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1 Introduction

The starting point of this paper is a class of fractional Choquard equations of the form
(-A)°u + Vu = (Ig = [uP)lufP>u inRY, N>1. (P1)
Here p > 1 varies in a suitable range, s € (0, 1), and (-A)S is the fractional Laplacian defined as

u(x) — u(y)

Sy —
(=A)’u = C(n, s) PV. J i~y
R

with the integral in the principal value sense, that is,

P.V.J u) - uy) o lim J u() —uy) ,
£—-0

Ix - y|N+Zs Ix - y|N+25 ’
RN RM\B(x,¢)
_ I'(N/2 +s)
C(n,s) = (—25+N/2) ,
(n,s)=m —F(—s)

and I'is Euler’s Gamma function. Moreover, V € C(RN) s a potential such that V(x) > V > 0 forevery x € RV,
Finally, I, : RY — R is the Riesz potential of order a € (0, N), defined for every x € RV \ {0} as

Ag r(%2)

e’ T gap(a)at

Io(x) =
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The reasons to consider problem (P1) go back to physical motivations; indeed, the Choquard equation
—Au+u=( = [uPHu inR> (1.1)

has appeared in the context of various physical models; for instance, see the models for polarons in a ionic
lattice from Frohlichin [9, 10]. The Choquard equation was actually introduced by Philippe Choquardin 1976
in the modelling of a one-component plasma; see [13]. More general versions of the Choquard equation have
been introduced in recent years in the context of quantum mechanics; see [3, 5].

An interesting family of problems which extends (1.1) is given by the autonomous homogeneous
Choquard equations

“Au+u=~y* [uP)uP?u inRY,

where N € N, a € (0, N) and p > 1, studied in [15]. However, physical models in which particles are under
the influence of an external electric field V lead to study Choquard equations in the form

—Au+Vu= U, * uP)uP-?u inRY, (1.2)

where generally V is a nonconstant electric potential in Llloc(]RN ). Due to the presence of the potential V,
the problem is not invariant under translation of the space, and the situation is more complicated; see [4,
Chapter 1] and [25].

It is clear that problem (P;) is the nonlocal counterpart of (1.2). In fact, recent research has shown that
local interaction sometimes should be conveniently replaced by nonlocal ones (for instance, see [7, 11, 12,
17, 24, 27]), and indeed, our first set of results are related to those proved by Van Schaftingen and Xia
in [25]; therein, they studied the problem in the case of a nonnegative potential V and proved the existence
of a ground state solution, as well as a sequence of solutions whose energies are unbounded. In our case,
due to the nonlocal nature of problem (P;), we do not handle the case of a vanishing potential, so we assume
V: RN - [V, +00) with Vg > 0, and we first prove analogous results to those proved in [25]. In particular,
the first two main results of this paper are Theorem 3.1, where the existence of infinitely many solutions is
proved, and Theorem 3.3, where the existence of a ground state is given.

In the second part of the paper, we study a subcritical perturbation of problem (P;), namely,

(=A)u + Vu = (I = [ulP)|ulPu + f(x,u) inRY, (P,)

Here f satisfies suitable conditions, but, in particular, it does not satisfy the Ambrosetti—-Rabinowitz con-
ditions. This means that the usual strategy to find critical points for the associated functional cannot be
performed. For this reason, we assume a new condition on f (see Section 4), recently introduced in [18] and
already exploited in other contexts (for instance, see [8]). This condition is quite general, but, on the other
hand, it is enough to overcome the difficulties arising from the lack of the Ambrosetti—-Rabinowitz condition
and prove that the associated functional has critical points. In this way, we can prove the existence of two
solutions, one being positive and the other being negative; see Theorem 4.2, the third main result of this
papetr.

The paper is organized as follows: in Section 2, we introduce the problem in detail, and we give the
functional setting we shall use later on, in particular, proving some embedding and continuity results. In
Section 3, we prove the existence of an unbounded sequence of solutions for problem (P;) and that there
exists a ground state solution. The former result is obtained by using the fountain theorem by Bartsch [2],
while the latter is the consequence of a strategy which goes back to Rabinowitz [20].

Finally, in Section 4, we consider problem (P,) and prove that there exist two nontrivial constant-sign
solutions. In this case, due to the general behavior of the nonlinearity f, we are not able to apply the usual
mountain pass theorem with the (PS) condition, but we need a version under the validity of the (C) condition.
Indeed, the fact that f does not satisfy the Ambrosetti—Rabinowitz conditions makes the proof of the bounded-
ness of (C) sequences very hard, but, following the approach of [18], we succeeded in proving it, gaining the
desired result.
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2 Functional Setting

We divide this section in two parts: in the first one, we study some properties of the convolution term and
some embedding properties related to the functional space where the problems are set; in the second part,
we introduce the variational structure we will use.

2.1 Embedding Results

The leading operator in the equation forces to consider the quantity

u(x) - u(y)l? 3
lullgs, := (J %dxdy+ J vu? dx)z.
R2

]RN
Now, we claim that this is a norm and define H?,(IRN ) as the normed space obtained by completion of the set
of smooth functions with compact support C‘C’O(IRN ) with respect to the norm |Jul| HS- Indeed, |- | " is clearly
a semi-norm, but if |Jul| m =0, from the first term, u is constant with LRN Vlu|? = 0, which leads to u = 0, so
|- ||Hf, is a norm.
Moreover, H f,(]RN ) is a Hilbert space, endowed with the scalar product
(u, vy = J (utx) _|l;c(i/)))/$\/’5§z —vy) dxdy + J Vuvdx foreveryu,v e Hy(RY).

R2N RN

With an assumption on the potential V, we can say that H}(R") is continuously embedded in the frac-
tional Hilbert space HS(RY).

Remark 2.1. Ifinf V > 0, then H},(RY) — HS(RV), that is, there exists C > 0 such that
lullgs vy < Cllullgg vy for every u e H?,(IRN). (2.1)
Indeed, we have

u(x) - uy)|?
"u”%IS(]RN) = J |—|§(i |NE—JQS| dx dy + j uz dx
]RZN y

RN

1 [u(x) - u(y)|? 2
< max{l, ian}< I = y|Ve2s dx dy + J Vu dx) < CIIuIIH;(]RN),
IRZN IRN

so we have the continuous embedding.

For further references, we also define H},(Q) as the completion of smooth functions with compact support
with respect to the norm
(J lu(x) - u(y)|?

PEYITER dxdy + J Vu? dx)i.
0

We first study when we have an embedding of H?,(IRN ) into the weighted space

L2(RY; x| dx) := {u: RY - R : u measurable, Jlxlyu2 dx < +oo}.
IRN
We consider this space with the norm

J Ix|Yu? dx.

RN

2 _
"u"LZ(]RN;lxly dx) ~

More precisely, we show that, under suitable assumptions, this embedding is continuous and compact.
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Proposition 2.2. Let N > 2s andy € [0, +00). If V € C(RY), V(x) = V > 0 and

lim inf Q >0, (2.2)

IX|-+00 |X[|Y

then there exists a constant C > 0 such that

_ 2
J Ix|Yu? dx < C( J % dxdy + J Vu? dx) forevery u € Hy,(RY), (2.3)
]RN ]RZN y ]RN
that is, the embeddmgH (RN) — LZ(RY; |x|¥ dx) is continuous.
If, in addition,
YO _ oo, (2.4)

xj—+oo |X]Y
then the corresponding embedding is compact. Moreover, when y = 0, the embedding H; (IRN ) < LIRN) is
compact for every q € (2,2%).

Here 2* = N 2 is the usual Sobolev fractional exponent see [6]. A similar result was proved in [25] for
the embedding of H} (]RN ) into LI(RN) W1th =€ (2 N, 2) only assuming V > 0. In our result, we require
a stronger assumption, that is, V is far from O but we give a simpler proof.

Proof of Proposition 2.2. Since (2.2) holds, we can take A € (0, +00) such that

A < lim 1nf —
Il—+oo |X]¥

Then there exists k > 0 sufficiently large so that, if x € RN \ B(0, k), we have V(x) > A|x|". So, multiplying by
u? and integrating in R" \ B(0, k), we obtain
A J Ix|Yu? dx < J Vu? dx.
RN\B(0,k) RN\B(0,k)

Then, since y > 0 and V(x) > V > 0, we can write

j Ix|Yu? dx < k¥ j u? dx + j Ix|Yu? dx

RY B(0,k) RN\B(0,k)

74 1

< k¥ I —uwldx+ = I Vu? dx
Vo A

B(0,k) RN\B(0,k)
1
< max Vu? dx < Cllul3s,
{5 7 ] lulys

]RN
so (2.3) holds.
As for the compactness, if (2.4) holds, let F ¢ H? (]RN ) be a bounded set, and take a sequence (vy), € J.
Up to a subsequence, we may assume that v, — v in H?,(IRN ) as n — 0o, SO we want to prove that v, — vin
L%(RN; |x]Y dx) as n — co. Of course, we can assume that v = 0. Since v, is bounded in H f,(lRN ); by assump-
tion (2.4), for every € > 0, there exists R > 0 such that
(lig ‘I/)zlx) )Ilvnlli,sv <e. (2.5)
Since v, € H?,(IRN) for all n € N, we have v, € H},(B(0, R)) and v, — 0in H},(B(0, R)) as n — co. By the
fractional Rellich—Kondrakov theorem, H;(B(O, R)) is compactly embedded in L?(B(0, R)), so it follows that
vn — 0in L?(B(0, R)) as n — oo. Since y > 0, the space L?(B(0, R)) is naturally embedded in the weighted
space L2(B(0, R); |x|Y dx), so vy, — 0in L?(B(0, R); |x|¥ dx). Therefore, there exists N7 > 0 such that, for every
n > Ny, we have
Ix"v2 dx < e. (2.6)
B(O,R)
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Then, for n > N1, by (2.5) and (2.6), we obtain

J Ix|"v2 dx = I IxYvZ dx + J Ix|v2 dx
RN B(0,R) RN\B(0,R)
<e+ (sup ﬂ) J W2dx<e+ (sup ﬂ)"Vn”ZS < 2e.
x>k V(X) " x>k V(X) Hy
RN\B(O,R)
This proves that [, |x|v2 dx — 0as n — oo, thatis, v, — 0 in L?(R"; x| dx), so the desired embedding is
compact.

To conclude the proof, in the case y = 0, we use some interpolation to show that the previous sequence
(Vn)n in H?,(IRN) is compact in L4(RN) with g € (2, 2*). To this purpose, take g = Nz_—lgs if N > 2s; then there
exists 8 € (0, 1) such that

1 B 1-p

q 2 q
Using the interpolation inequality, we have |vy|le < Cy ||v,,||/z2 [[vVall
(see [6]), we know that [|vy|1a < Cllvplgs, sO

1-

B . . .
1a - By the fractional Sobolev inequality

1- 1-
Cilvallalvall ;P < Colvalll, Ivall
By (2.1), we have
1- 1-
CollvallfalVals” < CalvalaIvallys

In the end, we have shown that
1-
Walle < CIVallfa Vallg -

Since we have just proved that v, — 0in L2(R¥) as n — 00, (v,), being bounded in H?,(IRN ), we get
1-
WVallze < Clvall,Ivalis? -0 asn — co.
4
This concludes the proof. O

Remark 2.3. Although we are not interested in the case N < 2s, we notice that the previous result holds true
also in this situation with minor adaptations.

Before describing the link between the convolution term and the space H$, we recall some basic results
known as the Hardy-Littlewood—Sobolev inequality and the Stein—-Weiss inequality (see [14, 22]).

Theorem 2.4 (Hardy-Littlewood—Sobolev Inequality). LetO < a < Nand1 <p < q< oowith%l =
there exists C = C(p, a, N) > O such that

H J fly)dy

|x —y|N-« < Clfleryy forevery f € LP(RY).

L4(RY)

RN

N]
Remark 2.5. Since, in the previous result, we have g = NIY—";,, we can simply say that I, = f € Lvw (RN) and

_N
jua . 7% dx < c(jmp dx)”’“”.

RN RN
Theorem 2.6 (Stein—Weiss Inequality). Let

Taf00 = | lefy;M dy
RN

withO<A<N,1<p<oo,a<N—%,,8<%,a+ﬁ20and
1.1 A+va+p
q p N

Ifp < q < oo, then | TAfOO X PllLagryy < AIFOOIXI%] o wry, where A = A(p, a, B, A).

1.
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In the next proposition, we will define two maps, and we will prove that they are continuous and of weak to
strong type, that is, they map weakly convergent sequences into strongly convergent sequences.

Proposition 2.7. Let N > 2s and a € (0, N). IfV € C(RN), V > Vy > 0, satisfies

lim inf % >0, (2.7)
|X|—+00 1+ |X| P -N
then there are two well-defined mappings
HS(RY) — LA(RV), u e Hy(RN) o I « [uP e L*(RY), (2.8)
¢ Hy(RY) — (H}(RY))',  u e Hy(RN) — (I * [ulP)|ulP~?u e (H}(RY)), (2.9)
which are continuous for p € (1, 1{}]_—2"‘5) If, in addition,
Vi
lim # = 400, (2.10)
|X]—+0c0 1+ |X| -N
the mappings above are of weak to strong type.
N+a

Proof. The sign of the exponent in (2.7), that is, 5 N, gives us the asymptotic behavior of V(x) when
x| — oo, so we study separately the cases ¢ — N < 0Oand ¢ - N > 0.

+a

(1) The case p > X2

Continuity and weak to strong property for ¢. In this case, |x|%_N — 0as |x| — o0, s0(2.7) implies that we
are in the case y = 0 of Proposition 2.2, that is, lim infjy|+c V(x) > 0. Take u € H?,(IRN ); then, by (2.1), we
have H,(RY) — H*(RY) and

lullgs < Cllullps, . (2.11)

By the fractional Sobolev embedding, we have H5(RV) — L% (RM) and
|IuI|L% < Cllullgs, (2.12)

provided that the exponent Izv_zg satisfies the condition

2Np - 2N

2< .
"N+a N-2s

This implies
N
N+a’

which is 1ndeed the case we are considering. Thus, taking u € H3 (]RN ), we have u € LN+a (RM), and so
lulP € L% (RY), being

N -2s
<

1
— 2.1
N+a p (2.13)

<

N+a N+a

2Np \ 2Np 2N '\ 2Np
lull v = (j|u|m) - (j|u|pw+a) - |||u|p||”m .
L N+a

RN RN

By the Hardy-Littlewood-Sobolev inequality with0 < § < N, p = N v N and f = |ul?, being

2N 2N
N+a a
since N+a >aand a < N, and
N2 2N 2N2
Nva =2, (2.14)
N-228 N2y Na-Na

2 N+a
we get
Is « JufP e L*(RY) and [Tz * [uf [l 2y < CllulPll, .
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This means that the Riesz integral operator, which maps
ul € L (RY) - Ie * Jul? € L2(RY), (2.15)

is a linear and bounded operator. In the end, we get that the first map we are considering, that is, (2.8) is well
defined.

As for the contmulty, by (2.1), we have H} (IRN ) — H5(RN), and by the fractional Sobolev embedding,
HS(RN) — L% (RN). Moreover, the Nemytskii operator

u e L (RY) i [ufP e L% (RY) (2.16)

is continuous; see [19]. Then, as we said before, the Riesz integral operator (2.15) is linear and bounded, so
it is continuous. It follows that the composition of these maps (2.8) is continuous, so we get the first part of
the claim.

If (2.10) holds, the embedding H: (IRN ) — LN+a (RV) is compact for IX, jj < E < N 2 by Proposmon 2.2.
As a consequence, if we take (uy), in H} (]RN) such that u, — u in H?,(IRN) we have u, — u in LN+a (RM),
From the continuity of the previous maps, we get I g« |Un P -1 g * [ul? in L?(RN). This proves that (2.8) is of

weak to strong type, as we claimed.

Continuity and weak to strong property of ¢. For the second map, starting with u € Hf,(]RN), we have, as
before,
2N]
Hy(RY) — H*(R") — Lwe(RY) and Jul e < Cullul: < Calluls,

for p such that (2.13) holds. Then, from u € L% (RY), it follows that |ulP € L (RM). Now, we can use again
the Hardy-Littlewood—Sobolev inequality with the same p and f as before, but with a in place of 4, being

NZN 2
NN Nflg 2N 2N

1< = s
N+a « N‘“ﬁ_ﬁx N2-Na N-a

so we get
2N .
# |ulP e L= (RY) with | * [ulP|. v < ClllulP|l 2
LN-a LN

2Np 2N p_ .
By u € L (RN), we also have |u|P~2u e L¥a5-1(RN) since

pfl

2N] I;’l;a 2N p I;’l;a

D P =N _F_ P p—

— Via _ p-1 - _ p-2 1
IIuIILIzVNTi(]RN)—”IuINM dX) —(Jllul |”+”1dX) = uP~*ull® e

a p-1
RV RV
Now, we want to use the fact that I,  |[u[? € L7s (RN) and |u[P~2u € L¥&51(RV) to prove that
(Lo # lulP)lulP~2u € L5 (RY). (2.17)

To do this, we will use the Hélder inequality. We have the exponents 7 and 2 -2, so, from

N+a p-1°
N—a+(N+a)(p—1)_1_N+a
2N 2Np - 2Np’

we get
N—-a (N+a)(p-1)
2N 2Np
+
1- N+a 1- N+a
2Np 2Np

So, with these exponents, we can use the Holder inequality to get

j|<1a o )l 2|7 EE dx
RN I S .\ - . —
+a )
(flzmulpll g e (% dx) »?”a<1*’ZVT*3’(jI|u|P-2u|1—¥—Isz (N”""'T)(l_m)dx)m“’%)
RN RN
1 1
L ) L
< (] 1o a5 ) P50 ([ a2 ) o

RY RY
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whllch means that (2.17) holds as we claimed. Since 2 N - P is the Holder conjugate of —— . Nm , we can identify
L% (RN) with the dual of L ¥+ 4 (RV), so we have ”

(Ia * |ulP)ulP~2u € (L% (RY)) = LT3 (RY).

Now, since H$,(RN) — L (RN), by duality, (L (RN)) < (HS,(RN))', s0 (I * [ulP)|ulP~2u € (HS,(RN))",
In the end, we obtain that the second map (2.9) is well defined.
As for the continuity again, we start with the continuous embeddings

HS, (RN — HS(RY) — L (RY).

As above, the map (2.16) is continuous, and with the Hardy-Littlewood-Sobolev inequality, we showed that
the linear map

ul? € L (RY) - I, * [ul? € L (RY)
is bounded; hence it is continuous. With the same arguments, we also have that the map

u € Lk (RY) o |ufP2u e L 71 (RY)
is continuous, and by the Holder inequality, the map

u € L (RY) > (I » ulP)ulP2u € LT3E (RY)
is continuous. Then, as before, we identify L 1—’%,;; (RN) with the dual of L (RM), that is,
L (RY) = (L# (RY))'.

Then from the continuous embedding H3 (IRN ) — L (RY), considering the dual spaces, the embedding
(L N+ e (]RN ) — (H (RM))! is continuous. So, composing the maps, we get (2.9) that is, a continuous map, as
we claimed.

If, in addition, (2.10) holds, then the embedding H} (RY) — L% (RY) is compact for NEZS < 11) < 3 by
Proposmon 2.2. Hence, if we take a sequence (uy), in H?,(]RN ) such that u, — uin H?,(IRN ), then u, — uin
L5 (RN), Again from the continuity of the maps, it follows that (I * |un|P)|unP"2un, — (I * [ulP)|ulP~2u in

(Hy, (RM))'. So we proved that the map (2.9) is of weak to strong type, as we wanted.

(I The case p < X2 (< 2).

Continuity and weak to strong property of ¢. Again, we start with u € H} (IRN) Since Y2 _ N > 0, by Propo-
sition 2.2 with y = M N, we have a continuous embedding
H(RY) — L2RY; x| 7 N dx), (2.18)
and .,
I I 5 Mol dx < Cllul . (2.19)
]RN
Moreover, the operator
u e L2RY; x| 7N dx) > JulP € LF(RY; x| 7V dx) (2.20)

is well defined since

‘a (2.21)
LF Y10 "7 N dy)”

Ju = (| b % M ucor ax)' = napr?

RN

N-
L2®N;Ix P dx)

Then, using the Stein-Weiss inequality withA =N -$,8=0,q = 2, w in place of a and 12—, in place of p,
we claim that »
I|I% * |upP|? < C( J 7 N ol dX) :

RY RN
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that is,
Is = P17, < CllulP|?, (2.22)

L7 (®V;|x 7 Vx|

Now, we show that the conditions on the exponents hold. Indeed, we have

N+a-Np Np
- - < N -
2 2
since N > a. Then, from p < %2 we get
N+a-Np
_ >
2
Finally, the equation
N+a-Np
2

-1

1 p N-5+
272 N
is verified, and we can apply the Stein-Weiss inequality, as claimed.
As a consequence, the linear operator
P e Ly (Ix] » N dx; RY) o Io # ulP e L2(RY) (2.23)
is bounded, and so it is continuous. In the end, the composition map

u € Hy(RY) - I « [ul” e L*(RY) (2.24)

is well defined.
As for the continuity, from the continuous embedding (2.18), we get that the map

u e HS(RY) - u e L2RY; x| 7"~V dx)

is continuous. As before, the map (2.20) is continuous. Then, by (2.22), the map (2.23) is continuous. By
composition, we obtain that (2.24) is continuous.

If we are in the case (2.10), then the weak to strong property follows from Proposition 2.2, which gives the
compactness of the embeddmg (2.18). So, if we take a sequence (uy,), in H?,(IRN )such thatu, — uin H;(]RN )
then u, — u in L2(RY; |x| N dx). From the continuity of the maps, the strong convergence still holds, so
we have Iz = [uplP — 1 g x |ulP in L2(RY). This means that the desired map (2.24) is of weak to strong type,
so we get the first part of the claim.

Continuity and weak to strong property of ¢y. For the second map, starting again with u € H;, (]RN ), by Propo-
sition 2.2, we have the continuous embedding (2.18) with

100 g 5 gy < Cll

sou € LZ(RY; |x| pe N dx). Then, as before, the operator (2.20) is well defined, being
N 1
_ Nta N 2 _ p p
Il g 52 gy = (| P15 OOR )" =W,

LF Y10 N dn)”
IRN

Similarly, the operator
we L2RY; 107 N dx) o [ulP2u e LT (RY; x| > N dx) (2.25)

is well defined; in fact,

1 1
M_N 2 p— 1 p-1
= p =
IIuIILZ(RNdX'%_NdX) (jIXI [u(x)] dX) = [lulP=” T
IRN

By the Stein—Weiss inequality, we claim that

Mg * [u




172 — D. Mugnaiand E. Proietti Lippi, Fractional Choquard Equations with Confining Potential DE GRUYTER

that is,

D
-2 _N+tapN N+a _ Ip
j|1a*|u|1’|zfp|x| dxs(jmp M ax) .
]RN ]RN

This implies that the linear operator
P € i (RY; x5 N dx) > I « [ulP € L5 @Y x| 7 dx) (2.26)

is bounded, so it is continuous as well. To prove this, we use again the Stein—Weiss inequality withA = N - a,
f=uP,q=5%5 % B = N+a2 Np| 2 in place ofp and N*“ N+a=pN in place of a.
Now, using I * |ul? € Lz p(]RN, x|~ dx) together with [u[P~2u € L7 (RV; |x| ““N dx), we want to
prove that
(I * ulP)uP~?u LZ(JRN; V=5 dx).

Indeed, using the Holder inequality with exponents ;=3 7 and L

> p,beingp—1+2—p:1,wehave

_ 2, N—DNta - L (N+a-pN,
j|<1a o ) lulP-2uP x5 dx = j|(1a [ulP)|? x|~ NP |y =2y 2| OV roep) g

RN RN
_ 2-p p-1
2 _ N+a-pN N+a: pN
s(jl(la*|u|1’)|zfv|x| =) (j||u|1’ 2ul i )
RN RN

From this, we have that
we L2RY; x| 7 N dx) o (I # [uP)|ulP~2u e L2RY; x|V dx) (2.27)
is well defined. Now, we claim that
L2RN; V5 dx) = (L2RY; x5 N dx)). (2.28)
. . 2N, | N-L : - §_Nia 2N
As amatter of fact, starting with u € L*(R"; |x|"~ 7 dx), we canconsider @ := |x|>~ 2 u € L*(R") and define
T(v) := j x|~ BT uvdx foreveryv e L2(RY; |x| Ndx)
]RN

so that T € (L2(RY; x| '»* ™ dx))'.
On the other hand, startmg with T € (L2(RY; |x| N dx))', by the Riesz representation theorem, there
exists a unique u € L2(RVN; |x| -N dx) such that

T(v) = J uvdx foreveryv e L>(RV; x5 N dx).
]RN
Now, we can define u := x| 7 so thatu € L2(RY; |x|¥~ %" dx). So, for every f e (L?(RY; x> N dx))’, we
proved that there exists a unique u € L2(RV; |X|N -5 dx), and thus we get (2.28), as claimed.

From this, we know that (I * [ul?)|ulP~2u € (L2(RV; IXIM_N dx))’. Then, from Proposition 2.2, we have
the continuous embedding H} (RV) — L2(x 7 N dx; RVY, so, reasoning with the dual spaces, we get that
the embedding

L2(1x 7N dx; RY)) (H,(RV))' (2.29)

is continuous. Thus, composing the maps, we get
u e Hy(RY) — (I * [ulP)|ulP~?u e (H}(RY)), (2.30)

which is well defined.
For the continuity, we take u € H?,(]RN ), and from Proposition 2.2, we have the continuous map

ue H(RY) > u e L2(|x| 7 dx; RY).
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As above, the map (2.20) is continuous, as well as the map (2.25), doing the same calculations with p — 1
instead of p. From the Stein-Weiss inequality, we obtained that the linear map (2.26) is bounded, so it is
continuous. Then, combining the last two maps with the Holder inequality, we obtain that the map (2.27) is
continuous. Then we identify LZ(RN; |X|N -5 dx) with the dual of L2(RYN; |x| SN dx) as before. As a conse-
quence of Proposition 2.2, we have the continuous embedding (2.29), so the map

Iy * [ulP)[ulP2u € L2RYN; N5 dx) o (I = [ulP)ulP~2u € (HS(RY))

is continuous. Composing the maps, we obtain (2.30), which is a continuous map, as we stated.

If, in addition, (2.10) holds, as in the other cases, the weak to strong property again follows from
the compactness of the embedding (2.18) given again by Proposition 2.2. So we take (u,), such that
up — u in H}(RV), and then u, — u in L?(RY; Ix]"7“~N dx). From the continuity of the maps, we obtain
(I * [unlP)|unlP~2un — (g * [ulP)|ulP~2u in (H3,(RY))". So the map (2.30) is of weak to strong type, and this

concludes the proof. O

2.2 The Energy Functional

Now, we use the results of the previous section to prove that the functional J, : H}, — R, defined as

[u(x) - u(y)l?

1 By 1
Ix — y|N+2s dxdy + ) J Vu® dx - b7 J(sz = [ulP)|ul? dx,

RN RN

=7 |
o

is well defined and of class C! on H f,(lRN ).
First of all, we prove an equality that will be useful in the proof of the next result. By the semi-group
identity for the Riesz potential, thatis, Iy = I« * s (see[21, p. 118, equation 6]), we have

[ eyt dx = [ 1 tupP ax.
RN RN

Proposition 2.8. Let N > 2s,a > 0, p € (1, 7%2). If (2.10) holds, then functional J,, is of class C* on H},(RV).

Proof. We only need to consider the nonlinear term G, of Jp, that is,

Gp(w) = [ (o Pl = [ |15« .

RN RN

By Proposition 2.7, the map u € Hy(RV) — (I = [ulP)|ulP € L?(RN) is continuous, so G, is continuous on
H?,(]RN ), and so J, is continuous as well. Again by Proposition 2.7, which gives the continuity of the map
(2.30), being
(G;,(u), vy =2p J(I,x # ulP)ulP2uv foreveryv e H?,(]RN),
]RN

we get the claim. O

3 Infinitely Many Solutions and Existence of a Ground State

3.1 Unbounded Sequence of Solutions

The first result is that equation (P;) has infinitely many solutions.

Theorem 3.1. LetN > 2s,a € (O,N),p € (1, 11\}’3"5) and V e CRN) with V > Vo > 0. If (2.10) holds, then prob-

lem (P1) has an infinite sequence of solutions whose critical values are unbounded.
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In order to prove Theorem 3.1, we start with the following proposition.

Proposition 3.2. Under the assumptions of Theorem 3.1, the functional ], satisfies the (PS) condition, that is,
any sequence (Up)n in H;(]RN) with the property that (J,(un))n is bounded and ]I’,(un) — 0in (H‘?,(IRN))’ as
n — oo has a convergent subsequence.

Proof. Consider a Palais—Smale sequence (uy), for J,, that is,
Jp(un))n is bounded and  J,(up) -0 in (Hy(RV))" asn — oo.

We want to show that (uy), is bounded in H ?,(]RN ). First, we observe that, by assumption, there exist A, B > 0
such that
Jp(un) <A and IIJI',(un)II(HSV(lRN))' < B,

so, by the Cauchy-Schwarz inequality, we have
1 B
Jp(un) - E(]I’J(un)’ Un) <A+ 5"un"Hf,

We also have

1, 11 5
Tpun) = 5 Gyt wn) = (5 = 5 Junly
As a consequence,
11 , B
(5 35 unly < A+ 5 lanli,
which proves that the sequence (uy,), is bounded in H?/(IRN ). Up to a subsequence, we can assume that (u,),

converges to some function u weakly in H5(RY) and strongly in L4(RV) with %1 € (3 - %, 3). By Proposi-

tion 2.7 we have G, (un) — G,(u) as n — +co in (H$,(RY))' because the map G,, is of weak to strong type.
Now, we can write

_ _ 2
llun — ullfﬁj = I lun(x) ulixi |§\I£g) LLIS2I N dy + J Viup — ul? dx
]RZN y ]RN
_ [ Wn®) —un())(Un() —ulx) —uny) +u@y)) . dy
|X _ y|N+Zs
IRZN
_ [ )~ uy) () —ux) —uny) +u@y)) dy
J |X _ y|N+2s
]RZN
- J Vu(u, — u) dx + J Vu,(up — u) dx
RN RN
v j U * [unlP) P2 (1t — 20) dx + j (U * [ulP) P2 (it — w) dx
RN RN
- j (UL * [P 1t P2 (1t — 20) dlx j (U * [ulP) 2 (2t — w) dx
IRN ]RN

= I (), thn — 1) — (T (), Uy — ) + %w},(un)un ) - %(G;,(u), Uy — 1)
1
= (Jp(un) = Jp(u), un — uy + Z(G;(un) - Gp(u), up — u).

Combining this with the fact that J,,(u,) — J,(u) = 0 and G,(un) — G, (u) in (H},(RY))’, up — uin H(RY),
we get

1
lun —ullgs = Up(un) =T (), un = u) - E(G;;(un) - Gy(u), un—u) >0 asn — +oo,

so J, satisfies the (PS) condition. O
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We are now ready for the proof of Theorem 3.1.

Proof of Theorem 3.1. From Proposition 2.8, we know that J, € C 1(H?,(IRN )) and from Proposition 3.2 that
it satisfies the (PS) condition, so we have to prove that the conditions (41) and (A,) of the fountain theorem
hold. Since H ?,(]RN )is a subspace of LZ(IRN), which is a separable space, it is separable as well, so there exists
an orthonormal basis (e;j);>o of H},(RV). Using this basis, we define X; := Rej, Yy = @]I;O Xjand Zi = P72 X;.

Now, we find suitable ry and p. First, let us denote by o the positive minimum of G, on the unit sphere
of Y, and then, for any u € Yj with |ullg; = pr, compute

9k 2

1o, 1 pp_lzlzp( 1,
Jp(u) = EIIMIIH;—E j(Ia * |u)ul® = Sl —EIIMIIHSVGp < 5Pk Pk

RN

i)
Tullz

Since p > 1, we have

(15 ok 2p>_
i (35~ o) o

so, for sufficiently large pj, we have SUPyey,, lull=pi /; p(u) <0, and so condition (A1) holds.
Now, turn to (4,). We define

Bi = supllils * ulPllzz : u € Z, Jullm, = 1}

and show that S — 0 as k — co. Indeed, we observe that O < By.1 < Bk since Zx > Zy41, 0 fx — B = 0. By
definition of Bk, we know that, for every k > 0, there exists uy € Zi such that [Juklps = 1 and

Bk

e lugl? e > 5. (3.1)
By definition of Zy, we have uy — 0in H' ?,(IRN ), and as a consequence of Proposition 2.7, we have
Is s ugl? > Is % [uf’  in L*(RY) withu = 0.

Hence, by (3.1), we get 8 = 0.
Moreover, for every u € Zi, we have

1 1
Jp(u) = zllullf{; T J(Ia * (ulP)lul?
RN

sty - gt | (o [ )]
= = s T o s I T

> lully, 2pIIMIIHV a* i,

RN

1.5 Bi. o

2 S llully; - EIIMIIHsV-

Now, setting ry := W, for every u € Zy with |Jul| H, =Tk, We obtain

| T 2 53— - —— = (55 )

2p
222

L 2p 2
B PR A
This means that 1 1 1
inf J,00> (5 -5 )—
ueZy 2 2p p-1
lull=re By
Taking the limit, we obtain
1 1 1
lim inf > 1im(———) - +00,
k—o00 u€Zy ]p(u) k—oo\ 2 2p p%l oo
lull=r k

so condition (A) holds. Of course, fix ry first as above, choose py such that pi > rx > 0, and apply the fountain
theorem. O
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3.2 Ground State

Now, we will prove that equation (P;) admits a ground state solution, and this will be done using the mountain
pass theorem, following the lines of the celebrated paper by Rabinowitz [20].

Theorem 3.3. LetN > 2s,a € (O,N),p € (1, 1{}’7—3";) and V e C(RN) with V > V > 0. If (2.10) holds, then prob-

lem (P1) has a positive ground state solution.
Proof. We divide the proof in several steps.

Existence of a mountain pass solution. To prove the existence of a solution, we apply the mountain pass
theorem to J,. First, by Proposition 2.8, J, is of class C! on H}, and by Proposition 3.2, it satisfies the
(PS) condition with J,(0) = 0. Now, we observe that

[ ey < cuiy. (.2)
RN

Indeed, if p > N*“ , by (2.11), (2.12) and (2.14), inequality (3.2) holds at once. On the other hand, if
1<p< N*“ the estimate follows by using (2.19), (2.21) and (2.22).
Asa consequence of (3.2),

1 2 C 2p 2p-2
Jota) > ity - St = Sl (1 Shaig )
So, for ||lullg;, = p small enough, we have infy, -, J,(u) > 0, so the functional has a strict local minimum at 0.

Finally, take u € H},(RY) \ {0}, and notice that

1 1
Tt = 5 Chulfy - 507 J(Ia £ UP) Ul — -0 as t — +oco.
IRN

This means that J, enjoys the geometric structure of the mountain pass, so

B = inf max f(g(@)) >0 (3.3)
ger 6¢(o,

is a critical value for the functional J,, where
= {g € C°([0, 1], Hy(RY)); g(0) = 0, (1) < O}.

So we have found a nontrivial solution u for problem (P1). Now, we want to show that such a point u is the
desired ground state.
To do that, we introduce the usual Nehari manifold

N = {u e Hy(RN)\ {0} : J,,(u)u = O}

The mountain pass solution is a ground state. As usual, we start defining a radial homeomorphism between
-~/ and the unit ball in H,(RV). To do that, for every u € H},(RV)) \ {0}, we define i : (0, +0c0) — Ras

Y(t) = Jp(tu).

From the behavior of J,, as we discussed above, () > 0 for t small, and 1(t) < O for ¢ large enough. As
a consequence, there exists maxso 1 (t), and itis achieved ata certain t := ¢(u) > 0. Since ¢(u) is a maximum
point for 1, we have ' (¢(u)) = 0. On the other hand, we have

0 = W' (pw)) = J, (@), p(u)u),

thatis, @(u)u € 4.
Now, we claim that ¢(u) is the only value of ¢t > 0 such that tu € ./#". Indeed, since

W' = (Il - 72 [ Lo ),

RN
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we have 1’ (t) = 0 if and only if
IIHIIfI;

g 7
Jpor (a1l ulP
with ¢/(t) > 0for 0 < t < fand ' (t) < O for t > £. This means that the equation
Iy = €72 [ (T ) u?
v
]RN
is solvable if and only if t = f = ¢(u). As a consequence, there is a well-defined map ¢,
u € Hy(RY) = @(u) € (0, +00).
In particular, if u € B(0, 1), there exists a unique ¢(u) > 0 such that ¢(u)u € .#". Moreover, we show that the
map ¢ is continuous. Indeed,let (u,), be such that u, — uin H?,(]RN ) \ {0}. From Proposition 2.7,
[ e haalP)lunl? [ T )l as m — co.
RV RV

Since, for every n > 0, we have @(u,)u, € .4, then

(P(un)zuun"?{; = (P(un)ZP J(Ia # [unlP)unl?. (3.4)
RN

From this, we have

- "un"%ﬁ/ ||U||§;
Qun)P = — asn — +o0o.
LRN(Ia * |UnlP)|unlP f]RN(Ia * |ulP)lul?

So ¢(uy,) converges to a certain ¢, and since u # 0, we have ¢ # 0. Taking the limit in (3.4), we get

=2 2 =2
Pk, = 9% [ v )
RN

so gu € ./ . Then, by the uniqueness of ¢, we get ¢ = ¢(u), so ¢(u,) — @(u). In conclusion, .4 is homeo-
morphic to the unit ball in H, (RY).
Now, define

= inf max]J,(6u).
B HS (RM)\{0} 60 Tp(0w)

We claim that
B =B= ulel}/f;/]p(u),
where B is defined in (3.3). In fact, from the definition of ¢, for every u € Hf/(]RN ) \ {0}, we have
6u) = ,
max J(6u) = Jp(p(w)u)

SO

inf max J,(0u) = inf J wu) = inf J,(u
ueHs,(RM)\{0} 620 p(OW) ueHs,(RM)\{0} PP ueN p)

so that f* = infye 4 Jp(u). Moreover,
! . _ n*
tg{l&)f}]p(g(t)) > Jp(g(t)) = ulglj/]p(u) =B

so that § > §*.

On the other hand, if we fix u € H?,(]RN )\ {0}, we have J,(8u) < O for 6 = 6, large enough. As a conse-
quence, we can associate to each ray {6u : 6 > 0} a function g, € I, defined as g,(t) = t8,u. From this, we
have

B*= _inf maxJ,(6u)= _inf max Jp(gu(t)).
HY(RV)\{0} 620 HS (RM)\{0} te[0,1]
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Then, since {g, : u € H}(R") \ {0}} ¢ T, we obtain

*= inf max t)) > inf max t)) = B.
B 5, (RV)\(0) te[O,l]Jp(gu( ) et te[O,l]]p(g( ) =8B
Summing up, it follows that the mountain pass solution is also a minimizer on the Nehari manifold . /",

so it is a ground state. By replacing u with |u|, we get, as usual, that u is positive. O

4 Perturbed Subcritical Problems

In this section, we study problem (P,) with f: RN x R — R a Carathéodory function such that f(x, 0) = 0 for

almost every x € RV. In addition, we assume the following hypotheses on f:

(f1) there exists a € LI(RN), a > 0, with g € ((2*)', 2), ¢ > Oand r € (2, 2*) such that |f(x, u)| < a(x) + c|u|"?
for almost every x € RY and for all u € R;

(f») denoting F(x, u) = f; fix, t) dt, we have lim,_,+0o = +co uniformly for almost every x € RV;

(f3) if a(x, u) = f(x, u)u—2F(x, u), then there exists * ¢ LY(RN), B* = 0,suchthat o(x, uy) < a(x, uz)+*(x)
for almost every x € RV, all 0 < u; < up orup < uy < 0;

(f4) limy, 0 @ = 0 uniformly for almost every x € RV,

F(x,u)
u2

Remark 4.1. Condition (f,) implies that lim,_,o £ (;‘;“) = 0 uniformly for almost every x € RV,

Condition (f3) was introduced in [18] to replace the frequently used Ambrosetti—Rabinowitz condition,
which is not assumed here.

Now, we can prove that problem (P,) admits solutions, and this will be done applying a version of the moun-
tain pass theorem to some suitably truncated functionals of I,.
Our main result is the following theorem.

Theorem 4.2. Let N > 2s,a € (O,N),p € (1, I{,V_—g"‘s), qe(2,2*)and V e C(RN) with V = Vy > 0. If hypotheses
(f1), (f2), (f3), (fs) and (2.10) hold, then problem (P,) admits two nontrivial constant-sign solutions.

First, denoting by u™ and u~ the positive part and the negative part of u, respectively, we introduce the
functionals 1 1
L = Sl - 55 [ Qo PP de- | Fou®)dx.
2 v 2p
RV RY
We start proving that both I. satisfy the Cerami, (C) for short, condition — a generalization of the
(PS) condition —, which states that any sequence (uy), in H?,(]RN ) such that (I.(up)), is bounded and
(1 + [lupIDI(uy) — 0 as n — oo admits a convergent subsequence.

Proposition 4.3. Under the assumptions of Theorem 4.2, the functionals I. satisfy the (C) condition.

Proof. We do the proof for I, the proof for I_ being analogous.
Let (un)n in H,(RY) be such that

|I,(up)| < My forsomeM; >0Oandalln>1, (4.1)
and
1+ ||u||H§,)Ii(un) — 0 in (Hf/(lRN))' asn — oo. (4.2)
From (4.2), we have |(1 + ||u||H§/)(I’+(un), h)| < enlihlps for every h € H;(IRN) and &, — 0 asn — oo, that is,
+ 1p=2. 4 N enllhllms
l(un, hy - J(Ia o Pt 1Ptk dix - Jf(x, uhHh dx| < Ty (4.3)
1+ llunllmg

RN RN

In (4.3), if we take h = —u;, € H;(IRN), we obtain |[(un, u,)| < &, forall n > 1, that is,

(s ) = iz I — O (4.4)
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with
_ W () —u () (x) —u=(y)) utOu=(y) + u”ou*(y)
ur,u") = |X}_/le+ZS y dxdy < - J le_ SIS 4 dxdy <0,
]RZN IRZN
so it follows that
u, -0 inH(RY) asn— co. (4.5)
Now, we take h = uj; € H},(R") in (4.3) and obtain
— (Un, uy) + J(Ia w |uh P |ug P dx + Jf(x, upuy dx < g, (4.6)
RN RN
From (4.1) and (4.5), we get
1
(s 12y — = J (Lo % AP dx - 2 j Fox,ut) dx < My “.7)
P RN RV
for some M, > 0 and all n > 1. Adding (4.6) and (4.7), we get
(1 - 1) J(Ia g P |uglP dx + J foq, uhug dx -2 J F(x,u;) dx < M3
b RV RV RV
for some M3 > O and all n > 1, that is,
1
(1 - 5> J (Lo * [P P dx + J o(x, ut) dx < Ms. (4.8)

RN RN
Now, we claim that (u},), is bounded in H?,(IRN ). To prove this, we argue by contradiction, and passing
to a subsequence if necessary, we assume that [[u; || ms, — 0. Wesety, = u luill H3» M > 1,50 we can assume
that
s 175 (N i 1PN
yn—y inHy(RY) and Yn —y inL"(RY) (4.9)

forevery P € (2,2%), withy > 0.
First, we assume y # 0. Then, defining Z(y) := {x € RV : y(x) = 0}, we have meas(R" \ Z(y)) > 0 and
U} (x) — oo for almost every x € RV \ Z(y) as n — oo. By hypothesis (f>), we have

F(x, up(x)) — F(x, uy(x))

s Uy (x)

Yn(x)> = 0o for almost every x € RN \ Z(y).

By Fatou’s lemma, we have

+ +
Jlirpligf Fox, up () (X’f’;(x)) dx < 1imgfj Fox, up () (X’f"z(")) dx,
o ||Un||H§/ v ||Un||H§/
SO F +
J deeoo asn — oo. (4.10)

2
IIMZIIH;
Again from (4.1) and (4.5), we have
1 +112 1 +p +|p +
=5l + 2 (T = |upP)luplP dx + | F(x, up) dx < My
RN RN

for some M, > 0 and n > 1, so it follows that

1 . J F(x, uji(x)) - M,

) +)2 T
2 ||un||H; ||un||H;
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Passing to the limit as n — oo, we obtain

J F(x, uy,(x)) d

lim sup —
il

n—oo

X < M5

for some Ms > 0, which is a contradiction with (4.10), and this concludes the case y # 0.
Now, assume y = 0. We consider the continuous functions y,: [0, 1] — R defined by y,(t) := I, (tu;;) for
t € [0,1] and n > 1, and define t,, such that

Yn(tn) = tg[l&’f] Yn(b). (4.11)

Now, for A > 0, we define vy, := (20)y, € H$,(RN). Then, by (4.9), we have v, — 0in LP(RN) forall P € (2, 2*).
From (f1), performing some integration, we obtain

| P oo < [ atowaeoldx ¢ [ vacor dx.
RN RN RN
so we have
J F(x,u}(x)) >0 asn — oo. (4.12)
]RN
Since ||u;||H§, — 00 as n — oo, there exists ng > 1 such that (ZA)%/llu;MHsV € (0, 1) for all n > ngy. Then, by
(4.11), we have
(242

!
lunlir

Yn(tn) 2 yn< ) forall n > no.

Hence,
Litta) 2 L@y = Leva) = Ayally = 5o [ o+ Wl val? dx = [ PO vi) .
RN RN
From (4.12) and Proposition 2.7, we have
I (thup) 2 A+0(1) foralln > n; > no,
and since A > 0 is arbitrary, we have
L (tqu;) > c0 asn — oo. (4.13)

Since O < tyuf < uj forall n > 1, by (f3), we get

I o(x, tqu}) dx < I o(x,uy)dx+|p*ll1 foralln>1. (4.14)
RY RY
In addition, we have I,(0) = 0, and from (4.1), (4.4) and (4.5), there exists Mg > O such that I, (u};) < Mg

for all n > 1. This, together with (4.13), implies that t, € (0, 1) for all n > n, > n;. Then, since t, achieves
a maximum, we have

0 = tyn(t) = ta(Ly(tatty), Un) = (T (), taliy)) — j fX, talt}) s, dx,
]RN
that is,
IItHuEIIf{; - J(I“ # |t D) taus [P dx — Jf(x, tau)tauy dx =0 foralln > 1. (4.15)
RV RN
Now, adding (4.15) to (4.14), we obtain

ety = | (o= e Plewl? dx -2 [ oot do < [ otup dxs 187y foralln >y,

RN RN RN
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and this implies that
1 *
2, (i) < (1 - ;) [ etttz de+ [ o0, up) dxes 1871
RN RN
1
< (1 - —) I(Ia w |l P)|uh P dx + J o(x,uy)dx+|p*l1 foralln>2
p RN RN
since t, € (0, 1). Thus, by (4.13), we get
1
<1 - I;) j (I = [ug P)ug P dx + J o(x,u;)dx — 0o asn — co. (4.16)
RY RY
Now, if we combine (4.8) and (4.16), we reach a contradiction, so the claim follows.
So (u})n is bounded in H?,(]RN), and together with (4.5), this implies that (uy), is bounded in Hf,(]RN).
So we can assume that
Uy, — u inH?,(IRN) and U, »u inLP@RN) forall P € (2,2%).
Now, we choose h = u,, — u in (4.3) and obtain
(st =) = [ (R Pt P20t ) = [ 0, )t~ ) dx = (1), (4.17)
RN RN
But by (f1), we have
[ v - wi < [ @GOty -~ uldx+ [ lun g - ul dx
RY RY RN
< llallgllun = ullg + Clluy —ull, - 0 asn — oo.
Hence, passing to the limit in (4.17), we obtain
(Un, U — u) - I (I * [unP)ub P~ up (uy —u)dx — 0 asn — co.
IRN
By Proposition 2.7, we also have
J(Ia * [unlP)|up P2 uf(up —u)dx > 0 asn — oo,
]RN
so we get
(un, tn = u) = Junllggs — (un, u) — 0.

This implies that IIunllf{S — ||u||§5 asn — 00,S0 U, — uin Hf,(IRN ), and then I, satisfies the (C) condition, as
v 14
desired. O

We are now ready to give the proof of Theorem 4.2.

Proof of Theorem 4.2. From Proposition 4.3, we know that I, satisfies the (C) condition, so we only have to
verify the geometric conditions of the mountain pass theorem, and indeed, I, (0) = 0.
By (f1) and (f4), there exist € > 0 and C, > 0 such that

£
F(x,u) < zuf, + Celul” for almost every x € RN and all u € R.

Then, by Proposition 2.7 and the Sobolev embedding theorem, there exist C, S, C; > O such that, for every
u € H(RV), we have

1) = Sy, - 5 [ o s Pt dx— [ Focut) dx

2 2p
RN RN
1 2 w20 €42 +r
> 5||u||H§/ = Cllu ||H?/ - illu 5 = Cellu™lly

1-¢€S
2
So, if ||u||H; = p small enough, we have infy, -, I (u) > 0.

\%

2 +12P 7
Ml = Cllu™ s = Callullys -
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Now, if we take u € H,(RV) \ {0} with u > Oand ¢ > 0, then

tZ 2p
I.(tu) = —||u||12{s - — J(Ia * [ulP)uP dx - J F(x, tu) dx
2 v 2p
RN RN
2o, P 5 [ F(x, tu) ,
= j””"H; - 5 J(Ia * [ulP)uP dx -t J ()2 u® dx.
RN RN
By Fatou’s lemma, we have
F F
J lim inf (x, tw) u? dx < liminf J Mu2 dx,
tooo  (tu)? t—00 (tu)?
RV RNV
s0, by (f), we have
F
J (x, tu) 2dx >0 ast— oo
(tu)?
]RN

As a consequence, I, (tu) — —co as t — 00, so there exists e € H;(]RN) such that IIeIIH; >pandl,(e) <O.
Now, we can apply the mountain pass theorem to I, and obtain a nontrivial critical point u of I,. In
particular, we have

0 = (L, w) = uyw) = [ o WP P2 de = [ foeut ™ d = ) = I
RN RN
From this, we have

W () —ut () u (x) —u (y))

||H_||12q; =u,u) = iy dx dy
R2N
+ - - +
o j utu(y) + u”(u*(y) dxdy <0,
|X_y|N+ZS
R2N

sou~ = 0. As a consequence, since I, (u) = I, (u), u is a positive solution of (P,).
In the same way, arguing with I_, we can find a negative solution for problem (P,). O
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