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Abstract: In this paper, we consider fractional Choquard equations with confining potentials. First, we show
that they admit a positive ground state and infinitely many bound states. Then we prove the existence of two
signed solutions when a superlinear and subcritical perturbation is added; in this case, the main feature is
that such a perturbation does not satisfy the usual Ambrosetti–Rabinowitz condition.
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1 Introduction
The starting point of this paper is a class of fractional Choquard equations of the form

(−∆)su + Vu = (Iα ∗ |u|p)|u|p−2u inℝN , N ≥ 1. (P1)

Here p > 1 varies in a suitable range, s ∈ (0, 1), and (−∆)s is the fractional Laplacian defined as

(−∆)su = C(n, s)P.V. ∫
ℝN

u(x) − u(y)
|x − y|N+2s

dy

with the integral in the principal value sense, that is,

P.V. ∫
ℝN

u(x) − u(y)
|x − y|N+2s

dy = lim
ε→0
∫

ℝN\B(x,ε)

u(x) − u(y)
|x − y|N+2s

dy,

C(n, s) = π(−2s+N/2) Γ(N/2 + s)Γ(−s) ,

and Γ is Euler’s Gamma function.Moreover,V ∈ C(ℝN) is a potential such thatV(x) ≥ V0 > 0 for every x ∈ ℝN .
Finally, Iα : ℝN → ℝ is the Riesz potential of order α ∈ (0, N), defined for every x ∈ ℝN \ {0} as

Iα(x) =
Aα
|x|N−α

, Aα =
Γ(N−α2 )

2αΓ( α2 )π
N
2
.
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The reasons to consider problem (P1) go back to physical motivations; indeed, the Choquard equation

− ∆u + u = (I2 ∗ |u|2)u inℝ3 (1.1)

has appeared in the context of various physical models; for instance, see the models for polarons in a ionic
lattice fromFröhlich in [9, 10]. TheChoquard equationwas actually introducedbyPhilippeChoquard in1976
in the modelling of a one-component plasma; see [13]. More general versions of the Choquard equation have
been introduced in recent years in the context of quantummechanics; see [3, 5].

An interesting family of problems which extends (1.1) is given by the autonomous homogeneous
Choquard equations

−∆u + u = (Iα ∗ |u|p)|u|p−2u inℝN ,

where N ∈ ℕ, α ∈ (0, N) and p > 1, studied in [15]. However, physical models in which particles are under
the influence of an external electric field V lead to study Choquard equations in the form

− ∆u + Vu = (Iα ∗ |u|p)|u|p−2u inℝN , (1.2)

where generally V is a nonconstant electric potential in L1loc(ℝ
N). Due to the presence of the potential V,

the problem is not invariant under translation of the space, and the situation is more complicated; see [4,
Chapter 1] and [25].

It is clear that problem (P1) is the nonlocal counterpart of (1.2). In fact, recent research has shown that
local interaction sometimes should be conveniently replaced by nonlocal ones (for instance, see [7, 11, 12,
17, 24, 27]), and indeed, our first set of results are related to those proved by Van Schaftingen and Xia
in [25]; therein, they studied the problem in the case of a nonnegative potential V and proved the existence
of a ground state solution, as well as a sequence of solutions whose energies are unbounded. In our case,
due to the nonlocal nature of problem (P1), we do not handle the case of a vanishing potential, so we assume
V : ℝN → [V0, +∞) with V0 > 0, and we first prove analogous results to those proved in [25]. In particular,
the first two main results of this paper are Theorem 3.1, where the existence of infinitely many solutions is
proved, and Theorem 3.3, where the existence of a ground state is given.

In the second part of the paper, we study a subcritical perturbation of problem (P1), namely,

(−∆)su + Vu = (Iα ∗ |u|p)|u|p−2u + f(x, u) inℝN . (P2)

Here f satisfies suitable conditions, but, in particular, it does not satisfy the Ambrosetti–Rabinowitz con-
ditions. This means that the usual strategy to find critical points for the associated functional cannot be
performed. For this reason, we assume a new condition on f (see Section 4), recently introduced in [18] and
already exploited in other contexts (for instance, see [8]). This condition is quite general, but, on the other
hand, it is enough to overcome the difficulties arising from the lack of the Ambrosetti–Rabinowitz condition
and prove that the associated functional has critical points. In this way, we can prove the existence of two
solutions, one being positive and the other being negative; see Theorem 4.2, the third main result of this
paper.

The paper is organized as follows: in Section 2, we introduce the problem in detail, and we give the
functional setting we shall use later on, in particular, proving some embedding and continuity results. In
Section 3, we prove the existence of an unbounded sequence of solutions for problem (P1) and that there
exists a ground state solution. The former result is obtained by using the fountain theorem by Bartsch [2],
while the latter is the consequence of a strategy which goes back to Rabinowitz [20].

Finally, in Section 4, we consider problem (P2) and prove that there exist two nontrivial constant-sign
solutions. In this case, due to the general behavior of the nonlinearity f , we are not able to apply the usual
mountain pass theoremwith the (PS) condition, but we need a version under the validity of the (C) condition.
Indeed, the fact that f doesnot satisfy theAmbrosetti–Rabinowitz conditionsmakes theproof of thebounded-
ness of (C) sequences very hard, but, following the approach of [18], we succeeded in proving it, gaining the
desired result.
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2 Functional Setting
We divide this section in two parts: in the first one, we study some properties of the convolution term and
some embedding properties related to the functional space where the problems are set; in the second part,
we introduce the variational structure we will use.

2.1 Embedding Results

The leading operator in the equation forces to consider the quantity

‖u‖HsV := ( ∫
ℝ2N

|u(x) − u(y)|2

|x − y|N+2s
dx dy + ∫

ℝN

Vu2 dx)
1
2
.

Now, we claim that this is a norm and define HsV (ℝN) as the normed space obtained by completion of the set
of smooth functions with compact support C∞c (ℝN) with respect to the norm ‖u‖HsV . Indeed, ‖ ⋅ ‖HsV is clearly
a semi-norm, but if ‖u‖HsV = 0, from the first term, u is constant with ∫ℝN V|u|

2 = 0, which leads to u = 0, so
‖ ⋅ ‖HsV is a norm.

Moreover, HsV (ℝN) is a Hilbert space, endowed with the scalar product

⟨u, v⟩ = ∫
ℝ2N

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dx dy + ∫
ℝN

Vuv dx for every u, v ∈ HsV (ℝ
N).

With an assumption on the potential V, we can say that HsV (ℝN) is continuously embedded in the frac-
tional Hilbert space Hs(ℝN).

Remark 2.1. If inf V > 0, then HsV (ℝN) 󳨅→ Hs(ℝN), that is, there exists C > 0 such that

‖u‖Hs(ℝN ) ≤ C‖u‖HsV (ℝN ) for every u ∈ HsV (ℝ
N). (2.1)

Indeed, we have

‖u‖2Hs(ℝN ) = ∫
ℝ2N

|u(x) − u(y)|2

|x − y|N+2s
dx dy + ∫

ℝN

u2 dx

≤ max{1, 1
inf V }( ∫

ℝ2N

|u(x) − u(y)|2

|x − y|N+2s
dx dy + ∫

ℝN

Vu2 dx) ≤ C‖u‖HsV (ℝN ),

so we have the continuous embedding.

For further references, we also define HsV (Ω) as the completion of smooth functions with compact support
with respect to the norm

(∫
Ω2

|u(x) − u(y)|2

|x − y|N+2s
dx dy + ∫

Ω

Vu2 dx)
1
2
.

We first study when we have an embedding of HsV (ℝN) into the weighted space

L2(ℝN ; |x|γ dx) := {u : ℝN → ℝ : u measurable, ∫
ℝN

|x|γu2 dx < +∞}.

We consider this space with the norm

‖u‖2L2(ℝN ;|x|γ dx) = ∫
ℝN

|x|γu2 dx.

More precisely, we show that, under suitable assumptions, this embedding is continuous and compact.
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Proposition 2.2. Let N > 2s and γ ∈ [0, +∞). If V ∈ C(ℝN), V(x) ≥ V0 > 0 and

lim inf
|x|→+∞

V(x)
|x|γ
> 0, (2.2)

then there exists a constant C > 0 such that

∫

ℝN

|x|γu2 dx ≤ C( ∫
ℝ2N

|u(x) − u(y)|2

|x − y|N+2s
dx dy + ∫

ℝN

Vu2 dx) for every u ∈ HsV (ℝ
N), (2.3)

that is, the embedding HsV (ℝ
N) 󳨅→ L2(ℝN ; |x|γ dx) is continuous.

If, in addition,
lim
|x|→+∞

V(x)
|x|γ
= +∞, (2.4)

then the corresponding embedding is compact. Moreover, when γ = 0, the embedding HsV (ℝN) 󳨅→ Lq(ℝN) is
compact for every q ∈ (2, 2∗).

Here 2∗ = 2N
N−2s is the usual Sobolev fractional exponent; see [6]. A similar result was proved in [25] for

the embedding of H1
V (ℝ

N) into Lq(ℝN) with 1
q ∈ (

1
2 −

1
N ,

1
2 ), only assuming V ≥ 0. In our result, we require

a stronger assumption, that is, V is far from 0, but we give a simpler proof.

Proof of Proposition 2.2. Since (2.2) holds, we can take λ ∈ (0, +∞) such that

λ < lim inf
|x|→+∞

V(x)
|x|γ

.

Then there exists k > 0 sufficiently large so that, if x ∈ ℝN \ B(0, k), we have V(x) ≥ λ|x|γ. So, multiplying by
u2 and integrating inℝN \ B(0, k), we obtain

λ ∫
ℝN\B(0,k)

|x|γu2 dx ≤ ∫
ℝN\B(0,k)

Vu2 dx.

Then, since γ ≥ 0 and V(x) ≥ V0 > 0, we can write

∫

ℝN

|x|γu2 dx ≤ kγ ∫
B(0,k)

u2 dx + ∫
ℝN\B(0,k)

|x|γu2 dx

≤ kγ ∫
B(0,k)

V
V0
u2 dx + 1

λ ∫

ℝN\B(0,k)

Vu2 dx

≤ max{ k
γ

V0
, 1
λ } ∫
ℝN

Vu2 dx ≤ C‖u‖2HsV ,

so (2.3) holds.
As for the compactness, if (2.4) holds, let F ⊂ HsV (ℝN) be a bounded set, and take a sequence (vn)n ⊂ F.

Up to a subsequence, we may assume that vn ⇀ v in HsV (ℝN) as n →∞, so we want to prove that vn → v in
L2(ℝN ; |x|γ dx) as n →∞. Of course, we can assume that v ≡ 0. Since vn is bounded in HsV (ℝN); by assump-
tion (2.4), for every ε > 0, there exists R > 0 such that

(sup
|x|>R

|x|γ

V(x))
‖vn‖2HsV ≤ ε. (2.5)

Since vn ∈ HsV (ℝN) for all n ∈ ℕ, we have vn ∈ H
s
V (B(0, R)) and vn ⇀ 0 in HsV (B(0, R)) as n →∞. By the

fractional Rellich–Kondrakov theorem, HsV (B(0, R)) is compactly embedded in L2(B(0, R)), so it follows that
vn → 0 in L2(B(0, R)) as n →∞. Since γ ≥ 0, the space L2(B(0, R)) is naturally embedded in the weighted
space L2(B(0, R); |x|γ dx), so vn → 0 in L2(B(0, R); |x|γ dx). Therefore, there exists N1 > 0 such that, for every
n ≥ N1, we have

∫
B(0,R)

|x|γv2n dx ≤ ε. (2.6)



D. Mugnai and E. Proietti Lippi, Fractional Choquard Equations with Confining Potential | 167

Then, for n ≥ N1, by (2.5) and (2.6), we obtain

∫

ℝN

|x|γv2n dx = ∫
B(0,R)

|x|γv2n dx + ∫
ℝN\B(0,R)

|x|γv2n dx

≤ ε + (sup
|x|>R

|x|γ

V(x)) ∫
ℝN\B(0,R)

Vv2n dx ≤ ε + (sup
|x|>R

|x|γ

V(x))
‖vn‖2HsV ≤ 2ε.

This proves that ∫ℝN |x|
γv2n dx → 0 as n →∞, that is, vn → 0 in L2(ℝN ; |x|γ dx), so the desired embedding is

compact.
To conclude the proof, in the case γ = 0, we use some interpolation to show that the previous sequence

(vn)n in HsV (ℝN) is compact in Lq(ℝN) with q ∈ (2, 2∗). To this purpose, take ̄q = 2N
N−2s if N > 2s; then there

exists β ∈ (0, 1) such that
1
q
=
β
2 +

1 − β
̄q
.

Using the interpolation inequality, we have ‖vn‖Lq ≤ C1‖vn‖
β
L2‖vn‖

1−β
L ̄q . By the fractional Sobolev inequality

(see [6]), we know that ‖vn‖L ̄q ≤ C‖vn‖Hs , so

C1‖vn‖
β
L2‖vn‖

1−β
L ̄q ≤ C2‖vn‖

β
L2‖vn‖

1−β
Hs .

By (2.1), we have
C2‖vn‖

β
L2‖vn‖

1−β
Hs ≤ C3‖vn‖

β
L2‖vn‖

1−β
HsV

.

In the end, we have shown that
‖vn‖Lq ≤ C‖vn‖

β
L2‖vn‖

1−β
HsV

.

Since we have just proved that vn → 0 in L2(ℝN) as n →∞, (vn)n being bounded in HsV (ℝN), we get

‖vn‖Lq ≤ C‖vn‖
β
L2‖vn‖

1−β
HsV
→ 0 as n →∞.

This concludes the proof.

Remark 2.3. Although we are not interested in the case N ≤ 2s, we notice that the previous result holds true
also in this situation with minor adaptations.

Before describing the link between the convolution term and the space HsV , we recall some basic results
known as the Hardy–Littlewood–Sobolev inequality and the Stein–Weiss inequality (see [14, 22]).

Theorem 2.4 (Hardy–Littlewood–Sobolev Inequality). Let0 < α < N and1 < p < q < ∞with 1
q =

1
p −

α
N . Then

there exists C = C(p, α, N) > 0 such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

ℝN

f(y) dy
|x − y|N−α

󵄩󵄩󵄩󵄩󵄩󵄩󵄩Lq(ℝN )
≤ C‖f‖Lp(ℝN ) for every f ∈ Lp(ℝN).

Remark 2.5. Since, in the previous result, we have q = Np
N−αp , we can simply say that Iα ∗ f ∈ L

Np
N−αp (ℝN) and

∫

ℝN

|Iα ∗ f|
Np
N−αp dx ≤ C(∫

ℝN

|f|p dx)
N

N−αp
.

Theorem 2.6 (Stein–Weiss Inequality). Let

Tλ f(x) = ∫
ℝN

f(y)
|x − y|λ

dy

with 0 < λ < N, 1 < p < ∞, α < N − Np , β <
N
q , α + β ≥ 0 and

1
q
=
1
p
+
λ + α + β

N
− 1.

If p ≤ q < ∞, then ‖Tλ f(x)|x|−β‖Lq(ℝN ) ≤ A‖f(x)|x|α‖Lp(ℝN ), where A = A(p, α, β, λ).
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In the next proposition, we will define two maps, and we will prove that they are continuous and of weak to
strong type, that is, they map weakly convergent sequences into strongly convergent sequences.

Proposition 2.7. Let N > 2s and α ∈ (0, N). If V ∈ C(ℝN), V ≥ V0 > 0, satisfies

lim inf
|x|→+∞

V(x)

1 + |x|
N+α
p −N
> 0, (2.7)

then there are two well-defined mappings

φ : HsV (ℝ
N) → L2(ℝN), u ∈ HsV (ℝ

N) 󳨃→ I α
2
∗ |u|p ∈ L2(ℝN), (2.8)

ψ : HsV (ℝ
N) → (HsV (ℝ

N))󸀠, u ∈ HsV (ℝ
N) 󳨃→ (Iα ∗ |u|p)|u|p−2u ∈ (HsV (ℝ

N))󸀠, (2.9)

which are continuous for p ∈ (1, N+α
N−2s ). If, in addition,

lim
|x|→+∞

V(x)

1 + |x|
N+α
p −N
= +∞, (2.10)

the mappings above are of weak to strong type.

Proof. The sign of the exponent in (2.7), that is, N+αp − N, gives us the asymptotic behavior of V(x) when
|x| → ∞, so we study separately the cases N+α

p − N < 0 and
N+α
p − N ≥ 0.

(I) The case p > N+αN .

Continuity and weak to strong property for φ. In this case, |x|
N+α
p −N → 0 as |x| → ∞, so (2.7) implies that we

are in the case γ = 0 of Proposition 2.2, that is, lim inf|x|→+∞ V(x) > 0. Take u ∈ HsV (ℝN); then, by (2.1), we
have HsV (ℝN) 󳨅→ Hs(ℝN) and

‖u‖Hs ≤ C‖u‖HsV . (2.11)

By the fractional Sobolev embedding, we have Hs(ℝN) 󳨅→ L
2Np
N+α (ℝN) and

‖u‖
L
2Np
N+α
≤ C‖u‖Hs , (2.12)

provided that the exponent 2Np
N+α satisfies the condition

2 ≤ 2Np
N + α
≤

2N
N − 2s .

This implies
N − 2s
N + α
≤
1
p
≤

N
N + α

, (2.13)

which is indeed the case we are considering. Thus, taking u ∈ HsV (ℝN), we have u ∈ L
2Np
N+α (ℝN), and so

|u|p ∈ L 2N
N+α (ℝN), being

‖u‖
L
2Np
N+α
= (∫

ℝN

|u|
2Np
N+α )

N+α
2Np
= (∫

ℝN

|u|p
2N
N+α )

N+α
2Np
= ‖|u|p‖

1
p

L
2N
N+α

.

By the Hardy–Littlewood–Sobolev inequality with 0 < α2 < N, p =
2N
N+α and f = |u|

p, being

1 < 2N
N + α
<
2N
α
,

since N + α > α and α < N, and
N 2N
N+α

N − α2
2N
N+α
=

2N2

N2 + Nα − Nα
= 2, (2.14)

we get
I α
2
∗ |u|p ∈ L2(ℝN) and ‖I α

2
∗ |u|p‖L2(ℝN ) ≤ C‖|u|p‖L 2N

N+α
.
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This means that the Riesz integral operator, which maps

|u|p ∈ L
2N
N+α (ℝN) 󳨃→ I α

2
∗ |u|p ∈ L2(ℝN), (2.15)

is a linear and bounded operator. In the end, we get that the first map we are considering, that is, (2.8) is well
defined.

As for the continuity, by (2.1), we have HsV (ℝN) 󳨅→ Hs(ℝN), and by the fractional Sobolev embedding,
Hs(ℝN) 󳨅→ L

2Np
N+α (ℝN). Moreover, the Nemytskii operator

u ∈ L
2Np
N+α (ℝN) 󳨃→ |u|p ∈ L

2N
N+α (ℝN) (2.16)

is continuous; see [19]. Then, as we said before, the Riesz integral operator (2.15) is linear and bounded, so
it is continuous. It follows that the composition of these maps (2.8) is continuous, so we get the first part of
the claim.

If (2.10) holds, the embedding HsV (ℝN) 󳨅→ L
2Np
N+α (ℝN) is compact for N−2sN+α <

1
p <

N
N+α by Proposition 2.2.

As a consequence, if we take (un)n in HsV (ℝN) such that un ⇀ u in HsV (ℝN), we have un → u in L
2Np
N+α (ℝN).

From the continuity of the previous maps, we get I α
2
∗ |un|p → I α

2
∗ |u|p in L2(ℝN). This proves that (2.8) is of

weak to strong type, as we claimed.

Continuity and weak to strong property of ψ. For the second map, starting with u ∈ HsV (ℝN), we have, as
before,

HsV (ℝ
N) 󳨅→ Hs(ℝN) 󳨅→ L

2Np
N+α (ℝN) and ‖u‖

L
2Np
N+α
≤ C1‖u‖Hs ≤ C2‖u‖HsV

for p such that (2.13) holds. Then, from u ∈ L
2Np
N+α (ℝN), it follows that |u|p ∈ L 2N

N+α (ℝN). Now, we can use again
the Hardy–Littlewood–Sobolev inequality with the same p and f as before, but with α in place of α2 , being

1 < 2N
N + α
<
N
α

and
N 2N
N+α

N − α 2N
N+α
=

2N2

N2 − Nα
=

2N
N − α

,

so we get
Iα ∗ |u|p ∈ L

2N
N−α (ℝN) with ‖Iα ∗ |u|p‖L 2N

N−α
≤ C‖|u|p‖

L
2N
N+α

.

By u ∈ L
2Np
N+α (ℝN), we also have |u|p−2u ∈ L

2N
N+α

p
p−1 (ℝN) since

‖u‖
L
2Np
N+α (ℝN )
= (∫

ℝN

|u|
2Np
N+α dx)

N+α
2Np
= (∫

ℝN

󵄨󵄨󵄨󵄨|u|
p−1󵄨󵄨󵄨󵄨

2N
N+α

p
p−1 dx)

N+α
2Np

p−1
p−1
= ‖|u|p−2u‖

1
p−1

L
2N
N+α

p
p−1

.

Now, we want to use the fact that Iα ∗ |u|p ∈ L
2N
N−α (ℝN) and |u|p−2u ∈ L

2N
N+α

p
p−1 (ℝN) to prove that

(Iα ∗ |u|p)|u|p−2u ∈ L
1

1− N+α2Np (ℝN). (2.17)

To do this, we will use the Hölder inequality. We have the exponents 2N
N−α and

2N
N+α

p
p−1 , so, from

N − α
2N +
(N + α)(p − 1)

2Np = 1 − N + α2Np ,

we get
N−α
2N

1 − N+α2Np
+
(N+α)(p−1)

2Np

1 − N+α2Np
= 1.

So, with these exponents, we can use the Hölder inequality to get

∫

ℝN

󵄨󵄨󵄨󵄨(Iα ∗ |u|
p)|u|p−2u󵄨󵄨󵄨󵄨

1
1− N+α2Np dx

≤ (∫

ℝN

󵄨󵄨󵄨󵄨Iα ∗ |u|
p󵄨󵄨󵄨󵄨

1
1− N+α2Np

2N
N−α (1−

N+α
2Np ) dx)

1
2N
N−α (1− N+α2Np ) (∫

ℝN

󵄨󵄨󵄨󵄨|u|
p−2u󵄨󵄨󵄨󵄨

1
1− N+α2Np

2Np
(N+α)(p−1) (1−

N+α
2Np ) dx)

1
2Np

(N+α)(p−1) (1−
N+α
2Np )

≤ (∫

ℝN

󵄨󵄨󵄨󵄨Iα ∗ |u|
p󵄨󵄨󵄨󵄨

2N
N−α dx)

1
2N
N−α (1− N+α2Np ) (∫

ℝN

󵄨󵄨󵄨󵄨|u|
p−2u󵄨󵄨󵄨󵄨

2Np
(N+α)(p−1) dx)

1
2Np

(N+α)(p−1) (1−
N+α
2Np ) ,
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which means that (2.17) holds, as we claimed. Since 2Np
N+α is the Hölder conjugate of

1
1− N+α2Np

, we can identify
L

1
1− N+α2Np (ℝN) with the dual of L

2Np
N+α (ℝN), so we have

(Iα ∗ |u|p)|u|p−2u ∈ (L
2Np
N+α (ℝN))󸀠 ≅ L

1
1− N+α2Np (ℝN).

Now, since HsV (ℝN) 󳨅→ L
2Np
N+α (ℝN), by duality, (L

2Np
N+α (ℝN))󸀠 󳨅→ (HsV (ℝ

N))󸀠, so (Iα ∗ |u|p)|u|p−2u ∈ (HsV (ℝN))󸀠.
In the end, we obtain that the second map (2.9) is well defined.

As for the continuity again, we start with the continuous embeddings

HsV (ℝ
N) 󳨅→ Hs(ℝN) 󳨅→ L

2Np
N+α (ℝN).

As above, the map (2.16) is continuous, and with the Hardy–Littlewood–Sobolev inequality, we showed that
the linear map

|u|p ∈ L
2N
N+α (ℝN) 󳨃→ Iα ∗ |u|p ∈ L

2N
N−α (ℝN)

is bounded; hence it is continuous. With the same arguments, we also have that the map

u ∈ L
2Np
N+α (ℝN) 󳨃→ |u|p−2u ∈ L

2N
N+α

p
p−1 (ℝN)

is continuous, and by the Hölder inequality, the map

u ∈ L
2Np
N+α (ℝN) 󳨃→ (Iα ∗ |u|p)|u|p−2u ∈ L

1
1− N+α2Np (ℝN)

is continuous. Then, as before, we identify L
1

1− N+α2Np (ℝN) with the dual of L
2Np
N+α (ℝN), that is,

L
1

1− N+α2Np (ℝN) ≅ (L
2Np
N+α (ℝN))󸀠.

Then, from the continuous embedding HsV (ℝN) 󳨅→ L
2Np
N+α (ℝN), considering the dual spaces, the embedding

(L
2Np
N+α (ℝN))󸀠 󳨅→ (HsV (ℝ

N))󸀠 is continuous. So, composing the maps, we get (2.9) that is, a continuous map, as
we claimed.

If, in addition, (2.10) holds, then the embedding HsV (ℝN) 󳨅→ L
2Np
N+α (ℝN) is compact for N−2sN+α <

1
p <

N
N+α by

Proposition 2.2. Hence, if we take a sequence (un)n in HsV (ℝN) such that un ⇀ u in HsV (ℝN), then un → u in
L

2Np
N+α (ℝN). Again from the continuity of the maps, it follows that (Iα ∗ |un|p)|un|p−2un → (Iα ∗ |u|p)|u|p−2u in
(HsV (ℝ

N))󸀠. So we proved that the map (2.9) is of weak to strong type, as we wanted.

(II) The case p ≤ N+αN (< 2).

Continuity and weak to strong property of φ. Again, we start with u ∈ HsV (ℝN). Since
N+α
p − N ≥ 0, by Propo-

sition 2.2 with γ = N+αp − N, we have a continuous embedding

HsV (ℝ
N) 󳨅→ L2(ℝN ; |x|

N+α
p −N dx), (2.18)

and
∫

ℝN

|x|
N+α
p −N |u(x)|2 dx ≤ C‖u‖2HsV . (2.19)

Moreover, the operator

u ∈ L2(ℝN ; |x|
N+α
p −N dx) 󳨃→ |u|p ∈ L

2
p (ℝN ; |x|

N+α
p −N dx) (2.20)

is well defined since

‖u‖
L2(ℝN ;|x|

N+α
p −N dx)
= (∫

ℝN

|x|
N+α
p −N |u(x)|2 dx)

1
2
= ‖|u|p‖

1
p

L
2
p (ℝN ;|x|

N+α
p −N dx)

. (2.21)

Then, using the Stein–Weiss inequality with λ = N − α2 , β = 0, q = 2,
N+α−Np

2 in place of α and 2
p in place of p,

we claim that
∫

ℝN

󵄨󵄨󵄨󵄨I α2 ∗ |u|
p󵄨󵄨󵄨󵄨
2 ≤ C(∫

ℝN

|x|
N+α
p −N |u(x)|2 dx)

p
,
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that is,
‖I α

2
∗ |u|p‖2L2 ≤ C‖|u|

p‖2
L
2
p (ℝN ;|x|

N+α
p −N dx)

. (2.22)

Now, we show that the conditions on the exponents hold. Indeed, we have

N + α − Np
2 < N − Np2

since N > α. Then, from p ≤ N+αN , we get
N + α − Np

2 ≥ 0.

Finally, the equation
1
2 =

p
2 +

N − α2 +
N+α−Np

2
N

− 1

is verified, and we can apply the Stein–Weiss inequality, as claimed.
As a consequence, the linear operator

|u|p ∈ L
2
p (|x|

N+α
p −N dx;ℝN) 󳨃→ I α

2
∗ |u|p ∈ L2(ℝN) (2.23)

is bounded, and so it is continuous. In the end, the composition map

u ∈ HsV (ℝ
N) 󳨃→ I α

2
∗ |u|p ∈ L2(ℝN) (2.24)

is well defined.
As for the continuity, from the continuous embedding (2.18), we get that the map

u ∈ HsV (ℝ
N) 󳨃→ u ∈ L2(ℝN ; |x|

N+α
p −N dx)

is continuous. As before, the map (2.20) is continuous. Then, by (2.22), the map (2.23) is continuous. By
composition, we obtain that (2.24) is continuous.

If we are in the case (2.10), then theweak to strong property follows fromProposition 2.2,which gives the
compactness of the embedding (2.18). So, if we take a sequence (un)n inHsV (ℝN) such that un ⇀ u inHsV (ℝN),
then un → u in L2(ℝN ; |x|

N+α
p −N dx). From the continuity of the maps, the strong convergence still holds, so

we have I α
2
∗ |un|p → I α

2
∗ |u|p in L2(ℝN). This means that the desired map (2.24) is of weak to strong type,

so we get the first part of the claim.

Continuity and weak to strong property of ψ. For the secondmap, starting again with u ∈ HsV (ℝN), by Propo-
sition 2.2, we have the continuous embedding (2.18) with

‖u‖
L2(ℝN ;|x|

N+α
p −N dx)
≤ C‖u‖HsV ,

so u ∈ L2(ℝN ; |x|
N+α
p −N dx). Then, as before, the operator (2.20) is well defined, being

‖u‖
L2(ℝN ;|x|

N+α
p −N dx)
= (∫

ℝN

|x|
N+α
p −N |u(x)|2 dx)

1
2
= ‖|u|p‖

1
p

L
2
p (ℝN ;|x|

N+α
p −N dx)

.

Similarly, the operator

u ∈ L2(ℝN ; |x|
N+α
p −N dx) 󳨃→ |u|p−2u ∈ L

2
p−1 (ℝN ; |x|

N+α
p −N dx) (2.25)

is well defined; in fact,

‖u‖
L2(ℝN ;|x|

N+α
p −N dx)
= (∫

ℝN

|x|
N+α
p −N |u(x)|2 dx)

1
2
= ‖|u|p−1‖

1
p−1

L
2
p−1 (ℝN ;|x|

N+α
p −N dx)

.

By the Stein–Weiss inequality, we claim that

‖Iα ∗ |u|p|x|−
N+α−pN

2 ‖
2

2−p
L ≤ A‖|u|

p|x|
N+α−pN

2 ‖
2
p
L ,
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that is,

∫

ℝN

󵄨󵄨󵄨󵄨Iα ∗ |u|
p󵄨󵄨󵄨󵄨

2
2−p |x|−

N+α−pN
2−p dx ≤ (∫

ℝN

|x|
N+α
p −N |u|2 dx)

p
2−p

.

This implies that the linear operator

|u|p ∈ L
2
p (ℝN ; |x|

N+α
p −N dx) 󳨃→ Iα ∗ |u|p ∈ L

2
2−p (ℝN ; |x|−

N+α−pN
2−p dx) (2.26)

is bounded, so it is continuous as well. To prove this, we use again the Stein–Weiss inequality with λ = N − α,
f = |u|p, q = 2

2−p , β =
N+α−Np

2 , 2
p in place of p and

N+α−pN
2 in place of α.

Now, using Iα ∗ |u|p ∈ L
2

2−p (ℝN ; |x|−
N+α−pN
2−p dx) together with |u|p−2u ∈ L 2

p−1 (ℝN ; |x|
N+α
p −N dx), we want to

prove that
(Iα ∗ |u|p)|u|p−2u ∈ L2(ℝN ; |x|N−

N+α
p dx).

Indeed, using the Hölder inequality with exponents 1
p−1 and

1
2−p , being p − 1 + 2 − p = 1, we have

∫

ℝN

󵄨󵄨󵄨󵄨(Iα ∗ |u|
p)|u|p−2u󵄨󵄨󵄨󵄨

2|x|N−
N+α
p dx = ∫

ℝN

󵄨󵄨󵄨󵄨(Iα ∗ |u|
p)󵄨󵄨󵄨󵄨

2|x|−(N+α−pN)󵄨󵄨󵄨󵄨|u|
p−2u󵄨󵄨󵄨󵄨

2|x|
p−1
p (N+α−pN) dx

≤ (∫

ℝN

󵄨󵄨󵄨󵄨(Iα ∗ |u|
p)󵄨󵄨󵄨󵄨

2
2−p |x|−

N+α−pN
2−p )

2−p
(∫

ℝN

󵄨󵄨󵄨󵄨|u|
p−2u󵄨󵄨󵄨󵄨

2
p−1 |x|

N+α−pN
p )

p−1
.

From this, we have that

u ∈ L2(ℝN ; |x|
N+α
p −N dx) 󳨃→ (Iα ∗ |u|p)|u|p−2u ∈ L2(ℝN ; |x|N−

N+α
p dx) (2.27)

is well defined. Now, we claim that

L2(ℝN ; |x|N−
N+α
p dx) = (L2(ℝN ; |x|

N+α
p −N dx))󸀠. (2.28)

As amatter of fact, startingwith u ∈ L2(ℝN ; |x|N−
N+α
p dx), we can consider ̄u := |x|

N
2 −

N+α
2p u ∈ L2(ℝN) and define

T(v) := ∫
ℝN

|x|−
N
2 +

N+α
2p ̄uv dx for every v ∈ L2(ℝN ; |x|

N+α
p −N dx)

so that T ∈ (L2(ℝN ; |x|
N+α
p −N dx))󸀠.

On the other hand, starting with T ∈ (L2(ℝN ; |x|
N+α
p −N dx))󸀠, by the Riesz representation theorem, there

exists a unique ̄u ∈ L2(ℝN ; |x|
N+α
p −N dx) such that

T(v) = ∫
ℝN

̄uv dx for every v ∈ L2(ℝN ; |x|
N+α
p −N dx).

Now, we can define u := ̄u|x|
N+α
p −N so that u ∈ L2(ℝN ; |x|N−

N+α
p dx). So, for every f ∈ (L2(ℝN ; |x|

N+α
p −N dx))󸀠, we

proved that there exists a unique u ∈ L2(ℝN ; |x|N−
N+α
p dx), and thus we get (2.28), as claimed.

From this, we know that (Iα ∗ |u|p)|u|p−2u ∈ (L2(ℝN ; |x|
N+α
p −N dx))󸀠. Then, from Proposition 2.2, we have

the continuous embedding HsV (ℝN) 󳨅→ L2(|x|
N+α
p −N dx;ℝN), so, reasoning with the dual spaces, we get that

the embedding
(L2(|x|

N+α
p −N dx;ℝN))󸀠 󳨅→ (HsV (ℝ

N))󸀠 (2.29)

is continuous. Thus, composing the maps, we get

u ∈ HsV (ℝ
N) 󳨃→ (Iα ∗ |u|p)|u|p−2u ∈ (HsV (ℝ

N))󸀠, (2.30)

which is well defined.
For the continuity, we take u ∈ HsV (ℝN), and from Proposition 2.2, we have the continuous map

u ∈ HsV (ℝ
N) 󳨃→ u ∈ L2(|x|

N+α
p −N dx;ℝN).
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As above, the map (2.20) is continuous, as well as the map (2.25), doing the same calculations with p − 1
instead of p. From the Stein–Weiss inequality, we obtained that the linear map (2.26) is bounded, so it is
continuous. Then, combining the last two maps with the Hölder inequality, we obtain that the map (2.27) is
continuous. Then we identify L2(ℝN ; |x|N−

N+α
p dx) with the dual of L2(ℝN ; |x|

N+α
p −N dx) as before. As a conse-

quence of Proposition 2.2, we have the continuous embedding (2.29), so the map

(Iα ∗ |u|p)|u|p−2u ∈ L2(ℝN ; |x|N−
N+α
p dx) 󳨃→ (Iα ∗ |u|p)|u|p−2u ∈ (HsV (ℝ

N))󸀠

is continuous. Composing the maps, we obtain (2.30), which is a continuous map, as we stated.
If, in addition, (2.10) holds, as in the other cases, the weak to strong property again follows from

the compactness of the embedding (2.18) given again by Proposition 2.2. So we take (un)n such that
un ⇀ u in HsV (ℝN), and then un → u in L2(ℝN ; |x| N+αp −N dx). From the continuity of the maps, we obtain
(Iα ∗ |un|p)|un|p−2un → (Iα ∗ |u|p)|u|p−2u in (HsV (ℝN))󸀠. So the map (2.30) is of weak to strong type, and this
concludes the proof.

2.2 The Energy Functional

Now, we use the results of the previous section to prove that the functional Jp : HsV → ℝ, defined as

Jp(u) =
1
2 ∫
ℝ2N

|u(x) − u(y)|2

|x − y|N+2s
dx dy + 12 ∫

ℝN

Vu2 dx − 1
2p ∫
ℝN

(Iα ∗ |u|p)|u|p dx,

is well defined and of class C1 on HsV (ℝN).
First of all, we prove an equality that will be useful in the proof of the next result. By the semi-group

identity for the Riesz potential, that is, Iα = I α2 ∗ I α2 (see [21, p. 118, equation 6]), we have

∫

ℝN

(Iα ∗ |u|p)|u|p dx = ∫
ℝN

|I α
2
∗|u|p|2 dx.

Proposition 2.8. Let N > 2s, α > 0, p ∈ (1, N+α
N−2s ). If (2.10) holds, then functional Jp is of class C

1 on HsV (ℝ
N).

Proof. We only need to consider the nonlinear term Gp of Jp, that is,

Gp(u) = ∫
ℝN

(Iα ∗ |u|p)|u|p = ∫
ℝN

󵄨󵄨󵄨󵄨I α2 ∗ |u|
p󵄨󵄨󵄨󵄨
2.

By Proposition 2.7, the map u ∈ HsV (ℝN) 󳨃→ (Iα ∗ |u|p)|u|p ∈ L2(ℝN) is continuous, so Gp is continuous on
HsV (ℝ

N), and so Jp is continuous as well. Again by Proposition 2.7, which gives the continuity of the map
(2.30), being

⟨G󸀠p(u), v⟩ = 2p ∫
ℝN

(Iα ∗ |u|p)|u|p−2uv for every v ∈ HsV (ℝ
N),

we get the claim.

3 Infinitely Many Solutions and Existence of a Ground State

3.1 Unbounded Sequence of Solutions

The first result is that equation (P1) has infinitely many solutions.

Theorem 3.1. Let N > 2s, α ∈ (0, N), p ∈ (1, N+α
N−2s ) and V ∈ C(ℝ

N)with V ≥ V0 > 0. If (2.10) holds, then prob-
lem (P1) has an infinite sequence of solutions whose critical values are unbounded.
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In order to prove Theorem 3.1, we start with the following proposition.

Proposition 3.2. Under the assumptions of Theorem 3.1, the functional Jp satisfies the (PS) condition, that is,
any sequence (un)n in HsV (ℝ

N) with the property that (Jp(un))n is bounded and J󸀠p(un) → 0 in (HsV (ℝ
N))󸀠 as

n →∞ has a convergent subsequence.

Proof. Consider a Palais–Smale sequence (un)n for Jp, that is,

(Jp(un))n is bounded and J󸀠p(un) → 0 in (HsV (ℝ
N))󸀠 as n →∞.

Wewant to show that (un)n is bounded in HsV (ℝN). First, we observe that, by assumption, there exist A, B > 0
such that

Jp(un) ≤ A and ‖J󸀠p(un)‖(HsV (ℝN ))󸀠 ≤ B,

so, by the Cauchy–Schwarz inequality, we have

Jp(un) −
1
2p ⟨J
󸀠
p(un), un⟩ ≤ A +

B
2p ‖un‖H

s
V
.

We also have
Jp(un) −

1
2p ⟨J
󸀠
p(un), un⟩ = (

1
2 −

1
2p)‖un‖

2
HsV
.

As a consequence,

(
1
2 −

1
2p)‖un‖

2
HsV
≤ A + B2p ‖un‖H

s
V
,

which proves that the sequence (un)n is bounded in HsV (ℝN). Up to a subsequence, we can assume that (un)n
converges to some function u weakly in HsV (ℝN) and strongly in Lq(ℝN) with 1

q ∈ (
1
2 −

s
N ,

1
2 ). By Proposi-

tion 2.7 we have G󸀠p(un) → G󸀠p(u) as n → +∞ in (HsV (ℝN))󸀠 because the map G󸀠p is of weak to strong type.
Now, we can write

‖un − u‖2HsV = ∫
ℝ2N

|un(x) − u(x) − un(y) + u(y)|2

|x − y|N+2s
dx dy + ∫

ℝN

V|un − u|2 dx

= ∫

ℝ2N

(un(x) − un(y))(un(x) − u(x) − un(y) + u(y))
|x − y|N+2s

dx dy

− ∫

ℝ2N

(u(x) − u(y))(un(x) − u(x) − un(y) + u(y))
|x − y|N+2s

dx dy

− ∫

ℝN

Vu(un − u) dx + ∫
ℝN

Vun(un − u) dx

+ ∫

ℝN

(Iα ∗ |un|p)|un|p−2(un − u) dx + ∫
ℝN

(Iα ∗ |u|p)|u|p−2(un − u) dx

− ∫

ℝN

(Iα ∗ |un|p)|un|p−2(un − u) dx − ∫
ℝN

(Iα ∗ |u|p)|u|p−2(un − u) dx

= ⟨J󸀠p(un), un − u⟩ − ⟨J󸀠p(u), un − u⟩ +
1
2p ⟨G

󸀠
p(un)un − u⟩ −

1
2p ⟨G

󸀠
p(u), un − u⟩

= ⟨J󸀠p(un) − J󸀠p(u), un − u⟩ +
1
2p ⟨G

󸀠
p(un) − G󸀠p(u), un − u⟩.

Combining this with the fact that J󸀠p(un) → J󸀠p(u) = 0 and G󸀠p(un) → G󸀠p(u) in (HsV (ℝN))󸀠, un ⇀ u in HsV (ℝN),
we get

‖un − u‖2HsV = ⟨J
󸀠
p(un) − J󸀠p(u), un − u⟩ −

1
2p ⟨G

󸀠
p(un) − G󸀠p(u), un − u⟩ → 0 as n → +∞,

so Jp satisfies the (PS) condition.
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We are now ready for the proof of Theorem 3.1.

Proof of Theorem 3.1. From Proposition 2.8, we know that Jp ∈ C1(HsV (ℝN)) and from Proposition 3.2 that
it satisfies the (PS) condition, so we have to prove that the conditions (A1) and (A2) of the fountain theorem
hold. Since HsV (ℝN) is a subspace of L2(ℝN), which is a separable space, it is separable as well, so there exists
an orthonormal basis (ej)j≥0 ofHsV (ℝN). Using this basis, we define Xj := ℝej, Yk = ⨁

k
j=0 Xj and Zk = ⨁

∞
j=k Xj.

Now, we find suitable rk and ρk. First, let us denote by σk the positive minimum of Gp on the unit sphere
of Yk, and then, for any u ∈ Yk with ‖u‖HsV = ρk, compute

Jp(u) =
1
2 ‖u‖

2
HsV
−

1
2p ∫
ℝN

(Iα ∗ |u|p)|u|p =
1
2 ‖u‖

2
HsV
−

1
2p ‖u‖

2p
HsV
Gp(

u
‖u‖HsV
) ≤

1
2ρ

2
k −

σk
2p ρ

2p
k .

Since p > 1, we have
lim
ρk→∞
(
1
2ρ

2
k −

σk
2p ρ

2p
k ) = −∞,

so, for sufficiently large ρk, we have supu∈Yk ,‖u‖=ρk Jp(u) ≤ 0, and so condition (A1) holds.
Now, turn to (A2). We define

βk := sup{‖I α2 ∗ |u|
p‖L2 : u ∈ Zk , ‖u‖HsV = 1}

and show that βk → 0 as k →∞. Indeed, we observe that 0 < βk+1 ≤ βk since Zk ⊃ Zk+1, so βk → β ≥ 0. By
definition of βk, we know that, for every k ≥ 0, there exists uk ∈ Zk such that ‖uk‖HsV = 1 and

‖I α
2
∗ |uk|p‖L2 >

βk
2 . (3.1)

By definition of Zk, we have uk ⇀ 0 in HsV (ℝN), and as a consequence of Proposition 2.7, we have

I α
2
∗ |uk|p → I α

2
∗ |u|p in L2(ℝN) with u = 0.

Hence, by (3.1), we get β = 0.
Moreover, for every u ∈ Zk, we have

Jp(u) =
1
2 ‖u‖

2
HsV
−

1
2p ∫
ℝN

(Iα ∗ |u|p)|u|p

=
1
2 ‖u‖

2
HsV
−

1
2p ‖u‖

2p
HsV
∫

ℝN

[(Iα ∗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
u
‖u‖HsV

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
)]

2

≥
1
2 ‖u‖

2
HsV
−
β2k
2p ‖u‖

2p
HsV
.

Now, setting rk := 1
β1/(p−1)k

, for every u ∈ Zk with ‖u‖HsV = rk, we obtain

Jp(u) ≥
1
2

1

β
2
p−1
k

−
1
2p

1

β
2p
p−1−2
k

= (
1
2 −

1
2p)

1

β
2
p−1
k

.

This means that
inf
u∈Zk
‖u‖=rk

Jp(u) ≥ (
1
2 −

1
2p)

1

β
2
p−1
k

.

Taking the limit, we obtain

lim
k→∞

inf
u∈Zk
‖u‖=rk

Jp(u) ≥ lim
k→∞
(
1
2 −

1
2p)

1

β
2
p−1
k

= +∞,

so condition (A2)holds. Of course, fix rk first as above, choose ρk such that ρk > rk > 0, andapply the fountain
theorem.
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3.2 Ground State

Now,wewill prove that equation (P1) admits a ground state solution, and thiswill bedoneusing themountain
pass theorem, following the lines of the celebrated paper by Rabinowitz [20].

Theorem 3.3. Let N > 2s, α ∈ (0, N), p ∈ (1, N+α
N−2s ) and V ∈ C(ℝ

N)with V ≥ V0 > 0. If (2.10) holds, then prob-
lem (P1) has a positive ground state solution.

Proof. We divide the proof in several steps.

Existence of a mountain pass solution. To prove the existence of a solution, we apply the mountain pass
theorem to Jp. First, by Proposition 2.8, Jp is of class C1 on HsV , and by Proposition 3.2, it satisfies the
(PS) condition with Jp(0) = 0. Now, we observe that

∫

ℝN

(Iα ∗ |u|p)|u|p ≤ C‖u‖
2p
HsV
. (3.2)

Indeed, if p > N+αN , by (2.11), (2.12) and (2.14), inequality (3.2) holds at once. On the other hand, if
1 < p ≤ N+αN , the estimate follows by using (2.19), (2.21) and (2.22).

As a consequence of (3.2),

Jp(u) ≥
1
2 ‖u‖

2
HsV
−
C
2p ‖u‖

2p
HsV
=
1
2 ‖u‖

2
HsV
(1 − Cp ‖u‖

2p−2
HsV
).

So, for ‖u‖HsV = ρ small enough, we have inf‖u‖=ρ Jp(u) > 0, so the functional has a strict local minimum at 0.
Finally, take u ∈ HsV (ℝN) \ {0}, and notice that

Jp(tu) =
1
2 t

2‖u‖2HsV −
1
2p t

2p ∫

ℝN

(Iα ∗ |u|p)|u|p → −∞ as t → +∞.

This means that Jp enjoys the geometric structure of the mountain pass, so

β = inf
g∈Γ

max
θ∈[0,1]

f(g(θ)) > 0 (3.3)

is a critical value for the functional Jp, where

Γ = {g ∈ C0([0, 1], HsV (ℝ
N)); g(0) = 0, g(1) < 0}.

So we have found a nontrivial solution u for problem (P1). Now, we want to show that such a point u is the
desired ground state.

To do that, we introduce the usual Nehari manifold

N := {u ∈ HsV (ℝ
N) \ {0} : J󸀠p(u)u = 0}.

The mountain pass solution is a ground state. As usual, we start defining a radial homeomorphism between
N and the unit ball in HsV (ℝN). To do that, for every u ∈ H

s
V (ℝ

N)) \ {0}, we define ψ : (0, +∞) → ℝ as

ψ(t) := Jp(tu).

From the behavior of Jp, as we discussed above, ψ(t) > 0 for t small, and ψ(t) < 0 for t large enough. As
a consequence, there existsmaxt≥0 ψ(t), and it is achieved at a certain t := φ(u) > 0. Sinceφ(u) is amaximum
point for ψ, we have ψ󸀠(φ(u)) = 0. On the other hand, we have

0 = φ(u)ψ󸀠(φ(u)) = ⟨J󸀠p(φ(u)u), φ(u)u⟩,

that is, φ(u)u ∈ N .
Now, we claim that φ(u) is the only value of t > 0 such that tu ∈ N . Indeed, since

ψ󸀠(t) = t(‖u‖2HsV − t
2p−2 ∫

ℝN

(Iα ∗ |u|p)|u|p),
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we have ψ󸀠(t) = 0 if and only if

̄t = (
‖u‖2HsV

∫ℝN (Iα ∗ |u|
p)|u|p
)

1
2p−2

with ψ󸀠(t) > 0 for 0 < t < ̄t and ψ󸀠(t) < 0 for t > ̄t. This means that the equation

‖u‖2HsV = t
2p−2 ∫

ℝN

(Iα ∗ |u|p)|u|p

is solvable if and only if t = ̄t = φ(u). As a consequence, there is a well-defined map φ,

u ∈ HsV (ℝ
N) 󳨃→ φ(u) ∈ (0, +∞).

In particular, if u ∈ B(0, 1), there exists a unique φ(u) > 0 such that φ(u)u ∈ N . Moreover, we show that the
map φ is continuous. Indeed,let (un)n be such that un → u in HsV (ℝN) \ {0}. From Proposition 2.7,

∫

ℝN

(Iα ∗ |un|p)|un|p → ∫
ℝN

(Iα ∗ |u|p)|u|p as n →∞.

Since, for every n > 0, we have φ(un)un ∈ N , then

φ(un)2‖un‖2HsV = φ(un)
2p ∫

ℝN

(Iα ∗ |un|p)|un|p . (3.4)

From this, we have

φ(un)2p−2 =
‖un‖2HsV

∫ℝN (Iα ∗ |un|
p)|un|p

→
‖u‖2HsV

∫ℝN (Iα ∗ |u|
p)|u|p

as n → +∞.

So φ(un) converges to a certain φ̄, and since u ̸= 0, we have φ̄ ̸= 0. Taking the limit in (3.4), we get

φ̄2‖un‖2HsV = φ̄
2p ∫

ℝN

(Iα ∗ |u|p)|u|p ,

so φ̄u ∈ N . Then, by the uniqueness of φ, we get φ̄ = φ(u), so φ(un) → φ(u). In conclusion, N is homeo-
morphic to the unit ball in HsV (ℝN).

Now, define
β∗ = inf

HsV (ℝN )\{0}
max
θ≥0

Jp(θu).

We claim that
β∗ = β = inf

u∈N
Jp(u),

where β is defined in (3.3). In fact, from the definition of φ, for every u ∈ HsV (ℝN) \ {0}, we have

max
θ≥0

Jp(θu) = Jp(φ(u)u),

so
inf

u∈HsV (ℝN )\{0}
max
θ≥0

Jp(θu) = inf
u∈HsV (ℝN )\{0}

Jp(φ(u)u) = inf
u∈N

Jp(u)

so that β∗ = infu∈N Jp(u). Moreover,

max
t∈[0,1]

Jp(g(t)) ≥ Jp(g(t󸀠)) ≥ inf
u∈N

Jp(u) = β∗

so that β ≥ β∗.
On the other hand, if we fix u ∈ HsV (ℝN) \ {0}, we have Jp(θu) < 0 for θ = θu large enough. As a conse-

quence, we can associate to each ray {θu : θ ≥ 0} a function gu ∈ Γ, defined as gu(t) = tθuu. From this, we
have

β∗ = inf
HsV (ℝN )\{0}

max
θ≥0

Jp(θu) = inf
HsV (ℝN )\{0}

max
t∈[0,1]

Jp(gu(t)).
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Then, since {gu : u ∈ HsV (ℝN) \ {0}} ⊂ Γ, we obtain

β∗ = inf
HsV (ℝN )\{0}

max
t∈[0,1]

Jp(gu(t)) ≥ inf
g∈Γ

max
t∈[0,1]

Jp(g(t)) = β.

Summing up, it follows that the mountain pass solution is also a minimizer on the Nehari manifold N ,
so it is a ground state. By replacing u with |u|, we get, as usual, that u is positive.

4 Perturbed Subcritical Problems
In this section, we study problem (P2) with f : ℝN × ℝ → ℝ a Carathéodory function such that f(x, 0) = 0 for
almost every x ∈ ℝN . In addition, we assume the following hypotheses on f :
(f1) there exists a ∈ Lq(ℝN), a ≥ 0, with q ∈ ((2∗)󸀠, 2), c > 0 and r ∈ (2, 2∗) such that |f(x, u)| ≤ a(x) + c|u|r−1

for almost every x ∈ ℝN and for all u ∈ ℝ;
(f2) denoting F(x, u) = ∫

u
0 f(x, t) dt, we have limu→±∞

F(x,u)
u2 = +∞ uniformly for almost every x ∈ ℝN ;

(f3) if σ(x, u) = f(x, u)u−2F(x, u), then there exists β∗ ∈ L1(ℝN), β∗ ≥ 0, such that σ(x, u1) ≤ σ(x, u2)+β∗(x)
for almost every x ∈ ℝN , all 0 ≤ u1 ≤ u2 or u2 ≤ u1 ≤ 0;

(f4) limu→0
f(x,u)
u = 0 uniformly for almost every x ∈ ℝN .

Remark 4.1. Condition (f4) implies that limu→0
F(x,u)
u2 = 0 uniformly for almost every x ∈ ℝN .

Condition (f3) was introduced in [18] to replace the frequently used Ambrosetti–Rabinowitz condition,
which is not assumed here.

Now, we can prove that problem (P2) admits solutions, and this will be done applying a version of the moun-
tain pass theorem to some suitably truncated functionals of Ip.

Our main result is the following theorem.

Theorem 4.2. Let N > 2s, α ∈ (0, N), p ∈ (1, N+α
N−2s ), q ∈ (2, 2

∗) and V ∈ C(ℝN) with V ≥ V0 > 0. If hypotheses
(f1), (f2), (f3), (f4) and (2.10) hold, then problem (P2) admits two nontrivial constant-sign solutions.

First, denoting by u+ and u− the positive part and the negative part of u, respectively, we introduce the
functionals

I±(u) :=
1
2 ‖u‖

2
Hsv −

1
2p ∫
ℝN

(Iα ∗ |u±|p)|u±|p dx − ∫
ℝN

F(x, u±) dx.

We start proving that both I± satisfy the Cerami, (C) for short, condition – a generalization of the
(PS) condition –, which states that any sequence (un)n in HsV (ℝ

N) such that (I±(un))n is bounded and
(1 + ‖un‖)I󸀠±(un) → 0 as n →∞ admits a convergent subsequence.

Proposition 4.3. Under the assumptions of Theorem 4.2, the functionals I± satisfy the (C) condition.

Proof. We do the proof for I+, the proof for I− being analogous.
Let (un)n in HsV (ℝN) be such that

|I+(un)| ≤ M1 for some M1 > 0 and all n ≥ 1, (4.1)

and
(1 + ‖u‖HsV )I

󸀠
+(un) → 0 in (HsV (ℝ

N))󸀠 as n →∞. (4.2)

From (4.2), we have |(1 + ‖u‖HsV )⟨I
󸀠
+(un), h⟩| ≤ εn‖h‖HsV for every h ∈ H

s
V (ℝ

N) and εn → 0 as n →∞, that is,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨un , h⟩ − ∫

ℝN

(Iα ∗ |u+n |p)|u+n |p−2u+nh dx − ∫
ℝN

f(x, u+n)h dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

εn‖h‖HsV
1 + ‖un‖HsV

. (4.3)

In (4.3), if we take h = −u−n ∈ HsV (ℝN), we obtain |⟨un , u−n⟩| ≤ εn for all n ≥ 1, that is,

⟨u+n , u−n⟩ − ‖u−n‖2HsV → 0 (4.4)
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with

⟨u+, u−⟩ = ∫
ℝ2N

(u+(x) − u+(y))(u−(x) − u−(y))
|x − y|N+2s

dx dy ≤ − ∫
ℝ2N

u+(x)u−(y) + u−(x)u+(y)
|x − y|N+2s

dx dy ≤ 0,

so it follows that
u−n → 0 in HsV (ℝ

N) as n →∞. (4.5)

Now, we take h = u+n ∈ HsV (ℝN) in (4.3) and obtain

− ⟨un , u+n⟩ + ∫
ℝN

(Iα ∗ |u+n |p)|u+n |p dx + ∫
ℝN

f(x, u+n)u+n dx ≤ εn . (4.6)

From (4.1) and (4.5), we get

⟨un , u+n⟩ −
1
p ∫
ℝN

(Iα ∗ |u+n |p)|u+n |p dx − 2 ∫
ℝN

F(x, u+n) dx ≤ M2 (4.7)

for some M2 > 0 and all n ≥ 1. Adding (4.6) and (4.7), we get

(1 − 1p) ∫
ℝN

(Iα ∗ |u+n |p)|u+n |p dx + ∫
ℝN

f(x, u+n)u+n dx − 2 ∫
ℝN

F(x, u+n) dx ≤ M3

for some M3 > 0 and all n ≥ 1, that is,

(1 − 1p) ∫
ℝN

(Iα ∗ |u+n |p)|u+n |p dx + ∫
ℝN

σ(x, u+n) dx ≤ M3. (4.8)

Now, we claim that (u+n)n is bounded in HsV (ℝN). To prove this, we argue by contradiction, and passing
to a subsequence if necessary, we assume that ‖u+n‖HsV →∞. We set yn = u+n/‖u+n‖HsV , n ≥ 1, so we can assume
that

yn ⇀ y in HsV (ℝ
N) and yn → y in LP(ℝN) (4.9)

for every P ∈ (2, 2∗), with y ≥ 0.
First, we assume y ̸= 0. Then, defining Z(y) := {x ∈ ℝN : y(x) = 0}, we have meas(ℝN \ Z(y)) > 0 and

u+n(x) → ∞ for almost every x ∈ ℝN \ Z(y) as n →∞. By hypothesis (f2), we have

F(x, u+n(x))
‖u+n‖2HsV

=
F(x, u+n(x))
u+n(x)

yn(x)2 →∞ for almost every x ∈ ℝN \ Z(y).

By Fatou’s lemma, we have

∫

ℝN

lim inf
n→∞

F(x, u+n(x))
‖u+n‖2HsV

dx ≤ lim inf
n→∞
∫

ℝN

F(x, u+n(x))
‖u+n‖2HsV

dx,

so
∫

ℝN

F(x, u+n(x))
‖u+n‖2HsV

dx →∞ as n →∞. (4.10)

Again from (4.1) and (4.5), we have

−
1
2 ‖u
+
n‖

2
HsV
+

1
2p ∫
ℝN

(Iα ∗ |u+n |p)|u+n |p dx + ∫
ℝN

F(x, u+n) dx ≤ M4

for some M4 > 0 and n ≥ 1, so it follows that

−
1
2 + ∫
ℝN

F(x, u+n(x))
‖u+n‖2HsV

dx ≤ M4

‖u+n‖2HsV
.
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Passing to the limit as n →∞, we obtain

lim sup
n→∞
∫

ℝN

F(x, u+n(x))
‖u+n‖2HsV

dx ≤ M5

for some M5 > 0, which is a contradiction with (4.10), and this concludes the case y ̸= 0.
Now, assume y ≡ 0. We consider the continuous functions γn : [0, 1] → ℝ defined by γn(t) := I+(tu+n) for

t ∈ [0, 1] and n ≥ 1, and define tn such that

γn(tn) = max
t∈[0,1]

γn(t). (4.11)

Now, for λ > 0,wedefine vn := (2λ)
1
2 yn ∈ HsV (ℝ

N). Then, by (4.9),wehave vn → 0 in LP(ℝN) for all P ∈ (2, 2∗).
From (f1), performing some integration, we obtain

∫

ℝN

F(x, u+n(x)) ≤ ∫
ℝN

a(x)|vn(x)| dx + C ∫
ℝN

|vn(x)|r dx,

so we have
∫

ℝN

F(x, u+n(x)) → 0 as n →∞. (4.12)

Since ‖u+n‖HsV →∞ as n →∞, there exists n0 ≥ 1 such that (2λ) 12 /‖u+n‖HsV ∈ (0, 1) for all n ≥ n0. Then, by
(4.11), we have

γn(tn) ≥ γn(
(2λ) 12
‖u+n‖HsV
) for all n ≥ n0.

Hence,

I+(tnu+n) ≥ I+((2λ)
1
2 yn) = I+(vn) = λ‖yn‖2HsV −

1
2p ∫
ℝN

(Iα ∗ |vn|p)|vn|p dx − ∫
ℝN

F(x, vn) dx.

From (4.12) and Proposition 2.7, we have

I+(tnu+n) ≥ λ + o(1) for all n ≥ n1 ≥ n0,

and since λ > 0 is arbitrary, we have

I+(tnu+n) → ∞ as n →∞. (4.13)

Since 0 ≤ tnu+n ≤ u+n for all n ≥ 1, by (f3), we get

∫

ℝN

σ(x, tnu+n) dx ≤ ∫
ℝN

σ(x, u+n) dx + ‖β∗‖1 for all n ≥ 1. (4.14)

In addition, we have I+(0) = 0, and from (4.1), (4.4) and (4.5), there exists M6 > 0 such that I+(u+n) ≤ M6
for all n ≥ 1. This, together with (4.13), implies that tn ∈ (0, 1) for all n ≥ n2 ≥ n1. Then, since tn achieves
a maximum, we have

0 = tnγ󸀠n(t) = tn⟨I󸀠+(tnu+n), u+n⟩ = ⟨J󸀠p(tnu+n), tnu+n⟩ − ∫
ℝN

f(x, tnu+n)tnu+n dx,

that is,
‖tnu+n‖2HsV − ∫

ℝN

(Iα ∗ |tnu+n |p)|tnu+n |p dx − ∫
ℝN

f(x, tnu+n)tnu+n dx = 0 for all n ≥ 1. (4.15)

Now, adding (4.15) to (4.14), we obtain

‖tnu+n‖2HsV − ∫
ℝN

(Iα ∗ |tnu+n |p)|tnu+n |p dx − 2 ∫
ℝN

F(x, tnu+n dx) ≤ ∫
ℝN

σ(x, u+n) dx + ‖β∗‖1 for all n ≥ n2,
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and this implies that

2I+(tnu+n) ≤ (1 −
1
p) ∫
ℝN

(Iα ∗ |tnu+n |p)|tnu+n |p dx + ∫
ℝN

σ(x, u+n) dx + ‖β∗‖1

≤ (1 − 1p) ∫
ℝN

(Iα ∗ |u+n |p)|u+n |p dx + ∫
ℝN

σ(x, u+n) dx + ‖β∗‖1 for all n ≥ 2

since tn ∈ (0, 1). Thus, by (4.13), we get

(1 − 1p) ∫
ℝN

(Iα ∗ |u+n |p)|u+n |p dx + ∫
ℝN

σ(x, u+n) dx →∞ as n →∞. (4.16)

Now, if we combine (4.8) and (4.16), we reach a contradiction, so the claim follows.
So (u+n)n is bounded in HsV (ℝN), and together with (4.5), this implies that (un)n is bounded in HsV (ℝN).

So we can assume that

un ⇀ u in HsV (ℝ
N) and un → u in LP(ℝN) for all P ∈ (2, 2∗).

Now, we choose h = un − u in (4.3) and obtain

⟨un , un − u⟩ − ∫
ℝN

(Iα ∗ |un|p)|u+n |p−2u+n(un − u) dx − ∫
ℝN

f(x, u+n)(un − u) dx = o(1). (4.17)

But by (f1), we have

∫

ℝN

|f(x, u+n)(un − u)| ≤ ∫
ℝN

a(x)|un − u| dx + ∫
ℝN

|un|r−1|un − u| dx

≤ ‖a‖q‖un − u‖q󸀠 + C‖un − u‖r → 0 as n →∞.

Hence, passing to the limit in (4.17), we obtain

⟨un , un − u⟩ − ∫
ℝN

(Iα ∗ |un|p)|u+n |p−2u+n(un − u) dx → 0 as n →∞.

By Proposition 2.7, we also have

∫

ℝN

(Iα ∗ |un|p)|u+n |p−2u+n(un − u) dx → 0 as n →∞,

so we get
⟨un , un − u⟩ = ‖un‖2HsV − ⟨un , u⟩ → 0.

This implies that ‖un‖2HsV → ‖u‖
2
HsV

as n →∞, so un → u in HsV (ℝN), and then I+ satisfies the (C) condition, as
desired.

We are now ready to give the proof of Theorem 4.2.

Proof of Theorem 4.2. From Proposition 4.3, we know that I+ satisfies the (C) condition, so we only have to
verify the geometric conditions of the mountain pass theorem, and indeed, I+(0) = 0.

By (f1) and (f4), there exist ε > 0 and Cε > 0 such that

F(x, u) ≤ ε2u
2
n + Cε|u|r for almost every x ∈ ℝN and all u ∈ ℝ.

Then, by Proposition 2.7 and the Sobolev embedding theorem, there exist C, S, C1 > 0 such that, for every
u ∈ HsV (ℝ

N), we have

I+(u) =
1
2 ‖u‖

2
HsV
−

1
2p ∫
ℝN

(Iα ∗ |u+|p)|u+|p dx − ∫
ℝN

F(x, u+) dx

≥
1
2 ‖u‖

2
HsV
− C‖u+‖2pHsV −

ε
2 ‖u
+‖22 − Cε‖u

+‖rr

≥
1 − εS
2 ‖u‖

2
HsV
− C‖u+‖2pHsV − C1‖u

+‖rHsV .

So, if ‖u‖HsV = ρ small enough, we have inf‖u‖=ρ I+(u) > 0.
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Now, if we take u ∈ HsV (ℝN) \ {0} with u > 0 and t > 0, then

I+(tu) =
t2

2 ‖u‖
2
HsV
−
t2p

2p ∫
ℝN

(Iα ∗ |u|p)up dx − ∫
ℝN

F(x, tu) dx

=
t2

2 ‖u‖
2
HsV
−
t2p

2p ∫
ℝN

(Iα ∗ |u|p)up dx − t2 ∫
ℝN

F(x, tu)
(tu)2

u2 dx.

By Fatou’s lemma, we have

∫

ℝN

lim inf
t→∞

F(x, tu)
(tu)2

u2 dx ≤ lim inf
t→∞
∫

ℝN

F(x, tu)
(tu)2

u2 dx,

so, by (f2), we have
∫

ℝN

F(x, tu)
(tu)2

u2 dx →∞ as t →∞.

As a consequence, I+(tu) → −∞ as t →∞, so there exists e ∈ HsV (ℝN) such that ‖e‖HsV ≥ ρ and I+(e) < 0.
Now, we can apply the mountain pass theorem to I+ and obtain a nontrivial critical point u of I+. In

particular, we have

0 = ⟨I󸀠+(u), u−⟩ = ⟨u, u−⟩ − ∫
ℝN

(Iα ∗ |u+|p)|u+|p−2u+u− dx − ∫
ℝN

f(x, u+)u− dx = ⟨u+, u−⟩ − ‖u−‖2HsV .

From this, we have

‖u−‖2HsV = ⟨u
+, u−⟩ = ∫

ℝ2N

(u+(x) − u+(y))(u−(x) − u−(y))
|x − y|N+2s

dx dy

≤ − ∫

ℝ2N

u+(x)u−(y) + u−(x)u+(y)
|x − y|N+2s

dx dy ≤ 0,

so u− ≡ 0. As a consequence, since I+(u) = Ip(u), u is a positive solution of (P2).
In the same way, arguing with I−, we can find a negative solution for problem (P2).
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