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Abstract:We consider the following fractional Schrödinger equation involving critical exponent:

{
(−∆)su + V(y)u = u2∗s −1 inℝN ,
u > 0, y ∈ ℝN ,

whereN ≥ 3and2∗s = 2N
N−2s is the critical Sobolev exponent.Under some suitable assumptions of thepotential

function V(y), by using a finite-dimensional reduction method, combined with various local Pohazaev iden-
tities, we prove the existence of infinitely many solutions. Due to the nonlocality of the fractional Laplacian
operator, we need to study the corresponding harmonic extension problem.
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1 Introduction
In this paper, we are concerned with the following problem:

{
(−∆)su + V(y)u = u2∗s −1 inℝN ,
u > 0, y ∈ ℝN ,

(1.1)

where N ≥ 3 and 2∗s = 2N
N−2s is the critical Sobolev exponent. For any s ∈ (0, 1), (−∆)s is the fractional

Laplacian inℝN , which is a nonlocal operator defined as

(−∆)su(y) = c(N, s) P.V.∫
ℝN

u(y) − u(x)
|x − y|N+2s

dx = c(N, s) lim
ϵ→0+ ∫
ℝN\Bϵ(x)

u(y) − u(x)
|x − y|N+2s

dx, (1.2)

where P.V. denotes the Cauchy principal value and c(N, s) is a constant depending on N and s. This operator
is well defined in C1,1loc ∩ Ls, where Ls = {u ∈ L1loc : ∫ℝN

|u(x)|
1+|x|N+2s dx < ∞}. For more details on the fractional

Laplacian, we referee to [16, 22] and the references therein.
The fractional Laplacian operator appears in divers areas, including biological modeling, physics and

mathematical finances, and can be regarded as the infinitesimal generator of a stable Lévy process (see, for
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example, [5]). From the view point of mathematics, an important feature of the fractional Laplacian operator
is its nonlocal property, which makes it more challenging than the classical Laplacian operator. Thus, prob-
lems with the fractional Laplacian have been extensively studied, both for the pure mathematical research
and in view of concrete real world applications, see, for example, [1–4, 7–11, 17, 19, 23, 29, 37, 39, 40, 44]
and the references therein.

Solutions of (1.1) are related to the existence of standing wave solutions to the following fractional
Schrödinger equation:

{
{
{

i∂tΨ + (−∆)sΨ = F(x, Ψ) inℝN ,
lim
|x|→∞
|Ψ(x, t)| = 0 for all t > 0.

That is, solutions with the form Ψ(x, t) = e−ictu(x), where c is a constant.
In this paper, under a weaker symmetry condition for V(y), we will construct multi-bump solutions for

(1.1) through a finite-dimensional reductionmethod, combined with various local Pohozaev identities. More
precisely, we consider V(y) = V(|y󸀠|, y󸀠󸀠) = V(r, y󸀠󸀠), y = (y󸀠, y󸀠󸀠) ∈ ℝ2 × ℝN−2 and assume that:
(V) V(y) ≥ 0 is a bounded function that belongs to C2(ℝN), and r2sV(r, y󸀠󸀠) has a critical point (r0, y󸀠󸀠0 ) satis-

fying r0 > 0, V(r0, y󸀠󸀠0 ) > 0 and deg(∇(r2sV(r, y󸀠󸀠)), (r0, y󸀠󸀠0 )) ̸= 0.
Since the fractional operator is nonlocal, we have to overcome more difficulties than the Laplace equa-

tion. Such as, we need to study the corresponding harmonic extension problem and deal with (−∆)s(ϕφ) in
an appropriate process. Hence, some new ideas and techniques are needed. We will explain these later.

Before state the main results, let us first introduce some notations. Denote Ds(ℝN) the completion of
C∞0 (ℝN) under the norm ‖(−∆)

s
2 u‖L2(ℝN ), where ‖(−∆)

s
2 u‖L2(ℝN ) is defined by (∫ℝN |ξ|

2s|Gu(ξ)|2 dξ) 12 , and Gu is
the Fourier transformation of u:

Gu(ξ) = 1
(2π) N2
∫
ℝN

e−iξ⋅xu(x) dx.

We will construct the solutions in the following the energy space:

Hs(ℝN) = {u ∈ Ds(ℝN) : ∫
ℝN

V(y)u2 dy < +∞},

with the norm

‖u‖Hs(ℝN ) = (‖(−∆)
s
2 u‖2L2(ℝN ) + ∫

ℝN

V(y)u2 dy)
1
2
.

We define the functional I on Hs(ℝN) by

I(u) = 12 ∫
ℝN

|(−∆)
s
2 u|2 dy + 12 ∫

ℝN

V(|y󸀠|, y󸀠󸀠)u2 dy − 1
2∗s
∫
ℝN

(u)2
∗
s
+ dy,

where (u)+ = max(u, 0). Then the solutions of problem (1.1) correspond to the critical points of the func-
tional I.

It is well known that the functions

Ux,λ(y) = C(N, s)(
λ

1 + λ2|y − x|2
)

N−2s
2
, λ > 0, x ∈ ℝN ,

where C(N, s) = 2 N−2s
2 Γ(N+2s2 )/Γ(

N−2s
2 ), are the only solutions of the problem (see [32])

(−∆)su = u
N+2s
N−2s , u > 0 inℝN .

Define

Hs = {u : u ∈ Hs(ℝN), u(y1, y2, y󸀠󸀠) = u(y1, −y2, y󸀠󸀠),

u(r cos(θ + 2πjk ), r sin(θ +
2πj
k )

, y󸀠󸀠) = u(r cos θ, r sin θ, y󸀠󸀠)}.

Let
xj = (r cos

2(j − 1)π
k

, r sin 2(j − 1)π
k

, y󸀠󸀠), j = 1, . . . , k.
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To construct the solution of (1.1), we hope to use Ux,λ(y) as an approximation solution. However, the
decay of Uxj ,λ is not fast enough for us when N ≤ 6s. So, we need to cut off this function. Let δ > 0 be a
small constant such that r2sV(r, y󸀠󸀠) > 0 if |(r, y󸀠󸀠) − (r0, y󸀠󸀠0 )| ≤ 10δ. Let ζ(y) = ζ(r, y󸀠󸀠) be a smooth function
satisfying ζ = 1 if |(r, y󸀠󸀠) − (r0, y󸀠󸀠0 )| ≤ δ, ζ = 0 if |(r, y󸀠󸀠) − (r0, y󸀠󸀠0 )| ≥ 2δ, |∇ζ| ≤ C and 0 ≤ ζ ≤ 1. Denote

Zxj ,λ = ζUxj ,λ , Z∗r,y󸀠󸀠 ,λ = k
∑
j=1

Uxj ,λ , Zr,y󸀠󸀠 ,λ = k
∑
j=1

Zxj ,λ .

Let
Zi,1 =

∂Zxi ,λ
∂λ

, Zi,2 =
∂Zxi ,λ
∂r

, Zi,k =
∂Zxi ,λ
∂y󸀠󸀠k

, k = 3, . . . , N.

Then a direct computation shows that

Zi,1 = O(λ−1Zxi ,λ), Zi,l = O(λZxi ,λ), l = 2, . . . , N.

We obtain the following result when N > 4s.

Theorem 1.1. Suppose that N ≥ 3 and 2+N−√4+N2

4 < s < min(N4 , 1). If V(y) satisfies condition (V), then there is
an integer k0 > 0 such that for any integer k ≥ k0, problem (1.1) has a solution uk of the form

uk = Zrk ,y󸀠󸀠k ,λk + ϕk ,

where ϕk ∈ Hs, λk ∈ [L0k
N−2s
N−4s , L1k N−2s

N−4s ], and as k →∞, λ− N−2s2
k ‖ϕk‖L∞ → 0, (rk , y󸀠󸀠k ) → (r0, y󸀠󸀠0 ).

Remark 1.2. (1) In this case, we always assume that k > 0 is a large integer, λ ∈ [L0k
N−2s
N−4s , L1k N−2s

N−4s ] for some
constants L1 > L0 > 0, and |(r, y󸀠󸀠) − (r0, y󸀠󸀠0 )| ≤ θ, with θ > 0 being a small constant.

(2) Let τ = N−4s
2(N−2s) . When N ≥ 3, the condition 2+N−√4+N2

4 < s < min(N4 , 1) is equivalent to τ < s < 1 and
N > 4s + 2τ, which guarantee the existence of a small constant σ > 0 in the proof. Moreover, it is easy to
see 1

3 <
2+N−√4+N2

4 < 1
2 for N ≥ 3.

We are also interested in the case N = 4s. Since s < 1, we have N = 3 = 4s. This case is corresponding to the
Laplace equation with N = 4.

Theorem 1.3. Suppose that N = 3 = 4s. If V(y) satisfies condition (V), then there is an integer k0 > 0 such that
for any integer k ≥ k0, problem (1.1) has a solution uk of the form

uk = Zrk ,y󸀠󸀠k ,λk + ϕk ,

where ϕk ∈ Hs, λk ∈ [eL0k
2s , eL1k2s ], and as k →∞, λ−

N−2s
2

k ‖ϕk‖L∞ → 0, (rk , y󸀠󸀠k ) → (r0, y󸀠󸀠0 ).

Remark 1.4. In this case,weassume that k > 0 is a large integer, λk ∈ [eL0k
2s , eL1k2s ], and |(r, y󸀠󸀠) − (r0, y󸀠󸀠0 )| ≤ θ.

When N > 4s, we introduce the following norms:

‖u‖∗ = sup
y∈ℝN
(

k
∑
j=1

1
(1 + λ|y − xj|)

N−2s
2 +τ
)
−1
λ−

N−2s
2 |u(y)|

and

‖f ‖∗∗ = sup
y∈ℝN
(

k
∑
j=1

1
(1 + λ|y − xj|)

N+2s
2 +τ
)
−1
λ−

N+2s
2 |f(y)|,

where τ = N−4s
2(N−2s) . When N = 3 = 4s, we use the following norms:

‖u‖∗ = sup
y∈ℝ3
(

k
∑
j=1

1
(1 + λ|y − xj|)

N−2s
2
)
−1
λ−

N−2s
2 |u(y)|

and

‖f ‖∗∗ = sup
y∈ℝ3
(

k
∑
j=1

1
(1 + λ|y − xj|)

N+2s
2
)
−1
λ−

N+2s
2 |f(y)|,

where N−2s
2 =

3
4 and

N+2s
2 =

9
4 .
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We will prove Theorems 1.1 and 1.3 by a finite-dimensional reduction method, combined with various
local Pohozaev identities. The finite-dimensional reduction method has been extensively used to construct
solutions for equations with critical growth. We refer to [6, 12–15, 18, 21, 24–26, 28, 30, 31, 33, 34, 36,
41–43] and the references therein. Roughly speaking, the outline to carry out the reduction argument is as
follows: We first construct a good enough approximation solution and linearize the original problem around
the approximation solution. Then we solve the corresponding finite-dimensional problem to obtain a true
solution.

To finish the second step, we have to obtain some good enough estimates in the first step. In our case,
since the fractional operator is nonlocal, we have to overcome more difficulties than the Laplace equation.
One of them is that wewill use Zr,y󸀠󸀠 ,λ as an approximate solution, but we have to deal with (−∆)s(ζ(y)Uxj ,λ(y))
and (−∆)s(ζ(y)Zj,t(y)). By (1.2), we can deduce that

(−∆)s(ζ(y)Uxj ,λ(y)) = ζ(y)U
2∗s −1
xj ,λ (y) + c(N, s) limϵ→0+ ∫

ℝN\Bϵ(x)

(ζ(y) − ζ(x))Uxj ,λ(x)
|x − y|N+2s

dx

=: ζ(y)U2∗s −1
xj ,λ (y) + J.

In order to obtain a good enough estimate with ‖ ⋅ ‖∗∗, we need to deal with some concrete difficulties, and
devote ourselves to calculate the last principal value very carefully (see Lemma 2.5). More precisely, when
N > 4s, we need to show that

|J| ≤ C
λs+σ

λ N+2s
2

(1 + λ|y − xj|)
N+2s
2 +τ

.

Before the end of this introduction, we briefly outline the proof for the case of N > 4s and point out some
other difficulties (the idea of the proof for the other case is similar but with different estimates). We first use
Zr,y󸀠󸀠 ,λ as an approximate solution to obtain a unique functionϕ(r, y󸀠󸀠, λ). Then the problemof finding critical
points for I(u) can be reduced to that of finding critical points of F(r, y󸀠󸀠, λ) = I(Zr,y󸀠󸀠 ,λ + ϕ(r, y󸀠󸀠, λ)). In the
second step, we solve the corresponding finite-dimensional problem to obtain a solution. However, we can
only obtain ‖ϕ‖∗ ≤ C

λs+σ (see Proposition 2.3). From Lemmas B.3 and B.5, we know that

∂F
∂λ
=
∂I(Zr,y󸀠󸀠 ,λ)

∂λ
+ O(kλ−1‖ϕ‖2∗) = k(−

2sB1
λ2s+1

V( ̄r, ȳ󸀠󸀠) + B3k
N−2s

λN−2s+1
+ O( 1

λ2s+1+σ
)), (1.3)

∂F
∂r
=
∂I(Zr,y󸀠󸀠 ,λ)

∂r
+ O(kλ‖ϕ‖2∗) = k(

B1
λ2s

∂V(r, y󸀠󸀠)
∂r
+

k
∑
j=2

B2
rλN−2s|x1 − xj|N−2s

+ O( 1
λs+σ ))

(1.4)

and

∂F
∂y󸀠󸀠j
=
∂I(Zr,y󸀠󸀠 ,λ)

∂y󸀠󸀠j
+ O(kλ‖ϕ‖2∗) = k(

B1
λ2s

∂V(r, y󸀠󸀠)
∂y󸀠󸀠j
+ O( 1

λs+σ ))
. (1.5)

Note that the estimate of ϕ is only good enough for the expansion (1.3), but it destroys the main terms in the
expansions of (1.4) and (1.5). To overcome this difficulty, following the idea in [35], instead of studying (1.4)
and (1.5), we turn to study the following local Pohozaev identities:

− ∫
∂󸀠󸀠B+

ρ

t1−2s ∂ũk
∂ν

∂ũk
∂yi
+
1
2 ∫
∂󸀠󸀠B+

ρ

t1−2s|∇ũk|2νi = ∫
Bρ

(−V(r, y󸀠󸀠)uk + (uk)
2∗s −1
+ )

∂uk
∂yi

, i = 3, . . . , N, (1.6)

and

− ∫
∂󸀠󸀠B+

ρ

t1−2s⟨∇ũk , Y⟩
∂ũk
∂ν
+
1
2 ∫
∂󸀠󸀠B+

ρ

t1−2s|∇ũk|2⟨Y, ν⟩ +
2s − N

2 ∫
∂B+

ρ

t1−2s ∂ũk
∂ν

ũk

= ∫
Bρ

(−V(r, y󸀠󸀠)uk + (uk)
2∗s −1
+ )⟨y, uk⟩, (1.7)
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where uk = Zr,y󸀠󸀠 ,λ + ϕ, ũk is the extension of uk (see below (1.8)),

B+ρ = {Y = (y, t) : |Y − (r0, y󸀠󸀠0 , 0)| ≤ ρ and t > 0} ⊆ ℝN+1+ ,

∂󸀠B+ρ = {Y = (y, t) : |y − (r0, y󸀠󸀠0 )| ≤ ρ, t = 0} ⊆ ℝN ,

∂󸀠󸀠B+ρ = {Y = (y, t) : |Y − (r0, y󸀠󸀠0 , 0)| = ρ, t > 0} ⊆ ℝN+1+ ,

∂B+ρ = ∂󸀠B+ρ ∪ ∂󸀠󸀠B+ρ ,

Bρ = {y : |y − (r0, y󸀠󸀠0 )| ≤ ρ} ⊆ ℝN .

For any u ∈ Ds(ℝN), ũ is defined by

ũ(y, t) = Ps[u] := ∫
ℝN

Ps(y − ξ, t)u(ξ) dξ, (y, t) ∈ ℝN+1+ := ℝN × (0, +∞), (1.8)

where
Ps(x, t) = β(N, s)

t2s

(|x|2 + t2) N+2s2
,

with constant β(N, s) such that ∫ℝN Ps(x, 1) dx = 1. Moreover, ũ satisfies (see [11])

div(t1−2s∇ũ) = 0 inℝN+1+ (1.9)

and
− lim

t→0
t1−2s∂t ũ(y, t) = ωs(−∆)su(y) onℝN , (1.10)

where ωs = 21−2sΓ(1 − s)/Γ(s).
Due to the nonlocality of the fractional Laplacian operator, we can not built a local Pohozaev identity

for problem (1.1). So, we need to study the corresponding harmonic extension problem (1.9) and (1.10). The
relationship between u and ũ is (1.8). Hence, we have to give some estimates for this kind of integrals. The
local Pohozaev identities (1.6) and (1.7) are much more complicated. We have to integrate one more time
than the Laplacian operator case. This is very difficult when we derive some sharp estimates for each term in
(1.6) and (1.7). We need a lot of preliminary lemmas. For example, some suitable estimates on ∇Z̃xi ,λ and ∇ϕ̃
are established in Lemmas A.5 and A.6.

Our paper is organized as follows. In Section 2, we perform a finite-dimensional reduction. We prove
Theorem 1.1 in Section 3. Theorem 1.3 is proved in Section 4. In Appendix A, we give some essential esti-
mates. We put the energy expansions for ⟨I󸀠(Zr,y󸀠󸀠 ,λ + ϕ(r, y󸀠󸀠, λ)), ∂Zr,y󸀠󸀠 ,λ∂λ ⟩, ⟨I

󸀠(Zr,y󸀠󸀠 ,λ + ϕ(r, y󸀠󸀠, λ)), ∂Zr,y󸀠󸀠 ,λ∂r ⟩

and ⟨I󸀠(Zr,y󸀠󸀠 ,λ + ϕ(r, y󸀠󸀠, λ)), ∂Zr,y󸀠󸀠 ,λ∂y󸀠󸀠 ⟩ in Appendix B.

2 Finite-Dimensional Reduction
In this section, we perform a finite-dimensional reduction by using Zr,y󸀠󸀠 ,λ as an approximation solution. We
consider the following linearized problem:

{{{{{{{
{{{{{{{
{

(−∆)sϕ + V(r, y󸀠󸀠)ϕ − (2∗s − 1)Z
2∗s −2
r,y󸀠󸀠 ,λϕ = h + N

∑
l=1

cl
k
∑
i=1

Z2
∗
s −2

xi ,λ Zi,l ,

u ∈ Hs ,
k
∑
i=1
∫
ℝN

Z2
∗
s −2

xi ,λ Zi,lϕ = 0, l = 1, 2, . . . , N,
(2.1)

for some numbers cl.

Lemma 2.1. Suppose that 2+N−√4+N2

4 < s < min(N4 , 1)or N = 3 = 4s andϕk solves problem (2.1). If ‖hk‖∗∗→ 0
as k →∞, then ‖ϕk‖∗ → 0 as k →∞.
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Proof. We prove this lemma by contradiction. We first consider the case N > 4s. We assume that there exist
hk with ‖hk‖∗∗ → 0 as k →∞, ‖ϕk‖∗ ≥ c > 0 with λ = λk, λk ∈ [L0k

N−2s
N−4s , L1k N−2s

N−4s ] and (rk , y󸀠󸀠k ) → (r0, y󸀠󸀠0 ).
Without loss of generality, we can assume that ‖ϕk‖∗ ≡ 1. For simplicity, we drop the subscript k.

Firstly, we have

|ϕ(y)| ≤ C ∫
ℝN

1
|y − z|N−2s

Z2
∗
s −2

r,y󸀠󸀠 ,λ|ϕ| dz + C ∫
ℝN

1
|y − z|N−2s

[|h| +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N
∑
l=1

cl
k
∑
i=1

Z2
∗
s −2

xi ,λ Zi,l
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
] dz =: A1 + A2.

For the first term A1, by Lemmas A.1 and A.2, we can deduce that

|A1| ≤ C‖ϕ‖∗ ∫
ℝN

1
|y − z|N−2s

Z2
∗
s −2

r,y󸀠󸀠 ,λ k
∑
i=1

λ N−2s
2

(1 + λ|z − xi|)
N−2s
2 +τ

dz ≤ C‖ϕ‖∗λ
N−2s
2

k
∑
i=1

1
(1 + λ|y − xi|)

N−2s
2 +τ+θ

,

where θ is a small constant. For the second term A2, we make use of Lemma A.2, so that

|A2| ≤ C‖h‖∗∗ ∫
ℝN

k
∑
i=1

λ N+2s
2

|y − z|N−2s(1 + λ|z − xi|)
N+2s
2 +τ

dz + C
N
∑
l=1
|cl| ∫
ℝN

k
∑
i=1

λ N+2s
2 +nl

|y − z|N−2s(1 + λ|z − xi|)N+2s
dz

≤ C‖h‖∗∗λ
N−2s
2

k
∑
i=1

1
(1 + λ|y − xi|)

N−2s
2 +τ
+ C

N
∑
l=1
|cl|λ

N−2s
2 +nl

k
∑
i=1

1
(1 + λ|y − xi|)

N−2s
2 +τ

,

where n1 = −1, nl = 1 for l = 2, . . . , N. Then we have

(
k
∑
i=1

1
(1 + λ|y − xi|)

N−2s
2 +τ
)
−1
λ−

N−2s
2 |ϕ| ≤ C‖ϕ‖∗

∑ki=1
1

(1+λ|y−xi |)
N−2s
2 +τ+θ

∑ki=1
1

(1+λ|y−xi |)
N−2s
2 +τ + C‖h‖∗∗ + C

N
∑
l=1
|cl|λnl . (2.2)

Multiplying both sides of (2.1) by Z1,t, we have

N
∑
l=1

cl
k
∑
i=1
∫
ℝN

Z2
∗
s −2

xi ,λ Zi,lZ1,t = ⟨(−∆)sϕ − V(r, y󸀠󸀠)ϕ − (2∗s − 1)Z
2∗s −2
r,y󸀠󸀠 ,λϕ, Z1,t⟩ − ⟨h, Z1,t⟩. (2.3)

First of all, there exists a constant c > 0 such that

k
∑
i=1
∫
ℝN

Z2
∗
s −2

xi ,λ Zi,lZ1,t
{
{
{

= (c + o(1))λ2nt , l = t,
≤ cλnt λnl

λN , l ̸= t.
(2.4)

Since τ < s and N−2s
2 − τ > s, we have

|⟨V(r, y󸀠󸀠)ϕ, Z1,t⟩| ≤ C‖ϕ‖∗ ∫
ℝN

ζλN−2s+nt
(1 + λ|y − x1|)N−2s

k
∑
i=1

1
(1 + λ|y − xi|)

N−2s
2 +τ

≤ C‖ϕ‖∗λN−2s+nt[ ∫
ℝN

ζ
(1 + λ|y − x1|)

3N−6s
2 +τ

+
k
∑
i=2

1
(λ|x1 − xi|)τ

∫
ℝN

ζ( 1
(1 + λ|y − x1|)

3N−6s
2
+

1
(1 + λ|y − xi|)

3N−6s
2
)]

≤ C‖ϕ‖∗ ∫
ℝN

ζ λN−2s+τ+nt

(1 + λ|y − x1|)
3N−6s

2
≤

Cλnt‖ϕ‖∗ log λ
λmin(2s−τ, N−2s2 −τ)

≤
Cλnt‖ϕ‖∗
λs+σ

(2.5)

and

|⟨h, Z1,t⟩| ≤ C‖h‖∗∗ ∫
ℝN

λN+nt
(1 + λ|y − x1|)N−2s

k
∑
i=1

1
(1 + λ|y − xi|)

N+2s
2 +τ
≤ Cλnt‖h‖∗∗. (2.6)

Moreover, one has
󵄨󵄨󵄨󵄨⟨(−∆)

sϕ − (2∗s − 1)Z
2∗s −2
r,y󸀠󸀠 ,λϕ, Z1,t⟩󵄨󵄨󵄨󵄨 ≤ Cλnt‖ϕ‖∗λs+σ

. (2.7)
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Combining (2.3), (2.4), (2.5), (2.6) and (2.7), we have

|ct| ≤
C
λnt (
‖ϕ‖∗
λσ
+ ‖h‖∗∗) +

C
λnt ∑l ̸=t

λnl |cl|
λN

.

This implies that

N
∑
l=1
|cl|λnl ≤ C(

‖ϕ‖∗
λσ
+ ‖h‖∗∗).

Thus, by (2.2) and ‖ϕ‖∗ = 1, there exists R > 0 such that

‖λ−
N−2s
2 ϕ(y)‖L∞(BR/λ(xi)) ≥ a > 0 (2.8)

for some i. As a result, we have that ϕ̃ = λ− N−2s2 ϕ( yλ + xi) converges uniformly, in any compact set, to a solution
u of the following equation:

(−∆)su − (2∗s − 1)U
2∗s −2
0,Λ u = 0 inℝN ,

for some0 < Λ1 ≤ Λ ≤ Λ2. Since u is perpendicular to the kernel of this equation, u = 0. This is a contradiction
to (2.8).

When N = 3 = 4s, we take λk ∈ [eL0k
2s , eL1k2s ] and τ = 0 in the above proofs. We also need to alter (2.5)

as follows:

|⟨V(r, y󸀠󸀠)ϕ, Z1,t⟩| ≤ Ck‖ϕ‖∗λ3−2s+nt ∫
ℝ3

ζ
(1 + λ|y − x1|)

9
4
≤
Ckλnt‖ϕ‖∗

λ 3
4
=
Ckλnt‖ϕ‖∗

λs
.

The proof is complete.

Using the same argument as in the proof of [20, Proposition 4.1], we can obtain the following proposition.

Proposition 2.2. There exist k0 > 0 and a constant C > 0, independent of k, such that for all k ≥ k0 and all
h ∈ L∞(ℝN), problem (2.1) has a unique solution ϕ = Lk(h). Besides,

‖Lk(h)‖∗ ≤ C‖h‖∗∗, |cl| ≤
C
λnl
‖h‖∗∗.

Now we consider the following problem:

{{{{{
{{{{{
{

(−∆)s(Zr,y󸀠󸀠 ,λ + ϕ) + V(r, y󸀠󸀠)(Zr,y󸀠󸀠 ,λ + ϕ) = (Zr,y󸀠󸀠 ,λ + ϕ)2∗s −1 + N
∑
l=1

cl
k
∑
i=1

Z2
∗
s −2

xi ,λ Zi,l inℝN ,

ϕ ∈ Hs ,
k
∑
i=1
∫
ℝN

Z2
∗
s −2

xi ,λ Zi,lϕ = 0, l = 1, . . . , N.
(2.9)

In the rest of this section, we devote ourselves to the proof of the following proposition by using the contrac-
tion mapping theorem.

Proposition 2.3. There exist k0 > 0 and a constant C > 0, independent of k, such that the following hold:
(a) When 2+N−√4+N2

4 < s < min(N4 , 1) for all k ≥ k0, L0k
N−2s
N−4s ≤ λ ≤ L1k N−2s

N−4s , |(r, y󸀠󸀠)−(r0, y󸀠󸀠0 )| ≤ θ, problem (2.9)
has a unique solution ϕ = ϕ(r, y󸀠󸀠, λ) satisfying

‖ϕ‖∗ ≤
C

λs+σ
, |cl| ≤

C
λs+σ

,

where σ > 0 is a small constant.
(b) When N = 3 = 4s for all k ≥ k0, eL0k

2s ≤ λ ≤ eL1k2s , |(r, y󸀠󸀠) − (r0, y󸀠󸀠0 )| ≤ θ, problem (2.9) has a unique solu-
tion ϕ = ϕ(r, y󸀠󸀠, λ) satisfying

‖ϕ‖∗ ≤
C
λs
, |cl| ≤

C
λs
.
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We rewrite (2.9) as

{{{{{{
{{{{{{
{

(−∆)sϕ + V(r, y󸀠󸀠)ϕ − (2∗s − 1)(Zr,y󸀠󸀠 ,λ)2∗s −2ϕ = F(ϕ) + lk(y) + N
∑
l=1

cl
k
∑
i=1

Z2
∗
s −2

xi ,λ Zi,l inℝN ,

ϕ ∈ Hs ,
k
∑
i=1
∫
ℝN

Z2
∗
s −2

xi ,λ Zi,lϕ = 0, l = 1, . . . , N,

where
F(ϕ) = (Zr,y󸀠󸀠 ,λ + ϕ)2∗s −1+ − Z2∗s −1r,y󸀠󸀠 ,λ − (2∗s − 1)Z2∗s −2r,y󸀠󸀠 ,λϕ

and

lk(y) = (Z
2∗s −1
r,y󸀠󸀠 ,λ(y) − ζ(y) k∑

j=1
U2∗s −1
xj ,λ (y)) − V(r, y

󸀠󸀠)Zr,y󸀠󸀠 ,λ(y) − k
∑
j=1

c(N, s) lim
ϵ→0+ ∫
ℝN\Bϵ(x)

(ζ(y) − ζ(x))Uxj ,λ(x)
|x − y|N+2s

dx

=: J1 + J2 + J3.

In order to use the contractionmapping theorem to prove Proposition 2.3, we need to estimateF(ϕ) and lk(y).
In the following, we assume that ‖ϕ‖∗ is small.

Lemma 2.4. There exists a constant C > 0, independent of k, such that:
(a) when 2+N−√4+N2

4 < s < min(N4 , 1), we have ‖F(ϕ)‖∗∗ ≤ Cλ
2s(N−4s)(N−2s)2 ‖ϕ‖min(2,2∗s −1)

∗ ,
(b) when N = 3 = 4s, we have ‖F(ϕ)‖∗∗ ≤ C(ln λ)

1
s ‖ϕ‖2∗.

Proof. We first prove (a). If 2∗s ≤ 3, then using the Hölder inequality, we obtain

|F(ϕ)| ≤ C‖ϕ‖2
∗
s −1
∗ (

k
∑
j=1

λ N−2s
2

(1 + λ|y − xj|)
N−2s
2 +τ
)
2∗s −1

≤ C‖ϕ‖2
∗
s −1
∗ λ

N+2s
2

k
∑
j=1

1
(1 + λ|y − xj|)

N+2s
2 +τ
(

k
∑
j=1

1
(1 + λ|y − xj|)τ

)
4s

N−2s

≤ Cλ
2s(N−4s)(N−2s)2 ‖ϕ‖2∗s −1∗ λ

N+2s
2

k
∑
j=1

1
(1 + λ|y − xj|)

N+2s
2 +τ

.

When 2∗s > 3, we have

|F(ϕ)| ≤ C‖ϕ‖2∗(
k
∑
j=1

λ N−2s
2

(1 + λ|y − xj|)
N−2s
2 +τ
)
2
(

k
∑
j=1

λ N−2s
2

(1 + λ|y − xj|)N−2s
)
2∗s −3

+ C‖ϕ‖2
∗
s −1
∗ (

k
∑
j=1

λ N−2s
2

(1 + λ|y − xj|)
N−2s
2 +τ
)
2∗s −1

≤ C(‖ϕ‖2∗ + ‖ϕ‖
2∗s −1
∗ )λ

N+2s
2 (

k
∑
j=1

1
(1 + λ|y − xj|)

N−2s
2 +τ
)
2∗s −1

≤ Cλ
2s(N−4s)(N−2s)2 ‖ϕ‖2∗λ N+2s

2

k
∑
j=1

1
(1 + λ|y − xj|)

N+2s
2 +τ

.

Hence, we obtain ‖F(ϕ)‖∗∗ ≤ Cλ
2s(N−4s)(N−2s)2 ‖ϕ‖min(2,2∗s −1)

∗ .
Now, we prove (b):

|F(ϕ)| ≤ C‖ϕ‖2∗(
k
∑
j=1

λ N−2s
2

(1 + λ|y − xj|)
N−2s
2
)
2
(

k
∑
j=1

λ N−2s
2

(1 + λ|y − xj|)N−2s
)
2∗s −3
+ C‖ϕ‖2

∗
s −1
∗ (

k
∑
j=1

λ N−2s
2

(1 + λ|y − xj|)
N−2s
2
)
2∗s −1

≤ C(‖ϕ‖2∗ + ‖ϕ‖3∗)λ
N+2s
2 (

k
∑
j=1

1
(1 + λ|y − xj|)

3
4
)
3
≤ C(ln λ)

1
s ‖ϕ‖2∗λ

N+2s
2

k
∑
j=1

1
(1 + λ|y − xj|)

9
4
.

So, we have ‖F(ϕ)‖∗∗ ≤ C(ln λ)
1
s ‖ϕ‖2∗.
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Next, we estimate lk(y).

Lemma 2.5. There exists a constant C > 0, independent of k, such that the following hold:
(i) If 2+N−√4+N2

4 < s < min(N4 , 1), then there exists a small σ > 0 such that ‖lk‖∗∗ ≤
C

λs+σ .
(ii) If N = 3 = 4s, then ‖lk‖∗∗ ≤ C

λs .

Proof. We first prove (a). By symmetry, we can assume that y ∈ Ω1. Then |y − xj| ≥ |y − x1|. We first estimate
the term J1. We have

|J1| ≤ C[(
k
∑
j=2

Uxj ,λ)
2∗s −1
+ U2∗s −2

x1 ,λ

k
∑
j=2

Uxj ,λ +
k
∑
j=2

U2∗s −1
xj ,λ ]

≤ Cλ
N+2s
2 (

k
∑
j=2

1
(1 + λ|y − xj|)N−2s

)
2∗s −1
+

Cλ N+2s
2

(1 + λ|y − x1|)4s
k
∑
j=2

1
(1 + λ|y − xj|)N−2s

.

If N − 2s ≥ N+2s
2 − τ, then we have

1
(1 + λ|y − x1|)4s

k
∑
j=2

1
(1 + λ|y − xj|)N−2s

≤
1

(1 + λ|y − x1|)
N+2s
2 +τ

k
∑
j=2

1
(1 + λ|y − xj|)

N+2s
2 −τ

≤
1

(1 + λ|y − x1|)
N+2s
2 +τ
(
k
λ )

N+2s
2 −τ

≤
1

λs+σ
1

(1 + λ|y − x1|)
N+2s
2 +τ

.

If N − 2s < N+2s
2 − τ, then 4s >

N+2s
2 + τ, and we obtain that

1
(1 + λ|y − x1|)4s

k
∑
j=2

1
(1 + λ|y − xj|)N−2s

≤
1

(1 + λ|y − x1|)
N+2s
2 +τ

k
∑
j=2

1
(λ|x1 − xj|)N−2s

≤
1

(1 + λ|y − x1|)
N+2s
2 +τ
(
k
λ )

N−2s
.

Using the Hölder inequality, we have

(
k
∑
j=2

1
(1 + λ|y − xj|)N−2s

)
2∗s −1
≤

k
∑
j=2

1
(1 + λ|y − xj|)

N+2s
2 +τ
(

k
∑
j=2

1
(1 + λ|y − xj|)

N+2s
4s (

N−2s
2 −

N−2s
N+2s τ) )

4s
N−2s

≤ C
k
∑
j=2

1
(1 + λ|y − xj|)

N+2s
2 +τ
(
k
λ )

N+2s
N−2s ( N−2s2 −

N−2s
N+2s τ)

≤ C
k
∑
j=2

1
(1 + λ|y − xj|)

N+2s
2 +τ
(
1
λ )

s+σ
.

Thus,
‖J1‖∗∗ ≤ C(

1
λ )

s+σ
.

Now, we estimate J2. Note that ζ = 0 when |(r, y󸀠󸀠) − (r0, y󸀠󸀠0 )| ≥ 2δ and 1
λ ≤

C
1+λ|y−xj | when |(r, y

󸀠󸀠) −
(r0, y󸀠󸀠0 )| < 2δ. We have

|J2| ≤
C
λ2s

λ
N+2s
2

k
∑
j=1

ζ
(1 + λ|y − xj|)N−2s

≤
C

λmin(2s,N− N+2s2 −τ)
λ

N+2s
2

k
∑
j=1

1
(1 + λ|y − xj|)

N+2s
2 +τ

.

If N > 4s + 2τ, then ‖J2‖∗∗ ≤ C
λs+σ .

We have

J3 =
k
∑
j=1

c(N, s)( lim
ϵ→0+ ∫

Bδ/4(y)\Bϵ(y)

(ζ(y) − ζ(x))Uxj ,λ(x)
|x − y|N+2s

dx + ∫
ℝN\Bδ/4(y)

(ζ(y) − ζ(x))Uxj ,λ(x)
|x − y|N+2s

dx)

=:
k
∑
j=1

c(N, s)(J31 + J32).
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We first estimate J31. From the definition of function ζ , we have ζ(y) − ζ(x) = 0 for x, y ∈ Bδ(xj) or
x, y ∈ ℝN \ B2δ(xj). So, J31 ̸= 0 only if Bδ/4(y) ⊂ B5/2δ(xj) \ B1/2δ(xj). We have

3
4 δ ≤ |y − xj| ≤ |x − y| + |x − xj| ≤

δ
4 + |x − xj| ≤

3
2 |x − xj| ≤

15
4 δ for Bδ/4(y) ⊂ B5/2δ(xj) \ B1/2δ(xj).

Furthermore, we divide J31 as follows:

J31 = lim
ϵ→0+ ∫

Bδ/4(y)\Bϵ(y)

∇ζ(y) ⋅ (y − x)Uxj ,λ(x)
|x − y|N+2s

dx + O( lim
ϵ→0+ ∫

Bδ/4(y)\Bϵ(y)

Uxj ,λ(x)
|x − y|N+2s−2

dx) =: J311 + J312.

Note that Bδ/4(y) \ Bϵ(y) is a symmetric set. Then, by the mean value theorem, we get that

|J311| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
lim
ϵ→0+ ∫

Bδ/4(y)\Bϵ(y)

∇ζ(y) ⋅ (y − x)Uxj ,λ(x)
|x − y|N+2s

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
C(N, s) lim

ϵ→0+ ∫
Bδ/4(0)\Bϵ(0)

∇ζ(y) ⋅ z
|z|N+2s

λ N−2s
2

(1 + λ2|z + y − xj|2)
N−2s
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
C(N, s)λ N−2s

2

2 lim
ϵ→0+ ∫

Bδ/4(0)\Bϵ(0)

∇ζ(y) ⋅ z
|z|N+2s

(
1

(1 + λ2|z + y − xj|2)
N−2s
2
−

1
(1 + λ2| − z + y − xj|2)

N−2s
2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ Cλ
N−2s
2 +1 ∫

Bδ/4(0)
|∇ζ(y)|
|z|N+2s−2

1
(1 + λ|(2ϑ − 1)z + y − xj|)N−2s+1

≤
C

λs+σ
λ

N+2s
2

1
(1 + λ|y − xj|)

N+2s
2 +τ

,

for 0 < ϑ < 1 and since |(2ϑ − 1)z + y − xj| ≥ |y − xj| − |(2ϑ − 1)z| ≥ 2
3 |y − xj| for z ∈ Bδ/4(0). Similarly, we can

obtain
|J312| ≤

C
λs+σ

λ
N+2s
2

1
(1 + λ|y − xj|)

N+2s
2 +τ

.

For the term J32, we divide three cases:

Case 1: If y ∈ Bδ(xj), then

|J32| ≤ ∫
ℝN\(Bδ/4(y)∪Bδ(xj))

1
|x − y|N+2s

λ N−2s
2

(1 + λ|x − xj|)N−2s

≤
C
λ2s

λ
N+2s
2

1
(1 + λ|y − xj|)N−2s

∫
ℝN\Bδ/4(y)

1
|x − y|N+2s

≤
C

λs+σ
λ

N+2s
2

1
(1 + λ|y − xj|)

N+2s
2 +τ

.

Case 2: If δ ≤ |y − xj| ≤ 3δ, then, by Lemma A.3,

|J32| ≤ ∫
ℝN\Bδ/4(y)

1
|x − y|N+2s

λ N−2s
2

(1 + λ|x − xj|)N−2s

≤ Cλ
N+2s
2 ∫
ℝN\Bδλ/4(λy)

1
|z − λy|N+2s

1
(1 + |z − λxj|)N−2s

≤ Cλ
N+2s
2 (

1
(λ|y − xj|)N

+
1
λ2s

1
(λ|y − xj|)N−2s

)

≤
C

λs+σ
λ

N+2s
2

1
(1 + λ|y − xj|)

N+2s
2 +τ

.
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Case 3: Suppose that |y − xj| > 3δ. Note that |x − y| ≥ |y − xj| − |x − xj| ≥ 1
3 |y − xj| when |y − xj| ≥ 3δ and

|x − xj| ≤ 2δ. Then we have

|J32| ≤ ∫
B2δ(xj)

1
|x − y|N+2s

λ N−2s
2

(1 + λ|x − xj|)N−2s

≤
C

λ N−2s
2
∫

B2δ(xj)

1
|x − y|N+2s

1
|x − xj|N−2s

≤
Cλ N+2s

2

λN
1

|y − xj|
N+2s
2 +τ
∫

B2δ(xj)

1
|x − xj|N−2s

≤
C

λs+σ
λ

N+2s
2

1
(1 + λ|y − xj|)

N+2s
2 +τ

.

Then we obtain ‖J3‖∗∗ ≤ C
λs+σ .

As a result, we have proved that ‖lk‖∗∗ ≤ C
λs+σ .

Now, we prove (b). Since 4s > 9
4 , we have

1
(1 + λ|y − x1|)4s

k
∑
j=2

1
(1 + λ|y − xj|)N−2s

≤
1

(1 + λ|y − x1|)
9
4

k
∑
j=2

1
(λ|x1 − xj|)N−2s

≤
1

(1 + λ|y − x1|)
9
4
(
k
λ )

3
2 .

Using the Hölder inequality, we have

(
k
∑
j=2

1
(1 + λ|y − xj|)N−2s

)
2∗s −1
≤

k
∑
j=2

1
(1 + λ|y − xj|)

9
4
(

k
∑
j=2

1
(1 + λ|y − xj|)

N+2s
4s

3
4
)

4s
N−2s

≤ C
k
∑
j=2

1
(1 + λ|y − xj|)

9
4
(
k
λ )

9
4 .

Thus,

‖J1‖∗∗ ≤ C(
1
λ )

s
.

For the term J2, we have

|J2| ≤
C
λs
λ

9
4

k
∑
j=1

1
(1 + λ|y − xj|)N−s

=
C
λs
λ

9
4

k
∑
j=1

1
(1 + λ|y − xj|)

9
4
.

Now, we estimate the term J3:

|J31| ≤
C

λ2s−1
λ

9
4 ∫
Bδ/4(0)
|∇ζ(y)|
|z|N+2s−2

1
(1 + λ|(2ϑ − 1)z + y − xj|)2s+1

+
C
λ2s

λ
9
4 ∫
Bδ/4(0)

1
|z|N+2s−2

1
(1 + λ|z + y − xj|)N−2s

≤
C
λs
λ

9
4

1
(1 + λ|y − xj|)

9
4
.

Similar to (a), we can deduce that
|J32| ≤

C
λs
λ

9
4

1
(1 + λ|y − xj|)

9
4
.

So, we obtain ‖J3‖∗∗ ≤ C
λs .

As a result, we have proved that ‖lk‖∗∗ ≤ C
λs .
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Proof of Proposition 2.3. Let y = (y󸀠, y󸀠󸀠), y󸀠 ∈ ℝ2, y󸀠󸀠 ∈ ℝN−2. If N > 4s, we set

E = {u : u ∈ C(ℝN) ∩ Hs , ‖u‖∗ ≤
1
λs
,

k
∑
i=1
∫
ℝN

Z2
∗
s −2

xi ,λ Zi,lu = 0, l = 1, . . . , N}.

By Proposition 2.2, the solution ϕ of (2.9) is equivalent to the following fixed point problem:

ϕ = A(ϕ) =: Lk(F(ϕ)) + Lk(lk).

Hence, it is sufficient to prove that the operator A is a contraction map from the complete space E to itself.
In fact, if ϕ ∈ L∞(ℝN), then, by [38, Proposition 2.9], we can obtain ϕ ∈ C(ℝN). For any ϕ ∈ E, by Proposi-
tion 2.2, Lemma 2.4 and Lemma 2.5, we have

‖A(ϕ)‖∗ ≤ C‖Lk(F(ϕ))‖∗ + C‖Lk(lk)‖∗ ≤ C[‖F(ϕ)‖∗∗ + ‖lk‖∗∗]

≤ C[ λ
2s(N−4s)(N−2s)2

λs×min(2,2∗s −1) + 1
λs+σ ]
≤

C
λs
,

since 2s(N−4s)
(N−2s)2 < s ×min(1, 2∗s − 2). This shows that A maps E to E itself and E is invariant under A operator.

If 2∗s ≤ 3, then for all ϕ1, ϕ2 ∈ E, we have

‖A(ϕ1) − A(ϕ2)‖∗ = ‖Lk(F(ϕ1) − F(ϕ2))‖∗ ≤ C‖F(ϕ1) − F(ϕ2)‖∗∗

≤ C‖(|ϕ1| + |ϕ2|)2
∗
s −2|ϕ1 − ϕ2|‖∗∗ ≤

1
2 ‖ϕ1 − ϕ2‖∗.

The case 2∗s > 3 can be discussed in a similar way.
Hence, A is a contractionmap. The Banach fixed point theorem tells us that there exists a unique solution

ϕ ∈ E for problem (2.9).
Finally, by Proposition 2.2, we have

‖ϕ‖∗ ≤ C(
1
λ )

s+σ
and |cl| ≤ C‖F(ϕ) + lk‖∗∗ ≤ C(

1
λ )

s+σ
.

When N = 3 = 4s, we set

E = {u : u ∈ C(ℝN) ∩ Hs , ‖u‖∗ ≤
C0
λs

,
k
∑
i=1
∫
ℝN

Z2
∗
s −2

xi ,λ Zi,lu = 0, l = 1, . . . , N},

where C0 > is a large constant such that

‖A(ϕ)‖∗ ≤ C‖Lk(F(ϕ))‖∗ + C‖Lk(lk)‖∗ ≤ C[C(ln λ)
1
s ‖ϕ‖2∗ +

C
λs ]
≤
C0
λs

.

By the process of the case N > 4s, we can obtain the result.

3 Proof of the Main Theorem: The Case N > 4s
Let ϕ be the function obtained in Proposition 2.3 and uk = Zr,y󸀠󸀠 ,λ + ϕ. In order to use local Pohozaev iden-
tities, we quote the extension of uk, that is, ũk = Z̃r,y󸀠󸀠 ,λ + ϕ̃. Z̃r,y󸀠󸀠 and ϕ̃ are extensions of Zr,y󸀠󸀠 and ϕ,
respectively. Then we have

{{{
{{{
{

div(t1−2s∇ũk) = 0 inℝN+1+ ,

− lim
t→0+ t1−2s∂t ũk = ωs(−V(r, y󸀠󸀠)uk + (uk)

2∗s −1
+ +

N
∑
l=1

cl
k
∑
j=1

Z2
∗
s −2

xj ,λ Zj,l) onℝN .
(3.1)
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Without loss of generality, we may assume ωs = 1. Multiplying (3.1) by ∂ũk
∂yi (i = 3, . . . , N) and ⟨∇ũk , Y⟩,

respectively, and then integrating by parts, we have the following two Pohozaev identities:

− ∫
∂󸀠󸀠B+

ρ

t1−2s ∂ũk
∂ν

∂ũk
∂yi
+
1
2 ∫
∂󸀠󸀠B+

ρ

t1−2s|∇ũk|2νi

= ∫
Bρ

(−V(r, y󸀠󸀠)uk + (uk)
2∗s −1
+ +

N
∑
l=1

cl
k
∑
j=1

Z2
∗
s −2

xj ,λ Zj,l)
∂uk
∂yi

, i = 3, . . . , N, (3.2)

and

− ∫
∂󸀠󸀠B+

ρ

t1−2s⟨∇ũk , Y⟩
∂ũk
∂ν
+
1
2 ∫
∂󸀠󸀠B+

ρ

t1−2s|∇ũk|2⟨Y, ν⟩ +
2s − N

2 ∫
∂B+

ρ

t1−2s ∂ũk
∂ν

ũk

= ∫
Bρ

(−V(r, y󸀠󸀠)uk + (uk)
2∗s −1
+ +

N
∑
l=1

cl
k
∑
j=1

Z2
∗
s −2

xj ,λ Zj,l)⟨y, uk⟩. (3.3)

In the following, assume ρ ∈ (2δ, 5δ). We have the following lemma.

Lemma 3.1. Suppose that (r, y󸀠󸀠, λ) satisfies

− ∫
∂󸀠󸀠B+

ρ

t1−2s ∂ũk
∂ν

∂ũk
∂yi
+
1
2 ∫
∂󸀠󸀠B+

ρ

t1−2s|∇ũk|2νi = ∫
Bρ

(−V(r, y󸀠󸀠)uk + (uk)
2∗s −1
+ )

∂uk
∂yi

, i = 3, . . . , N, (3.4)

− ∫
∂󸀠󸀠B+

ρ

t1−2s⟨∇ũk , Y⟩
∂ũk
∂ν
+
1
2 ∫
∂󸀠󸀠B+

ρ

t1−2s|∇ũk|2⟨Y, ν⟩ +
2s − N

2 ∫
∂B+

ρ

t1−2s ∂ũk
∂ν

ũk

= ∫
Bρ

(−V(r, y󸀠󸀠)uk + (uk)
2∗s −1
+ )⟨y, uk⟩ (3.5)

and

∫
ℝN

((−∆)suk + V(r, y󸀠󸀠)uk − (uk)
2∗s −1
+ )

∂Zr,y󸀠󸀠 ,λ
∂λ
= 0. (3.6)

Then we have cl = 0, l = 1, . . . , N.

Proof. By (3.2), (3.3), (3.4) and (3.5), we have

N
∑
l=1

cl
k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,l
∂uk
∂yi
= 0, i = 3, . . . , N,

N
∑
l=1

cl
k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,l⟨y, ∇uk⟩ = 0. (3.7)

Note that ζ = 0 inℝN \ Bρ. By (3.6) and (3.7), we have

N
∑
l=1

cl
k
∑
j=1
∫
ℝN

Z2
∗
s −2

xj ,λ Zj,lv =
N
∑
l=1

cl
k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,lv = 0 (3.8)

for v = ∂uk
∂yi , v = ⟨∇uk , y⟩ and v =

∂Zr,y󸀠󸀠 ,λ
∂λ .

By direct calculations, we have

k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,2⟨y󸀠, ∇y󸀠Zr,y󸀠󸀠 ,λ⟩ = kλ2(a1 + o(1)),
k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,i
∂Zr,y󸀠󸀠 ,λ
∂yi
= kλ2(a2 + o(1)), i = 3, . . . , N,
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and
k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,1
∂Zr,y󸀠󸀠 ,λ
∂λ
=

k
λ2
(a3 + o(1)), (3.9)

where a1 > 0, a2 > 0 and a3 > 0.
Furthermore, we have

N
∑
l=1

cl
k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,l⟨y, ∇Zr,y󸀠󸀠 ,λ⟩ = k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,2⟨y󸀠, ∇y󸀠Zr,y󸀠󸀠 ,λ⟩c2 + O( k
λN−2
|c2|) + o(kλ2

N
∑
l=3
|cl|) + o(k|c1|)

= kλ2(a1 + o(1))c2 + o(kλ2
N
∑
l=3
|cl|) + o(k|c1|) (3.10)

and
N
∑
l=1

cl
k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,l
∂Zr,y󸀠󸀠 ,λ
∂yi
=

k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,i
∂Zr,y󸀠󸀠 ,λ
∂yi

ci + o(kλ2 ∑
l ̸=1,i
|cl|) + o(k|c1|)

= kλ2(a2 + o(1))ci + o(kλ2 ∑
l ̸=1,i
|cl|) + o(k|c1|), i = 3, . . . , N. (3.11)

Since ϕ is a solution to (2.9), by fractional elliptical equation estimates (see, for example, [38, Proposi-
tion 2.9] and [16, Theorem 12.2.1]), we can obtain ϕ ∈ C1(Bρ). By integrating by parts and using ‖ϕ‖∗ ≤ C

λs+σ ,
we have

N
∑
l=1

cl
k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,lv = o(kλ2
N
∑
l=2
|cl|) + o(k|c1|),

for v = ⟨y, ∇ϕr,y󸀠󸀠 ,λ⟩ and v = ∂ϕr,y󸀠󸀠 ,λ
∂yi .

It follows from (3.8) that
N
∑
l=1

cl
k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,lv = o(kλ2
N
∑
l=2
|cl|) + o(k|c1|), (3.12)

for v = ⟨∇y, Zr,y󸀠󸀠 ,λ⟩ and v = ∂Zr,y󸀠󸀠 ,λ
∂yi .

By (3.10), (3.11) and (3.12), we have

cl = o(
1
λ2
|c1|), l = 2, . . . , N. (3.13)

From (3.8), (3.9) and (3.13), we deduce that

0 =
N
∑
l=1

cl
k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,1
∂Zr,y󸀠󸀠 ,λ
∂λ
=

k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,1
∂Zr,y󸀠󸀠 ,λ
∂λ

c1 + o(
k
λ2
)c1 = k(a3 + o(1))c1 + o(

k
λ2
)c1,

which implies that c1 = 0. We also have cl = 0, l = 2, . . . , N.

Note that

2s − N
2 ∫

∂B+
ρ

t1−2s ∂ũk
∂ν

ũk =
2s − N

2 ∫
∂󸀠󸀠B+

ρ

t1−2s ∂ũk
∂ν

ũk +
2s − N

2 ∫
Bρ

(−V(r, y󸀠󸀠)uk + (uk)
2∗s −1
+ +

N
∑
l=1

cl
k
∑
j=1

Z2
∗
s −2

xj ,λ Zj,l)uk ,

∫
Bρ

(−V(r, y󸀠󸀠)uk + (uk)
2∗s −1
+ )⟨y, ∇uk⟩ = ∫

Bρ

(−
1
2V(r, y

󸀠󸀠)⟨y, ∇u2k⟩ +
1
2∗s
⟨y, ∇(uk)

2∗s
+ ⟩)

= −
1
2 ∫
∂Bρ

V(r, y󸀠󸀠)u2k⟨y, ν⟩ +
1
2 ∫
Bρ

(NV(r, y󸀠󸀠) + ⟨∇V(r, y󸀠󸀠), y⟩)u2k

+
1
2∗s
∫
∂Bρ

(uk)
2∗s
+ ⟨y, ν⟩ +

2s − N
2 ∫

Bρ

(uk)
2∗s
+
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and∑Nl=1 cl ∫Bρ
∑kj=1 Z

2∗s −2
xj ,λ Zj,lϕ = 0. We find that (3.5) is equivalent to

∫
Bρ

(sV(r, y󸀠󸀠) + 12 ⟨∇V(r, y
󸀠󸀠), y⟩)u2k

= − ∫
∂󸀠󸀠B+

ρ

t1−2s⟨∇ũk , Y⟩
∂ũk
∂ν
+
1
2 ∫
∂󸀠󸀠B+

ρ

t1−2s|∇ũk|2⟨Y, ν⟩ +
2s − N

2 ∫
∂󸀠󸀠B+

ρ

t1−2s ∂ũk
∂ν

ũk

+
1
2 ∫
∂Bρ

V(r, y󸀠󸀠)u2k⟨y, ν⟩ −
1
2∗s
∫
∂Bρ

(uk)
2∗s
+ ⟨y, ν⟩ +

2s − N
2

N
∑
l=1

cl ∫
Bρ

k
∑
j=1

Z2
∗
s −2

xj ,λ Zj,lZr,y󸀠󸀠 ,λ . (3.14)

Similarly, (3.4) is equivalent to

1
2 ∫
Bρ

∂V(r, y󸀠󸀠)
∂y󸀠󸀠i

u2k = ∫
∂󸀠󸀠B+

ρ

t1−2s ∂ũk
∂ν

∂ũk
∂yi
−
1
2 ∫
∂󸀠󸀠B+

ρ

t1−2s|∇ũk|2νi

+
1
2 ∫
∂Bρ

V(r, y󸀠󸀠)u2kνi +
1
2∗s
∫
∂Bρ

u2
∗
s

k νi , i = 3, . . . , N. (3.15)

Lemma 3.2. Relations (3.14) and (3.15) are, respectively, equivalent to

∫
Bρ

(sV(r, y󸀠󸀠) + 12 ⟨∇V(r, y
󸀠󸀠), y⟩)u2k = O(

k
λ2s+σ
) (3.16)

and
∫
Bρ

∂V(r, y󸀠󸀠)
∂yi

u2k = O(
k

λ2s+σ
), i = 3, . . . , N. (3.17)

Proof. We only give the proof for (3.16). The proof of (3.17) is similar.
Note that ũk = Z̃r,y󸀠󸀠 ,λ + ϕ̃. We have

∫
∂󸀠󸀠B+

ρ

t1−2s⟨∇ũk , Y⟩
∂ũk
∂ν
= ∫
∂󸀠󸀠B+

ρ

t1−2s⟨∇Z̃r,y󸀠󸀠 ,λ , Y⟩∂Z̃r,y󸀠󸀠 ,λ∂ν
+ ∫
∂󸀠󸀠B+

ρ

t1−2s⟨∇ϕ̃, Y⟩∂ϕ̃
∂ν

+ ∫
∂󸀠󸀠B+

ρ

t1−2s⟨∇Z̃r,y󸀠󸀠 ,λ , Y⟩∂ϕ̃∂ν + ∫
∂󸀠󸀠B+

ρ

t1−2s⟨∇ϕ̃, Y⟩
∂Z̃r,y󸀠󸀠 ,λ
∂ν

.

Using Lemma A.5, we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∂󸀠󸀠B+
ρ

t1−2s⟨∇Z̃r,y󸀠󸀠 ,λ , Y⟩∂Z̃r,y󸀠󸀠 ,λ∂ν
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

C
λN−2s

∫
∂󸀠󸀠B+

ρ

t1−2s(
k
∑
i=1

1
(1 + |y − xi|)N−2s+1

)
2

≤
Ck2

λN−2s
∫

∂󸀠󸀠B+
ρ

t1−2s

(1 + |y − x1|)2N−4s+2
≤

Ck2

λN−2s
. (3.18)

By (A.2) in Lemma A.6,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∂󸀠󸀠B+
ρ

t1−2s⟨∇ϕ̃, Y⟩∂ϕ̃
∂ν
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C ∫

∂󸀠󸀠B+
ρ

t1−2s|∇ϕ̃|2 ≤ Ck‖ϕ‖
2
∗

λτ
. (3.19)

By the process of the proof of (3.18) and (3.19), we also have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∂󸀠󸀠B+
ρ

t1−2s⟨∇Z̃r,y󸀠󸀠 ,λ , Y⟩∂ϕ̃∂ν + ∫
∂󸀠󸀠B+

ρ

t1−2s⟨∇ϕ̃, Y⟩
∂Z̃r,y󸀠󸀠 ,λ
∂ν
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
Ck‖ϕ‖∗
λ N−2s

2
.
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Note that N > 4s. So we have proved that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∂󸀠󸀠B+
ρ

t1−2s⟨∇ũk , Y⟩
∂ũk
∂ν
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

Ck
λ2s+σ

.

Similarly, we can prove
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∂󸀠󸀠B+
ρ

t1−2s|∇ũk|2⟨Y, ν⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

Ck
λ2s+σ

.

Next, we estimate the term ∫∂󸀠󸀠B+
ρ
t1−2s ∂ũk∂ν ũk:

∫
∂󸀠󸀠B+

ρ

t1−2s ∂ũk
∂ν

ũk = ∫
∂󸀠󸀠B+

ρ

t1−2s
∂Z̃r󸀠󸀠 ,y󸀠󸀠 ,λ

∂ν
Z̃r󸀠󸀠 ,y󸀠󸀠 ,λ + ∫

∂󸀠󸀠B+
ρ

t1−2s ∂ϕ̃
∂ν

ϕ̃

+ ∫
∂󸀠󸀠B+

ρ

t1−2s
∂Z̃r󸀠󸀠 ,y󸀠󸀠 ,λ

∂ν
ϕ̃ + ∫

∂󸀠󸀠B+
ρ

t1−2s ∂ϕ̃
∂ν

Z̃r󸀠󸀠 ,y󸀠󸀠 ,λ .
By Lemma A.5,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∂󸀠󸀠B+
ρ

t1−2s
∂Z̃r󸀠󸀠 ,y󸀠󸀠 ,λ

∂ν
Z̃r󸀠󸀠 ,y󸀠󸀠 ,λ󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ C

λN−2s
∫

∂󸀠󸀠B+
ρ

t1−2s
k
∑
i=1

1
(1 + |y − xi|)N−2s+1

×
k
∑
j=1

1
(1 + |y − xj|)N−2s

≤
Ck2

λN−2s
∫

∂󸀠󸀠B+
ρ

t1−2s

(1 + |y − x1|)2N−4s+1
≤

Ck2

λN−2s
.

It follows from (A.4) that

∫
∂󸀠󸀠B+

ρ

t1−2s|ϕ̃|2 ≤ Ck‖ϕ‖
2
∗

λτ
. (3.20)

By (3.20) and (A.2) in Lemma A.6, one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∂󸀠󸀠B+
ρ

t1−2s ∂ϕ̃
∂ν

ϕ̃dS
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ( ∫

∂󸀠󸀠B+
ρ

t1−2s|∇ϕ̃|2)
1
2
( ∫
∂󸀠󸀠B+

ρ

t1−2sϕ̃2)
1
2
≤
Ck‖ϕ‖2∗

λτ
.

Similarly,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∂󸀠󸀠B+
ρ

t1−2s
∂Z̃r󸀠󸀠 ,y󸀠󸀠 ,λ

∂ν
ϕ̃ + ∫

∂󸀠󸀠B+
ρ

t1−2s ∂ϕ̃
∂ν

Z̃r󸀠󸀠 ,y󸀠󸀠 ,λ󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ Ck‖ϕ‖
2
∗

λτ
.

We have proved that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∂󸀠󸀠B+
ρ

t1−2s ∂ũk
∂ν

ũk
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

Ck
λ2s+σ

.

Since ζ = 0 on ∂Bρ, uk = ϕ on ∂Bρ, we deduce that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
∂Bρ

V(r, y󸀠󸀠)u2k⟨y, ν⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C‖ϕ‖2∗ ∫

∂Bρ

(
k
∑
j=1

λ N−2s
2

(1 + λ|y − xj|)
N−2s
2 +τ
)
2
≤
Ck2‖ϕ‖2∗

λ2τ
≤

Ck
λ2s+τ

and
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
∂Bρ

(uk)
2∗s
+ ⟨y, ν⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
Ck2∗s ‖ϕ‖2∗s∗

λ2∗s τ ≤
Ck
λ2s+τ

.

From Proposition 2.3, we know the following estimate for cl:

|cl| ≤ C(
1
λ )

s+σ
.
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On the other hand,

k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,lZr,y󸀠󸀠 ,λ = k
∑
j=1
∫
Bρ

Z2
∗
s −1

xj ,λ Zj,l +
k
∑
j=1
∫
Bρ

∑
i ̸=j

Z2
∗
s −2

xj ,λ Zj,lZxi ,λ = O(
1
λN
) + O( k

λ2s
).

These imply that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
l=1

cl
k
∑
j=1
∫
Bρ

Z2
∗
s −2

xj ,λ Zj,lZr,y󸀠󸀠 ,λ󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ Ck
λ2s+σ

.

Combining the above estimates, we find that (3.14) is equivalent to

∫
Bρ

(sV(r, y󸀠󸀠) + 12 ⟨∇V(r, y
󸀠󸀠), y⟩)u2k = O(

k
λ2s+σ
).

The proof is complete.

Lemma 3.3. For any function g(r, y󸀠󸀠) ∈ C1(ℝN), we have

∫
Bρ

g(r, y󸀠󸀠)u2k = k(
1
λ2s

g( ̄r, ȳ󸀠󸀠) ∫
ℝN

U2
0,1 + o(

1
λ2s
)).

Proof. We have

∫
Bρ

g(r, y󸀠󸀠)u2k = ∫
Dρ

g(r, y󸀠󸀠)Z2̄r,ȳ󸀠󸀠 ,λ + 2 ∫
Dρ

g(r, y󸀠󸀠)Z ̄r,ȳ󸀠󸀠 ,λϕ + ∫
Dρ

g(r, y󸀠󸀠)ϕ2.

Note that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ∫
Bρ

g(r, y󸀠󸀠)Z ̄r,ȳ󸀠󸀠 ,λϕ + ∫
Bρ

g(r, y󸀠󸀠)ϕ2󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C(‖ϕ‖∗ ∫

Bρ

k
∑
i=1

ζλN−2s

(1 + λ|y − xi|)N−2s
k
∑
j=1

1
(1 + λ|y − xj|)

N−2s
2 +τ

+ ‖ϕ‖2∗ ∫
Bρ

(
k
∑
i=1

λ N−2s
2

(1 + λ|y − xi|)
N−2s
2 +τ
)
2
)

≤
Ck‖ϕ‖∗

λs
+
Ck‖ϕ‖2∗
λ2τ
≤

Ck
λ2s+σ

and

∫
Bρ

g(r, y󸀠󸀠)Z2̄r,ȳ󸀠󸀠 ,λ = k
∑
j=1
( ∫
Bρ

g(r, y󸀠󸀠)Z2xj ,λ +∑
i ̸=j
∫
Bρ

g(r, y󸀠󸀠)Zxi ,λZxj ,λ) = k(
1
λ2s

g( ̄r, ȳ󸀠󸀠) ∫
ℝN

U2
0,1 + o(

1
λ2s
)),

and we get the result.

Proof of Theorem 1.1. By (3.16) and (3.17), we deduce that

∫
Bρ

(sV(r, y󸀠󸀠) + 12 r
∂V(r, y󸀠󸀠)

∂r )
u2k = O(

k
λ2s+σ
).

That is
∫
Bρ

1
r2s−1

∂(r2sV(r, y󸀠󸀠))
∂r

u2k = O(
k

λ2s+σ
). (3.21)

Applying Lemma 3.3 to (3.17) and (3.21), we obtain

k( 1
λ2s

∂V(r, y󸀠󸀠)
∂yi
∫
ℝN

U2
0,1 + o(

1
λ2s
)) = o( k

λ2s
)
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and

k( 1
λ2s

1
r2s−1

∂(r2sV(r, y󸀠󸀠))
∂r

∫
ℝN

U2
0,1 + o(

1
λ2s
)) = o( k

λ2s
).

Therefore, the equations to determine (r, y󸀠󸀠) are

∂(r2sV(r, y󸀠󸀠))
∂yi

= o(1), i = 3, . . . , N, (3.22)

and
∂(r2sV(r, y󸀠󸀠))

∂r
= o(1).

From (3.6) and (B.1), the equation to determine λ is

−
B1
λ2s+1

V( ̄r, ȳ󸀠󸀠) + B3k
N−2s

λN−2s+1
= O( 1

λ2s+1+σ
). (3.23)

Let λ = tk N−2s
N−4s . Then t ∈ [L0, L1]. It follows from (3.23) that

−
B1
t2s+1

V( ̄r, ȳ󸀠󸀠) + B3
tN−2s+1

= o(1), t ∈ [L0, L1]. (3.24)

Define
H(t, ̄r, ȳ󸀠󸀠) = (∇r,y󸀠󸀠 (r2sV(r, y󸀠󸀠)), − B1

t2s+1
V( ̄r, ȳ󸀠󸀠) + B3

tN−2s+1
).

Then
deg(H(t, ̄r, ȳ󸀠󸀠), [L0, L1] × Bθ((r0, y󸀠󸀠0 ))) = −deg(∇r,y󸀠󸀠 (r2sV(r, y󸀠󸀠)), Bθ((r0, y󸀠󸀠0 )) ̸= 0.

Hence, (3.22), (3.22) and (3.24) have a solution tk ∈ [L0, L1] and (rk , y󸀠󸀠k ) ∈ Bθ((r0, y󸀠󸀠0 )).

4 Proof of the Main Theorem: The Case N = 3 = 4s
Lemma 4.1. When N = 3 = 4s, relations (3.14) and (3.15) are, respectively, equivalent to

∫
Bρ

(sV(r, y󸀠󸀠) + 12 ⟨∇V(r, y
󸀠󸀠), y⟩)u2k = O(

k2

λ2s
) (4.1)

and
∫
Bρ

∂V(r, y󸀠󸀠)
∂yi

u2k = O(
k2

λ2s
), i = 3. (4.2)

Proof. By using (A.3) in Lemma A.6, we can prove this result as Lemma 3.2.

Lemma 4.2. For any function g(r, y󸀠󸀠) ∈ C1(ℝ3), we have

∫
Bρ

g(r, y󸀠󸀠)u2k = k(4πC
2(N, s)g( ̄r, ȳ󸀠󸀠) ln λ

λ2s
+ o( ln λ

λ2s
)).

Proof. We have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ∫
Bρ

g(r, y󸀠󸀠)Z ̄r,ȳ󸀠󸀠 ,λϕ + ∫
Bρ

g(r, y󸀠󸀠)ϕ2󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C(‖ϕ‖∗ ∫

Bρ

k
∑
i=1

ζλN−2s

(1 + λ|y − xi|)N−2s
k
∑
j=1

1
(1 + λ|y − xj|)

N−2s
2

+ ‖ϕ‖2∗ ∫
Bρ

(
k
∑
i=1

λ N−2s
2

(1 + λ|y − xi|)
N−2s
2
)
2
)

≤
Ck2‖ϕ‖∗

λs
+ Ck2‖ϕ‖2∗ ≤

Ck2

λ2s
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and

∫
Bρ

g(r, y󸀠󸀠)Z2̄r,ȳ󸀠󸀠 ,λ = k
∑
j=1
( ∫
Bρ

g(r, y󸀠󸀠)Z2xj ,λ +∑
i ̸=j
∫
Bρ

g(r, y󸀠󸀠)Zxi ,λZxj ,λ)

= k(g( ̄r, ȳ󸀠󸀠) ∫
Bρ(xj)

U2
xj ,λ + O(

k
λ2s
))

= k(g( ̄r, ȳ󸀠󸀠)4πC
2(N, s)
λ2s

λρ

∫
0

r2

(1 + r2) 32
dr + O( k

λ2s
))

= k(4πC2(N, s)g( ̄r, ȳ󸀠󸀠) ln λ
λ2s
+ o( ln λ

λ2s
)).

So, we get the result.

Proof of Theorem 1.3. By (4.1) and (4.2), we can deduce that

∫
Bρ

1
r2s−1

∂(r2sV(r, y󸀠󸀠))
∂r

u2k = O(
k2

λ2s
). (4.3)

Applying Lemma 4.2 to (4.2) and (4.3), we obtain

k( ln λ
λ2s

4πC2(N, s)∂V(r, y
󸀠󸀠)

∂yi
+ o( ln λ

λ2s
)) = O( k

2

λ2s
)

and

k( ln λ
λ2s

4πC2(N, s) 1
r2s−1

∂(r2sV(r, y󸀠󸀠))
∂r

+ o( ln λ
λ2s
)) = O( k

2

λ2s
).

This is
∂(r2sV(r, y󸀠󸀠))

∂yi
= o(1), i = 3,

and
∂(r2sV(r, y󸀠󸀠))

∂r
= o(1).

By (B.2), we have

−
D1 ln λ
λ2s+1

V( ̄r, ȳ󸀠󸀠) + D3k2s

λ2s+1
= o( ln λ

λ2s+1
).

Similar to the proof of Theorem 1.1, we can prove Theorem 1.3.

A Some Estimates
In this section, we give some essential estimates. For xi , xj , y ∈ ℝN , define gij(y) = 1

(1+|y−xi |)α(1+|y−xj |)β
, where

xi ̸= xj, α > 0 and β > 0 are two constants.

Lemma A.1. For any constant γ ∈ (0, min(α, β)], we have

gij(y) ≤
C

(1 + |xi − xj|)γ
(

1
(1 + |y − xi|)α+β−γ

+
1

(1 + |y − xj|)α+β−γ
).

Proof. See the proof of [42, Lemma A.1].

Lemma A.2. For any constant 0 < ϑ < N − 2s, there is a constant C > 0 such that

∫
ℝN

1
|y − z|N−2s

1
(1 + |z|)2s+ϑ

dz ≤ C
(1 + |y|)ϑ

.
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Proof. See the proof of [26, Lemma 2.1].

Lemma A.3. Let μ > 0. For any constants 0 < β < N, there exists a constant C > 0, independent of μ, such that

∫
ℝN\Bμ(y)

1
|y − z|N+2s

1
(1 + |z|)β

dz ≤ C( 1
(1 + |y|)β+2s

+
1
μ2s

1
(1 + |y|)β

).

Proof. Without loss of generality, we set |y| ≥ 2, and let d = |y|2 . Then we have

∫
ℝN\Bμ(y)

1
|y − z|N+2s

1
(1 + |z|)β

dz ≤ ∫
Bd(0)

+ ∫
Bd(y)\Bμ(y)

+ ∫
ℝN\(Bd(0)∪Bd(y))

1
|y − z|N+2s

1
(1 + |z|)β

dz.

By direct computation, we have

∫
Bd(0)

dz
|y − z|N+2s(1 + |z|)β

≤
C

dN+2s

d

∫
0

rN−1 dr
(1 + r)β

≤
C

dβ+2s

and
∫

Bd(y)\Bμ(y)

dz
|y − z|N+2s(1 + |z|)β

≤
C
dβ
∫

Bd(y)\Bμ(y)

dz
|y − z|N+2s

≤
C

μ2sdβ
.

For z ∈ ℝN \ (Bd(0) ∪ Bd(y)), we have |y − z| ≥ |y|2 and |z| ≥ |y|2 . If |z| ≥ 2|y|, then |y − z| ≥ |z| − |y| ≥
|z|
2 ,

and if |z| < 2|y|, then |y − z| ≥ |y|2 >
|z|
4 . Thus, we have

∫
ℝN\(Bd(0)∪Bd(y))

dz
|y − z|N+2s(1 + |z|)β

≤ C ∫
ℝN\Bd(0)

dz
(1 + |z|)β|z|N+2s

≤
C

dβ+2s
.

The proof is complete.

Lemma A.4. Let ρ > 0. Suppose that (y − x)2 + t2 = ρ2, t > 0 and α > N. Then, for 0 < β < N, we have

∫
ℝN

1
(t + |z|)α

1
|y − z − x|β

dz ≤ C( 1
(1 + |y − x|)β

1
tα−N
+

1
(1 + |y − x|)α+β−N

). (A.1)

Proof. The proof is similar to that of [27, Lemma A.3].

Lemma A.5. Suppose that (y − x)2 + t2 = ρ2. Then there exists a constant C > 0 such that

|Z̃xi ,λ| ≤
C

λ N−2s
2

1
(1 + |y − xi|)N−2s

and |∇Z̃xi ,λ| ≤
C

λ N−2s
2

1
(1 + |y − xi|)N−2s+1

.

Proof. By Lemma A.4, we have

|Z̃xi ,λ(y, t)| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
β(N, s) ∫

ℝN

t2s

(|y − ξ|2 + t2) N+2s2
ζ(ξ)Uxi ,λ(ξ) dξ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
β(N, s)C(N, s) ∫

ℝN

t2s

(|y − ξ|2 + t2) N+2s2
ζ(ξ)( λ

1 + λ2|ξ − xi|2
)

N−2s
2 dξ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
C

λ N−2s
2
∫
ℝN

1
(1 + |z|)N+2s

1
(λ−1 + |y − tz − xi|)N−2s

dz

≤
C

λ N−2s
2
∫
ℝN

t2s

(t + |z|)N+2s
1

(λ−1 + |y − z − xi|)N−2s
dz

≤
C

λ N−2s
2

1
(1 + |y − xi|)N−2s

.
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Note that, for l = 1, . . . , N,

∂
∂yl
∫
ℝN

t2s

(|y − ξ|2 + t2) N+2s2
ζ(ξ)( λ

1 + λ2|ξ − xi|2
)

N−2s
2 dξ

=
1

λ N−2s
2

∂
∂yl
∫
ℝN

1
(1 + |z|2) N+2s2

ζ(y − tz)( 1
λ−2 + |y − tz − xi|2

)
N−2s
2 dz

=
2s − N
λ N−2s

2
∫
ℝN

1
(1 + |z|2) N+2s2

ζ(y − tz) (y − tz − xi)l
(λ−2 + |y − tz − xi|2)

N−2s
2 +1

dz

+
1

λ N−2s
2
∫
ℝN

1
(1 + |z|2) N+2s2

∂ζ(y − tz)
∂yl

1
(λ−2 + |y − tz − xi|2)

N−2s
2

dz,

and

∂
∂t ∫
ℝN

t2s

(|y − ξ|2 + t2) N+2σ2
(

λ
1 + λ2|ξ − xi|2

)
N−2s
2 dξ

=
N − 2s
λ N−2s

2
∫
ℝN

1
(1 + |z|2) N+2s2

ζ(y − tz)
∑Nl=1(y − tz − xk,L)lzl
(λ−2 + |y − tz − xi|2)

N−2s
2 +1

dz

+
1

λ N−2s
2
∫
ℝN

1
(1 + |z|2) N+2s2

∇ζ(y − tz) ⋅ z
(λ−2 + |y − tz − xi|2)

N−2s
2

dz.

Then, by the definition of ζ and (A.1), we have

|∇Z̃xi ,λ| ≤
C

λ N−2s
2
∫
ℝN

1
(1 + |z|)N+2s−1

1
(1 + |y − tz − xi|)N−2s+1

dz

≤
C

λ N−2s
2
∫
ℝN

t2s−1

(t + |z|)N+2s−1
1

(1 + |y − z − xi|)N−2s+1
dz

≤
C

λ N−2s
2

1
(1 + |y − xi|)N−2s+1

.

The proof is complete.

For any δ > 0, we define the following two sets

D1 = {Y = (y, t) : δ < |Y − (r0, y󸀠󸀠0 , 0)| < 6δ, t > 0}

and

D2 = {Y = (y, t) : 2δ < |Y − (r0, y󸀠󸀠0 , 0)| < 5δ, t > 0}.

Lemma A.6. For any δ > 0, there exists ρ = ρ(δ) ∈ (2δ, 5δ) such that when N > 4s,

∫
∂󸀠󸀠B+

ρ

t1−2s|∇ϕ̃|2 dS ≤ Ck‖ϕ‖
2
∗

λτ
, (A.2)

and when N = 3 = 4s,

∫
∂󸀠󸀠B+

ρ

t1−2s|∇ϕ̃|2 dS ≤ Ck2‖ϕ‖2∗, (A.3)

where C is a constant, dependent on δ.
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Proof. We first consider the case N > 4s. By (A.1), for (y, t) ∈ D1, we have

|ϕ̃(y, t)| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝN

β(N, s) t2s

(|y − ξ|2 + t2) N+2s2
ϕ(ξ) dξ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
C‖ϕ‖∗t2s

λτ
k
∑
i=1
∫
ℝN

1
(|z| + t)N+2s

1
|y − z − xi|

N−2s
2 +τ

dz

≤
C‖ϕ‖∗t2s

λτ
k
∑
i=1
(

1
(1 + |y − xi|)

N−2s
2 +τ

1
t2s
+

1
(1 + |y − xi|)

N+2s
2 +τ
)

≤
C‖ϕ‖∗
λτ

k
∑
i=1

1
(1 + |y − xi|)

N−2s
2 +τ

. (A.4)

Let φ ∈ C∞0 (ℝN+1) be a function with φ(y, t) = 1 in D2, φ(y, t) = 0 in ℝN+1 \ D1 and |∇φ| ≤ C. Note that ϕ̃
satisfies

−div(t1−2s∇ϕ̃) = 0 inℝN+1+ ,

− lim
t→0

t1−2s∂tϕ̃(y, t) = −V(r, y󸀠󸀠)ϕ + (2∗s − 1)(Zr,y󸀠󸀠 ,λ)2∗s −2ϕ + F(ϕ) + lk + N
∑
l=1

cl
k
∑
i=1

Z2
∗
s −2

xi ,λ Zi,l , inℝN .

Multiplying φ2ϕ̃ on the both sides of the equation and integrating by parts over D1, we have

0 = ∫
D1

−div(t1−2s∇ϕ̃)φ2ϕ̃ dy dt = ∫
D1

t1−2s∇ϕ̃∇(φ2ϕ̃) dy dt

= ∫
D1

t1−2s∇ϕ̃(φ2∇ϕ̃ + 2φ∇φϕ̃) dy dt.

For any ϵ > 0, we have

∫
D1

t1−2s∇ϕ̃φ∇φϕ̃ dy dt ≤ ϵ ∫
D1

t1−2s|∇ϕ̃|2φ2 dy dt + C(ϵ) ∫
D1

t1−2sϕ̃2|∇φ|2 dy dt.

Taking ϵ = 1
4 and using (A.4), we obtain that

∫
D2

t1−2s|∇ϕ̃|2 dy dt ≤ C ∫
D1

t1−2sϕ̃2|∇φ|2 ≤ C‖ϕ‖
2
∗

λ2τ
∫
D1

t1−2s(
k
∑
i=1

1
(1 + |y − xi|)

N−2s
2 +τ
)
2

≤
C‖ϕ‖2∗
λ2τ
∫
D1

t1−2sk2

(1 + |y − x1|)N−2s+2τ
≤
Ck‖ϕ‖2∗

λτ
.

By using the mean value theorem of integrals, there exists ρ = ρ(δ) ∈ (2δ, 5δ) such that

∫
∂󸀠󸀠B+

ρ

t1−2s|∇ϕ̃|2 dS ≤ Ck‖ϕ‖
2
∗

λτ
.

Now, we consider the case N = 3 = 4s. We have

|ϕ̃(y, t)| ≤ C‖ϕ‖∗t2s
k
∑
i=1
∫
ℝ3

1
(|z| + t)N+2s

1
|y − z − xi|

N−2s
2

dz

≤ C‖ϕ‖∗t2s
k
∑
i=1
(

1
(1 + |y − xi|)

N−2s
2

1
t2s
+

1
(1 + |y − xi|)

N+2s
2
)

≤ C‖ϕ‖∗
k
∑
i=1

1
(1 + |y − xi|)

N−2s
2

.
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This gives
∫
D2

t1−2s|∇ϕ̃|2 dy dt ≤ C ∫
D1

t1−2sϕ̃2|∇φ|2 ≤ Ck2‖ϕ‖2∗.

So, we have
∫

∂󸀠󸀠B+
ρ

t1−2s|∇ϕ̃|2 dS ≤ Ck2‖ϕ‖2∗.

The proof is complete.

B Energy Expansion
In this section, we give some estimates of the energy expansions for ⟨I󸀠(Zr,y󸀠󸀠 ,λ + ϕ(r, y󸀠󸀠, λ)), ∂Zr,y󸀠󸀠 ,λ∂λ ⟩,
⟨I󸀠(Zr,y󸀠󸀠 ,λ + ϕ(r, y󸀠󸀠, λ)), ∂Zr,y󸀠󸀠 ,λ∂r ⟩ and ⟨I

󸀠(Zr,y󸀠󸀠 ,λ + ϕ(r, y󸀠󸀠, λ)), ∂Zr,y󸀠󸀠 ,λ∂y󸀠󸀠 ⟩.
Lemma B.1. If N > 4s, then

∂I(Z ̄r,ȳ󸀠󸀠 ,λ)
∂λ
= k(−2sB1

λ2s+1
V( ̄r, ȳ󸀠󸀠) +

k
∑
j=2

B2
λN−2s+1|xj − x1|N−2s

+ O( 1
λ2s+1+σ

)),

where B1 and B2 are two positive constants.

Proof. By a direct computation, we have
∂I(Z ̄r,ȳ󸀠󸀠 ,λ)

∂λ
=
∂I(Z∗̄r,ȳ󸀠󸀠 ,λ)

∂λ
+ O( k

λ2s+1+σ
)

= ∫
ℝN

V(y)Z∗̄r,ȳ󸀠󸀠 ,λ ∂Z
∗
̄r,ȳ󸀠󸀠 ,λ
∂λ
− ∫
ℝN

((Z∗̄r,ȳ󸀠󸀠 ,λ)2∗s −1 − k
∑
j=1

U2∗s −1
xj ,λ )

∂Z∗̄r,ȳ󸀠󸀠 ,λ
∂λ
+ O( k

λ2s+1+σ
)

= I1 − I2 + O(
k

λ2s+1+σ
).

For the term I1, by Lemma A.1, we can check that

I1 = k( ∫
ℝN

V(y)Ux1 ,λ
∂Ux1 ,λ
∂λ
+ O(1λ ∫

ℝN

Ux1 ,λ
k
∑
j=2

Uxj ,λ))

= k(V(
̄r, ȳ󸀠󸀠)
2

∂
∂λ ∫
ℝN

U2
x1 ,λ dy + O(

1
λ2s+1

k
∑
j=2

1
(λ|x1 − xj|)N−4s−σ

) + O( 1
λ2s+1+σ

))

= k(− sV(
̄r, ȳ󸀠󸀠)

λ2s+1
∫
ℝN

U2
0,1 dy + O(

1
λ2s+1+σ

))

= k(−2sB1V(
̄r, ȳ󸀠󸀠)

λ2s+1
+ O( 1

λ2s+1+σ
)),

where B1 = 1
2 ∫ℝN U

2
0,1 dy > 0 and N − 4s − σ − N−4s

N−2s > 0.
Next, we estimate I2:

I2 = k ∫
Ω1

((Z∗̄r,ȳ󸀠󸀠 ,λ)2∗s −1 − k
∑
j=1

U2∗s −1
xj ,λ )

∂Z∗̄r,ȳ󸀠󸀠 ,λ
∂λ

= k( ∫
Ω1

(2∗s − 1)U
2∗s −2
x1 ,λ

k
∑
j=2

Uxj ,λ
∂Ux1 ,λ
∂λ
+ O( 1

λ2s+1+σ
))

= k(−
k
∑
j=2

B2
λN−2s+1|xj − x1|N−2s

+ O( 1
λ2s+1+σ

)),

for some constant B2 > 0.
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Thus, we obtain that

∂I(Z ̄r,ȳ󸀠󸀠 ,λ)
∂λ
= k(−2sB1

λ2s+1
V( ̄r, ȳ󸀠󸀠) +

k
∑
j=2

B2
λN−2s+1|xj − x1|N−2s

+ O( 1
λ2s+1+σ

)).

The proof is complete.

Lemma B.2. If N = 3 = 4s, then

∂I(Z ̄r,ȳ󸀠󸀠 ,λ)
∂λ
= k(−2sD1 ln λ

λ2s+1
V( ̄r, ȳ󸀠󸀠) +

k
∑
j=2

D2
λN−2s+1|xj − x1|N−2s

+ o( ln λ
λ2s+1+σ

)),

where D1 and D2 are two positive constants.

Proof. We have

∂I(Z ̄r,ȳ󸀠󸀠 ,λ)
∂λ
= ∫
ℝ3

V(y)Z ̄r,ȳ󸀠󸀠 ,λ ∂Z ̄r,ȳ󸀠󸀠 ,λ∂λ
− ∫
ℝ3

((Z∗̄r,ȳ󸀠󸀠 ,λ)2∗s −1 − k
∑
j=1

U2∗s −1
xj ,λ )

∂Z∗̄r,ȳ󸀠󸀠 ,λ
∂λ
+ O( k

λ2s+1
)

= I1 − I2 + O(
k

λ2s+1
).

For the term I1, By Lemma A.1, we can check that

I1 = k( ∫
Bρ(x1)

V(y)Ux1 ,λ
∂Ux1 ,λ
∂λ
+ O(1λ ∫

Bρ(x1)

Ux1 ,λ
k
∑
j=2

Uxj ,λ +
1

λ2s+1
))

= k(V(
̄r, ȳ󸀠󸀠)sC2(3, s)
λ2s+1

∫
Bρ(x1)

λ3(1 − λ2|y − x1|2)
(1 + λ2|y − x1|2)

5
2
+ O( k

λ2s+1
))

= k(V(
̄r, ȳ󸀠󸀠)4πsC2(3, s)

λ2s+1

ρλ

∫
0

(1 − r2)r2

(1 + r2) 52
+ O( k

λ2s+1
))

= k( − 2sD1
ln λ
λ2s+1

V( ̄r, ȳ󸀠󸀠) + o( ln λ
λ2s+1
)),

where

D1 = 2πC2(3, s) and lim
λ→∞

∫ρλ0
(1−r2)r2
(1+r2)5/2
ln λ = −1.

Similar to the proof in Lemma B.1, we have

I2 = k(−
k
∑
j=2

D2
λN−2s+1|xj − x1|N−2s

+ O( 1
λ2s+1
)),

for some constant D2 > 0.
Thus, we obtain that

∂I(Z ̄r,ȳ󸀠󸀠 ,λ)
∂λ
= k(−2sD1 ln λ

λ2s+1
V( ̄r, ȳ󸀠󸀠) +

k
∑
j=2

D2
λN−2s+1|xj − x1|N−2s

+ o( ln λ
λ2s+1
)).

The proof is complete.

Lemma B.3. If N > 4s, then we have

⟨I󸀠(Zr,y󸀠󸀠 ,λ + ϕ), ∂Zr,y󸀠󸀠 ,λ∂λ ⟩
= k(−2sB1

λ2s+1
V( ̄r, ȳ󸀠󸀠) +

k
∑
j=2

B2
λN−2s+1|xj − x1|N−2s

+ O( 1
λ2s+1+σ

))

= k(−2sB1
λ2s+1

V( ̄r, ȳ󸀠󸀠) + B3k
N−2s

λN−2s+1
+ O( 1

λ2s+1+σ
)), (B.1)

where B1 and B2 are the same constants as in Lemma B.1, B3 > 0.
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Proof. By symmetry, we have

⟨I󸀠(Zr,y󸀠󸀠 ,λ + ϕ), ∂Zr,y󸀠󸀠 ,λ∂λ ⟩
= ∫
ℝN

((−∆)suk + V(r, y󸀠󸀠)uk − (uk)
2∗s −1
+ )

∂Z ̄r,ȳ󸀠󸀠 ,λ
∂λ

= ⟨I󸀠(Z ̄r,ȳ󸀠󸀠 ,λ), ∂Z ̄r,ȳ󸀠󸀠 ,λ∂λ ⟩
+ k⟨(−∆)sϕ + V(r, y󸀠󸀠)ϕ − (2∗s − 1)Z

2∗s −2
̄r,ȳ󸀠󸀠 ,λϕ, ∂Zx1 ,λ∂λ ⟩

− ∫
ℝN

((Z ̄r,ȳ󸀠󸀠 ,λ + ϕ)2∗s −1+ − Z2∗s −1̄r,ȳ󸀠󸀠 ,λ − (2∗s − 1)Z2∗s −2̄r,ȳ󸀠󸀠 ,λϕ)∂Z ̄r,ȳ󸀠󸀠 ,λ∂λ

=: ⟨I󸀠(Z ̄r,ȳ󸀠󸀠 ,λ), ∂Z ̄r,ȳ󸀠󸀠 ,λ∂λ ⟩
+ kJ1 − J2.

By (2.5) and (2.7), we have

J1 = O(
‖ϕ‖∗
λ1+s+σ
) = O( 1

λ2s+1+σ
).

Note that (1 + t)γ+ − 1 − γt = O(t2) for all t ∈ ℝN if 1 < γ ≤ 2, and |(1 + t)γ+ − 1 − γt| ≤ C(t2 + |t|γ) for all
t ∈ ℝN if γ > 2. So, if 2∗s ≤ 3, we have

|J2| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝN

((Z ̄r,ȳ󸀠󸀠 ,λ + ϕ)2∗s −1+ − Z2∗s −1̄r,ȳ󸀠󸀠 ,λ − (2∗s − 1)Z2∗s −2̄r,ȳ󸀠󸀠 ,λϕ)∂Z ̄r,ȳ󸀠󸀠 ,λ∂λ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ C ∫
ℝN

Z2
∗
s −3
̄r,ȳ󸀠󸀠 ,λϕ2󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∂Z ̄r,ȳ󸀠󸀠 ,λ
∂λ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
C‖ϕ‖2∗
λ ∫
ℝN

(
k
∑
j=1

λ N−2s
2

(1 + λ|y − xj|)N−2s
)
2∗s −2
(

k
∑
i=1

λ N−2s
2

(1 + λ|y − xi|)
N−2s
2 +τ
)
2

≤
C‖ϕ‖2∗
λ ∫
ℝN

λN
k
∑
j=1

1
(1 + λ|y − xj|)4s

k
∑
i=1

1
(1 + λ|y − xi|)N−2s+τ

≤
Ck‖ϕ‖2∗

λ
= O( k

λ2s+1+σ
).

If 2∗s > 3, we have

|J2| ≤ C ∫
ℝN

(Z2
∗
s −3
̄r,ȳ󸀠󸀠 ,λϕ2󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∂Z ̄r,ȳ󸀠󸀠 ,λ
∂λ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ |ϕ|2∗s −1󵄨󵄨󵄨󵄨󵄨󵄨󵄨∂Z ̄r,ȳ󸀠󸀠 ,λ∂λ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) = O( k

λ2s+1+σ
).

Thus, we obtain

⟨I󸀠(Z ̄r,ȳ󸀠󸀠 ,λ + ϕ), ∂Z ̄r,ȳ󸀠󸀠 ,λ∂λ ⟩
= ⟨I󸀠(Z ̄r,ȳ󸀠󸀠 ,λ), ∂Z ̄r,ȳ󸀠󸀠 ,λ∂λ ⟩

+ O( k
λ2s+1+σ

).

Combining this with Lemma B.1, we finish the proof.

Lemma B.4. If N = 3 = 4s, then we have

⟨I󸀠(Zr,y󸀠󸀠 ,λ + ϕ), ∂Zr,y󸀠󸀠 ,λ∂λ ⟩
= ⟨I󸀠(Zr,y󸀠󸀠 ,λ), ∂Zr,y󸀠󸀠 ,λ∂λ ⟩

+ O( k
λ2s+1
)

= k(−2sD1 ln λ
λ2s+1

V( ̄r, ȳ󸀠󸀠) + D3kN−2s

λN−2s+1
+ o( ln λ

λ2s+1
)), (B.2)

where D1 is the same constants as in Lemma B.1 and D3 > 0.

Proof. The proof is similar to that of Lemma B.3 .

Note that Zi,l = O(λZxi ,λ), l = 2, . . . , N. Similarly, we can prove the following lemma.
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Lemma B.5. If N > 4s, then we have

⟨I󸀠(Zr,y󸀠󸀠 ,λ + ϕ), ∂Zr,y󸀠󸀠 ,λ∂r
⟩ = ⟨I󸀠(Zr,y󸀠󸀠 ,λ), ∂Zr,y󸀠󸀠 ,λ∂r

⟩ + O( k
λs+σ )

= k( B1
λ2s

∂V(r, y󸀠󸀠)
∂r
+

k
∑
j=2

B2
rλN−2s|x1 − xj|N−2s

+ O( 1
λs+σ ))

and

⟨I󸀠(Zr,y󸀠󸀠 ,λ + ϕ), ∂Zr,y󸀠󸀠 ,λ∂y󸀠󸀠j
⟩ = ⟨I󸀠(Zr,y󸀠󸀠 ,λ), ∂Zr,y󸀠󸀠 ,λ∂y󸀠󸀠j

⟩ + O( k
λs+σ )
= k( B1

λ2s
∂V(r, y󸀠󸀠)

∂y󸀠󸀠j
+ O( 1

λs+σ ))
,

where B1 and B2 are the same constants as in Lemma B.1.

Lemma B.6. If N = 3 = 4s, then we have

⟨I󸀠(Zr,y󸀠󸀠 ,λ + ϕ), ∂Zr,y󸀠󸀠 ,λ∂r
⟩ = k(D1 ln λ

λ2s
∂V(r, y󸀠󸀠)

∂r
+

k
∑
j=2

D2
rλN−2s|x1 − xj|N−2s

+ O( 1λs ))

and

⟨I󸀠(Zr,y󸀠󸀠 ,λ + ϕ), ∂Zr,y󸀠󸀠 ,λ∂y󸀠󸀠j
⟩ = k( D1

λ2s
∂V(r, y󸀠󸀠)

∂y󸀠󸀠j
+ O( 1λs )),

where D1 and D2 are the same constants as in Lemma B.2.
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