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Abstract: We consider the following fractional Schrédinger equation involving critical exponent:
(-A’u+Vy)u=u* "1 inRV,
u > 0, y € ]RNa

whereN > 3and 25 = N{—’& is the critical Sobolev exponent. Under some suitable assumptions of the potential
function V(y), by using a finite-dimensional reduction method, combined with various local Pohazaev iden-
tities, we prove the existence of infinitely many solutions. Due to the nonlocality of the fractional Laplacian

operator, we need to study the corresponding harmonic extension problem.
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1 Introduction

In this paper, we are concerned with the following problem:
(-A)’u+ V(y)u=u*"1 inRY,
N (1.1)
u>o, yeR",

where N >3 and 2} = 2N s the critical Sobolev exponent. For any s € (0, 1), (-A)*® is the fractional

~ N-2s
Laplacian in RY, which is a nonlocal operator defined as
(~B)*u(y) = c(N, s) P.V.j U =80 gy (N, 5) tim J Uy = w9 g (1.2)
Ix -yl €—0* |x =yl
RN RN\B(x)

where P.V. denotes the Cauchy principal value and c(N, s) is a constant depending on N and s. This operator
is well defined in Cllo’c1 N Ls, where L = {u € LllOC g e 1+'|L‘)f|’f3125 dx < oo}. For more details on the fractional
Laplacian, we referee to [16, 22] and the references therein.

The fractional Laplacian operator appears in divers areas, including biological modeling, physics and

mathematical finances, and can be regarded as the infinitesimal generator of a stable Lévy process (see, for
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example, [5]). From the view point of mathematics, an important feature of the fractional Laplacian operator
is its nonlocal property, which makes it more challenging than the classical Laplacian operator. Thus, prob-
lems with the fractional Laplacian have been extensively studied, both for the pure mathematical research
and in view of concrete real world applications, see, for example, [1-4, 7-11, 17, 19, 23, 29, 37, 39, 40, 44]
and the references therein.

Solutions of (1.1) are related to the existence of standing wave solutions to the following fractional
Schrodinger equation:

{iaﬁ’ + (=AY = F(x,¥) inRY,

lim |¥(x,t)|=0 forall ¢t > 0.
|x|—00

That is, solutions with the form W(x, t) = e~“‘u(x), where c is a constant.

In this paper, under a weaker symmetry condition for V(y), we will construct multi-bump solutions for
(1.1) through a finite-dimensional reduction method, combined with various local Pohozaev identities. More
precisely, we consider V(y) = V(Iy'|,y") = V(r,y"), y = (¢, ¥"") € R? x RN-2 and assume that:

(V) V(y) = 0is a bounded function that belongs to C2(RN), and r?$V(r, y"') has a critical point (ro, yg’ ) satis-

fying ro > 0, V(ro, yy) > 0 and deg(V(r>sV(r,y")), (ro0,yy)) # O.

Since the fractional operator is nonlocal, we have to overcome more difficulties than the Laplace equa-
tion. Such as, we need to study the corresponding harmonic extension problem and deal with (-A)S(¢¢) in
an appropriate process. Hence, some new ideas and techniques are needed. We will explain these later.

Before state the main results, let us first introduce some notations. Denote DS(RV) the completion of
CP(RN) under the norm [|(~A)? ul|z2(gwy, where [|(~A) > ul| 2 vy is defined by ([l €115 (é)1? dé)z, and Su is
the Fourier transformation of u:

Su(é) =

! = J ey (x) dx.
(2m)?2
IRN

We will construct the solutions in the following the energy space:

HS RV = {u e DS(RY) ; J Vi dy < +00},
o

with the norm )

s 2
by = (H-0)Ful gy + [ V2 dy)
IRN
We define the functional I on H%(RN) by

1 s 1 1 :
1w =5 [ 1ol dys 5 [ vayly e dy - o= [w? ay
S

RN RN RN
where (1), = max(u, 0). Then the solutions of problem (1.1) correspond to the critical points of the func-
tional I.
It is well known that the functions

N-2s
2

ey <)
1+A2ly —x|? ’

I(%£28)/T(4525), are the only solutions of the problem (see [32])

Ura(y) = C(N, s)( A>0, xRV,

N-2s

where C(N,s) =2z

(=A)’u = u%z, u>0inRV.
Define

H; = {u cu e HSRY), uly1, y2,y") = u(y1, -y2, ¥,

u(rcos(@ + %), rsin(@ + ZTnj),y,,) =u(rcos @, rsinf, y”)}.

Let

wyfsinw’y”>’ j:l,__.,k_

Xj = (rcos X
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To construct the solution of (1.1), we hope to use Uy (y) as an approximation solution. However, the
decay of Uy;,x is not fast enough for us when N < 6s. So, we need to cut off this function. Let § > 0 be a
small constant such that r>V(r, y") > 0 if |(r, ¥"") = (ro, y5)| < 108. Let {(y) = {(r,¥"") be a smooth function
satisfying { = 1if |(r, ") — (ro, yg)| < 8, { = 0if |(r, y"") = (ro, ()| = 26, |V{] < Cand O < { < 1. Denote

k k
Zga = Uxds Zogn ) = YUt Zigia= Y Zy
RO = j=1
Let o7 o7 0z
Zig= 22Xk g, 2 Eh g =S o3 N
i1 oA i,2 o7 i,k ay;j

Then a direct computation shows that
Zin=0A"Z0), Zii=0AZy ), 1=2,...,N.
We obtain the following result when N > 4s.

Theorem 1.1. Suppose that N > 3 and ZN=Y4+N* ‘4" < s <min(¥, 1). If V(y) satisfies condition (V), then there is
an integer ko > 0 such that for any integer k > ko, problem (1.1) has a solution uy of the form

Uy = Zﬁ,?;(,,/\k + ¢r,
—2s —2s —No2s S —

where ¢ € H, A € [LokV& , LikV4 ], and as k — oo, A, * lipille — O, (Fi, Vi) — (ro, yi).

Remark 1.2. (1) In this case, we always assume that k > 0 is a large integer, A € [LOkH R le%] for some
constants Ly > Lo > 0, and |(7, )7") - (ro, yg’ )| < 0, with 8 > 0 being a small constant.

(2) Let T = % When N > 3, the condition 2:¥N=Y4N" o s < min(¥, 1) is equivalent to 7 < s < 1 and
N > 4s + 21, which guarantee the existence of a small constant o > 0 in the proof. Moreover, it is easy to
see 3 < LA 1 for N > 3,

3
We are also interested in the case N = 4s. Since s < 1, we have N = 3 = 4s. This case is corresponding to the
Laplace equation with N = 4.

Theorem 1.3. Suppose that N = 3 = 4s. If V(y) satisfies condition (V), then there is an integer ko > O such that
for any integer k > ko, problem (1.1) has a solution uy of the form

Up = Zyk,y;(’,/\k + ¢r,
_N-2s
where ¢y € Hs, Ay € [e1, elF ] and as k — 00, A 7 Il — O, (Fi, Vi) — (1o, Vi)
Remark 1.4. In this case, we assume that k > O isalarge integer, Ay € [eLoK” | L1k ] and |(7, V") - (ro, yo)l <6.

When N > 4s, we introduce the following norms:

k 1 -1 Neas
Jul. = sup( ). ) A o)l

yeRV T3 (1 + Aly — xj]) 2
and
k 1 N+Zs
Ifl-. = sup( Y. ) )
yeRVN i3 (T+Aly - x5)) =
where T = % When N = 3 = 4s, we use the following norms:
k -1
1
. = sup(y ———— ) A7
yeR3 N o1 (1 + Aly = x5)) 2
and
If1 sup(ﬁ ) A i)
T e A (1 Aly - x,|)”*“ ’

N-2s _ 3 N+2s _
where 75= = 7 and 5= =

~ho
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We will prove Theorems 1.1 and 1.3 by a finite-dimensional reduction method, combined with various
local Pohozaev identities. The finite-dimensional reduction method has been extensively used to construct
solutions for equations with critical growth. We refer to [6, 12-15, 18, 21, 24-26, 28, 30, 31, 33, 34, 36,
41-43] and the references therein. Roughly speaking, the outline to carry out the reduction argument is as
follows: We first construct a good enough approximation solution and linearize the original problem around
the approximation solution. Then we solve the corresponding finite-dimensional problem to obtain a true
solution.

To finish the second step, we have to obtain some good enough estimates in the first step. In our case,
since the fractional operator is nonlocal, we have to overcome more difficulties than the Laplace equation.
One of them is that we will use Z;’yu, ) @s an approximate solution, but we have to deal with (-=A)*({(y) Ux;,A(y))
and (-A)5({()Z; +(y)). By (1.2), we can deduce that

s 201 . ) = §(x))Ux;2(x)
AP (Ui ay) = U3 ) + (N, s) Tim j s dx
RY\B, (x)
= (U3 2 ) +.

In order to obtain a good enough estimate with || - ||..., we need to deal with some concrete difficulties, and
devote ourselves to calculate the last principal value very carefully (see Lemma 2.5). More precisely, when
N > 4s, we need to show that

N+2s
2

C A
N+2s

|]|SW et
(T+Aly-xh ="

Before the end of this introduction, we briefly outline the proof for the case of N > 4s and point out some
other difficulties (the idea of the proof for the other case is similar but with different estimates). We first use
Z; 3" ) @sanapproximate solution to obtain a unique function ¢ (7, ¥, A). Then the problem of finding critical
points for I(u) can be reduced to that of finding critical points of F(r, ?", AN =1 (Z;,yu, 2+ o, ?", A)). In the
second step, we solve the corresponding finite-dimensional problem to obtain a solution. However, we can
only obtain [|¢| . < ASLG (see Proposition 2.3). From Lemmas B.3 and B.5, we know that

oF aI(Zi,y”,/\) 1y a2 2sBy __ _ B3kN-2s 1
A= on OIS = K5 VoY) + i + O ) ) 1.3)
OF 0I(Z;3 ) B, oV(T,y") B, 1
— = —22 4 0(kAlIgI?) = k(— > ) 1.
o7 o T OUMPE) = k7 =57 +}; FAN-25 [y — N5 o(3) (1.4)
and
OF  ol(Zz 3 ) By oV(T,y") 1
= I ORI = k(1 T2 + 0555 ) )- (1.5)
ay](r ay)(/ ¢ /125 ay}{l (As+o)

Note that the estimate of ¢ is only good enough for the expansion (1.3), but it destroys the main terms in the
expansions of (1.4) and (1.5). To overcome this difficulty, following the idea in [35], instead of studying (1.4)
and (1.5), we turn to study the following local Pohozaev identities:

.ol oty 1 _ - 2:-1, OUk .
1-2s 1-2s 2 "
- - \% i = —V ) s Y] = ,...,N, 1'
[ enSESt e [ e waiv [voy e o HSE, 0= (1.6)
"B "B} By
and
e dip 1 e 2s-N . Ol
- J ! 2S<Vuk,y)W+E J 1725\ Vi (Y, vy + 5 Jtl stuk
"By "B} OB}
= J(—V(r, YUk + @) ), urds (1.7)

Bp
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where uy = Z;,yu’ 1+ @, iy is the extension of uy (see below (1.8)),

{Y=0,0:1Y - (ro,y4,0)| <pand t >0} < RV*,
03+{ =0t :ly-(ro,yg)l <p,t =0} cR",
"By ={Y = (y,£) : Y — (ro, ¥4, 0) = p, t > O} < RY*1,
0B} =0'B}ud" B},

B, ={y:ly-(ro,yg)l <p} <R".

For any u € D5(RY), #i is defined by

Uy, t) = Psu] := j Ps(y - & u(®) dé, (y,t) e R\ := RN x (0, +00), (1.8)
IRN

where
tZS

Ps(x, t) = B(N, s)

(Ix]2 + £2)"5°

with constant B(N, s) such that I]RN Ps(x, 1) dx = 1. Moreover, U satisfies (see [11])
div(t'" Vi) =0 in RV*! (1.9)

and
- lim t17250,1(y, t) = ws(-A)’u(y) onRY, (1.10)

where wg = 21725T(1 - 5)/T(s).

Due to the nonlocality of the fractional Laplacian operator, we can not built a local Pohozaev identity
for problem (1.1). So, we need to study the corresponding harmonic extension problem (1.9) and (1.10). The
relationship between u and u is (1.8). Hence, we have to give some estimates for this kind of integrals. The
local Pohozaev identities (1.6) and (1.7) are much more complicated. We have to integrate one more time
than the Laplacian operator case. This is very difficult when we derive some sharp estimates for each term in
(1.6) and (1.7). We need a lot of preliminary lemmas. For example, some suitable estimates on VZy,  and v
are established in Lemmas A.5 and A.6.

Our paper is organized as follows. In Section 2, we perform a finite-dimensional reduction. We prove

Theorem 1.1 in Section 3. Theorem 1.3 is proved in Section 4. In Appendix A, we give some essential esti-
— YA _ 0Z--n
mates. We put the energy expansions for (I’(Zf 7T e, ¥y, /l)), ’y Ay, (I’(Zf 7't o(r, vy ), < LAy

and (I'(Z; vy + 9T, 7", M), a*j,, 4y in Appendix B.

2 Finite-Dimensional Reduction

In this section, we perform a finite-dimensional reduction by using Z; 7', asan approximation solution. We
consider the following linearized problem:

N
(DY + V(r,y")p - (25 - 1)23;,2 p=h+ Z Z Zils
o 2.1)

k
u € Hy, ZI 22Zugp=0, 1=1,2,...,N,
=1y

for some numbers c;.

Lemma 2.1. Suppose that ZN=0+ N < s < min(¥, 1) or N = 3 = 4s and ¢y solves problem (2.1). If ||yl .. — O
as k — oo, then | ¢ill. — 0 as k — 0.



190 — Y.Guo,T.Liuand]. Nie, Solutions for Fractional Schrédinger Equation DE GRUYTER

Proof. We prove this lemma by contradiction. We first consider the case N > 4s. We assume that there exist
hx with [gll.. — 0 as k — o, il = ¢ > 0 with A = Ay, Ay € [Lok~is, Likv ] and (Fi, i) — (o, i)
Without loss of generality, we can assume that |[¢x| . = 1. For simplicity, we drop the subscript k.

Firstly, we have

1 1 N k 2:-2
o)< C J W 77, A|¢| dz+C J m |h| +|l_21Cl;ZXi’A Zi,1| dz =: A1 + A,.
RY RV ==
For the first term A4, by Lemmas A.1 and A.2, we can deduce that
k N-2s k
1 22 A2 N-2s 1
Arl < Ol | o 2, —— dz < Clp) A —
v VoA (1 Az - xil) T Zl (1+Aly - xil) 57+
where 0 is a small constant. For the second term A,, we make use of Lemma A.2, so that
k N+2s N k N+2s
/\ 5 A +n;
A2l < Clhl... | o dzCYlel |
o ,:zl ly - zIN-25(1 + Az — x;) " 247 ,:zl - l:zl ly = zIN=25(1 + Alz - x;|)N+2s
< Cllh]..A"F ! LC Yl y :
hS * % ST 1 25 ..
Sa+ay-u) T 5 S @+ Ay —xh) T
wheren; =-1,n;=1forl=2,...,N. Then we have
k 1
Kk -1 Yill T wEmg N
1 _N-2s 1+Aly— ; +7+6
(> - = -) gl < Clpl Y g+ C Y. (22)
iz1 (L+Aly —xil) 2 i=1 (1+/1IY*XiI)NEZS” =1
Multiplying both sides of (2.1) by Z; ¢, we have
l k 25-2 25-2
Yy JZXf,A ZiZie = (AP = V(ny")p = (25 - DZ; 0 b, Zae) = (b, Za0). (2.3)
=1 i=lpgy
First of all, there exists a constant ¢ > 0 such that
k = 2n
=(c+o(1)A°", I=t,
> j 22z O (2.4)
5 < 1#¢t.
Since T < sand @ — T > S, we have
(AN—ZSHM k 1
KV, y")$, 21,01 < Clidll. j -
(1 +Aly = xq )N=2s IZ; (1+Aly - xi) T+
< C"(l)”*AN_ZSJrntI: J ( 3N 6s |
A +Aly-x1)7=

k
1 1
+ )Yy ——— | ¢ - .
i_zleXl—Xfl)TRL (<1+Aly—xl|)“z (1+Aly - xi) ™" )
AN—25+T+m C/\"‘"(l)”* log/l B C/ln‘”d)"*

= Clel. J ((1 Ay xS gmnes T E D S 2:5)
]RN
and
AN+ Zk: 1 " (2.6)
IKh, Z1,01 < ClAl.. j = < CA"|hl... 2.6
A+ Ay =xaDV"25 & (1 + Aly - xi) 5
Moreover, one has
CA™ @l

[{((=D)°¢ - (25 —1)Z S ¢ Zi1)| < B CT (2.7)
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Combining (2.3), (2.4), (2.5), (2.6) and (2.7), we have

C /ol C Ay
e < 1 ("5 +||h||**)+ﬁ; L

This implies that

N
e < c(hyn..).
=1

Thus, by (2.2) and ||¢|l. = 1, there exists R > 0 such that

_N=2s
A2 @Yo By = @ > 0 (2.8)

for some i. As a result, we have that (.;5 o ¢>(% + x;) converges uniformly, in any compact set, to a solution

u of the following equation:

(-0y°u- (@25 - DUy u=0 inRY,

forsomeO < A1 < A < A,. Since u is perpendicular to the kernel of this equation, u = 0. Thisis a contradiction
to (2.8).

When N = 3 = 4s, we take Ay € [eLok” | L1k ] and 7 = 0 in the above proofs. We also need to alter (2.5)
as follows:

{ _ Ck™Migll. _ CkA™ 9l

V(Y"1 21,01 < CRglL 2 | <
- (1+Aly = xa D) Ai As

e
The proof is complete. O
Using the same argument as in the proof of [20, Proposition 4.1], we can obtain the following proposition.
Proposition 2.2. There exist ko > 0 and a constant C > 0, independent of k, such that for all k > ko and all
h € L®(RN), problem (2.1) has a unique solution ¢ = L (h). Besides,

C
MLl < Cllhlle, el < 5ol

Now we consider the following problem:

N k
(_A)S(Zzy”,/\ + ¢) + V(r, )’”)(27,7”,1 + ¢) = (Z?,Y",A + ¢)25—1 + z C] Z Z)Z(X_S’HZZ,',I in ]RN,
L e (2.9)

i=1py
In the rest of this section, we devote ourselves to the proof of the following proposition by using the contrac-

tion mapping theorem.

Proposition 2.3. There exist ko > 0 and a constant C > 0, independent of k, such that the following hold:
(@) When ZN=V4 N2 < s < min(Y, 1) forallk > ko, Lok¥5 < A < Lik¥5, |(F, 7)~(ro, ¥o)l < 6, problem (2.9)
has a unique solution ¢ = ¢(7,y", A) satisfying

C C
gl < o’ lcil < Ts+o’

where o > 0 is a small constant.
(b) When N =3 = 4s forall k > ko, ek¥”* < A < el1K*|(7,¥") - (r0, y!)| < 6, problem (2.9) has a unique solu-
tion p = p(¥,y", A) satisfying

C C
Il < 550 el < 55
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We rewrite (2.9) as

(A + V(Y )p - (25 - D)(Zz5n )72 = T () + u(y) + Z ¢l Z Ziy inRY,

=1 i=1
k
¢€Hs, ZJAZ)Z(_SXZZI.,I(ﬁ:O’ l=1,...,N’
i:l]RN 18]
where
251 * 2:-2
Fp) = Zigr g+ )7 - 2oy =25 =02 ¢
and
: () = ) Uy, a(x)
— s _ n 77” . .
L) = (25 ) - Z S0 = VY Z g - 3w s)elin&RN\ i i N
(X

=J1+]2+]3.

In order to use the contraction mapping theorem to prove Proposition 2.3, we need to estimate F(¢) and Ix(y).
In the following, we assume that ||¢| . is small.

Lemma 2.4. There exists a constant C > 0, independent of k, such that:

2s(N-4s) : *_
(@) when 2=V s < min(Y, 1), we have |F(P)lls. < CA 0292 ||¢||Tm(2’25 n
(b) when N = 3 = 4s, we have [|F(P)||.« < C(ln)l)%||¢||§.

Proof. We first prove (a). If 2} < 3, then using the Holder inequality, we obtain

N-2s

k -
. A3 2:-1
1F ()] < Clpl= "
(,; (1+Aly -x;))"3 )

k 1 4s

k

*_1 . Ni2s 1 N-2s

< Clgls 2% = )
]Z; 1+ Ay -x) 7 1; (1 +Aly - x)T

25(N-4s) ®_ 125 k 1
< CA w-25)2 "¢”§s IAN 2 z N+25
j=1 (L+Aly = x;0) =

When 23 > 3, we have

N—Z k

K 2 A5= 2;-3
F()l < Clol2
|F(P)l < Clls <§ L+ Aly—x |)—+1) <}:Zl (1 +A|y—x;|)N’25)

N-2s

k o
. _ A2 2:-1
el (Y =)

=1 L+ Aly = x) = "7

k 21
*_ N+2s 1 S
< CUlpI? + Il HA™
(le(1+/1ly XI) )

k
N+2s 1
< CA (N 25>2 ”¢" A o
,Zl(lwuy xjl) T
. LAy min(2,2:-1)
Hence, we obtain [|[F(@)[.. < CA %297 |||, s
Now, we prove (b):
k N-2s k N-2s *_ k N-2s *_
A2 2 A2 2;-3 2% - A2 2-1
Tl < ClgI?( —)( ) el —)
¢ ¢ ,Z;( 1+Aly —x; Z’ (1 +Aly = x;HN-2s v :z 1+Aly -x;

2 Nazs [ & 1 Nizs 1
C A2 —_— C(InA)s A2 _ .
< CUIIE + 1912) <]-=Zl<1+/uy-x,~|>i> < CnAGENT Y

So, we have |F(¢)].. < CInA)F ||| H
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Next, we estimate I (y).

Lemma 2.5. There exists a constant C > 0, independent of k, such that the following hold:
(i) If 2=V s < min(Y, 1), then there exists a small o > 0 such that | Il < 1.
(i) IfN =3 = 4s, then [Ii]l.. < 5.

Proof. We first prove (a). By symmetry, we can assume that y € Q. Then |y — xj| > |y — x1|. We first estimate
the term J;. We have

|11|<C[(ZUX, )2_ ZUX,HZ n

N+2s k

+25 1 25-1 CA= 1
< CANT( ) + .
,-:zz (1 +Aly = x;hN-2 (1 +Aly —xal)* ,:zz (1 +Aly = xHN=29

IfN - 2s > X225 _ 7, then we have

1 k 1 1 k 1
> < =)
(1 +A|y _Xll)lls =] (1 +A|y _le)N—Zs (1 +A|y Xll)N+Zs 5 (1 +A|y X}|)N+Zs
()
S WAy -
1 1
- AS+U

IfN - 2s < 325 _ 7, then 4s > %25 + 7, and we obtain that

1 k 1 k
(1+A|y—x1|)45,§2<1+A|y—x,-|)N*25 S LAy - x1|)”*“ Z /\lxl—le)N PE

N-2s
N+25 ( ) *

(1 +Aly - x1]) 2
Using the Holder inequality, we have
(i 1 )2 o . (i 1 )N‘fu
5 @+ Aly - x5 = (1+ /1|y XD NS (14 Ay - x)) (R D
k N+2s (N-2s _N-2s
1 kv (-3
< C N+Zs (Z

j=2 (L+Aly - x,l)

NHS (%)S+O'.

<CZ

,z(1+/l|y xj|) 2

Thus,
1\s+0o
Villee < C(3)
Now, we estimate J,. Note that { =0 when |(r,y") - (ro, yg)| > 26 and 1

(0, ¥yl < 26. We have

"
1S 1+A|y ;] when |(r,y") -

M»

k
|]2 | N+Zs Z ( < C N+2

= /125 fst (1 +A|y _le)N—Zs Amin(Zs,N—% ~ 1 +/1Iy X; |)N+25

If N > 4s + 27, then ||J5] 4« < AS%
We have

. . (L) = §00)) Uy a(0)
J3=) e, S)(elgg)g oy

=1 Bs/a(y)\Be(y) RN\Bs/4(y)

k
= z c(N, s)(Js1 +J32).

J ({) = X)) Uy a(x) dx)

|X _ y|N+Zs
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We first estimate J3;. From the definition of function ¢, we have {(y) - {(x) = 0 for x, y € Bs(x;) or
x,y € RN\ Bys(xj). So, J31 # 0 only if Bs/4(y) € Bsj25(xj) \ B1/26(x;). We have

3 6 3 15
Z& Sly-xl<lx-yl+Ix-xj < " +x - x5 < Elx—le < 75 for Bs;4(y) € Bsj25(xj) \ B12s(xj).

Furthermore, we divide J3; as follows:

Vi) - (v = x)Ux; a(x) . Uy;,2(x)
dx + O< lim _—
[x — y|N+Zs €0+ [x - y|N+Zs—2
Bsa(y)\Be(y) Bsa(y)\Be(y)

J31 =€1LHOI+ dX) =: J311 +J312.

Note that Bs/4(y) \ Be(y) is a symmetric set. Then, by the mean value theorem, we get that

[J311] = | lim Vi) - (y_X)UX,-,A(X)l
sul = m X y|NEs
Bsa(y)\Be(y)
V . AN—ZS
-[e) liI{)I J |ﬂ(§izsz 2 2 =T
€—0* z .
Boya(0)\Be(0) (1+A2z+y-x1?) 2
CN, 92" V) -z 1 1
= fell{}){ J |Z|N+25 ((1 +/12|Z+y—x.|2)N—ZZS N (1+/12|—Z+y—X'|2)N_zzs >|
Bs/4(0)\Be(0) j :
< oAt J. V¢l 1
|2IN+25-2 (1 + 2|29 - 1)z + y — x;)N-25+1
Bs/4(0)
C . nezs 1
S AS+UA ! N+2s 2

A+Aly-x)=

for0 < 9 < 1andsince |29 -1z +y—-xj| =y - xj| - (29 - 1)z| > %Iy - xj| for z € Bs/4(0). Similarly, we can

obtain

C N+2s 1

|]312| < AS+O’A 2 N+2s

(1+Aly - x5+

For the term J3,, we divide three cases:

Case 1: Ify € Bs(xj), then

sl : T
<
” = yI¥e2s (14 Al = x)V-25
RM\(Bjs/4(y)UB5(x;))
- C Ni2s 1 J 1
- /125 (1 + /\Iy _ X].l)N—Zs |X _ y|N+25
RN\Bjs/4(y)
C Nis 1
S /1s+a'/1 2 N+2s

(1+Aly —x) " #*+7
Case 2: If 6 < |y — x| < 36, then, by Lemma A.3,

N-2s
2

U2l < : A
e b= yINe2 (1 + Alx = x)N-25
RM\Bs/4(y)
N+2s 1 1
=t 1z~ Ay (11 |z — A )V-25
RN\Bs)/4(Ay)
1 1 1
<CA T + ==
(A= * 7 a7 )
C Ni2s 1

< As+o N+2s

(1+Aly - xj) 2T
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Case 3: Suppose that |y — x;| > 36. Note that |x —y| > [y - xj| - [x — xj| > %Iy—x,-l when |y - xj| > 36 and
|x — xj| < 26. Then we have

N-2s
2

1 A
32l < J N+2s N-2s
5ot Ix -yl (1 +Alx = x;])
26(X;

C J 1 1
T g N=2s |X _ y|N+Zs |X _ X].lN—Zs

T B1s(x)
AN+25 1 1
A N+25 |X _ X'|N725
by =1 gy T
C AN+225 1

<
AS+0 (1 +A|y X |)N+Zs

Then we obtain [J3]l.+ < 355-
As a result, we have proved that ||l ]|.. < AS%
Now, we prove (b). Since 4s > %, we have

1 k 1 1 k
(1 +Aly = xq )% ]; (1 +Aly = xj])N-2s = (1+Aly - x1)# ; Alx1 = xjl )N 2s
S —
(1 +Aly = x 7 A

Using the Holder inequality, we have

Qo) =2 () )"
5 @+ Aly - x5 N2 (1+A|y xiDFNS (L +Aly - x,|)”333%

k
cey — L (%)
j=2 (L+Aly - x;])»

o

Thus,
Uil <¢(3)-

For the term J,, we have
C .o & C .o &
Jal < =A%y ——————— = — )4 .
A :Z 1+Aly XjhN=s A8 ,; (1+A|y xjl)3

Now, we estimate the term J5:

C o J V&l 1

B 5
[J31] < 51 |Z|N+25-2 (1 + A|(29 - 1)z + y — xj|)25+1

IS

Bs/4(0)

C o j 1 1
+ — A7
A28 |Z|N+25—2 (1 +)l|z+y—x,~|)N‘25
Bs/4(0)
C

< A 1
A 1Ay - x5t

Sho

Similar to (a), we can deduce that
1

[J32] < S LR e—
(1 +Aly - x]I)4

So, we obtain [|J3]l«x < A—Cs
As aresult, we have proved that |Ii]l.. < £.
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Proof of Proposition 2.3. Lety = (', y"),y' e R?, y" e RN-2. If N > 4s, we set

1 & -
E-{usue CRMnH, ul. < 5. Y [ 250 Zuu=0,1-1,....N}.
i=1

RN

By Proposition 2.2, the solution ¢ of (2.9) is equivalent to the following fixed point problem:

¢ = A(@) =: Li(F (@) + Li(ly)-

Hence, it is sufficient to prove that the operator A is a contraction map from the complete space E to itself.
In fact, if ¢ € L°(RY), then, by [38, Proposition 2.9], we can obtain ¢ € C(RY). For any ¢ ¢ E, by Proposi-
tion 2.2, Lemma 2.4 and Lemma 2.5, we have

A+ < CILK(F (D)« + LTI« < CIIF(P)wx + Mlicll ]
Aifv(‘ivzj? 1 C

< _— + — < —
<C Asxmin(2,25-1) + Asto | = s’

since 2(%17\’2_;;? < sxmin(1, 25 — 2). This shows that A maps E to E itself and E is invariant under A operator.

If 2; < 3, then forall ¢4, ¢, € E, we have

1A($1) = A(P2)lls = ILi(F(P1) = F(@2)ll+ < CIF(p1) — F(P2)ll+s

. 1
< CllAp1l + 1p21)% 211 = Pallln < §||¢1 - P2«

The case 2 > 3 can be discussed in a similar way.

Hence, A is a contraction map. The Banach fixed point theorem tells us that there exists a unique solution
¢ € E for problem (2.9).

Finally, by Proposition 2.2, we have

1\s+o 1\s
Ipl. < () and el < CIF(@) + Il < ()

+0

When N = 3 = 4s, we set

=~

c .
E-fusuec®nH, ul. <52, Y [ 25z =0,1-1,....N},

i=1 gy

where Cy > is a large constant such that

JA@)I. < CIL(F (@) + CILIOI. < C[CAn ]2 + A_Cs] <20

By the process of the case N > 4s, we can obtain the result. O

3 Proof of the Main Theorem: The Case N > 4s

Let ¢ be the function obtained in Proposition 2.3 and uy = Z; y» ) + ¢. In order to use local Pohozaev iden-
tities, we quote the extension of uy, that is, ity = Z; 7't (;Z) Z; 7 and (i) are extensions of Z: 7 and ¢,
respectively. Then we have

div(t!=25Viig) = 0 in RV,

i 4125y " PTE B AP N (3.1
_thr(r)1+t TSSOty = a)s<—V(r,y g + (up)y  + z Cl ZZX;/1 Zj,l) onR".

- =1 j=1
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Without loss of generality, we may assume wg = 1. Multiplying (3.1) by %—’;f (i=3,...,N) and (Vii, Y),

respectively, and then integrating by parts, we have the following two Pohozaev identities:

oily ol 1 .

j f1-2s Ok Ol 1 J 25|y i P
v oyi

a/llB; aHB;

" 2*—1 k 2 2 auk .
= I(—V(r,y Yuk + (Up) Z ) R i=3,...,N,
=1 i

N MZ

By
and
ol 1 2s-N oit
J (2 Vi, 1) S+ S J 7251V (Y, v + j pi-2s Oy
2 2 ov
"B "B OBS
2:-1 N k 25-2
= J(—V(r, Y ur + (up)y " + z c Z le-s,)l Zj,l)()’, Uu).
5, =1 j=1

In the following, assume p € (26, 56). We have the following lemma.

Lemma 3.1. Suppose that (7,y", A) satisfies

ol oty 1 Y du )
- j ti=2s avk ayk + = J t1725\Vig | 2v; = J( V(r,y' )uk+(uk)Jr 1) 5 koi=3,...
"B ' a"B; B, Vi
ol 1 2s-N ol
- j (72 (Vitg, V) Sk 4+ = I £ (Y, v) + 2 J 125 Ok o
ov 2 2 ov
"By "B} OB}
2
= vy s @
BP
and 5
J((—A)Suk + V(Y g - )= ) ;; A _o.
RN

Then we havec;=0,1=1,...,N.

Proof. By (3.2), (3.3), (3.4) and (3.5), we have

N k du
Ye ZI &k _o, i=3,...,N,
g5 e T oy

l

M=

o

M~
én“———w

Il
=
~.

Il
[

Note that { = 0in R¥ \ B,. By (3.6) and (3.7), we have

N k N k
IZ ZJ X/IZJI IZCIZJ xAZJIV—
=1 j=1 =1

j=1g
p

ou 0Zy 51
forv = ayk v={(Vug,yyandv = 51

By direct calculations, we have

k
2¥-2
Y [ 2532220/ 2,5 ) = %@ + o1,

k . OZ- n
Y | 2572 —2 2 - i@y +0(1), i=3,...,N,
: ATPE 9y

1,1(% Vug) =0

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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and ;
. 0Z- —n 1 k
> Jzif,;lzzi,l—;’ﬁ = =3z +o(1)), (3.9)
]:13p
where a; > 0, a, > 0and as > 0.
Furthermore, we have
Nk k
Yay [Z572u0 V20 =Y | 22200 Yy Zig per s O(AN lcal) + o(kA% Z|c1|) +o(kler)
=1 j=lg =1g, 1=3
N
= kA%(ay + o(1))cy + o(k/\2 Z|c1|> +o(klci)) (3.10)
=3
and
N  k . 0Z;on ) . 0Zz 5 )
Yay |ziiz A -y Jzﬁ;jz- Il o2 Y, leil) + o(kles)
=g i jhyg Vi 11,0
= k%@ + o(D)ci +o(kA Y lal) +o(klerD, i=3,...,N.  (3.11)

1#1,i

Since ¢ is a solution to (2.9), by fractional elliptical equation estimates (see, for example, [38, Proposi-
tion 2.9] and [16, Theorem 12.2.1]), we can obtain ¢ € C* (Bp). By integrating by parts and using [|¢]. < AS%,

we have
Nk 2:-2 N
Yy, j 737w = o(kA% Ylail) + o(Klci),

= =2
forv=(y,V¢; 3 ) andv = 643; A,
It follows from (3.8) that
N
Yay [z zm = ok Z|c1|) +o(Klcy ), (3.12)
=1 j=1p =2
p
forv=(Vy,Z; 3 ) andv = aZ;?" A
By (3. 10) (3 11) and (3.12), we have
1
C1=O(A—2|C1|), 1=2,...,N. (3.13)
From (3.8), (3.9) and (3.13), we deduce that
N B 0Z- —n 1 k o 0Z- A k
= Z z J i AZ . ;;’t A Z Jzii/lzzj’l ;}yl —C1 + (/12 )01 =k(as +0(1))cy + o(/1 )cl,
=1 j=1 B, llep
which implies that ¢c; = 0. Wealsohavec; =0,1=2,...,N. O
Note that
25-N [ ,1500k_ _25-N J 12 Ol Zs—NJ( " 21 X & )
5 J e, = oS, et — V(r, yui + (ui)y +z—z1€l;ZXj’A Zj,1 |uk,
0B, "By B, =1 J=
*_ 1 1 *
vy e o v = [(<5 vy Vi) + 55 0 Vo))
B, B, ’
1 1
-5 | voeyw + 3 [@veny s vy
o8B, B,
1 28
voe [ @ o+ 225 [aw?
S

9B, B,
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and YV, ¢ IBP Z}’-‘:l Zii;sz,lqb = 0. We find that (3.5) is equivalent to

[ sy + Seovay

By

ol 1 2s-N oty
- [ erranSE e [ A Evalmy) + | e
ov 2 2 ov
aHB; a”B; al/'B+

1 2: 2s-N
w5 [ ey - - [t o+ =5 Zczjzzx V2%
3B, 0B, =1 g

Similarly, (3.4) is equivalent to

%J aV(r,y”)uz _ J tl—ZS%%_l J 251711 2

oyl Tk ov dy; 2
B, ! "B " BY
1 1 * .
*3 I V(r,y")uiv,-+2—;k I uisvi, i=3,...,N.
3B, B,

Lemma 3.2. Relations (3.14) and (3.15) are, respectively, equivalent to

I(sV(r, ¥+ %(VV(r, y”),y>)ui = 0(,12%)
By

and N ]
nLy 2 \S .
J-a—yiuk—O(m), 1—3,...,N.
By
Proof. We only give the proof for (3.16). The proof of (3.17) is similar.
Note that &ty = Z; 7't ¢. We have
0Z- _ s
J tl—ZS(v Y)% — J t]. ZS<VZ**” Ie Y>+A + J t1_25<v¢, Y)?)_‘f
a/er;; alhB+ all3+

~ Y,
N j (V7,0 0 DS ¢ I (2576, 1=

a/lB; a/llB;

Using Lemma A.5, we obtain

0Z- C k 1 2
1-2s ry " A 1-2s
l j t <VZry A0 Y) l < W j t (l:Z; (1+|y—Xi|)N_ZS+1>

a!lﬂB; a!lﬂB;
- Ck? j ti=2s - Ck?
= AN-2s 1+ |y _ X1|)2N—45+2 T AN-2sT
B"B;

By (A.2) in Lemma A.6,

Cklll:
AT

| J 1725 (v, Y)a¢ J 125172 <

all3+ arer;

By the process of the proof of (3.18) and (3.19), we also have

| [ t# 0z 050 ¢ o [ e, p 2% a|  Ckigl.

ov |7 %
aHB; aHB;

?)71/,/1

— 199

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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Note that N > 4s. So we have proved that

125 (Vily, Y)
N

OB

auk’ Ck

A2st0”

Similarly, we can prove

l I 725 Vi (Y, v)’ AM
6"3+

Next, we estimate the term J gt ti=2s %ﬂk:
p

aﬂ 5 aZ v _ a~~
J f-2s Ok j p-2s 2ory ’AZr”y"/l+ J i 25_(‘1/5

ov ov
al/B; aHB; aHB;
YA
1-25 941y A~ J
+ tS——2 T+
J ov ¢
alIB; a/ltB;

By Lemma A.5,

DE GRUYTER

(3.20)

A k
l J f1-2s 0Zy 5 Az, |< ¢ J f1-2s z Z
ov "y Al T AN-2s (1+ ly - xi |)N 25+1 1+ |)/ Xj [)N-2s
a/lB; a”'B;
Ckz t1—25
= AN-2s J 1+ |y_X1|)2N—4s+1 = AN-2s°
all'_B;
It follows from (A.4) that
281 Cklgll2
tl ZS|¢|2 < A? .
OB}

By (3.20) and (A.2) in Lemma A.6, one has

| o= [ i) ] e09)'

aan;; al!rB;; a”(B;;
Similarly,
{1-2s 0Zyn 5" A s 1-25 09
—_— + t _Z I =n S
ov oy YA
"By "B
We have proved that

ot Ck
| [ g o O
ov /125+0
a”‘B;

Since { = 0 on 0By, ux = ¢ on 0B,, we deduce that

@+ Aly - )

0B,

and 2%
Ck*lple _ Ck

A2sT s A2s+T°

| [ @ o)<

oB,

From Proposition 2.3, we know the following estimate for c;:

il < c(%)m.

' J V(r,y" gy, v)’ < Cllgl? J (i i i )2 <
0B,
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DE GRUYTER
On the other hand,

. 2:-2 . 2:-1 k 2:-2 1 k

Z J ijs,/\ Zf,lZ?,?",/\ = Z ijs,/\ Zi,l + Z J ZZX;,/I Zj’lZXhA = O(A ) + 0(/\25)

g, =g, =g i#
These imply that

. 2:-2 Ck
a) J 2 Zi,lZ?,y”,A| < Tsvo
=1 =g

Combining the above estimates, we find that (3.14) is equivalent to

j(sV(r, ' + %(VV(r, Y, ) )uf = O(;lTkm)‘

By

The proof is complete. O
Lemma 3.3. For any function g(r,y") € CL(RN), we have
s s [ 8, o)
B, RN
Proof. We have
J g(ry"ug = J g y"ZZ  y +2 J 8y Zr g A + J g y"¢?.
B, D, D, D,
Note that
" " 2 zk: AN 28 L 1
2 [ gy Zryad + | gry e < C(nqbn* j -
l B, " B, i=1 1+A|y Xl)N 25]'1(1+A|y Xl)N2
k N-2s
A2 2
+||¢||ij( —))
Zl (1 +Aly - xil) 7
By
2
< Ckllpll« . Cklols < Ck
AS /121 A25+0
and
k
Jg(r’ y”)Zr A= Z( Jg(r, )/")Z2 At z Jg(r,y )Zx;, /IZx] ) = <}l25g(r )/ ) j UO 1t O(AZS ))
B, =1 g, i#ig, RN
and we get the result. O
Proof of Theorem 1.1. By (3.16) and (3.17), we deduce that
1 aV(r y'" k
J(SV(I’, yrl)+ —ar )uk O(AZS+O’)
By
That is 5 " r
L ar®viny") o
J r2s-1 or U = O(AZSHJ)' (3.21)
B,

Applying Lemma 3.3 to (3.17) and (3.21), we obtain

—n
(o g | B ol(3w)) = ol5)
]RN
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and

1 1 o@*®v(E,y") 1 k
k(ﬁFZS_l oF J U01+0(A25>>=0(ﬁ).

]RN
Therefore, the equations to determine (7, ?") are
—2Svri= =N
VLY _ o1y, i=3,...,N, (3.22)
oy;
and —2s =
or-V(r,
TVET _ o)
T
From (3.6) and (B.1), the equation to determine A is
B1 o 3kN—Zs 1
_A23+1 v,y + AN-2s+1 = O(AZS+1+O’ ) (3.23)
Let A = tk¥#. Then t € [Lo, L1]. It follows from (3.23) that
—L v, ") Bs o), tello, L] (3.24)
t25+1 + tN-2s+1 — o), € Lo, L1l :
Define B
H(t,7,3") = (V5 50 (P VE Y, - tzm St VO + et )-
Then
deg(H(t, 7,¥"), [Lo, L1] x Bo((ro, ¥;))) = deg(Vf 7"(725 VT y'"), Bo((ro,yp)) #
Hence, (3.22), (3.22) and (3.24) have a solution ty € [Lo, L1] and (7, yk) € Bo((ro, ¥y))- O

4 Proof of the Main Theorem: The Case N =3 = 4s

Lemma 4.1. When N = 3 = 4s, relations (3.14) and (3.15) are, respectively, equivalent to

1 k?
j(sV(r, y")+ SOV Y = 0( 15 ) (4.1)
By
and 5 " 2
Viy™) , ;
Ja—yiuk:O<}lTS>’ i1=3. (4.2)
By
Proof. By using (A.3) in Lemma A.6, we can prove this result as Lemma 3.2. O

Lemma 4.2. For any function g(r,y"") € C*(IR?), we have

_ _,.InA InA
jg(r, Yy = k(lmCz(N, $)g(7,y") st 0<ﬁ))-
By

Proof. We have

2 [y zigad + [ sy < (:(nqbu | y_a s !
’ 7,y",A ’ = * _ N-2s
5 5 P L+ Aly -xiDN" S (1 + Aly - x;) "2
k N-2s
A% 2
+||¢IIiJ — )
8, <z=21(1+/l|y—xi|)7)
Ck*(| ¢l Ck?
< T gz < 6
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and

| sz, - f( |50z 14 Y [ 8y 20aZ0)

=1 i#
B, J=1 B, iB,

Il
=

Ap
_ i ATC3(N, s) r k
(g(i’,y ) 225 J (1+r2)% dr + O(/ﬁ))

(lmC (N, s)g(7, )’")Azs (1%1))

So, we get the result. O
Proof of Theorem 1.3. By (4.1) and (4.2), we can deduce that

1 ar®=v(ny") , k2
J r2s-1 or Ui = O(/\T) (4.3)
By

Applying Lemma 4.2 to (4.2) and (4.3), we obtain

k(mlt C*(N, )—aV(? .7 +o(m)> = O(k—2>

/\2 ayl /\25 AZS

and 2s " 2

InA 5 1 o(r°V(r,y")) InA k

k( PR =T +o( s )) - O(ﬁ)'
This is e
o(r V(_r y )) o(l), i=3,
0y;

and

ATV, ") _

or o(1).

By (B.2), we have

D1 InA _ _,, D3k2S InA
/\Zs+1 ( ) A2s+1 = (/125+1 )
Similar to the proof of Theorem 1.1, we can prove Theorem 1.3. O

A Some Estimates

. . . . . ) ) N . _ +

In this section, we give some essential estimates. For x;, xj, y € R", define g;j(y) = R g where
Xi # Xj, a > 0 and > O are two constants.

Lemma A.1. For any constant y € (0, min(a, )], we have

C 1 1
i < + .
SIS -y ( (L +ly —xDaBy (L +]y - x;)eBy )

Proof. See the proof of [42, Lemma A.1]. O

Lemma A.2. For any constant O < 9 < N - 2s, there is a constant C > O such that

I 1 1 e C
4 ly —zIN=25 (1 + [z))25+9 *7 © (1 +[y])?"
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Proof. See the proof of [26, Lemma 2.1]. O

Lemma A.3. Let u > 0. For any constants O < § < N, there exists a constant C > 0, independent of u, such that

! L dz < C(—1 + i—l )
ly —zIN+2s (L + |z 7 7 N1+ [yDBEr2s - u2S (L+|yhE/”
RN\By(y)

Proof. Without loss of generality, we set |y| > 2, and let d = % Then we have

J L L dz < J + J + J ! L dz
ly —zIN+2s (1 +|z])f ly —zIN+25 (1 + |z])f
R¥\B,(y) Ba(0) BaW\Bu(y) RM\(B4(0)UBa(y))

By direct computation, we have

d
J dz . C J rN-1ar . C
|y_Z|N+25(1 + |Z|)ﬂ - dN+25 (1 + r)ﬁ = dp+2s
B4(0) 0
and
dz - C dz - C
|y _ Z|N+25(1 + |Z|)ﬁ - dﬁ |y _Z|N+25 = stdﬂ .
Ba(y)\By(y) Ba(y)\Bu(y)

For z € RV \ (B4(0) U B4(y)), we have |y —z| > % and |z| > . If 2| > 2|y, then |y - 2| > |z| - ly| = 1,
and if |z| < 2]y|, then |y — z| > % > % Thus, we have

dz J dz C

<C < .
ly = zIN+25(1 + |z))P (1 +|zDP|z|N+2s = gb+2s
) 0)

RN\(B4(0)UBa(y) d
The proof is complete. O
Lemma A.4. Letp > 0. Suppose that (y — x)? + t> = p2, t > 0 and a > N. Then, for 0 < B < N, we have

1

1 1 1 1
dz<C + . A1l
JN (E+ 12Dy -2 - xlf (G —p e " @y i) (A1)
R
Proof. The proof is similar to that of [27, Lemma A.3]. O

Lemma A.5. Suppose that (y — x)*> + t*> = p?. Then there exists a constant C > 0 such that

1
AP (L ly = xN-2s+1”

C 1
A (L + |y - xg[)N-2s

1Zx, 2l < and |VZy 2l <

Proof. By Lemma A.4, we have

- tZS
1Zx;, 2y, O = |/3(N,5) J i (O Uxiaé) df|
av [y =812+ %)
t2s A bos
= |B(N. N
B, s)c ’S)RJN oo O e) a]
C I 1 1 s
A ) (L +1z)N+2s (AL + |y — tz — x| )N=28
]RN
C I t2s 1
TAEE ) @+ 1zZDNS A+ ly -z - X IN-2S
]RN
C 1

< .
A (L + |y - x| )N-2s
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Note that, forl=1,..., N,

N-2s

a tZS A N2
oV d
oy J. (|y_§|2+t2)N*225 ((f)(l+/\2|€—xi|2) 4

RN

1 N-2s

1 o0 1 T 4y

= 25 Nu +25 ((y_tz)
152 oy ]JV (1+|Z|2)NT2 (
_Zs—NJ' 1 (y -tz - xp)

- -2s +25 C(y - tZ) —-2s
e R E D A2 +ly -tz - xi2) 7+

A2 + ]y -tz — xi|?

RN
1 J 1 oy - tz) 1

N-2s N+2s
2

& AH1ZD)F W A2y -tz )

Z,

+
A

and

a t25 A N;ZS
— d
ot J (|y_§|2+t2)”§2"(1+)l2|{—x,-|2) §

RN
N-2s 1 Y-tz - xi )iz
= TN Ni2s {ly - tz) B N-2s g
AT S @ ]z?) A2 +ly-tz-xi|>) =
1 1 V{ly-tz)-z
+ N-2s J 2 N+2s ) 2 N-2s
A A (212 (A2 4]y -tz - xil%) 2

Then, by the definition of { and (A.1), we have

. C 1 1
VZyal < NQSJ — —dz
NF ) @ DV (@ ly - iz - Vs
R
. C J t2s-1 1 dz
AR (DM (L ly -z - e
C 1

TAYE M+ |y - xgN-2sHL

The proof is complete.

For any 6§ > 0, we define the following two sets
Di={Y=(y,t):6<|Y~(ro,y,,0) <68,t>0}
and
Dy ={Y=(y,t):26 <|Y - (ro,yy,0)| <58,t>0}.
Lemma A.6. Forany § > O, there exists p = p(8) € (26, 56) such that when N > 4s,

Ckll3
AT

>

j t1-25|ve|? dS <
"B

and when N = 3 = 4s,

t1=25\v)? ds < Ci2| P2,
a"'B;

where C is a constant, dependent on 6.
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(A.2)

(A.3)
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Proof. We first consider the case N > 4s. By (A.1), for (y, t) € Dy, we have

_ 2s
|M%M=|JMM9——————17¢®d€
o (y— &2 + )"
<a@mﬁsij- 1 1
A i=1py (2l + OV |y 7 x5
Clpl.t% & 1 1 1
< AT Z( N-2s tZ_s + N+2s +T)
N A+ly-xh =T A +]y-xil) >

k
Cll. §- 1 . "

N-2s
AT S Ay -xil) T

IN

Let ¢ € C3°(RN*1) be a function with ¢(y, t) = 1 in D2, ¢(y, t) = 0 in R¥*1\ D; and |Vg| < C. Note that ¢
satisfies

—div(t* V@) =0 in RN,
N

N k
~lim €250 p(y, O) = V(Y + (25 - D (Zrgr )F 7P+ F@) +le+ Y 1 Y, 7232 Zy, inRY,
=1 i=1

Multiplying (pzfﬁ on the both sides of the equation and integrating by parts over D1, we have

0= J —div(t V)2 P dy di = j 25V EV(02P) dy di

D, D,
= J t12Vp(p?Vh + 20V ) dy dt.
Dy

For any € > 0, we have

J t125VpeVed dydt < e J t1=25|v|?p? dy dt + C(e) J 172502 |V|? dy dt.
D, D, Dy

Taking € = % and using (A.4), we obtain that

J’ 1725y @2 dy dt < C J 12552Vl < Clol? J t1fzs(zk: 1 >2
> = N-2s
A S a+ly-xh7 T

D, D, D,
<amﬁj £k _ CKlIgl2
Y VA4 (1 + |y_X1|)N—25+21 - AT :
D,

By using the mean value theorem of integrals, there exists p = p(8) € (26, 56) such that

J £-2519pP2 dS < Ckl{?”?
"B}
Now, we consider the case N = 3 = 4s. We have
— 2s 1 1
B0 01 < CIgl. gélqd+0Nnﬂy_Z_m¢f‘&

k
1 1 1
< clgl. e Y o =)
2;(1+w—xm”ff“ L+ly-xiD™

i 1
<Clols ) ————5--
Sa+ly-xan




DE GRUYTER Y. Guo, T. Liu and J. Nie, Solutions for Fractional Schrédinger Equation =— 207

This gives
| e-vgi ayde < ¢ [ 2@ wer < citiglz.
D, D1
So, we have
| evgr as < ceigiz.
"B,
The proof is complete. O

B Energy Expansion

In this section, we give some estimates of the energy expansions for (I’ (Z= Fat o(r, )7" )l)) ’y A)
— yAy _ _ 0Z--n
(I'(Zyyr 5+ 9T Y", ), 2 Ay and (I'(Zg gy + (T, 7", A), a'z,,ﬂ .

Lemma B.1. If N > 4s, then

oI(Zy 37 ,0) 2sBy . —II ¢ B, 1
—n K ( s V(T ,; A2 x5 O<A25+1+")>’

where B and B, are two positive constants.

Proof. By a direct computation, we have
O(Zrgn ) O1Zign p) ( k )

oA - aA A2s+1+0
oZ: 0Z; I
. 7,y A 2:-1 p2-1)InytA ¢
- j A ey J ( ryra)” Z ) +O(A25+1+0)
]RN
k
= I]_ —Iz + O(AZH—lJrO‘)'

For the term I;, by Lemma A.1, we can check that

I = k( j V() Uy, g 22250 +0(— I Uy, 2 UX.,,\)>
Y] 1] 9a ]ZZ j

RN RN

v, y") o 1 1
k( 2 Y j d +O(AZS+1 Z (/1|X1—X [)N-4s~ o>+0(m)>

k(_%’j") J U2, dy + O(Alem))

RN

_ k(_25B1V(7,)7") +0( 1 ))

A25+1 A25+1+0

where By = § [,y Ug; dy >0and N —4s -0 - §=22 > 0.
Next, we estimate I5:

Izzkj((Z* ”A)z—1 z ) Zigna

Q

. 20X 0Ux, 2 1
= k( J(zs - 1)UX1,/1 2Ux,«,/1 oA + O(A25+1+0))
Q =

k(-3 B2 -
- <_ Z; AN_25+1|X]' _ XllN—Zs + (A25+1+0 ))’
j=

for some constant B, > 0.
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Thus, we obtain that
k

oI(Z;z 3 ) 2sBy . _ -n B, 1
BY = k(_)l25+1 v, y") +; AN=25+1|x; — x;|N-2s * O(/\25+1+0))'
The proof is complete. O
LemmaB.2. If N = 3 = 4s, then
ol(Zz,3n ) 2sDilnA & D, InA
oA k<_ A2s+1 v,y Z AN=25+1 [ — x; [N-25 +O(A25+1+0))

where Dy and D, are two positive constants.
Proof. We have

oI(Zy,37 1) 0Z,y A e e 21\ 9 k

—aA = J V(y)Zr ATy Y J((Z;’)—,H’A) s - Z UXI"/\ ) oA + O(AZS+1)

R3 R3 =1
k
=L -5+ O(AZSH)

For the term I;, By Lemma A.1, we can check that

OUy, A 1 k 1
I = k( | vt eo(s | Una} U }l2_1>)
B,(x1) By(x1) =
V(#,7'")sC%(3, s) B -y -xil?) k
= k( 2s+1 J 5 + O( 2s+1 ))
A ARy —xg )z A

k(V(?,)'/”)4nsC2(3,s) T(1—r2)r2 o k >)

A2s+1 (1 + rz)% A2s+1
0

InA . _ InA
= k( 25Dy —— eSS v, y") + o(—/\zsu ))’

where
PA (1-r)r?
215/2
Dy =21C%*(3,s) and hm 20 @rPE 4,
A—00 InA

Similar to the proof in Lemma B.1, we have

k D2 1
Iz = k(_]; AN_25+1|X1' _ X1|N—25 + O(A25+1 ))’

for some constant D, > 0.
Thus, we obtain that

k

OI(Zy g 1) 2sDiInA___ _, D, InA
T =k<—/1ZTV(r,y )+]_Z AN 25+1|X —XllN 25 <A25+1))
The proof is complete. O

Lemma B.3. If N > 4s, then we have

ry "2 2SBl _ _,, Bz 1
<I (Zzgra+ ¢)’ =k ( A2s+1 2 V(Y Z S A2+ [x; — xy[N-25 + O(A25+1+o>>

= k(-2 (?,)7")+B3kN 0 )): B

/12s+1 AN—25+1 A\2s+1+0

where By and B are the same constants as in Lemma B.1, B3 > 0.
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Proof. By symmetry, we have

(1, ) ” Y = j((—A)SuwV(r,y")uk—(uk)i;‘l)az?’w
oA
RN
r " * aZXl
- <1 Z ), 220" N +k<(-A)S¢+V(r,y )b - (25 - 1ZE5 s

aZf,yH,/\
oA

27— % 22
— J ((Z'—,’)-/II’A =+ ¢)+ - Z? )-/,, A (25 - 1)2?’)—/H’A¢)

RN

<1<Zry~;o, ’y AN k- T

By (2.5) and (2.7), we have

J1= O(Alﬁ)s":g> = O(A251-1+0)'

Note that (1+¢t), —1-yt=0(t?) forall t e RV if 1 <y <2, and |(1 + t)} — 1 — yt| < C(t? +|t|¥) for all
t e RN ify > 2. So, if 2} < 3, we have

YA
|]2|:| J((Z II/‘+¢)+ fo'"/\ (2* 1)Zry” /\¢) r)/ Al
RN
SCJ ry"Ad)z’aZryuA'
RN
Cligl: j k A7 220 & A 2
< N— 25
A (}; (1+Aly—X;I)N‘25) (g A+ Aly - xi|) 2 )

RN

cuqbn2 J Z i 1
& < (1 +/1|y xiD% & (1 +Aly — xi|)N=2s+7

Ckllgpl: k
SO o)

= A A2stl+0 )"

If 2§ > 3, we have

YA A . 0Zz on 2 k
2 ry 2:-1 nLy _
|]2|$CJ< ,yu,\%‘b | | (o] |T|)‘O(W)

RN

Thus, we obtain

YA ‘A YA A k
<I’(Zy,)7",/1 + ), i y <I (Zrymp)y —7— . y + O(A25+1+U)'

Combining this with Lemma B.1, we finish the proof. O

Lemma B.4. If N = 3 = 4s, then we have

(1Zgra+ 9, Z” A = (1 ZQXI"A>+0(,12’§+1)

2sDyInA___ _,. D3kN-%s InA
= k<_ A25+1 V(r’ y ) + AN—25+1 + O(A25+1 )) (B.2)
where D1 is the same constants as in Lemma B.1 and D3 > 0.
Proof. The proof is similar to that of Lemma B.3 . O

Note that Z; ; = O(AZy,,2), I = 2, ..., N. Similarly, we can prove the following lemma.



210 — Y.Guo, T.Liu and ). Nie, Solutions for Fractional Schrédinger Equation DE GRUYTER

Lemma B.5. If N > 4s, then we have
0Z; 5 k
" "
(1 502) = (10,0, 572 o 25)

_(Biov(Er,y") & B, 1
- k(ﬁ or +}.:ZZ FAN-25[x; —x; V25 O(/\sw))

and

ry A ,y A k By oV(r,y") 1
<I’(Z 7' A +(l)) y > <I (Zry” A) y >+ O(ASHI) = k(ﬁT + O(F)>,
J J ]

where By and B, are the same constants as in Lemma B.1.

Lemma B.6. If N = 3 = 4s, then we have

0Z; 5 DilnA oV, y") & D 1
' ry ,A _ 1In r,y 2 -
<I (Zy g 2+ D)s 5 > = k( FIn > +}; ATy, x5 + O(As ))

and

- —n
(I'Zrzr 0+ 9, —’_y,,"> k(%—avé;,,y )+0(Ais)),
] J

where D1 and D, are the same constants as in Lemma B.2.
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