going to limit the number of solutions. As far as
the authors know, there have been few results on the multiplicity of semiclassical solutions to nonlinear
Dirac-Klein-Gordon systems.

An outline of this article is as follows: In Section 2, we treat the linking argument which gives us a min-
max scheme. In Section 3, we study the limit equation and introduce the cut-off arguments. Finally, in
Section 4, the combination of the results in Sections 2 and 3 proves Theorem 1.1, Corollary 1.1, and
Theorem 1.2.

2 The variational framework

In the absence of nonrelativistic limit, the speed of light c is a constant. Without loss of generality, we
assume =c 1. Our arguments for the problem are variational, so we start from discussing the proper variational
setting. Throughout the article we always let the hypotheses of Theorem 1.1 be satisfied. Since � ∩ ≠ ∅Γ ,
without loss of generality, we assume that �∈ ∩0 Γ in the subcritical case and � �∈ ∩ ∩0 Γ1 2 in the
critical case.

In the sequel, we denote by ∣ ∣⋅ q the usual Lq-norm and by ( )⋅ ⋅, q the usual Lq-inner product. Let

= ⋅∇ − +H iα aβ ωω denote the self-adjoint operator on � �( )≡L L ,2 2 3 4 with domain �( ) = ≡H Hω
1

� �( )H ,1 3 4 . It is well known that �( ) ( ) ( )= = − + +σ H σ H a ω a ω\ ,ω c ω , where ( )⋅σ and ( )⋅σc denote the
spectrum and the continuous spectrum. For ( )∈ −ω a a, , the space L2 possesses the orthogonal
decomposition:

= ⊕ = ++ − + −L L L u u u, ,2 (2.1)

so that Hω is positive definite (resp. negative definite) in +L (resp. −L ). Let �(∣ ∣ )≔ =E H Hω
1
2

1
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R( ) (∣ ∣ ∣ ∣ )=u v H u H v, ,ω ω 2
1
2
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and the induced norm ( )‖ ‖ =u u v, 1
2 , where ∣ ∣Hω and ∣ ∣Hω

1
2 , denote, respectively, the absolute value of Hω and

the square root of ∣ ∣Hω . Since �( ) ( )= − + +σ H a ω a ω\ ,ω , one has

( ∣ ∣)∣ ∣− ≤ ‖ ‖ ∈a ω u u u Efor all .2
2 2 (2.2)

Note that this norm is equivalent to the usual H 1
2-norm, hence E embeds continuously into Lq for all

[ ]∈q 2, 3 and compactly into L q
loc for all [ )∈q 1, 3 . It is clear that E possesses the following orthogonal

decomposition:

= ⊕ = ∩+ − ± ±E E E E E Lwhere , (2.3)

with respect to both ( )⋅ ⋅, 2 and ( )⋅ ⋅, inner products. This decomposition induces also a natural decomposition
of L p, hence there is >d 0p such that
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Substituting Vε u, in (1.5), we are led to the equation

( ) ( )− =H u λ x V βu f εx u, .ω ε ε u, (2.7)

On E we define the functional
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It follows by standard arguments that �( )∈ C EΦ ,ε
2 and any critical point of Φε is a solution of (1).

Before going on we observe the following [13]:

Lemma 2.1. One has: for any ∈u v E,
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where here (and below) by Cj we denote a generic positive constant.

We will study the multiplicity of critical points of Φε via linking arguments. Setting = ⊕−E E Hm m for
any finite dimensional subspace ⊂ +H Em with =H mdim m .

Lemma 2.2. The following conclusions are true:
1∘ There are >r 0 and >τ 0, both independent of ε, such that ∣ ≥+Φ 0ε Br and ∣ ≥+ τΦε Sr where =+Br
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with c1 independent of u and >p 2.
For checking ∘2 , take a finite dimensional subspace ⊂ +H Em . In virtue of (2.4), for = + ∈ =− +u u u Em
+−E Hm where ∈+u Hm, ∈− −u E , one obtains

( ) ( ) ( )

∣ ∣

= ‖ ‖ − ‖ ‖ − −

≤ ‖ ‖ − ‖ ‖ −

≤ ‖ ‖ − ‖ ‖ − ‖ ‖

+ −

+ − +

+ − +

u u u u u

u u W u

u u d W c u

Φ 1
2

1
2

Γ Ψ

1
2

1
2

inf
3

1
2

1
2

¯ inf
3

,

ε λ ε
2 2

2 2 2
3
3

2 2 3 2 3

ε

proving the conclusions. □

In particular, for any { }∈ +e E \ 0 , setting �=H e1 and = ⊕−E E He 1, the conclusion ∘2 holds. Based on
this lemma, for any ≥ε 0, let cε denote the minimax level of Φε deduced by the linking structure [30]:

( ) ( )
{ } { }

≔ =
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c u uinf max Φ inf max Φ ,ε
e E u E

ε
e E u E

ε
\ 0 \ 0 ˆe e

(2.8)

where �= ⊕− +E E eˆe .
Recall that a sequence { } ⊂u En is called to be a ( )C c-sequence for �( )∈ C EΦ ,1 if ( ) →u cΦ n and

( ∥ ∥) ( )+ ′ →u u1 Φ 0n n . We say that Φ satisfies the ( )C c-condition if any ( )C c-sequence for Φ has a convergent
subsequence. Below we are going to study ( )C c-sequences for Φε.
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Lemma 2.3. For every pair of constants >c c, 01 2 , there exists a constant >Λ 0, depending only on c c λ, , ¯1 2 ,
such that for any ∈u E with

∣ ( )∣ ( )≤ ‖ ‖⋅‖ ′ ‖ ≤u c and u u cΦ Φ ,ε ε1 2 (2.9)

we have

∥ ∥ ≤u Λ.

Furthermore, Λ is an increasing function with respect to >λ̄ 0.

Proof. Again we only check the critical case because the subcritical case is easier than the critical case and
is similar to [13].

Take ∈u E such that (2.9) is satisfied. Without loss of generality we may assume that ‖ ‖ ≥u 1. The form
of Φε and Lemma 2.1 imply that

� �

⎜ ⎟

⎜ ⎟

( ) ( )

( ) ⎛
⎝

⎞
⎠

( )∣ ∣ ( )∣ ∣

⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣

∫ ∫

+ ≥ − ′

= − − +

≥ − +

c c u u u

u
p

W εx u x W εx u x

p
W u W u

Φ 1
2

Φ

Γ 1 1
2

d 1
6

d

1
2

1 inf inf
6

,

ε ε

λ
p

p
p

1 2

1 2
3

1
2

3
3

ε

3 3

that is,

∣ ∣ ∣ ∣≤ ≤u C u Cand .p3 1 2 (2.10)

By [13, Lemma 2.4], we have ∣ ∣ ( )≤ ∈
‖ ‖

u p, 2, 3V
λ u p¯ 6

u , which, together with the Hölder inequality,

implies that

R R( ) ( ) ( ) ( ) ( )

∣ ∣ ∣ ∣

∣ ∣

∫ ∫⋅ − ≤ ‖ ‖
‖ ‖

⋅ −

≤ ‖ ‖
‖ ‖

⋅ −

≤ ‖ ‖⋅

+ − + −

+ −

λ x V βu u u λ u
V

u
βu u u

λ u
V
λ u

u u u

λ C u u

¯

¯
¯

¯ .

ε ε u
ε u

ε u
p q

q

,
,

2 ,

6
2

3

(2.11)

Let =
−

q p
p
6

5 6 . Then < <q2 3 and + + = 1p q
1 1 1

6 . Set

⎧

⎨

⎪
⎪

⎩
⎪
⎪

( )
( )
( )
( )

=

=

−

−
<

−

−
>

ξ

q p
p q

q p
q p

q p
q p

q p

0, if ,
2

2
if ,

3
3

if ,

we deduce that <ξ 1 and

∣ ∣
⎧
⎨
⎩

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣
≤

⋅ < ≤

⋅ < <

−

−
u

u u q p

u u p q

, if 2 ,

if 3.
q

ξ
p

ξ

ξ
p

ξ
2

1

3
1

This, together with Lemma 2.1 and (2.11), implies that

( )( )∣′ − ≤ ‖ ‖+ − +u u u λ C uΓ ¯ .λ
ξ2

4
1

ε
(2.12)

Then (2.10) and (2.12) imply that
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R R

� �

( )( )

( )( ) ( )∣ ∣ ( ) ( )∣ ∣ ( )∫ ∫

≥ ′ −

= ‖ ‖ − ′ − − − − −

≥ ‖ ‖ − ‖ ‖ − −

+ −

+ − − + − + −

+

c u u u

u u u u W εx u u u u x W εx u u u u x

u λ C u κ C κ C

Φ

Γ d d

¯ .

ε

λ
p

ξ p

2

2
1

2
2

2 2
4

1
1 2 2 1

3

ε
3 3

That is,

‖ ‖ ≤ ‖ ‖ ++u λ C u C¯ .ξ2 2
4

1
5 (2.13)

Therefore, there is ( )= c c λΛ Λ , ,1 2 such that

‖ ‖ ≤u Λ.

Moreover, (2.13) implies Λ is increasing in λ̄. □

Lemma 2.3 has an immediate consequence, which implies the boundedness of a ( )C c-sequence:

Corollary 2.1. Consider ( ]∈ε 0, 1 , and { }un
ε is the corresponding ( )C c-sequence for Φε. If there exists >C 0

such that ∣ ∣ ⩽c Cε for all ε, then we have (up to a subsequence if necessary)

∥ ∥ ≤u Λ,n
ε

where Λ found in Lemma 2.3 depends on λ and the pair =c C1 and =c 12 .

Additionally, for later aims we define the operator � �� ( )→E H: ,1 3 by �( ) =u Vu. According to [13],
we have the following lemma.

Lemma 2.4.
(1) � maps bounded sets into bounded sets.
(2) � is continuous.

In order to establish our multiplicity results, we recall an abstract critical point theorem, see [7,12]. Let
X Y, be Banach spaces with X being separable and reflexive, and set = ⊕E X Y . Let � ⊂ ∗X be a countable
dense subset. Let � be the family of semi-norms on E consisting of all semi-norms

� �( ) ∣ ( )∣= ⊕ → + = + ‖ ‖ ∈p E X Y p x y s x y s: , , .s s

Denote by �� the topology on E induced by � . Let � ∗w be the weak∗-topology of ∗E .
For a functional �→EΦ : and numbers �∈a b, , we write { ( ) }≔ ∈ ≤u E u aΦ : Φa , ≔Φa

{ ( ) }∈ ≥u E u a: Φ , and ≔ ∩Φ Φ Φa
b

a
b. Assume

(Φ1) �( )∈ C EΦ ,1 ; ���( ) →EΦ : , is upper semi-continuous, and � ��( ) ( )′ → ∗ ∗EΦ : Φ , ,a w is contin-
uous for every �∈a ;

(Φ2) There exists >r 0 with ( ) ( )≔ > =ρ S YinfΦ Φ 0 0r , where { }≔ ∈ ‖ ‖ =S Y y Y y r:r ;
(Φ3) There exist a finite-dimensional subspace ⊂Y Y0 and >R r such that we have for ≔ ×E X Y0 0 and

{ } ( )≔ ∈ ‖ ‖ ≤ ≔ < ∞B u E u R b E: , supΦ0 0 0 and ( ) ( )<E B B YsupΦ \ infΦ .r0 0
We consider the set � ( )Φc of maps →g E: Φc with the properties

(i) g is � -continuous and odd;
(ii) ( ) ⊂g Φ Φa a for all [ ]∈a ρ b, ;
(iii) Each ∈u Φc has a � -open neighborhood 	 ⊂ E such that the set 	( )( )− ∩id g Φc is contained in a

finite-dimensional linear subspace.

The pseudo-index of Φc is defined by

��( ) { ( ( ) ) ( )} { }≔ ∩ ∈ ∈ ∪ ∞ψ c g S Y gmin gen Φ : Φ ,c
r

c
0

where gen( )⋅ denotes the usual symmetric index. Additionally, set for >d 0 fixed.
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� �( ) { ( ) ( )}≔ ∈g g gΦ Φ : is a homeomorphism from Φ to Φ .d d d d
0

Then we define for [ ]∈c d0,

�( ) { ( ( ) ) ( )}≔ ∩ ∈ψ c g S Y gmin gen Φ : Φ .d
c

r
d

0

Note that, by definition, ( ) ( )≤ψ c ψ cd for all [ ]∈c d0, .

Theorem 2.1. [7,12] Let ( ) ( )Φ – Φ1 3 be satisfied and assume that Φ is even and satisfies the ( )C c-condition for
[ ]∈c ρ b, . Then Φ has at least ≔n Ydim 0 pairs of critical points with critical values given by

{ ( ) } [ ]≔ ≥ ≥ ∈ = …c c ψ c i ρ b i ninf 0 : , , 1, , .i

If Φ has only finitely many critical points in Φ ρ
b, then < < <⋯< ≤ρ c c c bn1 2 .

Remark 2.1. Setting = −X E and = +Y E , it follows from the definition and Lemma 2.2 that the functional
=Φ Φε is even and satisfies ( )Φ1 and ( )Φ2 . In the following, we are focusing on checking the assumption

( )Φ3 and the ( )C c-condition.

3 Cut-off arguments

We will describe further the minimax value cε by using a Mountain-Pass reduction technique, which
depends on the convexity of the nonlinearities for verifying particularly that the second-order derivative
of the functional is negative definite. However, the nonlocal term Γλε destroys such a convexity, because its
second-order derivative may take positive values (possibly very large) as well as negative values (possibly
very large). In fact, the nonlocal power is 4 exceeding the growth of the nonlinear frequency term and
dominates the behavior of the functional when ‖ ‖u is very large. Therefore, we will adopt the cut-off
argument of [13].

Denote ( )≔ +T Λ 1 2 and let [ ) [ ]∞ →η : 0, 0, 1 be a smooth function with ( ) =η t 1 if ≤ ≤t T0 , ( ) =η t 0
if ≥ +t T 1, ∣ ( )∣′ ≤η t Cmax 1 and ∣ ( )∣″ ≤η t Cmax 2. Without loss of generality, we can assume that ( )η t is
nonincreasing. Define


( ) (∥ ∥ ∥ ∥ ) ( ) ( ) ( ) (∥ ∥ ∥ ∥ ) ( ) ( )͠ = − − ‖ ‖ − = − − −+ − + −u u u η u u u u u u uΦ 1
2

Γ Ψ 1
2

Ψ .ε λ ε λ ε
2 2 2 2 2

ε ε (3.1)

By definition, ∣ ∣͠=Φ Φε B ε BT T where { }≔ ∈ ‖ ‖ ≤B u E u T,T . Clearly,


 ( ) ( )≤ ≤u u0 Γλ λε ε (3.2)

and


 ( ) ( ) ( ) ( ) ( )′ = ′ ‖ ‖ ⟨ ⟩ + ‖ ‖ ′ ∈u v η u u u v η u u v u v E2 Γ , Γ for , .λ λ λ
2 2

ε ε ε

3.1 The limit equation: subcritical case

For any < ≤μ κ0 , < ≤λ λ0 ¯, we consider the following constant coefficient system:

⎧
⎨⎩

∣ ∣
( )

⋅∇ − + − =

− + ⋅ =

−iα u aβu ωu λVβu μ u u
V M V πλ βu u

,
Δ 4 .

p 2
(3.3)

As before, we consider the modified functional
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�




( ) (∥ ∥ ∥ ∥ ) ( ) ( ) ( )

(∥ ∥ ∥ ∥ ) ( ) ∣ ∣∫

= − − ‖ ‖ −

= − − −

+ −

+ −

ϕ u u u η u u u

u u u μ
p

u x

1
2

Γ Ψ

1
2

d ,

λ μ λ μ

λ
p

,
2 2 2

2 2

3

(3.4)

defined for = + ∈+ −u u u E. Obviously, ϕλ μ, possesses the linking structure. By γλ μ, we denote the linking
level of ϕλ μ, . Define ℓ →+ −E E:λ μ, by, for ∈ +u E ,

( ( )) ( )+ ℓ = +
∈ −

ϕ u u ϕ u vmaxλ μ λ μ
v E λ μ, , ,

and ( ) ( ( ))= + ℓI u ϕ u uλ μ λ μ λ μ, , , . Then �( )∈ +I C E ,λ μ,
2 and ∈ +u E is a critical point of Iλ μ, if and only if

( )+ ℓu uλ μ, is a critical point of ϕλ μ, . Set � { ( ) }= ∈ ′ =+u E I u u: 0λ μ λ μ, , . We will call �( ( ) ( ) )ℓ ⋅ ⋅I, ,λ μ λ μ λ μ, , ,
the Mountain-Pass reduction of (3.1). It is known that
(i) � { ( ) }≔ ∈ ′ = ≠ ∅u E ϕ u: 0λ μ λ μ, , and � ⊂ ⋂ ≥ Wλ μ q

q
, 2

1, ;

(ii) � �{ ( ) { }} ( )≔ ∈ = >∈γ ϕ u u I uinf : \ 0 inf 0λ μ λ μ λ μ u λ μ, , , ,λ μ, and is attained;

(iii) � �{ ( ) ∣ ( )∣ ∣ ∣ }≔ ∈ = = ∞u ϕ u γ u u: , 0λ μ λ μ λ μ λ μ, , , , is compact in H 1, and there exist >C c, 0 such that

∣ ( )∣ ( ∣ ∣)≤ −u x C c xexp for all �∈x 3 and �∈u .λ μ,

Lemma 3.1. Let ∞γ denote the least energy of (3.4) with = =∞ ∞λ λ μ κ, . For any < ≤∞λ λ λ̄, < ≤∞κ μ κ,

there holds ( ) < ∞m λ μ γ γ, λ μ, , where ( ) ⎧
⎨⎩

⎫
⎬⎭

( ) ( )≔
∞ ∞

−m λ μ, min ,λ
λ

μ
κ

2 p
2

2
.

Proof. Let u be a least energy critical point of

�




( ) (∥ ∥ ∥ ∥ ) ( ) ( ) ( )

(∥ ∥ ∥ ∥ ) ( ) ∣ ∣∫

= − − ‖ ‖ −

= − − −

+ −

+ − ∞

∞ ∞ ∞ ∞

∞

ϕ u u u η u u u

u u u
μ
p

u x

1
2

Γ Ψ

1
2

d ,

λ μ λ κ

λ
p

,
2 2 2

2 2

3

with the energy ∞γ . For any < ≤∞λ λ λ̄, < ≤∞κ μ κ, set

⎜ ⎟( ) ( )
⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎫
⎬
⎭

= > ≥ ∞ ∞
−

v x bu x b λ
λ

κ
μ

with 1 max , .
p

1
2

Then

(∥ ∥ ∥ ∥ ) ( ) ( )

(∥ ∥ ∥ ∥ )
( )

( ) ( )

⎡
⎣

(∥ ∥ ∥ ∥ ) ( ) ( ) ( )⎤
⎦

( )
= − −

‖ ‖
−

> − −
‖ ‖

−

≥ − − ‖ ‖ −

≥

∞
+ −

+ −

+ −

∞ ∞

∞ ∞

γ
b

v v
η v

b
v

b
v

b
v v η v

b
v

b
v

b
v v η v v v

b
γ

1
2

Γ 1 Ψ

1
2

Γ 1 Ψ

1 1
2

Γ Ψ

1 .

b
λ p κ

λ p κ

λ κ

λ μ

2
2 2

1 2

4

2
2 2

2

4

2
2 2 2

2 ,

2

Here we use the fact that ≤∞ 1λ
bλ and ≤∞

− 1.κ
b μp 2 Thus, ( ) < ∞m λ μ γ γ, λ μ, . □

3.2 The limit equation: critical case

For any < ≤λ λ0 ¯, < ≤μ κ0 j j, =j 1, 2, we consider the following system:
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⎧
⎨⎩

∣ ∣ ∣ ∣
( )

⋅∇ − + − = +

− + ⋅ =

−iα u aβu ωu λVβu μ u u μ u u
V M V πλ βu u

,
Δ 4 .

p
1

2
2 (3.5)

As before, we consider the modified functional

� �




( ) (∥ ∥ ∥ ∥ ) ( ) ( ) ( )

(∥ ∥ ∥ ∥ ) ( ) ∣ ∣ ∣ ∣∫ ∫

≔ − − ‖ ‖ −

= − − − −

→ + −

+ −

ϕ u u u η u u u

u u u
μ
p

u x
μ

u x

1
2

Γ Ψ

1
2

d
3

d ,

λ μ λ μ

λ
p

,
2 2 2

2 2 1 2 3

3 3

(3.6)

where ( )→
≔μ μ μ,1 2 . As above, let →γλ μ, denote the linking level of →ϕ .λ μ, Define ℓ →→ + −E E:λ μ, by, for ∈ +u E ,

( ( )) ( )+ ℓ = +→ →

∈
→

−
ϕ u u ϕ u vmaxλ μ λ μ

v E λ μ, , ,

and ( ) ( ( ))= + ℓ→ → →I u ϕ u uλ μ λ μ λ μ, , , . Then �( )∈→ +I C E ,λ μ,
2 and ∈ +u E is a critical point of →Iλ μ, if and only if

( )+ ℓ →u uλ μ, is a critical point of →ϕλ μ, . Set � { ( ) }= ∈ ′ =→ +
→u E I u u: 0λ μ λ μ, , . Write as before � →λ μ, and � →λ μ, .

One has �{ ( ) { }}≔ ∈→ → →γ ϕ u uinf : \ 0λ μ λ μ λ μ, , , = � ( ) >∈ →→I uinf 0u λ μ,λ μ, and � ⊂ ⋂→ ≥ Wλ μ q
q

, 2
1, .

Lemma 3.2. →γλ μ, is attained provided <→γ .λ μ
S
μ, 6

3
2

2
2

Proof. Let { }un be a ( )C c-sequence with = →c γλ μ, . By the statements in Corollary 2.1, { }un is bounded in E. By
Lion’s concentration principle [27], { }un is either vanishing or nonvanishing.

Assume that { }un is vanishing. Then ∣ ∣ →u 0n s for ( )∈s 2, 3 , together with Lemma 2.1 implies that


 ( ) ∣ ∣≤ →−u S λ u¯ 0λ n n
1 2

12
5

4 . Thus, one obtains

� �

�




( ) ( ) ( )

( ) ⎛
⎝

⎞
⎠

∣ ∣ ⎛
⎝

⎞
⎠

∣ ∣

∣ ∣ ( )

∫ ∫

∫

+ = − ′

= + − + −

= +

→ → →γ o ϕ u ϕ u u

u μ u x μ u x

μ u x o

1 1
2

1
2

1
6

d 1
2

1
3

d

1
6

d 1 ,

λ μ λ μ n λ μ n n

λ n n
p

n

n

, , ,

1 2
3

2
3

3 3

3

that is,
�

∣ ∣ ( )∫ = +
→

u x od 1n
γ
μ

3 6 λ μ
3

,

2
. Similarly, we also have

R R

R

� �

�




( ) ( )( )

( )( ) ∣ ∣ ( ) ∣ ∣ ( )

∣ ∣ ( ) ( )

∫ ∫

∫

= ′ −

= ‖ ‖ − ′ − − − − −

= ‖ ‖ − − +

→
+ −

+ − − + − + −

+ −

o ϕ u u u

u u u u μ u u u u x μ u u u u x

u μ u u u u x o

1

d d

d 1 .

λ μ n n n

n λ n n n n
p

n n n n n n n

n n n n n

,

2
1

2
2

2
2

3 3

3

Thus, jointly with the fact ∣ ∣ ≤ ‖ ‖S u u3
2 21

2 [8], we have

⎜ ⎟∣ ∣ ∣ ∣ ∣ ∣ ( ) ⎛
⎝

⎞
⎠

( )‖ ‖ ≤ − + ≤ ‖ ‖ ‖ − ‖ ++ − −
→

+ −u μ u u u u o μ S u
γ
μ

u u o1
6

1 ,n n n n n n
λ μ

n n
2

2 3 3 3 2
,

2

1
2

1
3

which implies ≥→γλ μ
S
μ, 6

3
2

2
2 , a contradiction.

Therefore, { }un is nonvanishing, that is, there exist >r δ, 0 and �∈xn
3 such that, setting ( ) ( )= +v x u x xn n n ,

along a subsequence,

∣ ∣
( )

∫ ≥v x δd .
B

n

0

2

r

Without loss of generality, we assume →v vn . Then ≠v 0 and is a solution of (3.5). And so →γλ μ, is
attained. □
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Lemma 3.3. →γλ μ, is attained, provided ⎜ ⎟⎛
⎝

⎞
⎠

<− −

−

μ μ p S
τ1

1
2

2
6 p

p
3
2

2
2
.

Proof. By the reduction process and the minmax scheme, we deduce

≤ =→

−
−γ γ μ τ .λ μ μ

p
p, 1

2
2

1

If ⎜ ⎟⎛
⎝

⎞
⎠

<− −

−

μ μ p S
τ1

1
2

2
6 p

p
3
2

2
2
, then ≤ ≤→

−
−γ μ τλ μ

p
p

S
μ, 1

2
2

6

3
2

2
2 . So →γλ μ, is attained by Lemma 3.2. □

In the sequel, by → <→μ μ1 2 we mean that { }− − >μ μ μ μmin , 01
2

1
1

2
2

2
1 for any vectors ( )→

=μ μ μ, .j
j j

1 2 The

following lemma will be useful to study our problem.

Lemma 3.4.
(1) Let �∈ →u λ μ, be such that ( ) =→ →I u γλ μ λ μ, , and set �= ⊕− +E E uu . Then

( ) ( )=
∈

→ →ϕ w I umax .
w E λ μ λ μ, ,

u

(2) If <λ λ2 1,
→
−
→
>μ μ 01 2 , then <→ →γ γλ μ λ μ, ,1 1 2 2

.

Proof. To prove (1), we note that ( )+ ℓ ∈→u u Eλ μ u, and

( ) ( ( )) ( )= + ℓ ≤→ → →

∈
→I u ϕ u u ϕ wmax .λ μ λ μ λ μ

w E λ μ, , , ,
u

Moreover, since �∈ →u ,λ μ,

( ) ( ( )) ( ) ( )≤ + ℓ ≤ =
∈

→
≥

→ →

≥

→ →ϕ w ϕ su su I su I umax max max .
w E λ μ s λ μ λ μ

s
λ μ λ μ, 0 , ,

0
, ,

u

Therefore, ( ) ( )=∈ → →ϕ w I umaxw E λ μ λ μ, ,u .
To obtain (2), let u2 be a least energy solution of →ϕλ μ,2 2

and set = +e u2 . Then

( ) ( )= =→ →
∈

→γ ϕ u ϕ wmax .λ μ λ μ w E λ μ, , 2 ,
e

2 2 2 2 2 2

Suppose ∈u Ee1 be such that ( ) ( )=→ ∈ →ϕ u ϕ wmaxλ μ w E λ μ, 1 ,e1 1 1 1
. We deduce that

( ) ( ) ( )= ≥ >→ → → →γ ϕ u ϕ u ϕ u .λ μ λ μ λ μ λ μ, , 2 , 1 , 12 2 2 2 2 2 1 1

This ends the proof. □

Lemma 3.5. Let ∞→γ denote the least energy of (3.5) with =
→
=∞ ∞→λ λ μ κ, with ( )≔∞→ ∞ ∞κ κ κ,1 1 . For any

< ≤ < ≤∞ ∞λ λ λ κ μ κ¯, j j j, there holds

⎜ ⎟ ⎜ ⎟ ⎜ ⎟( ) ( ) ⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫
⎬
⎭

→
<

→
≔→

∞→

∞ ∞ ∞

−

m λ μ γ γ where m λ μ λ
λ

μ
κ

μ
κ

, , , min , , .λ μ,

2
1

1

2

2

2p
2

2

Proof. Let u be a least energy critical point of

� �




( ) (∥ ∥ ∥ ∥ ) ( ) ( ) ( )

(∥ ∥ ∥ ∥ ) ( ) ∣ ∣ ∣ ∣∫ ∫

= − − ‖ ‖ −

= − − − −

+ −

+ − ∞ ∞

∞ ∞→ ∞ ∞→

∞

ϕ u u u η u u u

u u u
μ

p
u x

μ
u x

1
2

Γ Ψ

1
2

d
3

d ,

λ κ λ κ

λ
p

,
2 2 2

2 2 1 2 3

3 3

with the energy ∞→γ . For any < ≤∞λ λ λ̄, < ≤∞κ μ κ, set

⎜ ⎟( ) ( ) ⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎫
⎬
⎭

= > ≥
∞ ∞ ∞

−

v x bu x b λ
λ

μ
κ

μ
κ

with 1 max , , .1

1

2

2

p
1

2
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Then

� �

(∥ ∥ ∥ ∥ ) ( ) ( )

(∥ ∥ ∥ ∥ )
( )

( ) ∣ ∣ ∣ ∣

⎡
⎣

(∥ ∥ ∥ ∥ ) ( ) ( ) ( )⎤
⎦

( )

∫ ∫

= − −
‖ ‖

−

> − −
‖ ‖

− −

≥ − − ‖ ‖ −

≥

∞→
+ −

+ − ∞ ∞

+ − →

→

∞ ∞→

∞

γ
b

v v
η v

b
v

b
v

b
v v η v

b
v

b
κ

p
v x

b
κ v x

b
v v η v v v

b
γ

1
2

Γ 1 Ψ

1
2

Γ 1 d 1
3

d

1 1
2

Γ Ψ

1 .

b
λ p κ

λ p
p

λ μ

λ μ

2
2 2

1 2

4

2
2 2

2

4
1

3
2 3

2
2 2 2

2 ,

2

3 3

Here we use the fact that ≤∞ 1λ
bλ , ≤∞

− 1κ
b μp

1
2

1
, and ≤∞ 1.κ

bμ
2

2
Thus, ( ) < ∞→m λ μ γ γ, λ μ, . □

3.3 The cut-off functionals

Let ( )=λ λ xˆ inf , ( )=b W xinf , and ( )
→
=b b b,1 2 with ( )=b W xinfj j . Take

�

�

⎧
⎨⎩
∈

→
e

, for the subcritical case ,
, for the critical case ,

λ b

λ b
0

ˆ,

ˆ,

and set

⎧
⎨⎩

⎧
⎨⎩

=

=

→
→

∞
∞

∞→

c
γ
γ

c
γ
γ

, for the subcritical case ,
, for the critical case ,

, for the subcritical case ,
, for the critical case .

λ b
λ b

λ b
ˆ,

ˆ,

ˆ,

Clearly, ≤ →c cε λ bˆ, for all >ε 0 and ≤∞ →c c .λ bˆ, In addition, one has

Lemma 3.6. For all >ε 0, ( ) ≤∈ →w cmax Φ̃w E ε λ bˆ,e0
.

Proof. It is clear that ( ) ≤ →u ϕΦ̃ε λ bˆ, for all ∈u E, hence, by Lemma 3.4(1)

( ) ( ) ( )≤ = =
∈ ∈

→ →w ϕ w I e cmax Φ̃ max
w E

ε
w E λ b λ b λ bˆ, ˆ, 0 ˆ,

e e0 0

as claimed. □

Lemma 3.7. There exists >ε 01 and >λ 00 such that, for any ( )∈ε ε0, 1 and ( )∈λ λ¯ 0, 0 , if { }un
ε is a (C)c

sequence of Φ͠ε, then ∥ ∥ ≤ +u Λn
ε 1

2 , and consequently ( ) ( )=u uΦ̃ Φε n
ε

ε n
ε .

In particular, replace Φ̃ε with →ϕ̃λ μ, , we obtain that →ϕ̃λ μ, shares the same ground state solution with →ϕλ μ, .

Proof. We repeat the arguments of Lemma 2.3. If ‖ ‖ ≥ +u T 12 , then 
 ( ) =u 0λε . Thus, as proved in Lemma
2.3, one obtains ‖ ‖ ≤u Λ2 , a contradiction. We assume that ‖ ‖ ≤ +u T 12 . Then, using Lemma 2.1,

∣ ( ) ( )∣ ( )′ ‖ ‖ ‖ ‖ ≤η u u u λ dΓ ¯λ λ
2 2 2 1

ε (here and in the following, by ( )dλ
j we denote positive constants depending

only on λ and ( )dλ
j is increasing with respect to λ). Similar to (2.10),
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� �

⎜ ⎟

⎜ ⎟

( ) ( )

( ) ( ) ( ) ⎛
⎝

⎞
⎠

( )∣ ∣ ( )∣ ∣

⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣( )

∫ ∫

+ ≥ − ′

= ‖ ‖ + ′ ‖ ‖ ‖ ‖ − − +

≥ − + − +

c u u u

η u η u u u
p

W εx u x W εx u x

λ d
p

W u W u

1 Φ̃ 1
2

Φ̃

2 Γ 1 1
2

d 1
6

d

¯ 1
2

1 inf inf
6

,

ε ε

λ
p

λ p
p

1

2 2 2
1 2

3

2 1
1

2
3
3

ε

3 3

that is,

∣ ∣ ∣ ∣( ) ( )≤ ≤u d u dand .λ p λ3
2 3

Similarly, we obtain that

( )( )

∣ ∣ ∣ ∣

( ) ( )

( )

( ) ( ) ( )

≥ ′ −

≥ ‖ ‖ − − ‖ ‖ − −

≥ ‖ ‖ − − ‖ ‖ − −

+ −

+

+

c u u u
u λ d λ C u κ u κ u

u λ d λ C u κ d κ d

Φ̃
¯ ¯

¯ ¯ .

ε

λ
ξ

p
p

λ
ξ

λ
p

λ

2
2 2 1 2

4
1

1 2 3
3

2 2 1 2
4

1
1

2
2

3 3

That is,
( ) ( )‖ ‖ ≤ ‖ ‖ + ++u λ C u λ d d¯ ¯ .ξ
λ λ

2 2
4

1 2 1 4

By monotonicity of ( )dλ
j , we see that, for >λ 00 being suitably chosen, let ( ]∈λ λ¯ 0, 0 then ‖ ‖ ≤ +u Λ .1

2 The
proof is complete. □

Based on this lemma, to prove our main results, it suffices to study Φ̃ε and obtain its critical points with
critical values in[ ]→c0, ˜λ bˆ, . This will be done via a series of arguments. The first is to introduce the minmax

values of Φ̃ε. It is easy to verify the following lemma by a similar argument of Lemma 2.2.

Lemma 3.8. Φ͠ε possesses a linking structure and the constants in Lemma 2.2 are true for Φ͠ε. In addi-
tion, ( )͠ ≤∈ →v cmax Φ ˜v E ε λ bˆ,e0

.

Let c̃ε denote the minimax level of Φ͠ε induced by the linking structure defined by (2.8) with Φε replaced

by Φ͠ε. By (3.6) and the forms of the functionals, one sees ≤c c̃ε ε. As before, define →+ −h E E:ε by

( ( )) ( )͠ ͠+ = +
∈ −

u h u u vΦ max Φ ,ε ε
v E

ε

and →→ + −h E E:λ μ, by

( ( )) ( )͠ ͠+ = +→ →

∈
→

−
ϕ u h u ϕ u vmax .λ μ λ μ

v E λ μ, , ,

The following is known (see [4])
(1) ( ) ( ) ( )∈ = =→ + − →h h C E E h h, , , 0 0, 0 0ε λ μ ε λ μ,

1
, ;

(2) →h h,ε λ μ, are bounded maps;

(3) If ⇀u un in +E , then

( ) ( ) ( ) ( ) ( )− − → ⇀h u h u u h u h u h uandε n ε n ε ε n ε

( ) ( ) ( ) ( ) ( )− − → ⇀→ → → → →h u h u u h u h u h uand .λ μ n λ μ n λ μ λ μ n λ μ, , , , ,

We now define �→+I E:ε by ( ) ( ( ))͠= +I u u h uΦε ε ε , �→→ +I E:λ μ, by ( ) ( ( ))͠= +→ → →I u u h uΦλ μ λ μ λ μ, , , , and
set


 
{ { } ( ) } { { } ( ) }≔ ∈ ′ = ≔ ∈ ′ =+ → +
→u E I u u u E I u u\ 0 : 0 , \ 0 : 0 .ε ε λ μ λ μ, , (3.7)
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Clearly,




( )= ≤
∈

c I u c˜ inf ˜ .ε
u

ε λ bˆ,
ε

(3.8)

This, jointly with (2.8), implies that there is a sequence { } { }⊂ +e E \ 0n such that, denoting
( ) ( )͠= + →u e h e u c, Φ ˜n n ε n ε n ε and ( )͠ ′ →uΦ 0ε n as → ∞n . Consequently, by Lemma 3.7 one has

= >c c ε˜ for all 0 small .ε ε

From now on we will only use cε.

Recall that ( ) →λ εx λ̄, ( ) →W εx κ, and ( ( ) ( )) ( )→ =
→W εx W εx κ κ κ, ,1 2 1 2 as →ε 0 uniformly in bounded

sets of x.
By a similar argument to [4,13,15], one has

Lemma 3.9. For any { }∈ +u E \ 0 , there is a unique ( )= >t t u 0ε ε such that 
∈t uε ε. Moreover, { ( )} ≤t uε ε 1 is
bounded, and if along a subsequence ( ) ( )→t u t uε 0 , then ( ) ( )‖ − ‖ →→h t u h t u 0ε ε λ κ¯, 0 . If 
∈ →u λ κ¯, , then =t 10 .

In addition, we have

Lemma 3.10. =→ →c γlim ˜ ˜ .ε ε λ κ0 ¯,

Proof. First, we show that ≥ →c γliminf ˜ε λ κ¯, . Arguing indirectly, assume that < →c γliminf ˜ε λ κ¯, . By the definition

of cε and (3.8), we can choose an 
∈ej ε and >δ 0 such that ( ) ≤ −∈ →u γ δmax Φ̃ ˜u E ε λ κ¯,ej j , as →ε 0j . Clearly,

( ) ( )≥ →u ϕ uΦ̃ ˜ε λ κ¯,j for all ∈u E and ε small. Note also that ( ) ( )≤ ≤→ → ∈ →γ I e ϕ u˜ max ˜
λ κ λ κ j u E λ κ¯, ¯, ¯,ej

. Therefore, we

obtain, for all εj small,

( ) ( )− ≥ ≥ ≥→
∈ ∈

→ →γ δ u ϕ u γ˜ max Φ̃ max ˜ ˜ ,λ κ u E
ε

u E λ κ λ κ¯, ¯, ¯,
ej

j
ej

a contradiction. □

Next take < <∞λ λ λ̄, < <∞κ μ κ, < <∞κ μ κ1 1 1 and define

( ) { ( )} ( ) { ( )} ( ) { ( )}= = =λ x λ λ x W x μ W x W x μ W xmin , , min , , min , .λ μ μ
1 1 11

We consider the truncated energy functional


(∥ ∥ ∥ ∥ ) ( ) ( )͠ = − − −+ −u u u uΦ 1
2

Ψ ,ε
λ μ

ε
λ

ε
μ, 2 2

where

�

� �

⎧

⎨

⎪⎪

⎩
⎪
⎪

( )∣ ∣

( )∣ ∣ ( )∣ ∣

∫

∫ ∫
=

+

p
W x u x

p
W x u x W εx u x

Ψ

1 d in the subcritical case

1 d 1
3

d in the critical case
,ε

μ

ε
μ p

ε
μ p

1 2
3

3

3

1

3

and 
 ( )= ‖ ‖η u Γε
λ

λ
1
4

2
ε
λ, ( ) ( ) ( ) ( )= =λ x λ εx W x W εx,ε

λ λ
ε
μ μ , ( ) ( )=W x W εxε

μ μ
1
1

1 . As before define correspond-
ingly � 
→ →+ − +h E E I E c˜ : , ˜ : , ˜ , ˜ε

λ μ
ε
λ μ

ε
λ μ

ε
λ μ, , , , , and so on.

Lemma 3.11. c̃ε is attained for small >ε 0.

Proof. Given >ε 0, let 
{ } ⊂un ε be a minimization sequence: ( ) →I u cε n ε. By the Ekeland variational
principle, we can assume that { }un is in fact a ( )PS cε-sequence for Iε on +E . Then ( )= +w u h un n ε n is a

( )PS cε-sequence for Φ̃ε on E. It is clear that { }wn is bounded, hence is a ( )C cε-sequence. We can assume
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without loss of generality that ⇀w wn ε in E. If ≠w 0ε , it is easy to check that ( ) =w cΦ̃ε ε ε. So we are going
to show that ≠w 0ε for all small >ε 0. Assume by contradiction that there is a sequence →ε 0j with =w 0εj ,

then ( )= + ⇀w u h u 0n n ε nj in E, →u 0n in L q
loc for [ )∈q 1, 3 , and ( ) →w x 0n a.e. in �∈x 3. Let >t 0n be

such that 
∈t u ˜n n ε
λ μ,

. Since 
∈un ε, it is not difficult to see { }tn is bounded and one may assume →t tn 0 as

→ ∞n . Remark that ( ) ⇀h t u˜ 0ε
λ μ

n n
,

in E and ( ) ⇀h t u˜ 0ε
λ μ

n n
,

in L q
loc for [ )∈q 1, 3 .

( )≔ + →w t u h t u˜ ˜ 0n n n ε
λ μ

n n
,

in L q
loc for [ )∈q 1, 3 . Set �{ ( ) }≔ ∈ >A x λ εx λ:ε

3 is bounded. Thus,
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5
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1
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5
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5
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�
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∣ ∣∫=
−
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x y
M x y

˜
˜ ˜

n
n n

3 .
Similarly, since set �{ ( ) }∈ >x W εx μ:3

1 is bounded, we have

� �

( )∣ ∣ ( )∣ ∣ ( )∫ ∫− =
p

W x w x
p

W x w x o1 ˜ d 1 ˜ d 1 .ε
μ

n
p

ε n
p

1 1
3

1

3

Therefore, we obtain

� �


 


( ) ( )

( ) ( )∣ ∣ ( )∣ ∣

( ) ( ) ( )

∫ ∫

≤ =

= − + − +

≤ + = +

c I t u w

w
p

W x w x
p

W x w x

I u o c o
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Φ̃ ˜ 1 ˜ d 1 ˜ d
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ε
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3

For the subcritical case, as done in the proof of Lemma 3.10, =→ c γlim ˜ ˜ε ε
λ μ

λ μ0
,

,j . Thus, ≤γ γ˜ ˜λ μ λ κ, ¯, , which

contradicts with >γ γ˜ ˜ .λ μ λ κ, ¯,

For the critical case, note that ≤ ≤→γ c c˜ ˜ ˜λ μ ε
λ μ

ε,
,

j j, where ( )→
≔μ μ κ, .1 2 Thus, by Lemma 3.10, we have

≤→ →γ γ˜ ˜λ μ λ κ, ¯, , which contradicts with >→ →γ γ˜ ˜λ μ λ κ, ¯, . □

We now turn to prove the desired conclusion.
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Lemma 3.12. Let = ++ −u u un n n be a ( )C c-sequence for Φ͠ε and set ( )= ++ +v u h un n ε n ( )= −− +z u h un n ε n . Then

∥ ∥ →z 0n and { }vn is also a ( )C c-sequence for Φ͠ε, that is, { }+un is a ( )C c-sequence for Iε. Consequently, either
=c 0 or ≥c cε.

Proof. It suffices to show that∥ ∥ →z 0.n Note that, by Lemma 3.7, one has∥ ∥ ≤ +u Λn
1
2 , hence { }un is in fact

a bounded ( )C c sequence for ( ) →u cΦ : Φε ε n and ( )′ →uΦ 0ε n . Observe that

( ) ( ( ) ) ( ) ( )= ′ = − − ′ − ′+v z h u z v z v z0 Φ , Γ Ψε n n ε n n λ n n ε n nε

and

( ) ( ) ( ) ( ) ( )= ′ = − − ′ − ′−o u z u z u z u z1 Φ , Γ Ψ .ε n n n n λ n n ε n nε

Following [13, Remark 3.10], one has

∣ ( )[ ]∣ ∥ ∥″ + ≤v tz z z zΓ , 1
2

.λ n n n n n
2

ε

Thus,

( ) ∥ ∥ ( ( ) ( )) ( ( ) ( )) ∥ ∥= + ′ + − ′ + ′ + − ′ ≥o z v z v z v z v z z1 Γ Γ Ψ Ψ ,n λ n n λ n n ε n n ε n n n
2 2

ε ε

which shows ∥ ∥ →z 0n . Finally, it follows from (2.8) that if ≠c 0 then ≥c cε. □

We turn to study the ( )C c-condition of Φ͠.

Lemma 3.13. For all >ε 0 small, Φ͠ε satisfies the ( )C c condition for all < ∞c c .

Proof. For later aims we set

( ) { ( )} ( ) { ( )} ( ) { ( )}= = = =∞
∞

∞
∞

∞
∞λ x λ λ x W x κ W x W x κ W x jmin , , min , , min , , 1, 2.j j j
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1 d , in the subcritical case ,

1 d 1
3

d , in the critical case ,
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ε
p

ε
p

ε1 2
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3

3 3


 ( )= ‖ ‖∞ ∞η u1
4

Γ ,ε λ
2

ε

and


(∥ ∥ ∥ ∥ ) ( ) ( )͠ = − − −
∞ + − ∞ ∞u u u uΦ 1

2
Ψ ,ε ε ε

2 2 (3.9)

where ( ) ( ) ( ) ( ) ( ) ( )= = =∞ ∞ ∞ ∞ ∞ ∞λ x λ εx W x W εx W x W εx, ,ε ε jε j . It is not difficult to verify that ͠ ∞Φε has the
same properties possessed by Φ͠ε shown above. In particular, letting ∞cε be the linking level of ͠ ∞Φε , we have
→∞ ∞c cε as →ε 0.
Let { }un be a ( )C c-sequence for Φ͠ε with < ∞c c . By virtue of Lemma 3.2, { }un is bounded and

( ) ( )͠ =u uΦ Φε n ε n , hence it is a ( )C c-sequence for Φε. We can assume that ⇀u un . Clearly, ( )′ =uΦ 0ε . Set
= −z u un n . Note that ⇀z 0n in →E z, 0n in [ )∈L 1, 3q

loc , and ( ) →z x 0n a.e. in x. Using the Brezis-Lieb
lemma [33]:

� � �

∣ ∣ ∣ ∣ ∣ ∣∫ ∫ ∫− →u x z x u xd d d ,n
q

n
q q

3 3 3
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it is easy to check that ( ) ( )→ −∞ z c uΦ Φε n ε and ( ) ( )′ →∞ zΦ 0ε n . If ( )=c uΦε , then →z 0n and we are done. If
( )− ≥ ∞c u cΦε ε , then ≥ + ∞c c cε ε , a contradiction. □

Let � { ( ) }͠≔ ∈ ′ =u E u: Φ 0ε ε be the critical set of Φ͠ε. By using the same iterative argument of [22] one
obtains easily the following (see [13,16]).

Lemma 3.14. If �∈u ε with ∣ ( )∣͠ ≤u CΦε 1, then, for any [ )∈ +∞ ‖ ‖ ≤q u2, , ΛW qq1, where Λq depends only onC1.

4 Proof of main results

4.1 Proof of main results: the subcritical case

Without loss of generality, wemay assume that �∈ ∩0 Γ, hence, ( ) ( )= =λ λ κ W¯ 0 , 0 . Solutions of (2.7) are
critical points of the functional ( ) ( )=u uΦ Φε ε

λ κ¯, . For notational convenience we denote ( ) ( )=u ϕ uΦ λ κ0 ¯, . We

will utilize Theorem 2.1. Obviously, Φε is even, and in virtue of Remark 2.1 the conditions ( )Φ1 and ( )Φ2 are
satisfied. It remains to verify ( )Φ3 .

Let �∈u λ κ¯, and let �( )∈ ∞ +χ Cr 0 be such that ( ) =χ s 1r if ( )≤ =s r χ s, 0r if ≥ +s r 1, and ( )′ ≤χ s 0r . Set

( ) (∣ ∣) ( )=u x χ x u xr r . Recall that ∣ ( )∣ ≤ − ∣ ∣u x Ce c x for some >C c, 0 and all �∈x 3, hence ∥ ∥− →u u 0r as

→ ∞r . Then ∥ ∥ ∥ ∥ ( )− ≤ − → →± ±u u u u u γ0, Φr r r λ κ0 ¯, and ( )′ →uΦ 0r0 , as → ∞r . Let →+ −h E E:0 be

defined so that ( ( )) ( )+ = +∈ −u h u u vΦ max Φv E0 0 0 . Clearly, ∥ ( )∥− →− +u h u 0r r0 , and ∥ ∥− →u û 0r r , where
( )= ++ +u u h uˆr r r0 (see Lemma 3.12). Therefore,

( ) ( ) ( ) ( ) ( )+ = = + = +
∈

+

−
u v u u o γ omax Φ Φ ˆ Φ 1 1 ,

v E
r r r λ κ0 0 0 ¯, (4.1)

as →ε 0. Observe that since, as → →ε λ λ0, ¯ε and ( ) →W εx κ uniformly in ∣ ∣ ≤ +x r 1 we have that, for any
>δ 0, there are >r 0δ and >ε 0δ such that

�
( ) < +

∈ ⊕−
w γ δmax Φ ,

w E u
ε λ κ¯,

r
(4.2)

for all ≥r rδ and ≤ε εδ.
Let ( ( ) )= +y j r2 1 , 0, 0j , define ( ) ( ) ( ( ) )= − = − +u x u x y u x j r x x2 1 , ,j

j
1 2 3 , ( ) ( )= −u x u x yrj r

j for

= … −j m0, 1, , 1. Setting ( )( )= − +r m r2 1 1m , it is clear that supp ( )⊂u B 0rj rm . Obviously { }+ =−urj j
m

0
1 are line-

arly independent. Indeed, if = ∑ =+
=
− +w c u 0j

m
j rj0

1 , denoting = ∑ =
−w c uj

m
j rj0

1 , one has = +− +w w w and

∥ ∥ ( ) ( ) ( )∑ ∑− = = =− +w a w c a u a u c ,
j

j rj r
j

j
2 2 2

which implies = = … −c j m0, 0, 1, , 1j . Now set

{ } { }= ⊕ = … − = ⊕ = … −− − +E E u j m E u j mspan : 0, , 1 span : 0, , 1 .m rj rj

By virtue of Lemma 3.9, let >t 0εrj be such that 
∈+t uεrj rj ε. Observe that

= =
→ →∞ →

t tlim lim lim 1;
ε r

εrj
ε

εj
0 0 (4.3)

( ) ( ) ( )= = =
→ →∞

+

→

+ + −h t u h t u h u ulim lim lim ;
ε r

ε εrj rj
ε

ε εj rj
0 0

0 (4.4)

∥ ( ) ∥ ∥ ( ) ∥− = − =
→ →∞

+ −

→

+ −h t u t u h t u t ulim lim lim 0.
ε r

ε εrj rj εrj rj
ε

ε εj εj
0 0

(4.5)

It is not difficult to check the following:
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( ) ⎛

⎝
⎜ ( )⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( )

⎛

⎝
⎜

⎞

⎠
⎟ ( ) ( ) ( )

( ) ( ) ( ( )) ( )

( ( )) ( ) ( ) ( )

( )

∑ ∑

∑ ∑

∑ ∑

∑ ∑

= + = + +

= + = +

= + + = + +

= + + = +

= +

∈
=

−
+ +

=

−
+ −

=

−

=

−

=

−
+ −

=

−
+ +

=

−
+ +

=

−

w t u h t u t u t u o

t u o t u o

t u t u o t u h t u o

t u h t u o u o

mγ o

max Φ Φ Φ 1

Φ 1 Φ 1

Φ 1 Φ 1

Φ 1 Φ 1

1 ,

w E
ε ε

j

m

εj rj ε εj rj ε
j

m

εj rj εj rj r

ε
j

m

εj rj r
j

m

ε εj rj r

j

m

ε εj rj εj rj r
j

m

ε εj rj ε εj rj r

j

m

j rj j rj rε
j

m

rε

λ κ rε

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 0 0 0
0

1

0

¯,

m

where ( )o 1r means arbitrary small as → ∞r , and ( )o 1rε means arbitrary small as r is sufficiently large and ε
is sufficiently small. Now, by assumptions and Lemma 3.1, for any < < −∞δ γ mγ0 λ κ¯, , one may choose >r 0
large and then >ε 0m small such that, for all ( )≤ ≤ −∈ ∞ε ε w γ δ, max Φm w E εm . Now by Theorem 2.1 one
obtains the multiplicity conclusion.

Let � ε denote the set of all least energy solutions of Φ̃ε. Let �→ ∈ε u0,j j j, where � �=j εj. Then { }uj is

bounded. A standard concentration argument (see [27]) shows that there exist a sequence �{ } ⊂xj
3 and

constants > >R δ0, 0 such that

∣ ∣
( )

∫ ≥
→∞

u x δliminf d .
j

B x R

j

,

2

j

Set

( )= +v u x xj j j

and denoted by ( ) ( ( )) ( ) ( ( ))= + = +λ x λ ε x x W x W ε x x,j j j j j j , one easily checks that vj solves

( ) ( ) ∣ ∣− = ⋅ −H v λ x V βv W x v v ,ω j j ε v j j j
p

j,
2

j j

with energy









�

�

⎜ ⎟

( ) (∥ ∥ ∥ ∥ ) ( ) ( )∣ ∣

( ) ( ) ( ) ⎛
⎝

⎞
⎠

( )∣ ∣͠

( )

( )

∫

∫

≔ − − −

= = = + − =

+ −S v v v v
p

W x v x

v v v
p

W x v x c

1
2

Γ 1 d

Φ Φ Γ 1
2

1 d .

j j j λ x j j j
p

j j j j λ x j j j
p

ε

2 2
j

j j

3

3

Additionally, ⇀v vj in E and →v vj in L q
loc for [ )∈q 1, 3 . We now turn to prove that { }ε xj j is bounded.

Arguing indirectly we assume ∣ ∣ → ∞ε xj j and obtain a contradiction. Without loss of generality assume
( ) → ∞λ ε x λj j , ( ) → ∞W ε x W .j j By the boundedness of ∇λ and ∇W , one sees that ( ) → ∞λ x λj , ( ) → ∞W x Wj

uniformly on bounded sets of x. Since for any ∈ ∞ψ Cc ,



�

�

( ( ) ∣ ∣ )

( ∣ ∣ )

∫

∫

= − −

= − −

→∞

−

∞ ∞
−

H v λ x V βv W v v ψ x

H v λ V βv W v v ψ x

0 lim d

d ,

j
ω j j ε v j j j

p
j

ω v
p

,
2

2

j j

3

3

hence v solves

∣ ∣⋅∇ − + − =∞ ∞
−iα v aβv ωv λ V βv W v v.v

p 2

Therefore,
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�

( ) (∥ ∥ ∥ ∥ ) ( ) ∣ ∣∫≔ − − − ≥∞
+ −

∞ ∞∞
S v v v v W v x γ1

2
Γ d ˜ .λ

p2 2

3

It follows from > >∞ ∞λ λ κ W¯ , , one has < ∞γ γ˜ ˜λ κ¯, . Moreover, by Fatou’s lemma, we have

( )< ⩽ ⩽ =∞ ∞
→∞

γ γ S v c γ˜ ˜ lim ˜ ,λ κ j
ε λ κ¯, ¯,j

a contradiction. Thus, { }ε xj j is bounded. And hence, we can assume = →y ε x yj j j 0. Then repeating the proof
of [13] gives the concentration and the exponential decay.

Finally, by Lemma 3.14 we see that the solutions are in ⋂ ≥ Wq
q

2
1, .

4.2 Proof of Corollary 1.1

By Theorem 1.1 and Remark 1.1, we obtain the ground solution of Dirac-Klein-Gordon systems which
converges to a ground state solution of the autonomuous Dirac-Klein-Gordon systems equation (1.4) for
every >c 0. Let { } { }c ω,n n be two real sequences such that

< − → +∞

< − <

+ →

c ω
ω mc

mc ω ν
m

0 , ,
0 ,

,

n n

n n

n n

2

2

as → ∞n . Let {( )}ψ ϕ,n n (where �( )≔ ∈ψ u v,n n n
4) denote a sequence of solutions for system equation (1.4)

with frequency ωn at speed of light cn, then according to [20], there exists a mass m0, λ0, such that for
≤m m0, ≤λ λ0, up to a subsequence,

� �( )→ →u v v H0, , in , ,n n
1 3 2

� �( )→ϕ H0, in , ,n
1 3

as → ∞n , where � �→v : 3 2 is a solution for the following coupled system of nonlinear Schrödinger-type
equations

⎧
⎨⎩

∣ ∣
∣ ∣

− + =

− + =

−

−

v νv mκ v v
v νv mκ v v

Δ 2 2 ,
Δ 2 2 .

p

p
1 1

2
1

2 2
2

2

4.3 Proof of main results: the critical case

Part 1. Multiplicity
Without loss of generality, we may assume that � �∈ ∩ ∩0 Γ1 2 , hence, ( )=λ λ¯ 0 , ( )=κ W 01 1 ,

( )=κ W 02 2 . Solutions of (2.7) are critical points of the functional ( ) ( )=
→

u uΦ Φε ε
λ κ¯, . We will utilize Theorem

2.1. Obviously, Φε is even, and in virtue of Remark 2.1 the conditions ( )Φ1 and ( )Φ2 are satisfied. It remains to
verify ( )Φ3 .

Let u be a critical point ≔ →ϕΦ λ κ0 ¯, , with ( ) = →u γΦ λ κ0 ¯, . Define = … −u u j m, , 0, , 1r rj , and set Em as
before.

By virtue of Lemma 3.9, let >t 0εrj be such that 
∈+t uεrj rj ε. Observe that (4.3), (4.4), and (4.5) keep true.
One then checks easily the following
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( ) ( ) ( ( )) ( )
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∈
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−
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−
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−
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−
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−
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−
+ +

=
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→
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t u o t u o
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mγ o

max Φ Φ Φ 1

Φ 1 Φ 1

Φ 1 Φ 1

Φ 1 Φ 1

1 ,

w E
ε ε

j

m

εj rj ε εj rj ε
j

m

εj rj εj rj r

ε
j

m

εj rj r
j

m

ε εj rj r

j

m

ε εj rj εj rj r
j

m

ε εj rj ε εj rj r

j

m

j rj j rj rε
j

m

rε

λ κ rε

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 0 0 0
0

1

0

¯,

m

where ( )o 1r means arbitrary small as → ∞r , and ( )o 1rε means arbitrary small as r is sufficiently large and ε
is sufficiently small. Now, by assumptions and Lemma 3.1, for any < < −∞→ →δ γ mγ0 λ κ¯, , one may choose
>r 0 large and then >ε 0m small such that, for all ( )≤ ≤ −∈ ∞→ε ε w γ δ, max Φm w E εm . Now by Theorem 2.1,

one obtains the multiplicity conclusion.
Part 2. Concentration

Let � ε denote the set of all least energy solutions of Φ̃ε. Let �→ ∈ε u0,j j j, where � �=j εj. Then { }uj is

bounded. A standard concentration argument (see [27]) shows that there exist a sequence �{ } ⊂xj
3 and

constant > >R δ0, 0 such that

∣ ∣
( )

∫ ≥
→∞

u x δliminf d .
j

B x R

j

,

2

j

Set

( )= +v u x xj j j

and denoted by ( ) ( ( ))= +λ x λ ε x xj j j ,  ( ) ( ( ))= +W x W ε x xj j j
1

1 ,  ( ) ( ( ))= +W x W ε x xj j j
2

2 one easily checks that vj
solves

 ( ) ( )∣ ∣ ( )∣ ∣− = +−H v λ x V βv W x v v W x v v ,ω j j ε v j j j
p

j j j j,
1 2 2

j j
(4.6)

with energy

 
�

�

( ) (∥ ∥ ∥ ∥ ) ( ) ( )∣ ∣ ( )∣ ∣

( ) ( )͠

( ) ∫ ∫≔ − − − +

= =

=

+ −S v v v v W x v x W x v x

v v
c

1
2

Γ d d

Φ Φ
.

j j j λ x j j j
p

j j

j j j j

ε

2 2 2 3
j

j

3
3

Additionally, ⇀v vj in E and →v vj in L q
loc for [ )∈q 1, 3 . We now turn to prove that { }ε xj j is bounded.

Arguing indirectly we assume ∣ ∣ → ∞ε xj j and obtain a contradiction. Without loss of generality assume
( ) → ∞λ ε x λj j , ( ) ( )→ →∞ ∞W ε x W W ε x W, .j j j j j1 1

2
2 By the boundedness of ∇λ and ∇W , one sees that

( ) → ∞λ x λj ,  ( ) ( )→ →∞ ∞W x W W x W,j j
1

1
2

2 uniformly on bounded sets of x. Since for any ∈ ∞ψ Cc ,

 

�

�

( ( ) ( )∣ ∣ ( )∣ ∣ )

( ∣ ∣ ∣ ∣ )

∫

∫

= − − +

= − − −

→∞

−

∞ ∞
−

∞

H v λ x V βv W x v v W x v v ψ x

H v λ V βv W v v W v v ψ x

0 lim d

d ,

j
ω j j ε v j j j

p
j j j j

ω v
p

,
1 2 2

1
2

2

j j

3

3

hence v solves

∣ ∣ ∣ ∣⋅∇ − + − = +∞ ∞
−

∞iα v aβv ωv λ V βv W v v W v v.v
p

1
2

2
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Therefore,

� �

( ) (∥ ∥ ∥ ∥ ) ( ) ∣ ∣ ∣ ∣∫ ∫≔ − − − − ≥∞
+ −

∞ ∞ ∞∞
S v v v v W v x W v x γ1

2
Γ d d ˜ .λ

p2 2
1 2

3

3 3

It follows from > >∞ ∞λ λ κ W¯ , , one has < ∞γ γ˜ ˜λ κ¯, . Moreover, by Fatou’s lemma, we have

( )< ≤ ≤ =∞ ∞
→∞

γ γ S v c γ˜ ˜ lim ˜ ,λ κ j
ε λ κ¯, ¯,j

a contradiction. Thus, { }ε xj j is bounded. And hence, we can assume = →y ε x yj j j 0. Then v solves

( )∣ ∣ ( )∣ ∣⋅∇ − + − = +∞
−iα v aβv ωv λ V βv W y v v W y v v.v

p
1 0

2
2 0 (4.7)

By Lemma 3.10, it is easy to check that � �( )∩ ∩ =→ εylim dist , Γ 0ε ε0 1 2 .
In order to prove →v vj in E, recall that as the argument shows



� �

( )∣ ∣ ( )∣ ∣∫ ∫=
→∞

W x v x W y v xlim d d .
j

j j
2 3

0
3

3 3

By the decay of v, using the Brezis-Lieb lemma, one obtains ∣ ∣− →v v 0j 3 . Hence, using the interpolation
inequality and the boundedness of vj in E yields →v vj in � �( )L ,t 3 4 for ( ]∈t 2, 3 . Denote = −z v vj j . The
scalar product of (4.6) with +zj yields

( ) ( )=+ +v z o, 1 .j j

Similarly, using the decay of v together with the fact that →±z 0j in L q
loc for [ )∈q 1, 3 , it follows from (4.7)

that

( ) ( )=+ +v z o, 1 .j

Thus,

∥ ∥ ( )=+z o 1 ,j

and the same arguments show

∥ ∥ ( )=−z o 1 ,j

we then obtain →v vj in E, and the arguments in [13] show that →v vj in H 1.
Part 3. Exponential decay

For the later use denote = ⋅∇D iα and for �∈u ε rewrite (2.7) as

( ) ( )∣ ∣ ( )∣ ∣= − + + +−Du aβu ωu λ x V βu W x u u W x u u.ε ε u ε
p

ε, 1
2

2

Acting the operator D on the two sides and noting that = −D Δ2 , we obtain

( ( ) ) ( ∣ ∣ ∣ ∣) ( ( ) ) ( ∣ ∣ ∣ ∣)= + − − − − − +− −u a λ x V u ω W u W u u D λ x V βu D W u W u uΔ .ε ε u ε
p

ε ε ε u ε
p

ε,
2

1
2

2
2

, 1
2

2 (4.8)

Now define

⎧
⎨
⎩

∣ ∣=
≠

=

u
u
u

u

u
sgn

if 0,

0 if 0.

By Kato’s inequality [19] there holds

R∣ ∣ [ ( )]⩾u u uΔ Δ sgn .

Note that

R[ ( ∣ ∣ ∣ ∣) ( )]+ =−D W u W u u usgn 0.ε
p

ε1
2

2
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Then, we obtain

∣ ∣ ( ( ) ) ∣ ∣ ( ∣ ∣ ∣ ∣) ∣ ∣ ∣ ( ( ) )∣ ∣ ∣⩾ + − − − − ⋅−u a λ x V u ω W u W u u D λ x V uΔ .ε ε u ε
p

ε ε ε u,
2

1
2

2
2

, (4.9)

It follows from Hölder inequality and � �( )∈ ∞u L ,3 4 that

∣ ( ( ) )∣ ≤D λ x V C.ε ε u,

So, due to (4.9), there exists a constant >M 0 such that

∣ ∣ ∣ ∣≥ −u M uΔ .

It then follows from the sub-solution estimate [25,31] that

∣ ( )∣ ∣ ( )∣
( )

∫≤u x C u y yd ,
B x

0

1

where C0 is independent of x and ε.
To obtain the uniformly decay estimate for the semi-classical states, we first need the following result:

Lemma 4.1. Let vε andVvε be given in the proof of Part 2. Then ∣ ( )∣v xε and ∣ ( )∣V xvε vanish at infinity uniformly in
>ε 0 small.

Proof. Similar to [13, 16], we can easily prove this lemma. We omit it here. □

And at this point, applying the maximum principle (see [29]), we easily have

Lemma 4.2. Let ∈v Eε be given in the proof of Part 2, then vε exponentially decays at infinity uniformly in >ε 0
small. More specifically, there exist >C c, 0 independent of ε such that

∣ ( )∣ ⩽ − ∣ ∣v x Ce .ε
c x

Consequently, we infer that

∣ ( )∣ ⩽ − ∣ − ∣u x Ce .ε
c x xε

With the above arguments, we can easily prove Theorem 1.2.
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